Journal of Formalized Mathematics
Volume 10, 1998
University of Bialystok
Copyright (c) 1998 Association of Mizar Users

The abstract of the Mizar article:

Real Linear-Metric Space and Isometric Functions

by
Robert Milewski

Received November 3, 1998

MML identifier: VECTMETR
[ Mizar article, MML identifier index ]


environ

 vocabulary METRIC_1, JORDAN1, ARYTM_1, FINSEQ_1, ABSVALUE, RLVECT_1, ARYTM_3,
      BINTREE1, TREES_2, RELAT_1, FUNCT_1, BOOLE, TREES_4, CAT_1, TREES_1,
      POWER, INT_1, BINTREE2, MCART_1, EUCLID, FINSEQ_2, MIDSP_3, MARGREL1,
      ZF_LANG, NAT_1, MATRIX_2, FUNCOP_1, RELAT_2, PRE_TOPC, FUNCT_2, SUBSET_1,
      BINOP_1, UNIALG_1, COMPLEX1, VECTSP_1, GROUP_1, GROUP_2, VECTMETR,
      FINSEQ_4, PARTFUN1;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, NUMBERS, XREAL_0, MCART_1,
      REAL_1, RELAT_2, NAT_1, INT_1, STRUCT_0, POWER, ABIAN, SERIES_1, RELAT_1,
      RELSET_1, ABSVALUE, MARGREL1, BINOP_1, DOMAIN_1, FUNCT_1, PARTFUN1,
      FUNCT_2, PRE_TOPC, FUNCOP_1, FINSEQ_1, FINSEQ_2, FINSEQ_4, FINSEQOP,
      BINARITH, TREES_1, TREES_2, TREES_4, BINTREE1, BINTREE2, RVSUM_1,
      RLVECT_1, VECTSP_1, GROUP_1, GROUP_2, TOPS_2, GRCAT_1, METRIC_1, EUCLID,
      MIDSP_3;
 constructors REAL_1, ABIAN, SERIES_1, DOMAIN_1, TOPS_2, TREES_9, FINSEQ_4,
      FINSEQOP, BINARITH, BINTREE2, GRCAT_1, EUCLID, GROUP_2, MEMBERED;
 clusters SUBSET_1, STRUCT_0, RELSET_1, FUNCT_1, BINTREE1, BINTREE2, GROUP_1,
      GROUP_2, METRIC_1, TREES_2, MARGREL1, BINARITH, NAT_1, MEMBERED, FUNCT_2;
 requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;


begin  :: Convex and Internal Metric Spaces

  definition
   let V be non empty MetrStruct;
   attr V is convex means
:: VECTMETR:def 1
    for x,y be Element of V
    for r be Real st 0 <= r & r <= 1
    ex z be Element of V st
     dist(x,z) = r * dist(x,y) & dist(z,y) = (1 - r) * dist(x,y);
  end;

  definition
   let V be non empty MetrStruct;
   attr V is internal means
:: VECTMETR:def 2
      for x,y be Element of V
    for p,q be Real st p > 0 & q > 0
    ex f be FinSequence of the carrier of V st
     f/.1 = x & f/.len f = y &
     (for i be Nat st 1 <= i & i <=
 len f - 1 holds dist(f/.i,f/.(i+1)) < p) &
     for F be FinSequence of REAL st len F = len f - 1 &
      for i be Nat st 1 <= i & i <= len F holds F/.i = dist(f/.i,f/.(i+1))
     holds abs(dist(x,y) - Sum F) < q;
  end;

  theorem :: VECTMETR:1
   for V be non empty MetrSpace st V is convex
   for x,y be Element of V
   for p be Real st p > 0
   ex f be FinSequence of the carrier of V st
    f/.1 = x & f/.len f = y &
    (for i be Nat st 1 <= i & i <= len f - 1 holds dist(f/.i,f/.(i+1)) < p) &
    for F be FinSequence of REAL st len F = len f - 1 &
     for i be Nat st 1 <= i & i <= len F holds F/.i = dist(f/.i,f/.(i+1))
    holds dist(x,y) = Sum F;

  definition
   cluster convex -> internal (non empty MetrSpace);
  end;

  definition
   cluster convex (non empty MetrSpace);
  end;

  definition
   mode Geometry is Reflexive discerning symmetric triangle internal
        (non empty MetrStruct);
  end;

begin  :: Isometric Functions

  definition
   let V be non empty MetrStruct;
   let f be map of V,V;
   attr f is isometric means
:: VECTMETR:def 3
    rng f = the carrier of V &
    for x,y be Element of V holds dist(x,y) = dist(f.x,f.y);
  end;

  definition
   let V be non empty MetrStruct;
   func ISOM(V) -> set means
:: VECTMETR:def 4
    for x be set holds
     x in it iff ex f be map of V,V st f = x & f is isometric;
  end;

  definition
   let V be non empty MetrStruct;
   redefine func ISOM(V) -> Subset of Funcs(the carrier of V,the carrier of V);
  end;

  theorem :: VECTMETR:2
   for V be discerning Reflexive (non empty MetrStruct)
   for f be map of V,V st f is isometric holds
    f is one-to-one;

  definition
   let V be discerning Reflexive (non empty MetrStruct);
   cluster isometric -> one-to-one map of V,V;
  end;

  definition
   let V be non empty MetrStruct;
   cluster isometric map of V,V;
  end;

  theorem :: VECTMETR:3
   for V be discerning Reflexive (non empty MetrStruct)
   for f be isometric map of V,V holds
    f" is isometric;

  theorem :: VECTMETR:4
   for V be non empty MetrStruct
   for f,g be isometric map of V,V holds
    f*g is isometric;

  theorem :: VECTMETR:5
   for V be non empty MetrStruct holds
    id(V) is isometric;

  definition
   let V be non empty MetrStruct;
   cluster ISOM V -> non empty;
  end;

begin  :: Real Linear-Metric Spaces

definition
  struct(RLSStruct,MetrStruct) RLSMetrStruct (# carrier -> set,
          distance -> Function of [:the carrier,the carrier:],REAL,
          Zero -> Element of the carrier,
          add -> BinOp of the carrier,
          Mult -> Function of [:REAL, the carrier:],the carrier #);
end;

  definition
   cluster non empty strict RLSMetrStruct;
  end;

  definition
   let X be non empty set;
   let F be Function of [:X,X:],REAL;
   let O be Element of X;
   let B be BinOp of X;
   let G be Function of [:REAL,X:],X;
   cluster RLSMetrStruct (# X,F,O,B,G #) -> non empty;
  end;

  definition
   let V be non empty RLSMetrStruct;
   attr V is homogeneous means
:: VECTMETR:def 5
    for r be Real
    for v,w be Element of V holds
     dist(r*v,r*w) = abs(r) * dist(v,w);
  end;

  definition
   let V be non empty RLSMetrStruct;
   attr V is translatible means
:: VECTMETR:def 6
    for u,w,v be Element of V holds
     dist(v,w) = dist(v+u,w+u);
  end;

  definition
   let V be non empty RLSMetrStruct;
   let v be Element of V;
   func Norm(v) -> Real equals
:: VECTMETR:def 7
    dist(0.V,v);
  end;

  definition
   cluster strict Abelian add-associative right_zeroed
           right_complementable RealLinearSpace-like
           Reflexive discerning symmetric triangle
           homogeneous translatible (non empty RLSMetrStruct);
  end;

  definition
   mode RealLinearMetrSpace is
    Abelian add-associative right_zeroed right_complementable
    RealLinearSpace-like Reflexive discerning symmetric triangle
    homogeneous translatible (non empty RLSMetrStruct);
  end;

  theorem :: VECTMETR:6
     for V be homogeneous Abelian add-associative right_zeroed
    right_complementable RealLinearSpace-like (non empty RLSMetrStruct)
   for r be Real
   for v be Element of V holds
    Norm (r * v) = abs(r) * Norm v;

  theorem :: VECTMETR:7
     for V be translatible Abelian add-associative right_zeroed
              right_complementable triangle (non empty RLSMetrStruct)
   for v,w be Element of V holds
    Norm (v + w) <= Norm v + Norm w;

  theorem :: VECTMETR:8
     for V be translatible add-associative right_zeroed right_complementable
                                                    (non empty RLSMetrStruct)
   for v,w be Element of V holds
    dist(v,w) = Norm (w - v);

  definition
   let n be Nat;
   func RLMSpace n -> strict RealLinearMetrSpace means
:: VECTMETR:def 8
    the carrier of it = REAL n &
    the distance of it = Pitag_dist n &
    the Zero of it = 0*n &
    (for x,y be Element of REAL n holds (the add of it).(x,y) = x + y) &
    for x be Element of REAL n,r be Element of REAL holds
     (the Mult of it).(r,x) = r * x;
  end;

  theorem :: VECTMETR:9
     for n be Nat
   for f be isometric map of RLMSpace n,RLMSpace n holds
    rng f = REAL n;

begin  :: Groups of Isometric Functions

  definition
   let n be Nat;
   func IsomGroup n -> strict HGrStr means
:: VECTMETR:def 9
    the carrier of it = ISOM RLMSpace n &
    (for f,g be Function st f in ISOM RLMSpace n &
     g in ISOM RLMSpace n holds (the mult of it).(f,g) = f*g);
  end;

  definition
   let n be Nat;
   cluster IsomGroup n -> non empty;
  end;

  definition
   let n be Nat;
   cluster IsomGroup n -> associative Group-like;
  end;

  theorem :: VECTMETR:10
   for n be Nat holds
    1.(IsomGroup n) = id (RLMSpace n);

  theorem :: VECTMETR:11
   for n be Nat
   for f be Element of IsomGroup n
   for g be map of RLMSpace n,RLMSpace n st f = g holds
    f" = g";

  definition
   let n be Nat;
   let G be Subgroup of IsomGroup n;
   func SubIsomGroupRel G -> Relation of the carrier of RLMSpace n means
:: VECTMETR:def 10

    for A,B be Element of RLMSpace n holds
     [A,B] in it iff ex f be Function st f in the carrier of G & f.A = B;
  end;

  definition
   let n be Nat;
   let G be Subgroup of IsomGroup n;
   cluster SubIsomGroupRel G -> total symmetric transitive;
  end;

Back to top