Journal of Formalized Mathematics
Volume 13, 2001
University of Bialystok
Copyright (c) 2001 Association of Mizar Users

The abstract of the Mizar article:

More on External Approximation of a Continuum

by
Andrzej Trybulec

Received October 7, 2001

MML identifier: JORDAN1H
[ Mizar article, MML identifier index ]


environ

 vocabulary COMPTS_1, SPPOL_1, EUCLID, FINSEQ_1, GOBOARD1, PRE_TOPC, BOOLE,
      ARYTM_3, RELAT_1, RELAT_2, TRIANG_1, ZF_REFLE, AMI_1, PRALG_1, FUNCT_1,
      FUNCT_6, ORDINAL2, TOPREAL1, JORDAN1, PCOMPS_1, METRIC_1, SQUARE_1,
      ARYTM_1, FINSEQ_2, COMPLEX1, ABSVALUE, ORDERS_1, ORDERS_2, FINSET_1,
      FINSEQ_4, GOBOARD2, CARD_1, FUNCT_5, MCART_1, GOBRD13, TARSKI, PROB_1,
      MATRIX_1, TREES_1, INCSP_1, GOBOARD5, SEQM_3, CONNSP_1, SUBSET_1,
      GOBOARD9, TOPS_1, JORDAN3, RFINSEQ, FINSEQ_5, JORDAN8, INT_1, GROUP_1,
      PSCOMP_1, JORDAN2C, FINSEQ_6, SPRECT_2, JORDAN9, JORDAN1A, JORDAN1H,
      ARYTM, PARTFUN1;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, FINSEQ_6, RVSUM_1, GOBOARD5,
      STRUCT_0, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, SQUARE_1, NAT_1,
      INT_1, BINARITH, ABSVALUE, RELAT_1, RELAT_2, RELSET_1, FUNCT_1, PARTFUN1,
      FUNCT_2, CARD_1, CARD_4, FINSET_1, FINSEQ_1, FUNCT_6, PROB_1, PRALG_1,
      FINSEQ_2, FINSEQ_4, FINSEQ_5, RFINSEQ, MATRIX_1, METRIC_1, ORDERS_1,
      ORDERS_2, TRIANG_1, PRE_TOPC, TOPS_1, COMPTS_1, CONNSP_1, PCOMPS_1,
      EUCLID, JORDAN1, SPRECT_2, TOPREAL1, GOBOARD1, GOBOARD2, JORDAN3,
      JORDAN2C, SPPOL_1, PSCOMP_1, GOBOARD9, JORDAN8, GOBRD13, JORDAN9,
      JORDAN1A;
 constructors REAL_1, CARD_4, RFINSEQ, BINARITH, TOPS_1, CONNSP_1, PSCOMP_1,
      GOBOARD9, JORDAN8, GOBRD13, GROUP_1, JORDAN9, GOBOARD2, TRIANG_1,
      ORDERS_2, AMI_1, JORDAN1, PRALG_1, MATRLIN, JORDAN3, JORDAN2C, SQUARE_1,
      WSIERP_1, JORDAN1A, TOPREAL4, SPRECT_1, PROB_1;
 clusters PSCOMP_1, RELSET_1, FINSEQ_1, FINSEQ_5, REVROT_1, XREAL_0, GOBOARD9,
      JORDAN8, GOBRD13, EUCLID, FINSET_1, POLYNOM1, WAYBEL_2, GOBOARD1,
      PRELAMB, TRIANG_1, PUA2MSS1, MSAFREE1, FUNCT_7, PRALG_1, GENEALG1,
      GOBOARD2, SPRECT_3, TOPREAL6, INT_1, BORSUK_2, SPRECT_4, SPRECT_1,
      MEMBERED, RELAT_1;
 requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;


begin :: Preliminaries

reserve m,k,j,j1,i,i1,i2,n for Nat,
     r,s for Real,
     C for compact non vertical non horizontal Subset of TOP-REAL 2,

     G for Go-board,

     p for Point of TOP-REAL 2;

definition
 cluster with_non-empty_element set;
end;

definition let D be non empty with_non-empty_element set;
 cluster non empty non-empty FinSequence of D*;
end;

definition let D be non empty with_non-empty_elements set;
 cluster non empty non-empty FinSequence of D*;
end;

definition let F be non-empty Function-yielding Function;
 cluster rngs F -> non-empty;
end;

definition
 cluster increasing -> one-to-one FinSequence of REAL;
end;

canceled 3;

theorem :: JORDAN1H:4
 for p,q being Point of TOP-REAL 2
  holds LSeg(p,q) \ {p,q} is convex;

theorem :: JORDAN1H:5
   for p,q being Point of TOP-REAL 2
  holds LSeg(p,q) \ {p,q} is connected;

theorem :: JORDAN1H:6
 for p,q being Point of TOP-REAL 2 st p <> q
  holds p in Cl(LSeg(p,q) \ {p,q});

theorem :: JORDAN1H:7
 for p,q being Point of TOP-REAL 2 st p <> q
  holds Cl(LSeg(p,q) \ {p,q}) = LSeg(p,q);

theorem :: JORDAN1H:8
   for S being Subset of TOP-REAL 2,
     p,q be Point of TOP-REAL 2
    st p <> q & LSeg(p,q) \ {p,q} c= S
 holds LSeg(p,q) c= Cl S;

begin :: Transforming Finite Sets to Finite Sequences

definition
 func RealOrd -> Relation of REAL equals
:: JORDAN1H:def 1
 {[r,s] : r <= s };
end;

theorem :: JORDAN1H:9
 [r,s] in RealOrd implies r <= s;

theorem :: JORDAN1H:10
 field RealOrd = REAL;

definition
 cluster RealOrd
    -> total reflexive antisymmetric transitive being_linear-order;
end;

theorem :: JORDAN1H:11
 RealOrd linearly_orders REAL;

theorem :: JORDAN1H:12
 for A being finite Subset of REAL
  holds SgmX(RealOrd,A) is increasing;

theorem :: JORDAN1H:13
 for f being FinSequence of REAL,
     A being finite Subset of REAL st A = rng f
  holds SgmX(RealOrd,A) = Incr f;

definition let A be finite Subset of REAL;
 cluster SgmX(RealOrd,A) -> increasing;
end;

canceled;

theorem :: JORDAN1H:15
for X being non empty set,
    A being finite Subset of X,
    R be being_linear-order Order of X
 holds len SgmX(R,A) = card A;

begin :: On the construction of go boards

theorem :: JORDAN1H:16
 for f being FinSequence of TOP-REAL 2
  holds X_axis f = proj1*f;

theorem :: JORDAN1H:17
 for f being FinSequence of TOP-REAL 2
  holds Y_axis f = proj2*f;

definition let D be non empty set; let M be FinSequence of D*;
 redefine func Values M -> Subset of D;
end;

definition let D be non empty with_non-empty_elements set;
 let M be non empty non-empty FinSequence of D*;
 cluster Values M -> non empty;
end;

theorem :: JORDAN1H:18
 for D being non empty set, M being (Matrix of D), i st i in Seg width M
  holds rng Col(M,i) c= Values M;

theorem :: JORDAN1H:19
 for D being non empty set, M being (Matrix of D), i st i in dom M
  holds rng Line(M,i) c= Values M;

theorem :: JORDAN1H:20
 for G being X_increasing-in-column non empty-yielding Matrix of TOP-REAL 2
  holds len G <= card(proj1.:Values G);

theorem :: JORDAN1H:21
 for G being X_equal-in-line Matrix of TOP-REAL 2
  holds card(proj1.:Values G) <= len G;

theorem :: JORDAN1H:22
 for G being X_equal-in-line X_increasing-in-column
   non empty-yielding Matrix of TOP-REAL 2
  holds len G = card(proj1.:Values G);

theorem :: JORDAN1H:23
 for G being Y_increasing-in-line non empty-yielding Matrix of TOP-REAL 2
  holds width G <= card(proj2.:Values G);

theorem :: JORDAN1H:24
 for G being Y_equal-in-column non empty-yielding Matrix of TOP-REAL 2
  holds card(proj2.:Values G) <= width G;

theorem :: JORDAN1H:25
 for G being Y_equal-in-column Y_increasing-in-line non empty-yielding
  Matrix of TOP-REAL 2
  holds width G = card(proj2.:Values G);

begin :: On go boards

theorem :: JORDAN1H:26
   for G be Go-board
 for f be FinSequence of TOP-REAL 2 st f is_sequence_on G
 for k be Nat st 1 <= k & k+1 <= len f holds
  LSeg(f,k) c= left_cell(f,k,G);

theorem :: JORDAN1H:27
   for f being standard special_circular_sequence st 1 <= k & k+1 <= len f
  holds left_cell(f,k,GoB f) = left_cell(f,k);

theorem :: JORDAN1H:28
 for G be Go-board
 for f be FinSequence of TOP-REAL 2 st f is_sequence_on G
 for k be Nat st 1 <= k & k+1 <= len f holds
  LSeg(f,k) c= right_cell(f,k,G);

theorem :: JORDAN1H:29
 for f being standard special_circular_sequence st 1 <= k & k+1 <= len f
  holds right_cell(f,k,GoB f) = right_cell(f,k);

theorem :: JORDAN1H:30
   for P being Subset of TOP-REAL 2,
     f being non constant standard special_circular_sequence st
  P is_a_component_of (L~f)` holds
 P = RightComp f or P = LeftComp f;

theorem :: JORDAN1H:31
    for f being non constant standard special_circular_sequence st
    f is_sequence_on G
  for k st 1 <= k & k+1 <= len f
    holds
   Int right_cell(f,k,G) c= RightComp f & Int left_cell(f,k,G) c= LeftComp f;

theorem :: JORDAN1H:32
 for i1,j1,i2,j2 being Nat, G being Go-board
   st [i1,j1] in Indices G & [i2,j2] in Indices G & G*(i1,j1) = G*(i2,j2)
  holds i1 = i2 & j1 = j2;

theorem :: JORDAN1H:33
 for f being FinSequence of TOP-REAL 2, M being Go-board
   holds f is_sequence_on M implies mid(f,i1,i2) is_sequence_on M;

definition
 cluster -> non empty non-empty Go-board;
end;

theorem :: JORDAN1H:34
 for G being Go-board st 1 <= i & i <= len G holds
  SgmX(RealOrd, proj1.:Values G).i = G*(i,1)`1;

theorem :: JORDAN1H:35
 for G being Go-board st 1 <= j & j <= width G holds
  SgmX(RealOrd, proj2.:Values G).j = G*(1,j)`2;

theorem :: JORDAN1H:36
 for f being non empty FinSequence of TOP-REAL 2, G being Go-board
  st f is_sequence_on G &
   (ex i st [1,i] in Indices G & G*(1,i) in rng f) &
   (ex i st [len G,i] in Indices G & G*(len G,i) in rng f)
  holds proj1.:rng f = proj1.:Values G;

theorem :: JORDAN1H:37
 for f being non empty FinSequence of TOP-REAL 2, G being Go-board
  st f is_sequence_on G &
   (ex i st [i,1] in Indices G & G*(i,1) in rng f) &
   (ex i st [i,width G] in Indices G & G*(i,width G) in rng f)
  holds proj2.:rng f = proj2.:Values G;

definition let G be Go-board;
 cluster Values G -> non empty;
end;

theorem :: JORDAN1H:38
 for G being Go-board holds
  G = GoB(SgmX(RealOrd, proj1.:Values G), SgmX(RealOrd,proj2.:Values G));

theorem :: JORDAN1H:39
 for f being non empty FinSequence of TOP-REAL 2, G being Go-board
  st proj1.:rng f = proj1.:Values G & proj2.:rng f = proj2.:Values G
  holds G = GoB f;

theorem :: JORDAN1H:40
 for f being non empty FinSequence of TOP-REAL 2, G being Go-board
  st f is_sequence_on G &
   (ex i st [1,i] in Indices G & G*(1,i) in rng f) &
   (ex i st [i,1] in Indices G & G*(i,1) in rng f) &
   (ex i st [len G,i] in Indices G & G*(len G,i) in rng f) &
   (ex i st [i,width G] in Indices G & G*(i,width G) in rng f)
  holds G = GoB f;

begin :: More about gauges

theorem :: JORDAN1H:41
 m <= n & 1 <= i & i+1 <= len Gauge(C,n)
  implies [\ (i-2)/2|^(n-'m)+2 /] is Nat;

theorem :: JORDAN1H:42
 m <= n & 1 <= i & i+1 <= len Gauge(C,n)
 implies
  1 <= [\ (i-2)/2|^(n-'m)+2 /] & [\ (i-2)/2|^(n-'m)+2 /]+1 <= len Gauge(C,m);

theorem :: JORDAN1H:43
 m <= n & 1 <= i & i+1 <= len Gauge(C,n) & 1 <= j & j+1 <= width Gauge(C,n)
 implies
  ex i1,j1 st
   i1 = [\ (i-2)/2|^(n-'m)+2 /] & j1 = [\ (j-2)/2|^(n-'m)+2 /] &
   cell(Gauge(C,n),i,j) c= cell(Gauge(C,m),i1,j1);

theorem :: JORDAN1H:44
 m <= n & 1 <= i & i+1 <= len Gauge(C,n) & 1 <= j & j+1 <= width Gauge(C,n)
 implies
  ex i1,j1 st
   1 <= i1 & i1+1 <= len Gauge(C,m) & 1 <= j1 & j1+1 <= width Gauge(C,m) &
   cell(Gauge(C,n),i,j) c= cell(Gauge(C,m),i1,j1);

canceled 2;

theorem :: JORDAN1H:47
   for P being Subset of TOP-REAL2 st P is Bounded
  holds UBD P is not Bounded;

theorem :: JORDAN1H:48
 for f being non constant standard special_circular_sequence
  st Rotate(f,p) is clockwise_oriented
 holds f is clockwise_oriented;

theorem :: JORDAN1H:49
   for f being non constant standard special_circular_sequence
  st LeftComp f = UBD L~f
 holds f is clockwise_oriented;

begin :: More about cages

theorem :: JORDAN1H:50
  for f being non constant standard special_circular_sequence
   holds (Cl LeftComp(f))` = RightComp f;

theorem :: JORDAN1H:51
    for f being non constant standard special_circular_sequence
   holds (Cl RightComp(f))` = LeftComp f;

theorem :: JORDAN1H:52
 C is connected implies GoB Cage(C,n) = Gauge(C,n);

theorem :: JORDAN1H:53
   C is connected implies N-min C in right_cell(Cage(C,n),1);

theorem :: JORDAN1H:54
 C is connected & i <= j implies L~Cage(C,j) c= Cl RightComp(Cage(C,i));

theorem :: JORDAN1H:55
 C is connected & i <= j implies LeftComp(Cage(C,i)) c= LeftComp(Cage(C,j));

theorem :: JORDAN1H:56
   C is connected & i <= j implies RightComp(Cage(C,j)) c= RightComp(Cage(C,i))
;

begin :: Preparing the Internal Approximation

definition let C,n;
 func X-SpanStart(C,n) -> Nat equals
:: JORDAN1H:def 2
 2|^(n-'1) + 2;
end;

theorem :: JORDAN1H:57
   X-SpanStart(C,n) = Center Gauge(C,n);

theorem :: JORDAN1H:58
 2 < X-SpanStart(C,n) & X-SpanStart(C,n) < len Gauge(C,n);

theorem :: JORDAN1H:59
 1 <= X-SpanStart(C,n)-'1 & X-SpanStart(C,n)-'1 < len Gauge(C,n);

definition let C,n;
 pred n is_sufficiently_large_for C means
:: JORDAN1H:def 3
 ex j st j < width Gauge(C,n) &
   cell(Gauge(C,n),X-SpanStart(C,n)-'1,j) c= BDD C;
end;

theorem :: JORDAN1H:60
   n is_sufficiently_large_for C implies n >= 1;

theorem :: JORDAN1H:61
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j1 being Nat st
   left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
   [i1,j1+1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j1+1)
  holds [i1-'1,j1+1] in Indices Gauge(C,n);

theorem :: JORDAN1H:62
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j1 being Nat st
   left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
   [i1+1,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1+1,j1)
  holds [i1+1,j1+1] in Indices Gauge(C,n);

theorem :: JORDAN1H:63
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for j1,i2 being Nat st
   left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i2+1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i2+1,j1) &
   [i2,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i2,j1)
  holds [i2,j1-'1] in Indices Gauge(C,n);

theorem :: JORDAN1H:64
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j2 being Nat st
   left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j2+1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j2+1) &
   [i1,j2] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j2)
  holds [i1+1,j2] in Indices Gauge(C,n);

theorem :: JORDAN1H:65
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j1 being Nat st
   front_left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
   [i1,j1+1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j1+1)
  holds [i1,j1+2] in Indices Gauge(C,n);

theorem :: JORDAN1H:66
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j1 being Nat st
   front_left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
   [i1+1,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1+1,j1)
  holds [i1+2,j1] in Indices Gauge(C,n);

theorem :: JORDAN1H:67
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for j1,i2 being Nat st
   front_left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i2+1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i2+1,j1) &
   [i2,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i2,j1)
  holds [i2-'1,j1] in Indices Gauge(C,n);

theorem :: JORDAN1H:68
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j2 being Nat st
   front_left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j2+1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j2+1) &
   [i1,j2] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j2)
  holds [i1,j2-'1] in Indices Gauge(C,n);

theorem :: JORDAN1H:69
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j1 being Nat st
    front_right_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
   [i1,j1+1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j1+1)
  holds [i1+1,j1+1] in Indices Gauge(C,n);

theorem :: JORDAN1H:70
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j1 being Nat st
   front_right_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
   [i1+1,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1+1,j1)
  holds [i1+1,j1-'1] in Indices Gauge(C,n);

theorem :: JORDAN1H:71
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for j1,i2 being Nat st
   front_right_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i2+1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i2+1,j1) &
   [i2,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i2,j1)
  holds [i2,j1+1] in Indices Gauge(C,n);

theorem :: JORDAN1H:72
    for C being compact non vertical non horizontal non empty
                   Subset of TOP-REAL 2
  for n
  for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
   len f > 1
  for i1,j2 being Nat st
   front_right_cell(f,(len f)-'1,Gauge(C,n)) meets C &
   [i1,j2+1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j2+1) &
   [i1,j2] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j2)
  holds [i1-'1,j2] in Indices Gauge(C,n);


Back to top