Journal of Formalized Mathematics
Volume 14, 2002
University of Bialystok
Copyright (c) 2002 Association of Mizar Users

The abstract of the Mizar article:

Preparing the Internal Approximations of Simple Closed Curves

by
Andrzej Trybulec

Received May 21, 2002

MML identifier: JORDAN11
[ Mizar article, MML identifier index ]


environ

 vocabulary JORDAN1A, JORDAN11, JORDAN8, EUCLID, GROUP_1, FINSEQ_1, ARYTM_1,
      SEQ_1, BOOLE, GOBOARD5, SETFAM_1, SQUARE_1, FUNCT_1, PSCOMP_1, RCOMP_1,
      RELAT_2, JORDAN2C, JORDAN6, JORDAN9, PRE_TOPC, RELAT_1, TARSKI, ORDINAL2,
      CONNSP_1, COMPTS_1, MCART_1, TOPREAL1, TOPREAL2, GOBOARD9, ARYTM_3,
      SUBSET_1, LATTICES, NAT_1, INT_1, JORDAN10, SEQ_2, FUNCT_5, TREES_1,
      MATRIX_1, JORDAN1H, JORDAN1E, ARYTM;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0,
      REAL_1, INT_1, NAT_1, BINARITH, CARD_4, CQC_SIM1, RELAT_1, FUNCT_2,
      FINSEQ_1, MATRIX_1, SEQ_1, SEQ_4, RCOMP_1, STRUCT_0, PRE_TOPC, CONNSP_1,
      COMPTS_1, EUCLID, TOPREAL1, TOPREAL2, GOBOARD5, GOBOARD9, PSCOMP_1,
      JORDAN2C, JORDAN6, JCT_MISC, JORDAN8, JORDAN9, JORDAN10, JORDAN1A,
      JORDAN1E, JORDAN1H;
 constructors TOPREAL2, JORDAN8, JORDAN2C, BINARITH, REALSET1, GOBOARD9,
      JORDAN1, RCOMP_1, PSCOMP_1, CONNSP_1, CQC_SIM1, REAL_1, CARD_4, TOPS_1,
      JORDAN6, JORDAN9, JORDAN5C, JORDAN1A, JORDAN10, WSIERP_1, JCT_MISC,
      JORDAN1H, JORDAN1E, PARTFUN1, INT_1;
 clusters SPRECT_3, BORSUK_2, TOPREAL6, XREAL_0, SUBSET_1, PSCOMP_1, REVROT_1,
      JORDAN8, INT_1, JORDAN1A, JORDAN1B, JORDAN10, MEMBERED, NUMBERS,
      ORDINAL2;
 requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;


begin

reserve i,j,k,n for Nat,
        C for being_simple_closed_curve Subset of TOP-REAL 2;

definition let C;
 func ApproxIndex C -> Nat means
:: JORDAN11:def 1
 it is_sufficiently_large_for C &
  for j st j is_sufficiently_large_for C holds j >= it;
end;

theorem :: JORDAN11:1
 ApproxIndex C >= 1;

definition let C;
 func Y-InitStart C -> Nat means
:: JORDAN11:def 2
 it < width Gauge(C,ApproxIndex C) &
    cell(Gauge(C,ApproxIndex C),X-SpanStart(C,ApproxIndex C)-'1,it) c= BDD C &
  for j st j < width Gauge(C,ApproxIndex C) &
       cell(Gauge(C,ApproxIndex C),X-SpanStart(C,ApproxIndex C)-'1,j) c= BDD C
    holds j >= it;
end;

theorem :: JORDAN11:2
 Y-InitStart C > 1;

theorem :: JORDAN11:3
 Y-InitStart C + 1 < width Gauge(C,ApproxIndex C);

definition
  let C,n such that
 n is_sufficiently_large_for C;
 func Y-SpanStart(C,n) -> Nat means
:: JORDAN11:def 3
 it <= width Gauge(C,n) &
   (for k st it <= k & k <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2
     holds cell(Gauge(C,n),X-SpanStart(C,n)-'1,k) c= BDD C) &
    for j st j <= width Gauge(C,n) &
     for k st j <= k & k <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2
       holds cell(Gauge(C,n),X-SpanStart(C,n)-'1,k) c= BDD C
    holds j >= it;
end;

theorem :: JORDAN11:4
 n is_sufficiently_large_for C implies
 X-SpanStart(C,n) = 2|^(n-'ApproxIndex C)*(X-SpanStart(C,ApproxIndex C)-2)+2;

theorem :: JORDAN11:5
 n is_sufficiently_large_for C implies
  Y-SpanStart(C,n) <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2;

theorem :: JORDAN11:6
 n is_sufficiently_large_for C
  implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) c= BDD C;

theorem :: JORDAN11:7
 n is_sufficiently_large_for C implies
 1 < Y-SpanStart(C,n) & Y-SpanStart(C,n) <= width Gauge(C,n);

theorem :: JORDAN11:8
   n is_sufficiently_large_for C implies
 [X-SpanStart(C,n),Y-SpanStart(C,n)] in Indices Gauge(C,n);

theorem :: JORDAN11:9
   n is_sufficiently_large_for C implies
 [X-SpanStart(C,n)-'1,Y-SpanStart(C,n)] in Indices Gauge(C,n);

theorem :: JORDAN11:10
   n is_sufficiently_large_for C
  implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)-'1) meets C;

theorem :: JORDAN11:11
   n is_sufficiently_large_for C
 implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) misses C;


Back to top