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1. PRELIMINARIES

We adopt the following rules:k, mare natural numbers,x, X are sets, andN is a set with non empty
elements.

Let f be a function and letg be a non empty function. One can verify thatf+·g is non empty
andg+· f is non empty.

Let f , g be finite functions. One can check thatf+·g is finite.
One can prove the following propositions:

(1) For all functionsf , g holds domf ≈ domg iff f ≈ g.

(2) For all finite functionsf , g such that domf misses domg holds card( f+·g) = cardf +
cardg.

Let f be a function and letA be a set. One can check thatf \A is function-like and relation-like.
Next we state two propositions:

(3) For all functionsf , g such thatx∈ dom f \domg holds( f \g)(x) = f (x).

(4) For every non empty finite setF holds cardF−1 = cardF−′ 1.

2. PRODUCT L IKE SETS

Let Sbe a functional set. The functor∏S yielding a function is defined by:

(Def. 1)(i) For every setx holdsx∈ dom∏S iff for every function f such thatf ∈Sholdsx∈ dom f
and for every seti such thati ∈ dom∏S holds∏S(i) = πiS if S is non empty,

(ii) ∏S = /0, otherwise.

We now state two propositions:

(5) For every non empty functional setS holds dom∏S =
⋂
{dom f : f ranges over elements

of S}.
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(6) For every non empty functional setSand for every seti such thati ∈ dom∏S holds∏S(i) =
{ f (i) : f ranges over elements ofS}.

Let Sbe a set. We say thatS is product-like if and only if:

(Def. 2) There exists a functionf such thatS= ∏ f .

Let f be a function. Observe that∏ f is product-like.
Let us note that every set which is product-like is also functional and has common domain.
Let us note that there exists a set which is product-like and non empty.
The following propositions are true:

(7) For every functional setSwith common domain holds dom∏S = DOM(S).

(8) For every functional setSand for every seti such thati ∈ dom∏S holds∏S(i) = πiS.

(9) For every functional setSwith common domain holdsS⊆∏∏S.

(10) For every non empty product-like setSholdsS= ∏∏S.

Let D be a set. One can verify that every set of finite sequences ofD is functional.
Let i be a natural number and letD be a set. Observe thatDi has common domain.
Let i be a natural number and letD be a set. Note thatDi is product-like.

3. PROPERTIES OFAMI-STRUCT

We now state two propositions:

(11) LetN be a set,S be an AMI overN, andF be a finite partial state ofS. ThenF \X is a
finite partial state ofS.

(12) Let S be an IC-Ins-separated definite non empty non void AMI overN andF be a pro-
grammed finite partial state ofS. ThenF \X is a programmed finite partial state ofS.

Let N be a set with non empty elements, letS be an IC-Ins-separated definite non empty non
void AMI over N, let i1, i2 be instruction-locations ofS, and letI1, I2 be elements of the instructions
of S. Then[i1 7−→ I1, i2 7−→ I2] is a finite partial state ofS.

Let N be a set with non empty elements and letSbe a halting non void AMI overN. Note that
there exists an instruction ofSwhich is halting.

Next we state three propositions:

(13) Let S be a standard IC-Ins-separated definite non empty non void AMI overN, F be a
lower programmed finite partial state ofS, andG be a programmed finite partial state ofS. If
domF = domG, thenG is lower.

(14) LetSbe a standard IC-Ins-separated definite non empty non void AMI overN, F be a lower
programmed finite partial state ofS, and f be an instruction-location ofS. If f ∈ domF, then
locnum( f ) < cardF.

(15) Let S be a standard IC-Ins-separated definite non empty non void AMI overN andF be
a lower programmed finite partial state ofS. Then domF = {ilS(k);k ranges over natural
numbers:k < cardF}.

Let N be a set, letS be an AMI overN, and letI be an element of the instructions ofS. The
functor AddressPart(I) is defined as follows:

(Def. 3) AddressPart(I) = I2.

Let N be a set, letSbe an AMI overN, and letI be an element of the instructions ofS. Then
AddressPart(I) is a finite sequence of elements of

⋃
N∪ the carrier ofS.

One can prove the following proposition



ON THE COMPOSITION OF MACRO INSTRUCTIONS OF. . . 3

(16) Let N be a set,S be an AMI overN, and I , J be elements of the instructions ofS. If
InsCode(I) = InsCode(J) and AddressPart(I) = AddressPart(J), thenI = J.

Let N be a set and letSbe an AMI overN. We say thatS is homogeneous if and only if:

(Def. 4) For all instructionsI , J of Ssuch that InsCode(I)= InsCode(J) holds domAddressPart(I)=
domAddressPart(J).

The following proposition is true

(17) For every instructionI of STC(N) holds AddressPart(I) = 0.

Let N be a set, letS be an AMI overN, and letT be an instruction type ofS. The functor
AddressPartsT is defined as follows:

(Def. 5) AddressPartsT = {AddressPart(I); I ranges over instructions ofS: InsCode(I) = T}.

Let N be a set, letS be an AMI overN, and letT be an instruction type ofS. Note that
AddressPartsT is functional.

Let N be a set with non empty elements, letS be an IC-Ins-separated definite non empty non
void AMI over N, and letI be an instruction ofS. We say thatI has explicit jumps if and only if the
condition (Def. 6) is satisfied.

(Def. 6) Let f be a set. Supposef ∈ JUMP(I). Then there exists a setk such thatk ∈
domAddressPart(I) and f = (AddressPart(I))(k) and∏AddressParts InsCode(I)(k) = the instruc-
tion locations ofS.

We say thatI has no implicit jumps if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let f be a set. Given a setk such thatk∈ domAddressPart(I) and f = (AddressPart(I))(k)
and∏AddressParts InsCode(I)(k) = the instruction locations ofS. Then f ∈ JUMP(I).

Let N be a set with non empty elements and letSbe an IC-Ins-separated definite non empty non
void AMI over N. We say thatShas explicit jumps if and only if:

(Def. 8) Every instruction ofShas explicit jumps.

We say thatShas no implicit jumps if and only if:

(Def. 9) Every instruction ofShas no implicit jumps.

Let N be a set and letSbe an AMI overN. We say thatShas non trivial instruction locations if
and only if:

(Def. 10) The instruction locations ofSare non trivial.

Let N be a set with non empty elements. Note that every IC-Ins-separated definite non empty
non void AMI overN which is standard has also non trivial instruction locations.

Let N be a set with non empty elements. Observe that there exists an IC-Ins-separated definite
non empty non void AMI overN which is standard.

Let N be a set with non empty elements and letSbe an AMI overN with non trivial instruction
locations. Observe that the instruction locations ofS is non trivial.

Next we state the proposition

(18) LetSbe a standard IC-Ins-separated definite non empty non void AMI overN andI be an
instruction ofS. If for every instruction-locationf of Sholds NIC(I , f ) = {NextLoc f}, then
JUMP(I) is empty.

Let N be a set with non empty elements and letI be an instruction of STC(N). Observe that
JUMP(I) is empty.

Let N be a set and letSbe an AMI overN. We say thatS is regular if and only if:

(Def. 11) For every instruction typeT of Sholds AddressPartsT is product-like.
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Let N be a set. Observe that every AMI overN which is regular is also homogeneous.
We now state the proposition

(19) For every instruction typeT of STC(N) holds AddressPartsT = {0}.

Let N be a set with non empty elements. One can verify that STC(N) is regular and has explicit
jumps and no implicit jumps.

Let N be a set with non empty elements. One can check that there exists an IC-Ins-separated
definite non empty non void AMI overN which is standard, regular, halting, realistic, steady-
programmed, and programmable and has explicit jumps and no implicit jumps.

LetN be a set with non empty elements, letSbe a regular AMI overN, and letT be an instruction
type ofS. One can check that AddressPartsT is product-like.

Let N be a set with non empty elements, letSbe a homogeneous AMI overN, and letT be an
instruction type ofS. Note that AddressPartsT has common domain.

Next we state the proposition

(20) LetSbe a homogeneous non empty non void AMI overN, I be an instruction ofS, andx
be a set. Supposex∈ domAddressPart(I). Suppose∏AddressParts InsCode(I)(x) = the instruction
locations ofS. Then(AddressPart(I))(x) is an instruction-location ofS.

Let N be a set with non empty elements and letSbe an IC-Ins-separated definite non empty non
void AMI over N with explicit jumps. Note that every instruction ofShas explicit jumps.

Let N be a set with non empty elements and letSbe an IC-Ins-separated definite non empty non
void AMI over N with no implicit jumps. Observe that every instruction ofShas no implicit jumps.

We now state the proposition

(21) Let S be a realistic IC-Ins-separated definite non empty non void AMI overN with non
trivial instruction locations andI be an instruction ofS. If I is halting, then JUMP(I) is
empty.

Let N be a set with non empty elements, letSbe a halting realistic IC-Ins-separated definite non
empty non void AMI overN with non trivial instruction locations, and letI be a halting instruction
of S. Note that JUMP(I) is empty.

Let N be a set with non empty elements and letS be an IC-Ins-separated definite non empty
non void AMI overN with non trivial instruction locations. One can verify that there exists a finite
partial state ofSwhich is non trivial and programmed.

Let N be a set with non empty elements and letSbe a standard halting IC-Ins-separated definite
non empty non void AMI overN. Observe that every non empty programmed finite partial state of
Swhich is trivial is also unique-halt.

Let N be a set, letSbe an AMI overN, and letI be an instruction ofS. We say thatI is instruction
location free if and only if:

(Def. 12) For every setx such thatx ∈ domAddressPart(I) holds∏AddressParts InsCode(I)(x) 6= the in-
struction locations ofS.

The following two propositions are true:

(22) Let S be a halting realistic IC-Ins-separated definite non empty non void AMI overN
with explicit jumps and non trivial instruction locations andI be an instruction ofS. If I is
instruction location free, then JUMP(I) is empty.

(23) Let S be a realistic IC-Ins-separated definite non empty non void AMI overN with no
implicit jumps and non trivial instruction locations andI be an instruction ofS. If I is halting,
thenI is instruction location free.

Let N be a set with non empty elements and letS be a realistic IC-Ins-separated definite non
empty non void AMI overN with no implicit jumps and non trivial instruction locations. One can
check that every instruction ofSwhich is halting is also instruction location free.

We now state the proposition
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(24) Let S be a standard IC-Ins-separated definite non empty non void AMI overN with no
implicit jumps andI be an instruction ofS. If I is sequential, thenI is instruction location
free.

Let N be a set with non empty elements and letS be a standard IC-Ins-separated definite non
empty non void AMI overN with no implicit jumps. Observe that every instruction ofSwhich is
sequential is also instruction location free.

Let N be a set with non empty elements and letSbe a standard halting IC-Ins-separated definite
non empty non void AMI overN. The functor StopSyielding a finite partial state ofS is defined as
follows:

(Def. 13) StopS= ilS(0)7−→. haltS.

Let N be a set with non empty elements and letSbe a standard halting IC-Ins-separated definite
non empty non void AMI overN. Note that StopS is lower, non empty, programmed, and trivial.

Let N be a set with non empty elements and letSbe a standard realistic halting IC-Ins-separated
definite non empty non void AMI overN. One can check that StopS is closed.

Let N be a set with non empty elements and letS be a standard halting steady-programmed
IC-Ins-separated definite non empty non void AMI overN. One can verify that StopS is autonomic.

We now state three propositions:

(25) For every standard halting IC-Ins-separated definite non empty non void AMIS over N
holds cardStopS= 1.

(26) LetSbe a standard halting IC-Ins-separated definite non empty non void AMI overN and
F be a pre-Macro ofS. If cardF = 1, thenF = StopS.

(27) For every standard halting IC-Ins-separated definite non empty non void AMIS over N
holds LastLocStopS= ilS(0).

Let N be a set with non empty elements and letSbe a standard halting IC-Ins-separated definite
non empty non void AMI overN. One can verify that StopS is halt-ending and unique-halt.

Let N be a set with non empty elements and letSbe a standard halting IC-Ins-separated definite
non empty non void AMI overN. Then StopS is a pre-Macro ofS.

4. ON THE COMPOSITION OFMACRO INSTRUCTIONS

Let N be a set with non empty elements, letS be a regular standard IC-Ins-separated definite non
empty non void AMI overN, let I be an element of the instructions ofS, and letk be a natural
number. The functor IncAddr(I ,k) yielding an instruction ofSis defined by the conditions (Def. 14).

(Def. 14)(i) InsCode(IncAddr(I ,k)) = InsCode(I),

(ii) domAddressPart(IncAddr(I ,k)) = domAddressPart(I), and

(iii) for every set n such thatn ∈ domAddressPart(I) holds if ∏AddressParts InsCode(I)(n) =
the instruction locations ofS, then there exists an instruction-locationf of S such that
f = (AddressPart(I))(n) and (AddressPart(IncAddr(I ,k)))(n) = ilS(k+ locnum( f )) and if
∏AddressParts InsCode(I)(n) 6= the instruction locations ofS, then(AddressPart(IncAddr(I ,k)))(n)=
(AddressPart(I))(n).

Next we state three propositions:

(28) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN and
I be an element of the instructions ofS. Then IncAddr(I ,0) = I .

(29) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN and
I be an instruction ofS. If I is instruction location free, then IncAddr(I ,k) = I .

(30) LetSbe a halting standard realistic regular IC-Ins-separated definite non empty non void
AMI over N with no implicit jumps. Then IncAddr(haltS,k) = haltS.
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Let N be a set with non empty elements, letS be a halting standard realistic regular IC-Ins-
separated definite non empty non void AMI overN with no implicit jumps, letI be a halting in-
struction ofS, and letk be a natural number. Observe that IncAddr(I ,k) is halting.

Next we state several propositions:

(31) Let S be a regular standard IC-Ins-separated definite non empty non void
AMI over N and I be an instruction of S. Then AddressParts InsCode(I) =
AddressParts InsCode(IncAddr(I ,k)).

(32) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN andI ,
J be instructions ofS. Given a natural numberk such that IncAddr(I ,k) = IncAddr(J,k). Sup-
pose∏AddressParts InsCode(I)(x) = the instruction locations ofS. Then∏AddressParts InsCode(J)(x) =
the instruction locations ofS.

(33) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN andI ,
J be instructions ofS. Given a natural numberk such that IncAddr(I ,k) = IncAddr(J,k). Sup-
pose∏AddressParts InsCode(I)(x) 6= the instruction locations ofS. Then∏AddressParts InsCode(J)(x) 6=
the instruction locations ofS.

(34) Let S be a regular standard IC-Ins-separated definite non empty non void AMI overN
and I , J be instructions ofS. If there exists a natural numberk such that IncAddr(I ,k) =
IncAddr(J,k), thenI = J.

(35) LetSbe a regular standard halting realistic IC-Ins-separated definite non empty non void
AMI over N with no implicit jumps andI be an instruction ofS. If IncAddr(I ,k) = haltS,
thenI = haltS.

(36) LetSbe a regular standard halting realistic IC-Ins-separated definite non empty non void
AMI over N with no implicit jumps andI be an instruction ofS. If I is sequential, then
IncAddr(I ,k) is sequential.

(37) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN and
I be an instruction ofS. Then IncAddr(IncAddr(I ,k),m) = IncAddr(I ,k+m).

Let N be a set with non empty elements, letSbe a regular standard IC-Ins-separated definite non
empty non void AMI overN, let p be a programmed finite partial state ofS, and letk be a natural
number. The functor IncAddr(p,k) yielding a finite partial state ofS is defined by:

(Def. 15) domIncAddr(p,k) = domp and for every natural numbermsuch that ilS(m)∈ domp holds
(IncAddr(p,k))(ilS(m)) = IncAddr(πilS(m)p,k).

Let N be a set with non empty elements, letSbe a regular standard IC-Ins-separated definite non
empty non void AMI overN, let F be a programmed finite partial state ofS, and letk be a natural
number. Note that IncAddr(F,k) is programmed.

Let N be a set with non empty elements, letS be a regular standard IC-Ins-separated definite
non empty non void AMI overN, let F be an empty programmed finite partial state ofS, and letk
be a natural number. Note that IncAddr(F,k) is empty.

Let N be a set with non empty elements, letS be a regular standard IC-Ins-separated definite
non empty non void AMI overN, let F be a non empty programmed finite partial state ofS, and let
k be a natural number. Observe that IncAddr(F,k) is non empty.

Let N be a set with non empty elements, letS be a regular standard IC-Ins-separated definite
non empty non void AMI overN, let F be a lower programmed finite partial state ofS, and letk be
a natural number. Note that IncAddr(F,k) is lower.

One can prove the following two propositions:

(38) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN and
F be a programmed finite partial state ofS. Then IncAddr(F,0) = F.

(39) Let S be a regular standard IC-Ins-separated definite non empty non void AMI overN
andF be a lower programmed finite partial state ofS. Then IncAddr(IncAddr(F,k),m) =
IncAddr(F,k+m).
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Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, let p be a finite partial state ofS, and letk be a natural number. The functor
Shift(p,k) yielding a finite partial state ofS is defined by the conditions (Def. 16).

(Def. 16)(i) domShift(p,k) = {ilS(m+k);m ranges over natural numbers: ilS(m) ∈ domp}, and

(ii) for every natural numberm such that ilS(m) ∈ domp holds (Shift(p,k))(ilS(m+ k)) =
p(ilS(m)).

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, let F be a finite partial state ofS, and letk be a natural number. One can
check that Shift(F,k) is programmed.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, let F be an empty finite partial state ofS, and letk be a natural number. One
can verify that Shift(F,k) is empty.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, let F be a non empty programmed finite partial state ofS, and letk be a
natural number. Note that Shift(F,k) is non empty.

We now state four propositions:

(40) LetSbe a standard IC-Ins-separated definite non empty non void AMI overN andF be a
programmed finite partial state ofS. Then Shift(F,0) = F.

(41) LetSbe a standard IC-Ins-separated definite non empty non void AMI overN, F be a finite
partial state ofS, andk be a natural number. Ifk > 0, then ilS(0) /∈ domShift(F,k).

(42) LetSbe a standard IC-Ins-separated definite non empty non void AMI overN andF be a
finite partial state ofS. Then Shift(Shift(F,m),k) = Shift(F,m+k).

(43) LetSbe a standard IC-Ins-separated definite non empty non void AMI overN andF be a
programmed finite partial state ofS. Then domF ≈ domShift(F,k).

Let N be a set with non empty elements, letS be a regular standard IC-Ins-separated definite
non empty non void AMI overN, and letI be an instruction ofS. We say thatI is IC-good if and
only if:

(Def. 17) For every natural numberk and for all statess1, s2 of Ssuch thats2 = s1+·(ICS7−→. (IC (s1)+
k)) holdsICExec(I ,s1) +k = ICExec(IncAddr(I ,k),s2).

Let N be a set with non empty elements and letSbe a regular standard IC-Ins-separated definite
non empty non void AMI overN. We say thatS is IC-good if and only if:

(Def. 18) Every instruction ofS is IC-good.

Let N be a set with non empty elements, letS be a non void AMI overN, and letI be an
instruction ofS. We say thatI is Exec-preserving if and only if the condition (Def. 19) is satisfied.

(Def. 19) Lets1, s2 be states ofS. Supposes1 ands2 are equal outside the instruction locations ofS.
Then Exec(I ,s1) and Exec(I ,s2) are equal outside the instruction locations ofS.

Let N be a set with non empty elements and letSbe a non void AMI overN. We say thatS is
Exec-preserving if and only if:

(Def. 20) Every instruction ofS is Exec-preserving.

We now state the proposition

(44) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN with
no implicit jumps andI be an instruction ofS. If I is sequential, thenI is IC-good.

Let N be a set with non empty elements and letSbe a regular standard IC-Ins-separated definite
non empty non void AMI overN with no implicit jumps. Observe that every instruction ofSwhich
is sequential is also IC-good.

Next we state the proposition
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(45) Let S be a regular standard realistic IC-Ins-separated definite non empty non void AMI
overN with no implicit jumps andI be an instruction ofS. If I is halting, thenI is IC-good.

Let N be a set with non empty elements and letSbe a regular standard realistic IC-Ins-separated
definite non empty non void AMI overN with no implicit jumps. One can verify that every instruc-
tion of Swhich is halting is also IC-good.

One can prove the following proposition

(46) For every non void AMIS over N and for every instructionI of S such thatI is halting
holdsI is Exec-preserving.

Let N be a set with non empty elements and letSbe a non void AMI overN. Note that every
instruction ofSwhich is halting is also Exec-preserving.

Let N be a set with non empty elements. Note that STC(N) is IC-good and Exec-preserving.
Let N be a set with non empty elements. Observe that there exists a regular standard IC-Ins-

separated definite non empty non void AMI overN which is halting, realistic, steady-programmed,
programmable, IC-good, and Exec-preserving and has explicit jumps and no implicit jumps.

Let N be a set with non empty elements and letS be an IC-good regular standard IC-Ins-
separated definite non empty non void AMI overN. Observe that every instruction ofS is IC-good.

Let N be a set with non empty elements and letSbe an Exec-preserving non void AMI overN.
One can check that every instruction ofS is Exec-preserving.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a non empty programmed finite partial state ofS. The functor
CutLastLocF yields a finite partial state ofSand is defined as follows:

(Def. 21) CutLastLocF = F \ (LastLocF 7−→. F(LastLocF)).

One can prove the following two propositions:

(47) Let S be a standard IC-Ins-separated definite non empty non void AMI overN and F
be a non empty programmed finite partial state ofS. Then domCutLastLocF = domF \
{LastLocF}.

(48) Let S be a standard IC-Ins-separated definite non empty non void AMI overN and F
be a non empty programmed finite partial state ofS. Then domF = domCutLastLocF ∪
{LastLocF}.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a non empty trivial programmed finite partial state ofS. One
can check that CutLastLocF is empty.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a non empty programmed finite partial state ofS. Note that
CutLastLocF is programmed.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a lower non empty programmed finite partial state ofS. One can
verify that CutLastLocF is lower.

One can prove the following three propositions:

(49) LetSbe a standard IC-Ins-separated definite non empty non void AMI overN andF be a
non empty programmed finite partial state ofS. Then cardCutLastLocF = cardF−1.

(50) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN, F be
a lower non empty programmed finite partial state ofS, andG be a non empty programmed
finite partial state ofS. Then domCutLastLocF misses domShift(IncAddr(G,cardF −′

1),cardF−′ 1).

(51) LetSbe a standard halting IC-Ins-separated definite non empty non void AMI overN, F be
a unique-halt lower non empty programmed finite partial state ofS, andI be an instruction-
location ofS. If I ∈ domCutLastLocF, then(CutLastLocF)(I) 6= haltS.
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Let N be a set with non empty elements, letS be a regular standard IC-Ins-separated definite
non empty non void AMI overN, and letF , G be non empty programmed finite partial states ofS.
The functorF ; G yielding a finite partial state ofS is defined as follows:

(Def. 22) F ; G = CutLastLocF+·Shift(IncAddr(G,cardF−′ 1),cardF−′ 1).

Let N be a set with non empty elements, letS be a regular standard IC-Ins-separated definite
non empty non void AMI overN, and letF , G be non empty programmed finite partial states ofS.
One can check thatF ; G is non empty and programmed.

One can prove the following proposition

(52) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN, F be
a lower non empty programmed finite partial state ofS, andG be a non empty programmed
finite partial state ofS. Then card(F ; G) = (cardF +cardG)−1 and card(F ; G) = (cardF +
cardG)−′ 1.

Let N be a set with non empty elements, letS be a regular standard IC-Ins-separated definite
non empty non void AMI overN, and letF , G be lower non empty programmed finite partial states
of S. One can verify thatF ; G is lower.

One can prove the following four propositions:

(53) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN and
F , G be lower non empty programmed finite partial states ofS. Then domF ⊆ dom(F ; G).

(54) Let S be a regular standard IC-Ins-separated definite non empty non void AMI overN
andF , G be lower non empty programmed finite partial states ofS. Then CutLastLocF ⊆
CutLastLocF ; G.

(55) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN and
F , G be lower non empty programmed finite partial states ofS. Then(F ; G)(LastLocF) =
(IncAddr(G,cardF−′ 1))(ilS(0)).

(56) LetSbe a regular standard IC-Ins-separated definite non empty non void AMI overN, F , G
be lower non empty programmed finite partial states ofS, and f be an instruction-location of
S. If locnum( f ) < cardF−1, then(IncAddr(F,cardF−′ 1))( f ) = (IncAddr(F ; G,cardF−′

1))( f ).

Let N be a set with non empty elements, letS be a regular standard realistic halting steady-
programmed IC-Ins-separated definite non empty non void AMI overN with no implicit jumps, let
F be a lower non empty programmed finite partial state ofS, and letG be a halt-ending lower non
empty programmed finite partial state ofS. Note thatF ; G is halt-ending.

Let N be a set with non empty elements, letS be a regular standard realistic halting steady-
programmed IC-Ins-separated definite non empty non void AMI overN with no implicit jumps, and
let F , G be halt-ending unique-halt lower non empty programmed finite partial states ofS. Note that
F ; G is unique-halt.

Let N be a set with non empty elements, letS be a regular standard realistic halting steady-
programmed IC-Ins-separated definite non empty non void AMI overN with no implicit jumps, and
let F , G be pre-Macros ofS. ThenF ; G is a pre-Macro ofS.

Let N be a set with non empty elements, letSbe a realistic halting steady-programmed IC-good
Exec-preserving regular standard IC-Ins-separated definite non empty non void AMI overN, and
let F , G be closed lower non empty programmed finite partial states ofS. Note thatF ; G is closed.

We now state several propositions:

(57) LetSbe a regular standard halting realistic IC-Ins-separated definite non empty non void
AMI over N with no implicit jumps. Then IncAddr(StopS,k) = StopS.

(58) For every standard halting IC-Ins-separated definite non empty non void AMIS over N
holds Shift(StopS,k) = ilS(k)7−→. haltS.
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(59) LetSbe a regular standard halting realistic IC-Ins-separated definite non empty non void
AMI over N with no implicit jumps andF be a pre-Macro ofS. ThenF ; StopS= F.

(60) LetSbe a regular standard halting IC-Ins-separated definite non empty non void AMI over
N andF be a pre-Macro ofS. Then StopS; F = F.

(61) LetS be a regular standard realistic halting steady-programmed IC-Ins-separated definite
non empty non void AMI overN with no implicit jumps andF , G, H be pre-Macros ofS.
Then(F ; G); H = F ; (G; H).
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[12] Czesław Bylínski. Finite sequences and tuples of elements of a non-empty sets.Journal of Formalized Mathematics, 2, 1990.http:
//mizar.org/JFM/Vol2/finseq_2.html.
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