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Summary. We present a Borsuk’s theorem published first(in [1] (compare &lso [2,
pages 119-120]). It is slightly generalized, the assumption of the metrizability is omitted.
We introduce concepts needed for the formulation and the proofs of the theorems on upper
semi-continuous decompositions, retracts, strong deformation retract. However, only those
facts that are necessary in the proof have been proved.
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The articles[[20],[[8],122],[14],[123],[[5],.1211],. 1191, 1171 123]/ [12] [13] 171 1216]/[16] ) [15]  124],
[L10], [Q], [24], [4], and [18] provide the notation and terminology for this paper.

1. PRELIMINARIES

We use the following conventiom, u, X, Y, X1, X2, Y1, Y2 are sets and is a subset oK.
We now state a number of propositions:

@ 1fec X, Yi]andec [Xp, Y21, thene€ [ X1 N Xz, 1N Y23
(3) (idx)°’A=A
@) (idy) XA =A
(5) For every functiorF such thaiX C F~1(X;) holdsF°X C X;.
(6) (X u)°Xe C {u}.
(7) [ X, X2] €Y, Yo and[Xg, Xo] £ 0, thenX; CYp andX; CYs.
OF 1feC X, Y], then°ru(X xY))(e) = (X x Y)°e.
(10) IfeC[X,Y], then(°T(X xY))(e) =m(X xY)°e.

(12 For every subset; of X and for every subsét of Y such that: X;, Y1 ] £ 0 holdsty (X x
Y)O[Z Xl, Y1 Z] =X andnz(X X Y)O[Z Xl, Y1 Z] =Y.

(13) For every subset; of X and for every subsé of Y such that Xy, Y1 ] # 0 holds(°mr (X x
Y))([ Xl7 Yl ]) = Xl and(onz(x X Y))([ Xl, Yl D = Yl.

1 The proposition (1) has been removed.
2 The proposition (8) has been removed.
3 The proposition (11) has been removed.
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(14) LetAbe asubsetdfX,Y ]andH be afamily of subsets d¢fX, Y ]. Suppose that for every
esuch that € H holdse C A and there exists a subsét of X and there exists a subsétof
Y such thae= [ Xy, Y11]. Then[ J((°Tu(X xY))°H), N(°CTe(X xY))°H)] C A

(15) LetAbe asubsetdfX,Y ]andH be afamily of subsets dfX, Y ]. Suppose that for every
esuch that € H holdse C A and there exists a subsét of X and there exists a subsétof
Y such thae= [ X1, Y11]. Then[N((°*Tu(X xY))°H), U(CTR(X x Y))°H)] C A.

(16) LetX be a setY be a non empty sef, be a function fronX into Y, andH be a family of
subsets oK. ThenJ((°f)°H) = f°UH.

In the sequek, Y, Z are non empty sets.
The following propositions are true:

(17) For every seX and for every familya of subsets oK holds|JJa= U{UA; Aranges over
subsets oK: A< a}.

(18) LetX be a set an® be a family of subsets of. Supposé JD = X. Let Abe a subset dd
andB be a subset oX. If B=JA, thenB® C [ J(A®).

(19) LetF be a function fronX into Y andG be a function fronX into Z. Suppose that for all
elements, X' of X such that=(x) = F(X') holdsG(x) = G(x'). Then there exists a function
H fromY into Z such thaH - F = G.

(20) LetgivenX,Y, Z,ybe an element of, F be a function fronX intoY, andG be a function
fromY into Z. ThenF~1({y}) C (G-F)"*({G(y)}).

(21) For every functiorr from X into Y and for every element of X and for every elemert
of Z holds[:F, idz ]({x, 2)) = (F(X), 2).

(23@ For every functior from X into Y and for every subset of X and for every subsa& of
Zholds[F,idz]°[A B]=[F°A B].

(24) LetF be a function fromX into Y, y be an element of, andz be an element aZ. Then
EFidz ] ({(v. 2}) = [F*({y}), {z} 1.
Let B be a non empty set, Iétbe a set, and letbe an element d8. ThenA— xis a function

from A into B.

2. PARTITIONS
The following propositions are true:

(25) For every familyD of subsets oK and for every subseét of D holds| JA is a subset oK.

(26) For every seX and for every partitio of X and for all subseta, B of D holds|J(ANB) =
UANUB.

(27) For every partitiord of X and for every subset of D and for every subsé of X such
thatB = [JA holdsB® = | J(A®).

(28) For every equivalence relati@of X holds Classes is non empty.

Let X be a non empty set. One can check that there exists a partitdnvich is non empty.
Let us consideX and letD be a non empty partition of. The projection ont® yielding a
function fromX into D is defined as follows:

(Def. 1) For every element of X holdsp € (the projection ont®)(p).

We now state several propositions:

4 The proposition (22) has been removed.
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(29) LetD be a non empty partition of, p be an element aX, andA be an element db. If
p € A, thenA = (the projection ont®)(p).

(30) For every non empty partitidd of X and for every elemer of D holdsp = (the projection
ontoD)~1({p}).

(31) For every non empty partitioD of X and for every subsek of D holds (the projection
ontoD)~1(A) = JA.

(32) LetD be a non empty partition ok andW be an element oD. Then there exists an
elemenW’ of X such that (the projection onf@)(W') =W.

(33) LetD be a non empty partition of andW be a subset oX. Suppose that for every subset
B of X such thaB € D andB meetsV holdsB C W. ThenW = (the projection ont®)~*((the
projection ontd)°W).

3. TOPOLOGICAL PRELIMINARIES

The following proposition is true

(SSE] For every topological structude and for every subspadeof X holds the carrier of C the
carrier ofX.

Let X, Y be non empty topological spaces andHdte a map fronX intoY. Let us observe that
F is continuous if and only if:

(Def. 2) For every pointV of X and for every neighbourhodd of F (W) there exists a neighbour-
hoodH of W such that°H C G.

Let X be a 1-sorted structure, létbe a non empty 1-sorted structure, andylbe an element of
Y. The functorX — yyielding a map fronX into Y is defined by:

(Def. 3) X +—— y=(the carrier ofiX) —y.
In the sequek, Y are non empty topological spaces.
The following proposition is true
(36) For every poiny of Y holdsX — y is continuous.

LetS T be non empty topological spaces. One can verify that there exists a mafs frdonT
which is continuous.

Let X, Y, Z be non empty topological spaces, febe a continuous map froiX into Y, and let
G be a continuous map frominto Z. ThenG-F is a continuous map frord into Z.

Next we state two propositions:

(387) For every continuous majpfrom X into Y and for every subsé of Y holdsA~(IntG) C
Int(A~1(G)).

(38) LetW be a point ofY, A be a continuous map froX intoY, andG be a neighbourhood of
W. ThenA~1(G) is a neighbourhood oA 1({W}).

Let X, Y be non empty topological spaces,\li¢toe a point ofY, let A be a continuous map from
X intoY, and letG be a neighbourhood &%. ThenA=1(G) is a neighbourhood oA~ ({W}).
We now state three propositions:

(39) LetX be a non empty topological spade,B be subsets oX, andU; be a neighbourhood
of B. If A C B, thenUy is a neighbourhood ok

(41@ For every non empty topological spa¥eand for every poink of X holds{x} is compact.

(42) LetX be atopological structur¥, be a subspace of, Abe a subset of, andB be a subset
of Y. If A= B, thenAis compact iffB is compact.

5 The proposition (34) has been removed.
6 The proposition (40) has been removed.
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4. CARTESIAN PRODUCT OFTOPOLOGICAL SPACES

Let X, Y be topological spaces. The funcfoX, Y ] yielding a strict topological space is defined by
the conditions (Def. 5).

(Def. Sﬂi) The carrier of X, Y ] = [ the carrier ofX, the carrier ofy ], and

(i) the topology of[: X, Y] = {UA;Aranges over families of subsets[oX, Y ]: A C {[ Xy,
Y1 ]; X; ranges over subsets ¥f Y; ranges over subsets ¥f X; € the topology ofiX A Y; €
the topology ofY } }.

Let X, Y be non empty topological spaces. Note th4t Y ] is non empty.
Next we state the proposition

(45 Let X, Y be topological spaces afbe a subset dfX, Y ]. ThenB is open if and only if
there exists a family of subsets of X, Y ] such thaB = [ JA and for everye such thae € A

there exists a subsEj of X and there exists a subsgtof Y such thae= [ Xy, Y1 ] andX; is
open andy; is open.

Let X, Y be topological spaces, I&tbe a subset oX, and letB be a subset of. Then[. A, B]
is a subset of X, Y.

Let X, Y be non empty topological spaces, xdie a point ofX, and lety be a point ofY. Then
(x,y) is a point of: X, Y 1.
One can prove the following four propositions:

(46) LetX,Y be topological spacey, be a subset oK, andW be a subset of. If V is open
andW is open, thertV, W] is open.

(47) For all topological spaces, Y and for every subsat of X and for every subsé&V of Y
holds IntV, W] = [IntV, IntW .

(48) Letxbe a point ofX, y be a point ofY, V be a neighbourhood of andW be a neighbour-
hood ofy. Then[:V, W] is a neighbourhood ofx, y).

(49) LetA be a subset oK, B be a subset of, V be a neighbourhood o4, andW be a
neighbourhood oB. Then[:V, W] is a neighbourhood dfA, B1.

Let X, Y be non empty topological spaces, ¥die a point ofX, lety be a point ofY, letV be a

neighbourhood of, and letW be a neighbourhood gf Then[V, W] is a neighbourhood df, y).
One can prove the following proposition

(50) For every poiniXs of 1 X, Y ] there exists a poiltV of X and there exists a poift of Y
such thalXz = (W, T).

Let X, Y be non empty topological spaces, Aebe a subset X, lett be a point ofY, letV be
a neighbourhood oA, and letW be a neighbourhood &f Then[:V, W] is a neighbourhood dfA,
{t}].

Let X, Y be topological spaces and kebe a subset dfX, Y ]. The functor BaseAppA) yields
a family of subsets of X, Y ] and is defined as follows:

(Def. 6) BaseAppiA) = {[: X1, Y1 ]; X1 ranges over subsets ¥f Y; ranges over subsets ¥f [ Xy,
Y1] C A A Xjis openA Yiis open}.

One can prove the following propositions:

(51) For all topological spaces, Y and for every subsek of [ X,Y ] holds BaseApfA) is
open.

7 The definition (Def. 4) has been removed.
8 The propositions (43) and (44) have been removed.
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(52) For all topological spaces, Y and for all subset#, B of [ X, Y ] such thatA C B holds
BaseApp(A) C BaseApp(B).

(53) Foralltopological spaces, Y and for every subsétof . X, Y ] holds| BaseApp(A) C A.

(54) For all topological spaces, Y and for every subsef of [ X, Y ] such thatA is open holds
A= JBaseApp(A).

(55) For all topological spaceX, Y and for every subsef of [X,Y] holds IntA =
(UBaseApp(A).

Let X, Y be non empty topological spaces. The funa®(X,Y) yielding a function from
othe carrier of [ X,Y] into 2the carrier ofX s defined by:

(Def. 7) mu(X,Y) = °m((the carrier ofX) x the carrier ofy).

The functorm(X,Y) yields a function from e carmer of:X,Y.] jnyg pthe carrier oY gnd js defined as
follows:

(Def. 8) 1m(X,Y) = °mi((the carrier ofX) x the carrier ofY).

The following four propositions are true:

(56) LetAbe asubsetdfX,Y ]andH be afamily of subsets dfX, Y ]. Suppose that for every
esuch that € H holdse C A and there exists a subsét of X and there exists a subsétof
Y such thae= [ X3, 1. Then[U(Tu(X,Y)°H), N(T(X,Y)°H) ] C A.

(57) LetH be a family of subsets dfX, Y] andC be a set. Suppoge € m (X,Y)°H. Then
there exists a subsBtof [ X, Y ] such thaD € H andC = m ((the carrier ofX) x the carrier
of Y)°D.

(58) LetH be a family of subsets dfX, Y] andC be a set. Suppoge € T(X,Y)°H. Then
there exists a subsBtof [: X, Y ] such thaD € H andC = m((the carrier ofX) x the carrier
of Y)°D.

(59) LetD be a subset dfX,Y]. Suppos® is open. LeiX; be a subset ok andY; be a subset
of Y. Then
(i) if Xy = m((the carrier ofX) x the carrier ofY)°D, thenX; is open, and
(i) if Y2 = m((the carrier ofX) x the carrier ofY)°D, thenY; is open.
Let X, Y be sets, lef be a function from 2 into 2, and letR be a family of subsets of. Then

f°Ris a family of subsets of.
Next we state several propositions:

(60) For every familyH of subsets of X, Y] such thaH is open holdst (X,Y)°H is open and
T (X,Y)°H is open.

(61) Forevery familyH of subsets of X, Y ] such thaty (X,Y)°H =0 or (X, Y)°H = 0 holds
H=0.

(62) LetH be a family of subsets dfX, Y ], X; be a subset oX, andY; be a subset of such
thatH is a cover of: X, Y1 ]. Then
@) if Y1 #0,thenty(X,Y)°H is a cover ofX;, and
(i) if X1 #£ 0, thentp(X,Y)°H is a cover ofY;.
(63) LetX, Y be topological spaces$] be a family of subsets o, andY be a subset oX.

SupposeH is a cover ofY. Then there exists a family of subsets oK such that C H and
F is a cover ofY and for every set such thaCC € F holdsC meetsy.
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(64) LetF be a family of subsets of andH be a family of subsets dfX, Y. Supposé- is
finite andF C 4 (X,Y)°H. Then there exists a familg of subsets of X, Y ] suchthaG C H
andG is finite andF =y (X,Y)°G.

(65) For every subseX; of X and for every subset; of Y such that[ X1, Y1] # 0 holds
T[]_(X,Y)([Z X]_, Yl D = Xl andnz(X,Y)([: Xl, Y1 ]) = Y]_.

(66) Tu(X,Y)(0) = 0 andre(X,Y)(0) = 0.

(67) Lett be a point ofY andA be a subset oK. Suppose\ is compact. LeG be a neighbour-
hood of|: A, {t} ]. Then there exists a neighbourhdéaf A and there exists a neighbourhood
W of t such that:V, W] C G.

5. PARTITIONS OF TOPOLOGICAL SPACES

Let X be a 1-sorted structure. The trivial decompositiorXofields a partition of the carrier of
and is defined by:

(Def. 9) The trivial decomposition 0f = Classefdine carrier ofx )-

Let X be a non empty 1-sorted structure. One can verify that the trivial decompositiiisof
non empty.
The following proposition is true

(68) For every subset of X such thatA € the trivial decomposition oK there exists a point
of X such thatA = {x}.

Let X be a topological space and Btbe a partition of the carrier ok. The decomposition
space oD yields a strict topological space and is defined by the conditions (Def. 10).

(Def. 10)(i) The carrier of the decomposition spac®cf D, and
(i) the topology of the decomposition spaceldf {A; Aranges over subsets bf | JA € the
topology ofX}.

Let X be a non empty topological space andDebe a non empty partition of the carrier Xf
Note that the decomposition spaceldfs non empty.
We now state the proposition

(69) LetD be a non empty partition of the carrier ¥fandA be a subset dD. Then{JA € the
topology ofX if and only if A € the topology of the decomposition spacelof

Let X be a non empty topological space andlebe a non empty partition of the carrier of
X. The projection ont® yielding a continuous map froX into the decomposition space bfis
defined as follows:

(Def. 11) The projection ont® = the projection ont®.

One can prove the following propositions:

(70) For every non empty partitioD of the carrier ofX and for every poinWW of X holds
W € (the projection ont®)(W).

(71) LetD be a non empty partition of the carrier ¥fandW be a point of the decomposition
space oD. Then there exists a poiit’ of X such that (the projection onf@)(W’') = W.

(72) LetD be a non empty partition of the carrier ¥f Then rng (the projection ontd) = the
carrier of the decomposition spacel®f

Let X4 be a non empty topological space, ¥ebe a non empty subspaceXf, and letD be a
non empty partition of the carrier &. The trivial extension ob yielding a non empty partition of
the carrier ofX4 is defined as follows:
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(Def. 12) The trivial extension dd = DU {{p}; p ranges over points 0fs: p ¢ the carrier ofX}.

We now state several propositions:

(73) LetX4 be a non empty topological spa¢ebe a non empty subspaceXy, andD be a non
empty partition of the carrier of. ThenD C the trivial extension ob.

(74) LetX4 be a non empty topological space,be a non empty subspace Xf, D be a non
empty partition of the carrier of, andA be a subset oX4. Suppose € the trivial extension
of D. ThenA € D or there exists a pointof X4 such tha ¢ Qx andA = {x}.

(75) LetX4 be a non empty topological space,be a non empty subspace Xf, D be a non
empty partition of the carrier of, andx be a point ofX,. If x ¢ the carrier ofX, then{x} € the
trivial extension oD.

(76) LetX4 be a non empty topological space,be a non empty subspace Xf, D be a non
empty partition of the carrier ok, andW be a point ofXy. SupposéV e the carrier ofX.
Then (the projection onto the trivial extension®f(W) = (the projection ont®)(W).

(77) LetX4 be a non empty topological space,be a non empty subspace Xf, D be a non
empty partition of the carrier oK, andW be a point ofX4. Supposé&V ¢ the carrier ofX.
Then (the projection onto the trivial extension®f(W) = {W}.

(78) LetX4 be a non empty topological space,be a non empty subspace Xf, D be a non
empty partition of the carrier of, andwW, W’ be points ofXs. Suppose that
(i) W ¢ the carrier ofX, and

(i) (the projection onto the trivial extension Bf)(W) = (the projection onto the trivial exten-
sion of D)(W').

ThenW =W'.
(79) LetX4 be a non empty topological space,be a non empty subspace Xf, D be a non
empty partition of the carrier oX, ande be a point ofXs. Suppose (the projection onto the

trivial extension ofD)(e) € the carrier of the decomposition spacelofThene € the carrier
of X.

(80) LetX4 be a non empty topological spacébe a non empty subspace X, D be a non
empty partition of the carrier oK, and givene. Supposee € the carrier ofX. Then (the
projection onto the trivial extension &f)(e) € the carrier of the decomposition spaceDof

6. UPPERSEMICONTINUOUS DECOMPOSITIONS

Let X be a non empty topological space. A non empty partition of the carri¥risfsaid to be an
upper semi-continuous decompositionXff it satisfies the condition (Def. 13).

(Def. 13) LetA be a subset aK. Supposeé\ € it. LetV be a neighbourhood &. Then there exists
a subseW of X such thaWV is open andA C W andW C V and for every subsé@ of X such
thatB € it andB meetsW holdsB C W.

We now state two propositions:

(81) LetD be an upper semi-continuous decompositioX gf be a point of the decomposition
space oD, andG be a neighbourhood of (the projection oltp*({t}). Then (the projection
ontoD)°G is a neighbourhood df

(82) The trivial decomposition of is an upper semi-continuous decompositiorXof

Let X be a topological space and letbe a subspace of. We say that; is closed if and only
if:

(Def. 14) For every subsétof X such thatA = the carrier ofl; holdsA is closed.
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Let X be a topological space. One can check that there exists a subspaugiuth is strict and
closed.

Let us consideK. Note that there exists a subspac&okhich is strict, closed, and non empty.

Let X4 be a non empty topological space, ¥ebe a closed non empty subspaceXef and let
D be an upper semi-continuous decompositiorXofThen the trivial extension db is an upper
semi-continuous decomposition Xf.

Let X be a non empty topological space andliebe an upper semi-continuous decomposition
of X. We say that; is upper semi-continuous decomposition-like if and only if:

(Def. 15) For every subsétof X such thatA € |1 holdsA is compact.

Let X be a non empty topological space. Observe that there exists an upper semi-continuous
decomposition oK which is upper semi-continuous decomposition-like.

Let X be a non empty topological space. An upper semi-continuous decomposition into com-
pacta ofX is an upper semi-continuous decomposition-like upper semi-continuous decomposition
of X.

Let X4 be a non empty topological space, ¥ebe a closed non empty subspacégfand letD
be an upper semi-continuous decomposition into compacka @hen the trivial extension d is
an upper semi-continuous decomposition into compack of

Let X be a non empty topological space, Yebe a closed non empty subspaceXofand letD
be an upper semi-continuous decomposition into compacta ®hen the decomposition space of
D is a strict closed subspace of the decomposition space of the trivial extengdon of

7. BORSUK S THEOREMS ON THEDECOMPOSITION OFRETRACTS

The topological structurkis defined by the condition (Def. 16).

(Def. 16) LetP be a subset of (the metric space of real numigtdj P = [0, 1], thenI = (the metric

space of real numbegsy|P.

One can verify that is strict, non empty, and topological space-like.
Next we state the proposition

(83) The carrier of = [0, 1].

The point Q of I is defined by:

(Def. 17) Q =0.

The point } of I is defined by:

(Def. 18) % =1.

Let A be a non empty topological space,Blbe a non empty subspaceAfand letF be a map
from Ainto B. We say thaF is a retraction if and only if:

(Def. 19) For every poinitV of A such thatV € the carrier ofB holdsF (W) =W.

We introduceF is a retraction as a synonym Bfis a retraction.
Let X be a non empty topological space andvidie a non empty subspaceXf We say thay
is a retract oiX if and only if:

(Def. 20) There exists a continuous map franinto Y which is a retraction.

We say tha is a strong deformation retract ®fif and only if the condition (Def. 21) is satisfied.

(Def. 21) There exists a continuous mdgrom [: X, I] into X such that for every poir& of X holds

H((A, 0r)) = AandH((A, 1;)) € the carrier ofY and if A € the carrier ofY, then for every
pointT of T holdsH({(A, T)) = A.

The following propositions are true:
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(84) LetX4 be a non empty topological spacebe a closed non empty subspaceXgf andD
be an upper semi-continuous decomposition into compack¥a GupposeX is a retract of
X4. Then the decomposition space®fis a retract of the decomposition space of the trivial
extension oD.

(85) LetX4 be a non empty topological space,be a closed non empty subspacexXgf and
D be an upper semi-continuous decomposition into compack¥ dupposeX is a strong
deformation retract 0X4. Then the decomposition spacefs a strong deformation retract
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