Algebraic Operation on Subsets of Many Sorted Sets

Agnieszka Julia Marasik
Warsaw University
Białystok

MML Identifier: CLOSURE3.
WWW: http://mizar.org/JFM/Vol9/closure3.html

The articles [13], [5], [16], [12], [17], [2], [4], [3], [7], [6], [14], [15], [1], [10], [8], [9], and [11] provide the notation and terminology for this paper.

1. Preliminaries

Let S be a non empty 1 -sorted structure. One can verify that the 1 -sorted structure of S is non empty.
The following three propositions are true:
(1) For every non empty set I and for all many sorted sets M, N indexed by I holds $M+\cdot N=N$.
(2) Let I be a set, M, N be many sorted sets indexed by I, and F be a family of many sorted subsets indexed by M. If $N \in F$, then $\bigcap|: F:| \subseteq N$.
(3) Let S be a non void non empty many sorted signature, M_{1} be a strict non-empty algebra over S, and F be a family of many sorted subsets indexed by the sorts of M_{1}. Suppose $F \subseteq \operatorname{SubSorts}\left(M_{1}\right)$. Let B be a subset of M_{1}. If $B=\bigcap|: F:|$, then B is operations closed.

2. Relationships between Subsets Families

Let I be a set, let M be a many sorted set indexed by I, let B be a family of many sorted subsets indexed by M, and let A be a family of many sorted subsets indexed by M. We say that A is finer than B if and only if:
(Def. 1) For every set a such that $a \in A$ there exists a set b such that $b \in B$ and $a \subseteq b$.
Let us note that the predicate A is finer than B is reflexive. We say that B is coarser than A if and only if:
(Def. 2) For every set b such that $b \in B$ there exists a set a such that $a \in A$ and $a \subseteq b$.
Let us note that the predicate B is coarser than A is reflexive.
One can prove the following two propositions:
(4) Let I be a set, M be a many sorted set indexed by I, and A, B, C be families of many sorted subsets indexed by M. If A is finer than B and B is finer than C, then A is finer than C.
(5) Let I be a set, M be a many sorted set indexed by I, and A, B, C be families of many sorted subsets indexed by M. If A is coarser than B and B is coarser than C, then A is coarser than C.

Let I be a non empty set and let M be a many sorted set indexed by I. The functor supp (M) yields a set and is defined as follows:
(Def. 3) $\operatorname{supp}(M)=\{x ; x$ ranges over elements of $I: M(x) \neq \emptyset\}$.
The following propositions are true:
(6) For every non empty set I and for every non-empty many sorted set M indexed by I holds $M=\mathbf{0}_{I}+\cdot M \upharpoonright \operatorname{supp}(M)$.
(7) Let I be a non empty set and M_{2}, M_{3} be non-empty many sorted sets indexed by I. If $\operatorname{supp}\left(M_{2}\right)=\operatorname{supp}\left(M_{3}\right)$ and $M_{2} \upharpoonright \operatorname{supp}\left(M_{2}\right)=M_{3} \upharpoonright \operatorname{supp}\left(M_{3}\right)$, then $M_{2}=M_{3}$.
(8) Let I be a non empty set, M be a many sorted set indexed by I, and x be an element of I. If $x \notin \operatorname{supp}(M)$, then $M(x)=\emptyset$.
(9) Let I be a non empty set, M be a many sorted set indexed by I, x be an element of $\operatorname{Bool}(M)$, i be an element of I, and y be a set. Suppose $y \in x(i)$. Then there exists an element a of $\operatorname{Bool}(M)$ such that $y \in a(i)$ and a is locally-finite and $\operatorname{supp}(a)$ is finite and $a \subseteq x$.

Let I be a set, let M be a many sorted set indexed by I, and let A be a family of many sorted subsets indexed by M. The functor MSUnion (A) yielding a many sorted subset indexed by M is defined as follows:
(Def. 4) For every set i such that $i \in I$ holds $(\operatorname{MSUnion}(A))(i)=\bigcup\{f(i) ; f$ ranges over elements of $\operatorname{Bool}(M): f \in A\}$.

Let I be a set, let M be a many sorted set indexed by I, and let B be a non empty family of many sorted subsets indexed by M. We see that the element of B is a many sorted set indexed by I.

Let I be a set, let M be a many sorted set indexed by I, and let A be an empty family of many sorted subsets indexed by M. Observe that $\operatorname{MSUnion}(A)$ is empty yielding.

The following proposition is true
(10) Let I be a set, M be a many sorted set indexed by I, and A be a family of many sorted subsets indexed by M. Then $\operatorname{MSUnion}(A)=\bigcup|: A:|$.

Let I be a set, let M be a many sorted set indexed by I, and let A, B be families of many sorted subsets indexed by M. Then $A \cup B$ is a family of many sorted subsets indexed by M.

The following two propositions are true:
(11) Let I be a set, M be a many sorted set indexed by I, and A, B be families of many sorted subsets indexed by M. Then MSUnion $(A \cup B)=\operatorname{MSUnion}(A) \cup \operatorname{MSUnion}(B)$.
(12) Let I be a set, M be a many sorted set indexed by I, and A, B be families of many sorted subsets indexed by M. If $A \subseteq B$, then $\operatorname{MSUnion}(A) \subseteq \operatorname{MSUnion}(B)$.

Let I be a set, let M be a many sorted set indexed by I, and let A, B be families of many sorted subsets indexed by M. Then $A \cap B$ is a family of many sorted subsets indexed by M.

One can prove the following two propositions:
(13) Let I be a set, M be a many sorted set indexed by I, and A, B be families of many sorted subsets indexed by M. Then MSUnion $(A \cap B) \subseteq \operatorname{MSUnion}(A) \cap \operatorname{MSUnion}(B)$.
(14) Let I be a set, M be a many sorted set indexed by I, and A_{1} be a set. Suppose that for every set x such that $x \in A_{1}$ holds x is a family of many sorted subsets indexed by M. Let A, B be families of many sorted subsets indexed by M. Suppose $B=\{\operatorname{MSUnion}(X) ; X$ ranges over families of many sorted subsets indexed by $\left.M: X \in A_{1}\right\}$ and $A=\cup A_{1}$. Then $\operatorname{MSUnion}(B)=\operatorname{MSUnion}(A)$.

3. Algebraic Operation on Subsets of Many Sorted Sets

Let I be a non empty set, let M be a many sorted set indexed by I, and let S be a set operation in M. We say that S is algebraic if and only if the condition (Def. 5) is satisfied.
(Def. 5) Let x be an element of $\operatorname{Bool}(M)$. Suppose $x=S(x)$. Then there exists a family A of many sorted subsets indexed by M such that $A=\{S(a) ; a$ ranges over elements of $\operatorname{Bool}(M): a$ is locally-finite $\wedge \operatorname{supp}(a)$ is finite $\wedge a \subseteq x\}$ and $x=\operatorname{MSUnion}(A)$.

Let I be a non empty set and let M be a many sorted set indexed by I. Note that there exists a set operation in M which is algebraic, reflexive, monotonic, and idempotent.

Let S be a non empty 1 -sorted structure and let I_{1} be a closure system of S. We say that I_{1} is algebraic if and only if:
(Def. 6) $\mathrm{ClOp}\left(I_{1}\right)$ is algebraic.
Let S be a non void non empty many sorted signature and let M_{1} be a non-empty algebra over S. The functor $\operatorname{SubAlgCl}\left(M_{1}\right)$ yielding a strict closure system structure over the 1 -sorted structure of S is defined by:
(Def. 7) The sorts of $\operatorname{SubAlgCl}\left(M_{1}\right)=$ the sorts of M_{1} and the family of $\operatorname{SubAlgCl}\left(M_{1}\right)=$ SubSorts $\left(M_{1}\right)$.

We now state the proposition
(16 $)^{T}$ Let S be a non void non empty many sorted signature and M_{1} be a strict non-empty algebra over S. Then $\operatorname{SubSorts}\left(M_{1}\right)$ is an absolutely-multiplicative family of many sorted subsets indexed by the sorts of M_{1}.

Let S be a non void non empty many sorted signature and let M_{1} be a strict non-empty algebra over S. One can check that $\operatorname{SubAlgCl}\left(M_{1}\right)$ is absolutely-multiplicative.

Let S be a non void non empty many sorted signature and let M_{1} be a strict non-empty algebra over S. Note that $\operatorname{SubAlgCl}\left(M_{1}\right)$ is algebraic.

References

[1] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http: //mizar.org/JFM/Vol6/msualg_2.html
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html
[5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html
[7] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[8] Artur Korniłowicz. Certain facts about families of subsets of many sorted sets. Journal of Formalized Mathematics, 7, 1995. http: //mizar.org/JFM/Vol7/mssubfam.html
[9] Artur Korniłowicz. Definitions and basic properties of boolean and union of many sorted sets. Journal of Formalized Mathematics, 7 , 1995. http://mizar.org/JFM/Vol7/mboolean.html
[10] Artur Korniłowicz. On the closure operator and the closure system of many sorted sets. Journal of Formalized Mathematics, 8,1996 http://mizar.org/JFM/Vol8/closure2.html
[11] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html
[12] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html

[^0][13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[14] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html
[15] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html
[16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received June 23, 1997
Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (15) has been removed.

