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The articles [13], [5], [16], [12], [17], [2], [4], [3], [7], [6], [14], [15], [1], [10], [8], [9], and [11]
provide the notation and terminology for this paper.

1. PRELIMINARIES

Let Sbe a non empty 1-sorted structure. One can verify that the 1-sorted structure ofSis non empty.
The following three propositions are true:

(1) For every non empty setI and for all many sorted setsM, N indexed byI holdsM+·N = N.

(2) Let I be a set,M, N be many sorted sets indexed byI , andF be a family of many sorted
subsets indexed byM. If N ∈ F, then

⋂
|:F :| ⊆ N.

(3) Let S be a non void non empty many sorted signature,M1 be a strict non-empty algebra
over S, and F be a family of many sorted subsets indexed by the sorts ofM1. Suppose
F ⊆ SubSorts(M1). Let B be a subset ofM1. If B =

⋂
|:F :|, thenB is operations closed.

2. RELATIONSHIPS BETWEENSUBSETSFAMILIES

Let I be a set, letM be a many sorted set indexed byI , let B be a family of many sorted subsets
indexed byM, and letA be a family of many sorted subsets indexed byM. We say thatA is finer
thanB if and only if:

(Def. 1) For every seta such thata∈ A there exists a setb such thatb∈ B anda⊆ b.

Let us note that the predicateA is finer thanB is reflexive. We say thatB is coarser thanA if and
only if:

(Def. 2) For every setb such thatb∈ B there exists a seta such thata∈ A anda⊆ b.

Let us note that the predicateB is coarser thanA is reflexive.
One can prove the following two propositions:

(4) Let I be a set,M be a many sorted set indexed byI , andA, B, C be families of many sorted
subsets indexed byM. If A is finer thanB andB is finer thanC, thenA is finer thanC.

(5) Let I be a set,M be a many sorted set indexed byI , andA, B, C be families of many sorted
subsets indexed byM. If A is coarser thanB andB is coarser thanC, thenA is coarser thanC.
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Let I be a non empty set and letM be a many sorted set indexed byI . The functor supp(M)
yields a set and is defined as follows:

(Def. 3) supp(M) = {x;x ranges over elements ofI : M(x) 6= /0}.

The following propositions are true:

(6) For every non empty setI and for every non-empty many sorted setM indexed byI holds
M = 0I+·M�supp(M).

(7) Let I be a non empty set andM2, M3 be non-empty many sorted sets indexed byI . If
supp(M2) = supp(M3) andM2�supp(M2) = M3�supp(M3), thenM2 = M3.

(8) Let I be a non empty set,M be a many sorted set indexed byI , andx be an element ofI . If
x /∈ supp(M), thenM(x) = /0.

(9) Let I be a non empty set,M be a many sorted set indexed byI , x be an element of Bool(M),
i be an element ofI , andy be a set. Supposey ∈ x(i). Then there exists an elementa of
Bool(M) such thaty∈ a(i) anda is locally-finite and supp(a) is finite anda⊆ x.

Let I be a set, letM be a many sorted set indexed byI , and letA be a family of many sorted
subsets indexed byM. The functor MSUnion(A) yielding a many sorted subset indexed byM is
defined as follows:

(Def. 4) For every seti such thati ∈ I holds(MSUnion(A))(i) =
⋃
{ f (i); f ranges over elements of

Bool(M): f ∈ A}.

Let I be a set, letM be a many sorted set indexed byI , and letB be a non empty family of many
sorted subsets indexed byM. We see that the element ofB is a many sorted set indexed byI .

Let I be a set, letM be a many sorted set indexed byI , and letA be an empty family of many
sorted subsets indexed byM. Observe that MSUnion(A) is empty yielding.

The following proposition is true

(10) Let I be a set,M be a many sorted set indexed byI , andA be a family of many sorted
subsets indexed byM. Then MSUnion(A) =

⋃
|:A:|.

Let I be a set, letM be a many sorted set indexed byI , and letA, B be families of many sorted
subsets indexed byM. ThenA∪B is a family of many sorted subsets indexed byM.

The following two propositions are true:

(11) Let I be a set,M be a many sorted set indexed byI , andA, B be families of many sorted
subsets indexed byM. Then MSUnion(A∪B) = MSUnion(A)∪MSUnion(B).

(12) Let I be a set,M be a many sorted set indexed byI , andA, B be families of many sorted
subsets indexed byM. If A⊆ B, then MSUnion(A)⊆ MSUnion(B).

Let I be a set, letM be a many sorted set indexed byI , and letA, B be families of many sorted
subsets indexed byM. ThenA∩B is a family of many sorted subsets indexed byM.

One can prove the following two propositions:

(13) Let I be a set,M be a many sorted set indexed byI , andA, B be families of many sorted
subsets indexed byM. Then MSUnion(A∩B)⊆ MSUnion(A)∩MSUnion(B).

(14) Let I be a set,M be a many sorted set indexed byI , andA1 be a set. Suppose that for
every setx such thatx ∈ A1 holdsx is a family of many sorted subsets indexed byM. Let
A, B be families of many sorted subsets indexed byM. SupposeB = {MSUnion(X);X
ranges over families of many sorted subsets indexed byM: X ∈ A1} andA =

⋃
A1. Then

MSUnion(B) = MSUnion(A).
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3. ALGEBRAIC OPERATION ONSUBSETS OFMANY SORTED SETS

Let I be a non empty set, letM be a many sorted set indexed byI , and letSbe a set operation inM.
We say thatS is algebraic if and only if the condition (Def. 5) is satisfied.

(Def. 5) Letx be an element of Bool(M). Supposex = S(x). Then there exists a familyA of many
sorted subsets indexed byM such thatA = {S(a);a ranges over elements of Bool(M): a is
locally-finite∧ supp(a)is finite∧ a⊆ x} andx = MSUnion(A).

Let I be a non empty set and letM be a many sorted set indexed byI . Note that there exists a
set operation inM which is algebraic, reflexive, monotonic, and idempotent.

Let S be a non empty 1-sorted structure and letI1 be a closure system ofS. We say thatI1 is
algebraic if and only if:

(Def. 6) ClOp(I1) is algebraic.

Let Sbe a non void non empty many sorted signature and letM1 be a non-empty algebra overS.
The functor SubAlgCl(M1) yielding a strict closure system structure over the 1-sorted structure of
S is defined by:

(Def. 7) The sorts of SubAlgCl(M1) = the sorts ofM1 and the family of SubAlgCl(M1) =
SubSorts(M1).

We now state the proposition

(16)1 Let Sbe a non void non empty many sorted signature andM1 be a strict non-empty algebra
over S. Then SubSorts(M1) is an absolutely-multiplicative family of many sorted subsets
indexed by the sorts ofM1.

Let Sbe a non void non empty many sorted signature and letM1 be a strict non-empty algebra
overS. One can check that SubAlgCl(M1) is absolutely-multiplicative.

Let Sbe a non void non empty many sorted signature and letM1 be a strict non-empty algebra
overS. Note that SubAlgCl(M1) is algebraic.

REFERENCES

[1] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras.Journal of Formalized Mathematics, 6, 1994. http:
//mizar.org/JFM/Vol6/msualg_2.html.
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