Algebraic Operation on Subsets of Many Sorted Sets

Agnieszka Julia Marasik Warsaw University Białystok

MML Identifier: CLOSURE3.
WWW: http://mizar.org/JFM/Vol9/closure3.html

The articles [13], [5], [16], [12], [17], [2], [4], [3], [7], [6], [14], [15], [1], [10], [8], [9], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

- Let *S* be a non empty 1-sorted structure. One can verify that the 1-sorted structure of *S* is non empty. The following three propositions are true:
 - (1) For every non empty set I and for all many sorted sets M, N indexed by I holds M + N = N.
 - (2) Let *I* be a set, *M*, *N* be many sorted sets indexed by *I*, and *F* be a family of many sorted subsets indexed by *M*. If *N* ∈ *F*, then ∩|:*F*:| ⊆ *N*.
 - (3) Let S be a non void non empty many sorted signature, M₁ be a strict non-empty algebra over S, and F be a family of many sorted subsets indexed by the sorts of M₁. Suppose F ⊆ SubSorts(M₁). Let B be a subset of M₁. If B = ∩|:F:|, then B is operations closed.

2. Relationships between Subsets Families

Let *I* be a set, let *M* be a many sorted set indexed by *I*, let *B* be a family of many sorted subsets indexed by *M*, and let *A* be a family of many sorted subsets indexed by *M*. We say that *A* is finer than *B* if and only if:

(Def. 1) For every set *a* such that $a \in A$ there exists a set *b* such that $b \in B$ and $a \subseteq b$.

Let us note that the predicate *A* is finer than *B* is reflexive. We say that *B* is coarser than *A* if and only if:

(Def. 2) For every set *b* such that $b \in B$ there exists a set *a* such that $a \in A$ and $a \subseteq b$.

Let us note that the predicate *B* is coarser than *A* is reflexive. One can prove the following two propositions:

- (4) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *A*, *B*, *C* be families of many sorted subsets indexed by *M*. If *A* is finer than *B* and *B* is finer than *C*, then *A* is finer than *C*.
- (5) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *A*, *B*, *C* be families of many sorted subsets indexed by *M*. If *A* is coarser than *B* and *B* is coarser than *C*, then *A* is coarser than *C*.

Let *I* be a non empty set and let *M* be a many sorted set indexed by *I*. The functor supp(M) yields a set and is defined as follows:

(Def. 3) supp $(M) = \{x; x \text{ ranges over elements of } I: M(x) \neq \emptyset\}.$

The following propositions are true:

- (6) For every non empty set *I* and for every non-empty many sorted set *M* indexed by *I* holds M = 0_I+·M↾supp(M).
- (7) Let *I* be a non empty set and M_2 , M_3 be non-empty many sorted sets indexed by *I*. If $supp(M_2) = supp(M_3)$ and $M_2 \upharpoonright supp(M_2) = M_3 \upharpoonright supp(M_3)$, then $M_2 = M_3$.
- (8) Let *I* be a non empty set, *M* be a many sorted set indexed by *I*, and *x* be an element of *I*. If $x \notin \text{supp}(M)$, then $M(x) = \emptyset$.
- (9) Let *I* be a non empty set, *M* be a many sorted set indexed by *I*, *x* be an element of Bool(*M*), *i* be an element of *I*, and *y* be a set. Suppose *y* ∈ *x*(*i*). Then there exists an element *a* of Bool(*M*) such that *y* ∈ *a*(*i*) and *a* is locally-finite and supp(*a*) is finite and *a* ⊆ *x*.

Let *I* be a set, let *M* be a many sorted set indexed by *I*, and let *A* be a family of many sorted subsets indexed by *M*. The functor MSUnion(A) yielding a many sorted subset indexed by *M* is defined as follows:

(Def. 4) For every set *i* such that $i \in I$ holds $(MSUnion(A))(i) = \bigcup \{f(i); f \text{ ranges over elements of } Bool(M): f \in A \}$.

Let I be a set, let M be a many sorted set indexed by I, and let B be a non empty family of many sorted subsets indexed by M. We see that the element of B is a many sorted set indexed by I.

Let *I* be a set, let *M* be a many sorted set indexed by *I*, and let *A* be an empty family of many sorted subsets indexed by *M*. Observe that MSUnion(A) is empty yielding.

The following proposition is true

(10) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *A* be a family of many sorted subsets indexed by *M*. Then $MSUnion(A) = \bigcup |:A:|$.

Let *I* be a set, let *M* be a many sorted set indexed by *I*, and let *A*, *B* be families of many sorted subsets indexed by *M*. Then $A \cup B$ is a family of many sorted subsets indexed by *M*. The following two propositions are true:

- (11) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *A*, *B* be families of many sorted subsets indexed by *M*. Then $MSUnion(A \cup B) = MSUnion(A) \cup MSUnion(B)$.
- (12) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *A*, *B* be families of many sorted subsets indexed by *M*. If $A \subseteq B$, then MSUnion(A) \subseteq MSUnion(B).

Let *I* be a set, let *M* be a many sorted set indexed by *I*, and let *A*, *B* be families of many sorted subsets indexed by *M*. Then $A \cap B$ is a family of many sorted subsets indexed by *M*. One can prove the following two propositions:

- (13) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *A*, *B* be families of many sorted subsets indexed by *M*. Then $MSUnion(A \cap B) \subseteq MSUnion(A) \cap MSUnion(B)$.
- (14) Let *I* be a set, *M* be a many sorted set indexed by *I*, and A_1 be a set. Suppose that for every set *x* such that $x \in A_1$ holds *x* is a family of many sorted subsets indexed by *M*. Let *A*, *B* be families of many sorted subsets indexed by *M*. Suppose $B = \{MSUnion(X); X \text{ ranges over families of many sorted subsets indexed by$ *M* $: <math>X \in A_1\}$ and $A = \bigcup A_1$. Then MSUnion(B) = MSUnion(A).

3. Algebraic Operation on Subsets of Many Sorted Sets

Let I be a non empty set, let M be a many sorted set indexed by I, and let S be a set operation in M. We say that S is algebraic if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let x be an element of Bool(M). Suppose x = S(x). Then there exists a family A of many sorted subsets indexed by M such that $A = \{S(a); a \text{ ranges over elements of Bool}(M)$: a is locally-finite \land supp(a) is finite $\land a \subseteq x\}$ and x = MSUnion(A).

Let I be a non empty set and let M be a many sorted set indexed by I. Note that there exists a set operation in M which is algebraic, reflexive, monotonic, and idempotent.

Let S be a non empty 1-sorted structure and let I_1 be a closure system of S. We say that I_1 is algebraic if and only if:

(Def. 6) $ClOp(I_1)$ is algebraic.

Let *S* be a non-void non empty many sorted signature and let M_1 be a non-empty algebra over *S*. The functor SubAlgCl(M_1) yielding a strict closure system structure over the 1-sorted structure of *S* is defined by:

(Def. 7) The sorts of SubAlgCl (M_1) = the sorts of M_1 and the family of SubAlgCl (M_1) = SubSorts (M_1) .

We now state the proposition

(16)¹ Let S be a non void non empty many sorted signature and M_1 be a strict non-empty algebra over S. Then SubSorts (M_1) is an absolutely-multiplicative family of many sorted subsets indexed by the sorts of M_1 .

Let S be a non void non empty many sorted signature and let M_1 be a strict non-empty algebra over S. One can check that SubAlgCl (M_1) is absolutely-multiplicative.

Let *S* be a non void non empty many sorted signature and let M_1 be a strict non-empty algebra over *S*. Note that SubAlgCl(M_1) is algebraic.

REFERENCES

- Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http: //mizar.org/JFM/Vol6/msualg_2.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [7] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [8] Artur Korniłowicz. Certain facts about families of subsets of many sorted sets. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/mssubfam.html.
- [9] Artur Korniłowicz. Definitions and basic properties of boolean and union of many sorted sets. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/mboolean.html.
- [10] Artur Korniłowicz. On the closure operator and the closure system of many sorted sets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/closure2.html.
- [11] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [12] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.

¹ The proposition (15) has been removed.

- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [15] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received June 23, 1997

Published January 2, 2004