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Summary. This article is concerned with Euler’s theorem and small Fermat’s theorem
that play important roles in public-key cryptograms. In the first section, we present some
selected theorems on integers. In the following section, we remake definitions about the finite
sequence of natural, the function of natural times finite sequence of natural andπ of the finite
sequence of natural. We also prove some basic theorems that concern these redefinitions.
Next, we define the function of modulus for finite sequence of natural and some fundamental
theorems about this function are proved. Finally, Euler’s theorem and small Fermat’s theorem
are proved.
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The articles [14], [17], [15], [1], [16], [13], [8], [2], [5], [12], [9], [11], [7], [18], [4], [6], [3], and
[10] provide the notation and terminology for this paper.

1. PRELIMINARY

We adopt the following convention:a, b, m, n, k, l are natural numbers,t is an integer, andf , F are
finite sequences of elements ofN.

The following propositions are true:

(1) a andb qua integer are relative prime iffa andb are relative prime.

(2) If m> 1 andm· t ≥ 1, thent ≥ 1.

(3) If m> 1 andm· t ≥ 0, thent ≥ 0.

(5)1 Supposea 6= 0 andb 6= 0 andm 6= 0 anda andmare relative prime andb andmare relative
prime. Thenm anda·bmodm are relative prime.

(6) Supposem> 1 andb 6= 0 andm andn are relative prime anda andm are relative prime
andn = a·bmodm. Thenm andb are relative prime.

(7) For everyn holdsmmodnmodn = mmodn.

(8) For everyn holds(l +m)modn = ((l modn)+(mmodn))modn.

1 The proposition (4) has been removed.
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(9) For everyn holdsl ·mmodn = l · (mmodn)modn.

(10) For everyn holdsl ·mmodn = (l modn) ·mmodn.

(11) For everyn holdsl ·mmodn = (l modn) · (mmodn)modn.

2. FINITE SEQUENCE OFNATURALS

Let us considera, f . Thena· f is a finite sequence of elements ofN.
One can prove the following proposition

(25)2 For all finite sequencesR1, R2 of elements ofN such thatR1 andR2 are fiberwise equipo-
tent holds∏R1 = ∏R2.

3. MODULUS FORFINITE SEQUENCE OFNATURALS

Let f be a finite sequence of elements ofN and letm be a natural number. The functorf modm
yielding a finite sequence of elements ofN is defined as follows:

(Def. 1) len( f modm) = len f and for every natural numberi such thati ∈ dom f holds ( f mod
m)(i) = f (i)modm.

The following propositions are true:

(26) For every finite sequencef of elements ofN such thatm 6= 0 holds∏( f modm)modm=
∏ f modm.

(27) If a 6= 0 andm> 1 andn 6= 0 anda ·nmodm= nmodm andm andn are relative prime,
thenamodm= 1.

(28) For everyF holdsF modmmodm= F modm.

(29) For everyF holdsa· (F modm)modm= a·F modm.

(30) For all finite sequencesF , G of elements ofN holdsF a Gmodm= (F modm)a (Gmodm).

(31) For all finite sequencesF , G of elements ofN holdsa · (F a G) modm= (a ·F modm) a

(a·Gmodm).

Let us considern, k. Thennk is a natural number.
One can prove the following proposition

(32) If a 6= 0 andm 6= 0 anda andm are relative prime, then for everyb holdsab andm are
relative prime.

4. EULER’ S THEOREM AND SMALL FERMAT’ S THEOREM

The following two propositions are true:

(33) If a 6= 0 andm> 1 anda andmare relative prime, thenaEulermmodm= 1.

(34) If a 6= 0 andm is prime anda andm are relative prime, thenammodm= amodm.
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