Some Properties of Restrictions of Finite Sequences

Czesław Byliński
Warsaw University
Białystok

Summary. The aim of the paper is to define some basic notions of restrictions of finite sequences.

MML Identifier: FINSEQ_5.
WWW:http://mizar.org/JFM/Vol7/finseq_5.html

The articles [6], [8], [1], [9], [3], [2], [7], [5], and [4] provide the notation and terminology for this paper.

In this paper i, j, k, n are natural numbers.
One can prove the following propositions:
(1) If $i \leq n$, then $(n-i)+1$ is a natural number.
(2) If $i \in \operatorname{Seg} n$, then $(n-i)+1 \in \operatorname{Seg} n$.
(3) For every function f and for all sets x, y such that $f^{-1}(\{y\})=\{x\}$ holds $x \in \operatorname{dom} f$ and $y \in \operatorname{rng} f$ and $f(x)=y$.
(4) For every function f holds f is one-to-one iff for every set x such that $x \in \operatorname{dom} f$ holds $f^{-1}(\{f(x)\})=\{x\}$.
(5) For every function f and for all sets y_{1}, y_{2} such that f is one-to-one and $y_{1} \in \operatorname{rng} f$ and $y_{2} \in \operatorname{rng} f$ and $f^{-1}\left(\left\{y_{1}\right\}\right)=f^{-1}\left(\left\{y_{2}\right\}\right)$ holds $y_{1}=y_{2}$.
Let x be a set. Observe that $\langle x\rangle$ is non empty.
Let us note that every set which is empty is also trivial.
Let x be a set. One can check that $\langle x\rangle$ is trivial. Let y be a set. Note that $\langle x, y\rangle$ is non trivial.
Let us note that there exists a finite sequence which is one-to-one and non empty.
The following propositions are true:
(6) For every non empty finite sequence f holds $1 \in \operatorname{dom} f$ and len $f \in \operatorname{dom} f$.
(7) For every non empty finite sequence f there exists i such that $i+1=\operatorname{len} f$.
(8) For every set x and for every finite sequence f holds len $\left(\langle x\rangle^{\wedge} f\right)=1+\operatorname{len} f$.

The scheme domSeqLambda deals with a natural number \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that:

There exists a finite sequence p such that len $p=\mathcal{A}$ and for every k such that $k \in$ dom p holds $p(k)=\mathcal{F}(k)$
for all values of the parameters.
We now state three propositions:
(10 $)^{1}$ For every finite sequence f and for all sets p, q such that $p \in \operatorname{rng} f$ and $q \in \operatorname{rng} f$ and

[^0]$$
p \leftrightarrow f=q \leftrightarrow f \text { holds } p=q .
$$
(11) For all finite sequences f, g such that $n+1 \in \operatorname{dom} f$ and $g=f \upharpoonright \operatorname{Seg} n$ holds $f \upharpoonright \operatorname{Seg}(n+1)=$ $g^{\wedge}\langle f(n+1)\rangle$.
(12) For every one-to-one finite sequence f such that $i \in \operatorname{dom} f$ holds $f(i) \leftrightarrow f=i$.

In the sequel D denotes a non empty set, p denotes an element of D, and f, g denote finite sequences of elements of D.

Let D be a non empty set. One can check that there exists a finite sequence of elements of D which is one-to-one and non empty.

One can prove the following propositions:
(13) If $\operatorname{dom} f=\operatorname{dom} g$ and for every i such that $i \in \operatorname{dom} f$ holds $f_{i}=g_{i}$, then $f=g$.
(14) If len $f=\operatorname{len} g$ and for every k such that $1 \leq k$ and $k \leq \operatorname{len} f$ holds $f_{k}=g_{k}$, then $f=g$.
(15) If len $f=1$, then $f=\left\langle f_{1}\right\rangle$.
(16) Let D be a non empty set, p be an element of D, and f be a finite sequence of elements of D. Then $\left(\langle p\rangle^{\wedge} f\right)_{1}=p$.
$(18)^{2}$ For every set D and for every finite sequence f of elements of D holds len $(f \upharpoonright i) \leq \operatorname{len} f$.
(19) For every set D and for every finite sequence f of elements of D holds len $(f \upharpoonright i) \leq i$.
(20) For every set D and for every finite sequence f of elements of D holds $\operatorname{dom}(f \backslash i) \subseteq \operatorname{dom} f$.
(21) $\quad \operatorname{rng}(f\lceil i) \subseteq \operatorname{rng} f$.
$(23)^{3}$ For every set D and for every finite sequence f of elements of D such that f is non empty holds $f \upharpoonright 1=\left\langle f_{1}\right\rangle$.
(24) If $i+1=\operatorname{len} f$, then $f=(f \upharpoonright i)^{\wedge}\left\langle f_{\operatorname{len} f}\right\rangle$.

Let us consider i, D and let f be an one-to-one finite sequence of elements of D. One can verify that $f \upharpoonright i$ is one-to-one.

We now state a number of propositions:
(25) For every set D and for all finite sequences f, g of elements of D such that $i \leq \operatorname{len} f$ holds $(f \subset g) \upharpoonright i=f \upharpoonright i$.
(26) For every set D and for all finite sequences f, g of elements of D holds $\left(f^{\wedge} g\right) \upharpoonright \operatorname{len} f=f$.
(27) For every set D and for every finite sequence f of elements of D such that $p \in \operatorname{rng} f$ holds $(f \leftarrow p)^{\wedge}\langle p\rangle=f \upharpoonright p \leftarrow f$.
(28) $\operatorname{len}\left(f_{l i}\right) \leq \operatorname{len} f$.
(29) If $i \in \operatorname{dom}\left(f_{\downharpoonright n}\right)$, then $n+i \in \operatorname{dom} f$.
(30) If $i \in \operatorname{dom}\left(f_{\downharpoonright n}\right)$, then $\left(f_{\downharpoonright n}\right)_{i}=f_{n+i}$.
(31) $f_{l 0}=f$.
(32) If f is non empty, then $f=\left\langle f_{1}\right\rangle^{\wedge}\left(f_{11}\right)$.
(33) If $i+1=\operatorname{len} f$, then $f_{l i}=\left\langle f_{\operatorname{len} f}\right\rangle$.
(34) If $j+1=i$ and $i \in \operatorname{dom} f$, then $\left\langle f_{i}\right\rangle \wedge\left(f_{l i}\right)=f_{l j}$.

[^1](35) For every set D and for every finite sequence f of elements of D such that len $f \leq i$ holds $f_{l i}$ is empty.
(36) $\quad \operatorname{rng}\left(f_{\text {ln }}\right) \subseteq \operatorname{rng} f$.

Let us consider i, D and let f be an one-to-one finite sequence of elements of D. Observe that $f_{l i}$ is one-to-one.

Next we state several propositions:
(37) If f is one-to-one, then $\operatorname{rng}\left(f\lceil n) \operatorname{misses} \operatorname{rng}\left(f_{\llcorner n}\right)\right.$.
(38) If $p \in \operatorname{rng} f$, then $f \rightarrow p=f_{\lfloor p \leftrightarrow f f}$.
(39) $\left(f^{\frown} g\right)_{\mid \operatorname{len} f+i}=g_{l i}$.
(40) $\left(f^{\wedge} g\right)_{\lfloor\operatorname{len} f}=g$.
(41) If $p \in \operatorname{rng} f$, then $f_{p \leftrightarrow f}=p$.
(42) If $i \in \operatorname{dom} f$, then $f_{i} \leftarrow f \leq i$.
(43) If $p \in \operatorname{rng}(f \backslash i)$, then $p \leftrightarrow(f \upharpoonright i)=p \leftrightarrow f$.
(44) If $i \in \operatorname{dom} f$ and f is one-to-one, then $f_{i} \leftrightarrow f=i$.

Let us consider D, f and let p be a set. The functor $f-: p$ yields a finite sequence of elements of D and is defined by:
(Def. 1) $f-: p=f \upharpoonright p \leftrightarrow f$.
Next we state several propositions:
(45) If $p \in \operatorname{rng} f$, then $\operatorname{len}(f-: p)=p \leftrightarrow f$.
(46) If $p \in \operatorname{rng} f$ and $i \in \operatorname{Seg}(p \leftarrow f)$, then $(f-: p)_{i}=f_{i}$.
(47) If $p \in \operatorname{rng} f$, then $(f-: p)_{1}=f_{1}$.
(48) If $p \in \operatorname{rng} f$, then $(f-: p)_{p \leftrightarrow f f}=p$.
(49) For every set x such that $x \in \operatorname{rng} f$ and $p \in \operatorname{rng} f$ and $x \leftrightarrow f \leq p \leftrightarrow f$ holds $x \in \operatorname{rng}(f-: p)$.
(50) If $p \in \operatorname{rng} f$, then $f-: p$ is non empty.
(51) $\quad \operatorname{rng}(f-: p) \subseteq \operatorname{rng} f$.

Let us consider D, p and let f be an one-to-one finite sequence of elements of D. Note that $f-: p$ is one-to-one.

Let us consider D, f, p. The functor $f:-p$ yielding a finite sequence of elements of D is defined as follows:
(Def. 2) $\quad f:-p=\langle p\rangle \wedge\left(f_{\llcorner p \leftrightarrow f}\right)$.
Next we state three propositions:
(52) If $p \in \operatorname{rng} f$, then there exists i such that $i+1=p \leftrightarrow f$ and $f:-p=f_{l i}$.
(53) If $p \in \operatorname{rng} f$, then $\operatorname{len}(f:-p)=(\operatorname{len} f-p \leftrightarrow f)+1$.
(54) If $p \in \operatorname{rng} f$ and $j+1 \in \operatorname{dom}(f:-p)$, then $j+p \leftrightarrow f \in \operatorname{dom} f$.

Let us consider D, p, f. Note that $f:-p$ is non empty.
Next we state several propositions:
(55) If $p \in \operatorname{rng} f$ and $j+1 \in \operatorname{dom}(f:-p)$, then $(f:-p)_{j+1}=f_{j+p \leftrightarrow f f}$.
(56) $\quad(f:-p)_{1}=p$.
(57) If $p \in \operatorname{rng} f$, then $(f:-p)_{\operatorname{len}(f:-p)}=f_{\operatorname{len} f}$.
(58) If $p \in \operatorname{rng} f$, then $\operatorname{rng}(f:-p) \subseteq \operatorname{rng} f$.
(59) If $p \in \operatorname{rng} f$ and f is one-to-one, then $f:-p$ is one-to-one.

Let f be a finite sequence. The functor $\operatorname{Rev}(f)$ yielding a finite sequence is defined as follows:
(Def. 3) $\operatorname{len} \operatorname{Rev}(f)=\operatorname{len} f$ and for every i such that $i \in \operatorname{dom} \operatorname{Rev}(f)$ holds $(\operatorname{Rev}(f))(i)=f((\operatorname{len} f-$ $i)+1$.

The following three propositions are true:
(60) For every finite sequence f holds $\operatorname{dom} f=\operatorname{dom} \operatorname{Rev}(f)$ and $\operatorname{rng} f=\operatorname{rng} \operatorname{Rev}(f)$.
(61) For every finite sequence f such that $i \in \operatorname{dom} f$ holds $(\operatorname{Rev}(f))(i)=f((\operatorname{len} f-i)+1)$.
(62) For every finite sequence f and for all natural numbers i, j such that $i \in \operatorname{dom} f$ and $i+j=$ $\operatorname{len} f+1$ holds $j \in \operatorname{dom} \operatorname{Rev}(f)$.

Let f be an empty finite sequence. One can check that $\operatorname{Rev}(f)$ is empty.
Next we state three propositions:
(63) For every set x holds $\operatorname{Rev}(\langle x\rangle)=\langle x\rangle$.
(64) For all sets x_{1}, x_{2} holds $\operatorname{Rev}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=\left\langle x_{2}, x_{1}\right\rangle$.
(65) For every finite sequence f holds $f(1)=(\operatorname{Rev}(f))(\operatorname{len} f)$ and $f(\operatorname{len} f)=(\operatorname{Rev}(f))(1)$.

Let f be an one-to-one finite sequence. One can check that $\operatorname{Rev}(f)$ is one-to-one.
One can prove the following propositions:
(66) For every finite sequence f and for every set x holds $\operatorname{Rev}\left(f^{\wedge}\langle x\rangle\right)=\langle x\rangle \wedge \operatorname{Rev}(f)$.
(67) For all finite sequences f, g holds $\operatorname{Rev}(f \subset g)=(\operatorname{Rev}(g))^{\wedge} \operatorname{Rev}(f)$.

Let us consider D, f. Then $\operatorname{Rev}(f)$ is a finite sequence of elements of D.
One can prove the following propositions:
(68) If f is non empty, then $f_{1}=(\operatorname{Rev}(f))_{\operatorname{len} f}$ and $f_{\operatorname{len} f}=(\operatorname{Rev}(f))_{1}$.
(69) If $i \in \operatorname{dom} f$ and $i+j=\operatorname{len} f+1$, then $f_{i}=(\operatorname{Rev}(f))_{j}$.

Let us consider D, f, p, n. The functor $\operatorname{Ins}(f, n, p)$ yielding a finite sequence of elements of D is defined by:
(Def. 4) $\operatorname{Ins}(f, n, p)=(f \upharpoonright n)^{\wedge}\langle p\rangle \wedge\left(f_{\downharpoonright n}\right)$.
We now state four propositions:
(70) $\operatorname{Ins}(f, 0, p)=\langle p\rangle^{\wedge} f$.
(71) If len $f \leq n$, then $\operatorname{Ins}(f, n, p)=f^{\wedge}\langle p\rangle$.
(72) len $\operatorname{Ins}(f, n, p)=\operatorname{len} f+1$.
(73) $\operatorname{rng} \operatorname{Ins}(f, n, p)=\{p\} \cup \operatorname{rng} f$.

Let us consider D, f, n, p. Note that $\operatorname{Ins}(f, n, p)$ is non empty.
Next we state several propositions:
(74) $\quad p \in \operatorname{rng} \operatorname{Ins}(f, n, p)$.
(75) If $i \in \operatorname{dom}(f \backslash n)$, then $(\operatorname{Ins}(f, n, p))_{i}=f_{i}$.
(76) If $n \leq \operatorname{len} f$, then $(\operatorname{Ins}(f, n, p))_{n+1}=p$.
(77) If $n+1 \leq i$ and $i \leq \operatorname{len} f$, then $(\operatorname{Ins}(f, n, p))_{i+1}=f_{i}$.
(78) If $1 \leq n$ and f is non empty, then $(\operatorname{Ins}(f, n, p))_{1}=f_{1}$.
(79) If f is one-to-one and $p \notin \operatorname{rng} f$, then $\operatorname{Ins}(f, n, p)$ is one-to-one.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/ JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[4] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
[5] Jarosław Kotowicz. Functions and finite sequences of real numbers. Journal of Formalized Mathematics, 5, 1993. http: //mizar. org/ JFM/Vol5/rfinseq.html
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[7] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4. html.
[8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (9) has been removed.

[^1]: ${ }^{2}$ The proposition (17) has been removed.
 ${ }^{3}$ The proposition (22) has been removed.

