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Summary. The aim of the paper is to define some basic notions of restrictions of finite
sequences.
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The articlesl[6],8],[1], 19], [3], [2], [7], [5], and([4] provide the notation and terminology for this

paper.
In this papei, |, k, nare natural numbers.
One can prove the following propositions:

(1) Ifi<n,then(n—i)+1is a natural number.

(2) IfieSem,then(n—i)+1e Seq.

(3) For every functionf and for all sets, y such thatf ~({y}) = {x} holdsx € domf and
yerngf andf(x) =y.

(4) For every functionf holds f is one-to-one iff for every set such thatx € domf holds
FH{f(0}) = {x}.

(5) For every functionf and for all setsy;, y» such thatf is one-to-one ang € rngf and
y2 € rngf andf~1({y1}) = f"1({y2}) holdsy; = y,.

Letx be a set. Observe that) is non empty.

Let us note that every set which is empty is also trivial.

Letx be a set. One can check tHa} is trivial. Lety be a set. Note thgk, y) is non trivial.
Let us note that there exists a finite sequence which is one-to-one and non empty.
The following propositions are true:

(6) For every non empty finite sequentéolds 1€ domf and lenf € domf.
(7) For every non empty finite sequentéhere exists such thai + 1 = lenf.
(8) For every sex and for every finite sequendeholds ler{(x) ~ f) = 1+lenf.

The schem@lomSeqgLambddeals with a natural numbet and a unary functofF yielding a
set, and states that:
There exists a finite sequenpesuch that lep = 4 and for everyk such thatk €
domp holdsp(k) = F (k)
for all values of the parameters.
We now state three propositions:

(1OE] For every finite sequencé and for all setsp, g such thatp € rngf andg € rngf and

1 The proposition (9) has been removed.
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p—~f=q«<rfholdsp=q.

(11) For all finite sequencefs g such thah+ 1 € domf andg= f [ Segn holdsf [ Segdn+1) =
g~ (f(n+1)).

(12) For every one-to-one finite sequerfcsuch thai € domf holdsf (i) «p f =1.

In the sequeD denotes a nhon empty sqt,denotes an element &, and f, g denote finite
sequences of elementsof

Let D be a non empty set. One can check that there exists a finite sequence of eleni&nts of
which is one-to-one and non empty.

One can prove the following propositions:

(13) Ifdomf =domg and for evenyi such that € domf holdsf; = g, thenf = g.
(14) Iflenf =lengand for evenk such that I< k andk < lenf holds fy = gk, thenf = g.
(15) Iflenf =1 thenf = (fy).

(16) LetD be a non empty sep be an element dD, andf be a finite sequence of elements of
D. Then({p)~ f)1=1p.

(18E] For every seD and for every finite sequendeof elements oD holds ler{ f i) <lenf.
(19) For every seb and for every finite sequendeof elements oD holds ler{f i) <i.

(20) For every seb and for every finite sequendeof elements oD holds dontf i) C domf.
(21) rgfli) Crngf.

(23 For every seD and for every finite sequendeof elements oD such thatf is non empty
holds f 1= (f1).

(24) Ifi+1=lenf, thenf = (f]i)" (fient).

Let us consider, D and letf be an one-to-one finite sequence of elemenf3.dDne can verify
that f|i is one-to-one.
We now state a number of propositions:

(25) For every seb and for all finite sequencefs g of elements oD such thai < lenf holds
(f~g)li=fi.

(26) For every seb and for all finite sequencels g of elements oD holds(f ~g)[lenf = f.

(27) For every seb and for every finite sequendeof elements oD such thatp € rngf holds
(fF—=p)~(p)=fiprf.

(28) len(f};) <lenf.

(29) Ifi e dom(f}n), thenn+i € domf.

(30) Ifi e dom(fjn), then(fjn)i = fnyi.

(31) fo="f.

(32) If fis non empty, therf = (f1) ™ (f}1).

(33) Ifi+1=lenf,thenfj = (fient).

(34) If j+1=iandi edomf,then(f) " (f;)=f};.

2 The proposition (17) has been removed.
3 The proposition (22) has been removed.
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(35) For every seb and for every finite sequendeof elements oD such that lerf <i holds
fli is empty.

(36) rngfn) Crngf.

Let us considet, D and letf be an one-to-one finite sequence of elementd.oDbserve that
f|i is one-to-one.
Next we state several propositions:

(37) If f is one-to-one, then riid [n) misses rngf ).
(38) Ifperngf,thenf — p=fper.

(39) (f~9)lent+i =gii-

(40) (f~Q)ent =9

(41) Ifperngf,thenfp,or =p.

(42) Ifi e domf, thenf; < f <i.

(43) Ifperng(fli),thenp«r (fli)=p<r f.

(44) Ifi e domf andf is one-to-one, thefy <p f =1i.

Let us consideD, f and letp be a set. The functof —: p yields a finite sequence of elements
of D and is defined by:

(Def.1) f—p=flp«rf.
Next we state several propositions:
(45) If perngf,thenlerf —:p)=p<rf.
(46) If perngf andi € Sedp «r f), then(f —: p); = fi.
(47) If perngf,then(f—:p)1 = f1.
(48) If perngf,then(f —:p)pet =p.
(49) For every setsuch thak e rngf andp € rngf andx <P f < p<p f holdsx € rng(f —: p).
(50) If perngf,thenf —:pisnonempty.
(51) rgf—:p) Crngf.

Let us consideD, p and letf be an one-to-one finite sequence of elementB.oNote that
f —: pis one-to-one.

Let us consideD, f, p. The functorf :— pyielding a finite sequence of elementddfs defined
as follows:

(Def.2) fimp=(p)" (fipest)-
Next we state three propositions:
(52) If perngf,then there existssuch thai+1=p«p f andf:— p= f;.
(53) If perngf,thenler{f:—p)=(lenf —p«p f)+1.
(54) Ifperngfandj+1edom(f:—p),thenj+ p«p f €domf.

Let us consideD, p, f. Note thatf :— p is non empty.
Next we state several propositions:

(55) Ifperngfandj+1ecdom(f:—p),then(f:—p)jr1= fj;peet.
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(56) (f:=p)ri=p.
(57) Ifperngf, then(f:—p)ent:—p) = fient-
(58) If perngf,thenrndf:—p) Crngf.
(59) If perngf andf is one-to-one, theifi:— pis one-to-one.
Let f be a finite sequence. The functor Réyyielding a finite sequence is defined as follows:

(Def. 3) lenReyf) =lenf and for every such that € domReY f) holds(Reuf))(i) = f((lenf —
i)+1).

The following three propositions are true:
(60) For every finite sequendeholds domf = domRey f) and rngf = rngRey(f).
(61) For every finite sequendesuch thai € domf holds(Rev(f))(i) = f((lenf —i) +1).

(62) For every finite sequendeand for all natural numbeiis j such thai € domf andi + j =
lenf +1 holdsj € domRey\(f).

Let f be an empty finite sequence. One can check that Res empty.
Next we state three propositions:

(63) For every set holds Rey(x)) = (X).
(64) For all sets, x2 holds Rey(xz,%2)) = (X2,X1).
(65) For every finite sequendeholds f(1) = (Rev(f))(lenf) andf(lenf) = (Rev(f))(1).

Let f be an one-to-one finite sequence. One can check thaff Resvone-to-one.
One can prove the following propositions:

(66) For every finite sequendeand for every set holds Reyf ~ (x)) = (x) ~ ReV(f).
(67) For all finite sequencels g holds Reyf ~ g) = (Revg)) ~ ReV(f).

Let us consideD, f. Then Reyf) is a finite sequence of elementsf
One can prove the following propositions:

(68) If f is non empty, therf; = (Rev(f))ent and fiens = (Rev( f))1.
(69) Ifi € domf andi+ j=lenf +1, thenfi = (Revf));.

Let us consideD, f, p, n. The functor In§f,n, p) yielding a finite sequence of elementshf
is defined by:

(Def. 4) Ing(f,n,p) = (fIM)~ ()"~ (fin).
We now state four propositions:
(70) Ingf,0,p)=(p)" f.
(71) Iflenf <n thenIngf,n,p)=f "~ (p).
(72) leningf,n,p)=lenf+1.
(73) rnglngf,n,p)={pturngf.

Let us consideD, f, n, p. Note that In§f,n, p) is non empty.
Next we state several propositions:

(74) permglngf,n p).
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(75) Ifi e dom(fIn), then(Ins(f,n,p))i = fi.

(76) Ifn<lenf, then(Ins(f,n,p))n+1=p-

(77) Ifn+1<iandi<lenf,then(Ins(f,n,p))it1=f.
(78) If1<nandf is non empty, thefins(f,n, p)); = f1.

(79) If f is one-to-one ang ¢ rngf, then Ingf,n, p) is one-to-one.
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