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Summary. The aim of the paper is to define some basic notions of restrictions of finite
sequences.
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The articles [6], [8], [1], [9], [3], [2], [7], [5], and [4] provide the notation and terminology for this
paper.

In this paperi, j, k, n are natural numbers.
One can prove the following propositions:

(1) If i ≤ n, then(n− i)+1 is a natural number.

(2) If i ∈ Segn, then(n− i)+1∈ Segn.

(3) For every functionf and for all setsx, y such thatf−1({y}) = {x} holdsx ∈ dom f and
y∈ rng f and f (x) = y.

(4) For every functionf holds f is one-to-one iff for every setx such thatx ∈ dom f holds
f−1({ f (x)}) = {x}.

(5) For every functionf and for all setsy1, y2 such thatf is one-to-one andy1 ∈ rng f and
y2 ∈ rng f and f−1({y1}) = f−1({y2}) holdsy1 = y2.

Let x be a set. Observe that〈x〉 is non empty.
Let us note that every set which is empty is also trivial.
Let x be a set. One can check that〈x〉 is trivial. Let y be a set. Note that〈x,y〉 is non trivial.
Let us note that there exists a finite sequence which is one-to-one and non empty.
The following propositions are true:

(6) For every non empty finite sequencef holds 1∈ dom f and lenf ∈ dom f .

(7) For every non empty finite sequencef there existsi such thati +1 = len f .

(8) For every setx and for every finite sequencef holds len(〈x〉a f ) = 1+ len f .

The schemedomSeqLambdadeals with a natural numberA and a unary functorF yielding a
set, and states that:

There exists a finite sequencep such that lenp = A and for everyk such thatk ∈
domp holdsp(k) = F (k)

for all values of the parameters.
We now state three propositions:

(10)1 For every finite sequencef and for all setsp, q such thatp ∈ rng f andq ∈ rng f and
1 The proposition (9) has been removed.
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p " f = q " f holdsp = q.

(11) For all finite sequencesf , g such thatn+1∈ dom f andg= f �Segn holds f �Seg(n+1) =
ga 〈 f (n+1)〉.

(12) For every one-to-one finite sequencef such thati ∈ dom f holds f (i) " f = i.

In the sequelD denotes a non empty set,p denotes an element ofD, and f , g denote finite
sequences of elements ofD.

Let D be a non empty set. One can check that there exists a finite sequence of elements ofD
which is one-to-one and non empty.

One can prove the following propositions:

(13) If dom f = domg and for everyi such thati ∈ dom f holds fi = gi , then f = g.

(14) If len f = leng and for everyk such that 1≤ k andk≤ len f holds fk = gk, then f = g.

(15) If len f = 1, then f = 〈 f1〉.

(16) LetD be a non empty set,p be an element ofD, and f be a finite sequence of elements of
D. Then(〈p〉a f )1 = p.

(18)2 For every setD and for every finite sequencef of elements ofD holds len( f �i)≤ len f .

(19) For every setD and for every finite sequencef of elements ofD holds len( f �i)≤ i.

(20) For every setD and for every finite sequencef of elements ofD holds dom( f �i)⊆ dom f .

(21) rng( f �i)⊆ rng f .

(23)3 For every setD and for every finite sequencef of elements ofD such thatf is non empty
holds f �1 = 〈 f1〉.

(24) If i +1 = len f , then f = ( f �i)a 〈 flen f 〉.

Let us consideri, D and let f be an one-to-one finite sequence of elements ofD. One can verify
that f �i is one-to-one.

We now state a number of propositions:

(25) For every setD and for all finite sequencesf , g of elements ofD such thati ≤ len f holds
( f a g)�i = f �i.

(26) For every setD and for all finite sequencesf , g of elements ofD holds( f a g)� len f = f .

(27) For every setD and for every finite sequencef of elements ofD such thatp∈ rng f holds
( f ← p)a 〈p〉= f �p " f .

(28) len( f�i)≤ len f .

(29) If i ∈ dom( f�n), thenn+ i ∈ dom f .

(30) If i ∈ dom( f�n), then( f�n)i = fn+i .

(31) f�0 = f .

(32) If f is non empty, thenf = 〈 f1〉a ( f�1).

(33) If i +1 = len f , then f�i = 〈 flen f 〉.

(34) If j +1 = i andi ∈ dom f , then〈 fi〉a ( f�i) = f� j .

2 The proposition (17) has been removed.
3 The proposition (22) has been removed.
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(35) For every setD and for every finite sequencef of elements ofD such that lenf ≤ i holds
f�i is empty.

(36) rng( f�n)⊆ rng f .

Let us consideri, D and let f be an one-to-one finite sequence of elements ofD. Observe that
f�i is one-to-one.

Next we state several propositions:

(37) If f is one-to-one, then rng( f �n) misses rng( f�n).

(38) If p∈ rng f , then f → p = f�p" f .

(39) ( f a g)�len f+i = g�i .

(40) ( f a g)�len f = g.

(41) If p∈ rng f , then fp" f = p.

(42) If i ∈ dom f , then fi " f ≤ i.

(43) If p∈ rng( f �i), thenp " ( f �i) = p " f .

(44) If i ∈ dom f and f is one-to-one, thenfi " f = i.

Let us considerD, f and letp be a set. The functorf −: p yields a finite sequence of elements
of D and is defined by:

(Def. 1) f −: p = f �p " f .

Next we state several propositions:

(45) If p∈ rng f , then len( f −: p) = p " f .

(46) If p∈ rng f andi ∈ Seg(p " f ), then( f −: p)i = fi .

(47) If p∈ rng f , then( f −: p)1 = f1.

(48) If p∈ rng f , then( f −: p)p" f = p.

(49) For every setx such thatx∈ rng f andp∈ rng f andx " f ≤ p" f holdsx∈ rng( f −: p).

(50) If p∈ rng f , then f −: p is non empty.

(51) rng( f −: p)⊆ rng f .

Let us considerD, p and let f be an one-to-one finite sequence of elements ofD. Note that
f −: p is one-to-one.

Let us considerD, f , p. The functorf :− p yielding a finite sequence of elements ofD is defined
as follows:

(Def. 2) f :− p = 〈p〉a ( f�p" f ).

Next we state three propositions:

(52) If p∈ rng f , then there existsi such thati +1 = p " f and f :− p = f�i .

(53) If p∈ rng f , then len( f :− p) = (len f − p " f )+1.

(54) If p∈ rng f and j +1∈ dom( f :− p), then j + p " f ∈ dom f .

Let us considerD, p, f . Note thatf :− p is non empty.
Next we state several propositions:

(55) If p∈ rng f and j +1∈ dom( f :− p), then( f :− p) j+1 = f j+p" f .
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(56) ( f :− p)1 = p.

(57) If p∈ rng f , then( f :− p)len( f :−p) = flen f .

(58) If p∈ rng f , then rng( f :− p)⊆ rng f .

(59) If p∈ rng f and f is one-to-one, thenf :− p is one-to-one.

Let f be a finite sequence. The functor Rev( f ) yielding a finite sequence is defined as follows:

(Def. 3) lenRev( f ) = len f and for everyi such thati ∈ domRev( f ) holds(Rev( f ))(i) = f ((len f −
i)+1).

The following three propositions are true:

(60) For every finite sequencef holds domf = domRev( f ) and rngf = rngRev( f ).

(61) For every finite sequencef such thati ∈ dom f holds(Rev( f ))(i) = f ((len f − i)+1).

(62) For every finite sequencef and for all natural numbersi, j such thati ∈ dom f andi + j =
len f +1 holds j ∈ domRev( f ).

Let f be an empty finite sequence. One can check that Rev( f ) is empty.
Next we state three propositions:

(63) For every setx holds Rev(〈x〉) = 〈x〉.

(64) For all setsx1, x2 holds Rev(〈x1,x2〉) = 〈x2,x1〉.

(65) For every finite sequencef holds f (1) = (Rev( f ))(len f ) and f (len f ) = (Rev( f ))(1).

Let f be an one-to-one finite sequence. One can check that Rev( f ) is one-to-one.
One can prove the following propositions:

(66) For every finite sequencef and for every setx holds Rev( f a 〈x〉) = 〈x〉a Rev( f ).

(67) For all finite sequencesf , g holds Rev( f a g) = (Rev(g))a Rev( f ).

Let us considerD, f . Then Rev( f ) is a finite sequence of elements ofD.
One can prove the following propositions:

(68) If f is non empty, thenf1 = (Rev( f ))len f and flen f = (Rev( f ))1.

(69) If i ∈ dom f andi + j = len f +1, then fi = (Rev( f )) j .

Let us considerD, f , p, n. The functor Ins( f ,n, p) yielding a finite sequence of elements ofD
is defined by:

(Def. 4) Ins( f ,n, p) = ( f �n)a 〈p〉a ( f�n).

We now state four propositions:

(70) Ins( f ,0, p) = 〈p〉a f .

(71) If len f ≤ n, then Ins( f ,n, p) = f a 〈p〉.

(72) lenIns( f ,n, p) = len f +1.

(73) rngIns( f ,n, p) = {p}∪ rng f .

Let us considerD, f , n, p. Note that Ins( f ,n, p) is non empty.
Next we state several propositions:

(74) p∈ rngIns( f ,n, p).
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(75) If i ∈ dom( f �n), then(Ins( f ,n, p))i = fi .

(76) If n≤ len f , then(Ins( f ,n, p))n+1 = p.

(77) If n+1≤ i andi ≤ len f , then(Ins( f ,n, p))i+1 = fi .

(78) If 1≤ n and f is non empty, then(Ins( f ,n, p))1 = f1.

(79) If f is one-to-one andp /∈ rng f , then Ins( f ,n, p) is one-to-one.
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[3] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[4] Agata Darmochwał and Yatsuka Nakamura. The topological spaceE2
T . Arcs, line segments and special polygonal arcs.Journal of

Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/topreal1.html.

[5] Jarosław Kotowicz. Functions and finite sequences of real numbers.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/
JFM/Vol5/rfinseq.html.

[6] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[7] Wojciech A. Trybulec. Pigeon hole principle.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/finseq_4.
html.

[8] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[9] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received January 25, 1995

Published January 2, 2004

http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol3/topreal1.html
http://mizar.org/JFM/Vol5/rfinseq.html
http://mizar.org/JFM/Vol5/rfinseq.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol2/finseq_4.html
http://mizar.org/JFM/Vol2/finseq_4.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	some properties of restrictions of finite … By czeslaw bylinski

