Functions and Their Basic Properties

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. The definitions of the mode Function and the graph of a function are introduced. The graph of a function is defined to be identical with the function. The following concepts are also defined: the domain of a function, the range of a function, the identity function, the composition of functions, the 1-1 function, the inverse function, the restriction of a function, the image and the inverse image. Certain basic facts about functions and the notions defined in the article are proved.

MML Identifier: FUNCT_1.

WWW: http://mizar.org/JFM/Vol1/funct_1.html

The articles [1] and [2] provide the notation and terminology for this paper.
We use the following convention: $X, X_{1}, X_{2}, Y, Y_{1}, Y_{2}$ are sets and $p, x, x_{1}, x_{2}, y, y_{1}, y_{2}, z$ are sets.

Let X be a set. We say that X is function-like if and only if:
(Def. 1) For all x, y_{1}, y_{2} such that $\left\langle x, y_{1}\right\rangle \in X$ and $\left\langle x, y_{2}\right\rangle \in X$ holds $y_{1}=y_{2}$.
Let us observe that there exists a set which is relation-like and function-like.
A function is a function-like relation-like set.
One can check that every set which is empty is also function-like.
We follow the rules: f, g, h denote functions and R, S denote binary relations.
Next we state the proposition
(2) Let F be a set. Suppose for every p such that $p \in F$ there exist x, y such that $\langle x, y\rangle=p$ and for all x, y_{1}, y_{2} such that $\left\langle x, y_{1}\right\rangle \in F$ and $\left\langle x, y_{2}\right\rangle \in F$ holds $y_{1}=y_{2}$. Then F is a function.

The scheme GraphFunc deals with a set \mathcal{A} and a binary predicate \mathcal{P}, and states that:
There exists f such that for all x, y holds $\langle x, y\rangle \in f$ iff $x \in \mathcal{A}$ and $\mathcal{P}[x, y]$ provided the parameters meet the following requirement:

- For all x, y_{1}, y_{2} such that $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$.

Let us consider f, x. The functor $f(x)$ yielding a set is defined as follows:
(Def. 4$)^{2}$ i) $\quad\langle x, f(x)\rangle \in f$ if $x \in \operatorname{dom} f$,
(ii) $f(x)=\emptyset$, otherwise

One can prove the following propositions:
$(8)^{3}\langle x, y\rangle \in f$ iff $x \in \operatorname{dom} f$ and $y=f(x)$.

[^0](9) If $\operatorname{dom} f=\operatorname{dom} g$ and for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$, then $f=g$.

Let us consider f. Then rng f can be characterized by the condition:
(Def. 5) For every y holds $y \in \operatorname{rng} f$ iff there exists x such that $x \in \operatorname{dom} f$ and $y=f(x)$.
We now state two propositions:
$(12)^{4}$ If $x \in \operatorname{dom} f$, then $f(x) \in \operatorname{rng} f$.
$(14)^{5}$ If $\operatorname{dom} f=\{x\}$, then $\operatorname{rng} f=\{f(x)\}$.
Now we present two schemes. The scheme FuncEx deals with a set \mathcal{A} and a binary predicate \mathcal{P}, and states that:

There exists f such that $\operatorname{dom} f=\mathcal{A}$ and for every x such that $x \in \mathcal{A}$ holds $\mathcal{P}[x, f(x)]$ provided the parameters meet the following requirements:

- For all x, y_{1}, y_{2} such that $x \in \mathcal{A}$ and $\mathcal{P}\left[x, y_{1}\right]$ and $\mathcal{P}\left[x, y_{2}\right]$ holds $y_{1}=y_{2}$, and
- For every x such that $x \in \mathcal{A}$ there exists y such that $\mathcal{P}[x, y]$.

The scheme Lambda deals with a set \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that: There exists a function f such that $\operatorname{dom} f=\mathcal{A}$ and for every x such that $x \in \mathcal{A}$ holds $f(x)=\mathcal{F}(x)$
for all values of the parameters.
One can prove the following propositions:
(15) If $X \neq \emptyset$, then for every y there exists f such that $\operatorname{dom} f=X$ and $\operatorname{rng} f=\{y\}$.
(16) If for all f, g such that $\operatorname{dom} f=X$ and $\operatorname{dom} g=X$ holds $f=g$, then $X=\emptyset$.
(17) If $\operatorname{dom} f=\operatorname{dom} g$ and $\operatorname{rng} f=\{y\}$ and $\operatorname{rng} g=\{y\}$, then $f=g$.
(18) If $Y \neq \emptyset$ or $X=\emptyset$, then there exists f such that $X=\operatorname{dom} f$ and $\operatorname{rng} f \subseteq Y$.
(19) If for every y such that $y \in Y$ there exists x such that $x \in \operatorname{dom} f$ and $y=f(x)$, then $Y \subseteq \operatorname{rng} f$.

Let us consider f, g. We introduce $g \cdot f$ as a synonym of $f \cdot g$.
Let us consider f, g. One can check that $g \cdot f$ is function-like.
We now state several propositions:
(20) Let given h. Suppose for every x holds $x \in \operatorname{dom} h$ iff $x \in \operatorname{dom} f$ and $f(x) \in \operatorname{dom} g$ and for every x such that $x \in \operatorname{dom} h$ holds $h(x)=g(f(x))$. Then $h=g \cdot f$.
(21) $x \in \operatorname{dom}(g \cdot f)$ iff $x \in \operatorname{dom} f$ and $f(x) \in \operatorname{dom} g$.
(22) If $x \in \operatorname{dom}(g \cdot f)$, then $(g \cdot f)(x)=g(f(x))$.
(23) If $x \in \operatorname{dom} f$, then $(g \cdot f)(x)=g(f(x))$.
$(25)^{6}$ If $z \in \operatorname{rng}(g \cdot f)$, then $z \in \operatorname{rng} g$.
(27) If $\operatorname{dom}(g \cdot f)=\operatorname{dom} f$, then $\operatorname{rng} f \subseteq \operatorname{dom} g$.
(33 If $\operatorname{rng} f \subseteq Y$ and for all g, h such that $\operatorname{dom} g=Y$ and $\operatorname{dom} h=Y$ and $g \cdot f=h \cdot f$ holds $g=h$, then $\bar{Y}=\operatorname{rng} f$.

Let us consider X. One can check that id_{X} is function-like.
Next we state several propositions:

[^1](34) $f=\operatorname{id}_{X}$ iff dom $f=X$ and for every x such that $x \in X$ holds $f(x)=x$.
(35) If $x \in X$, then $\operatorname{id}_{X}(x)=x$.
(37) $)^{9} \operatorname{dom}\left(f \cdot \operatorname{id}_{X}\right)=\operatorname{dom} f \cap X$.
(38) If $x \in \operatorname{dom} f \cap X$, then $f(x)=\left(f \cdot \operatorname{id}_{X}\right)(x)$.
(40) $)^{10} \quad x \in \operatorname{dom}\left(\operatorname{id}_{Y} \cdot f\right) \operatorname{iff} x \in \operatorname{dom} f$ and $f(x) \in Y$.
(42) ${ }^{11} f \cdot \operatorname{id}_{\operatorname{dom} f}=f$ and $\operatorname{id}_{\text {rng } f} \cdot f=f$.
(43) $\mathrm{id}_{X} \cdot \mathrm{id}_{Y}=\mathrm{id}_{X \cap Y}$.
(44) If rng $f=\operatorname{dom} g$ and $g \cdot f=f$, then $g=\mathrm{id}_{\mathrm{dom} g}$.

Let us consider f. We say that f is one-to-one if and only if:
(Def. 81^{12} For all x_{1}, x_{2} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ holds $x_{1}=x_{2}$.
Next we state several propositions:
(46) If f is one-to-one and g is one-to-one, then $g \cdot f$ is one-to-one.
(47) If $g \cdot f$ is one-to-one and $\operatorname{rng} f \subseteq \operatorname{dom} g$, then f is one-to-one.
(48) If $g \cdot f$ is one-to-one and $\operatorname{rng} f=\operatorname{dom} g$, then f is one-to-one and g is one-to-one.
(49) f is one-to-one iff for all g, h such that $\operatorname{rng} g \subseteq \operatorname{dom} f$ and $\operatorname{rng} h \subseteq \operatorname{dom} f$ and $\operatorname{dom} g=\operatorname{dom} h$ and $f \cdot g=f \cdot h$ holds $g=h$.
(50) If $\operatorname{dom} f=X$ and $\operatorname{dom} g=X$ and $\operatorname{rng} g \subseteq X$ and f is one-to-one and $f \cdot g=f$, then $g=\mathrm{id}_{X}$.
(51) If $\operatorname{rng}(g \cdot f)=\operatorname{rng} g$ and g is one-to-one, then $\operatorname{dom} g \subseteq \operatorname{rng} f$.
(52) id_{X} is one-to-one.
(53) If there exists g such that $g \cdot f=\mathrm{id}_{\operatorname{dom} f}$, then f is one-to-one.

One can verify that there exists a function which is empty.
Let us observe that every function which is empty is also one-to-one.
One can verify that there exists a function which is one-to-one.
Let f be an one-to-one function. Observe that $f^{\llcorner }$is function-like.
Let us consider f. Let us assume that f is one-to-one. The functor f^{-1} yields a function and is defined by:
(Def. 9) $\quad f^{-1}=f^{\smile}$.
The following propositions are true:
(54) Suppose f is one-to-one. Let g be a function. Then $g=f^{-1}$ if and only if the following conditions are satisfied:
(i) $\operatorname{dom} g=\operatorname{rng} f$, and
(ii) for all y, x holds $y \in \operatorname{rng} f$ and $x=g(y)$ iff $x \in \operatorname{dom} f$ and $y=f(x)$.
(55) If f is one-to-one, then $\operatorname{rng} f=\operatorname{dom}\left(f^{-1}\right)$ and $\operatorname{dom} f=\operatorname{rng}\left(f^{-1}\right)$.
(56) If f is one-to-one and $x \in \operatorname{dom} f$, then $x=f^{-1}(f(x))$ and $x=\left(f^{-1} \cdot f\right)(x)$.

[^2](57) If f is one-to-one and $y \in \operatorname{rng} f$, then $y=f\left(f^{-1}(y)\right)$ and $y=\left(f \cdot f^{-1}\right)(y)$.
(58) If f is one-to-one, then $\operatorname{dom}\left(f^{-1} \cdot f\right)=\operatorname{dom} f$ and $\operatorname{rng}\left(f^{-1} \cdot f\right)=\operatorname{dom} f$.
(59) If f is one-to-one, then $\operatorname{dom}\left(f \cdot f^{-1}\right)=\operatorname{rng} f$ and $\operatorname{rng}\left(f \cdot f^{-1}\right)=\operatorname{rng} f$.
(60) Suppose f is one-to-one and $\operatorname{dom} f=\operatorname{rng} g$ and $\operatorname{rng} f=\operatorname{dom} g$ and for all x, y such that $x \in \operatorname{dom} f$ and $y \in \operatorname{dom} g$ holds $f(x)=y$ iff $g(y)=x$. Then $g=f^{-1}$.
(61) If f is one-to-one, then $f^{-1} \cdot f=\operatorname{id}_{\operatorname{dom} f}$ and $f \cdot f^{-1}=\operatorname{id}_{\operatorname{rng} f}$.
(62) If f is one-to-one, then f^{-1} is one-to-one.
(63) If f is one-to-one and $\operatorname{rng} f=\operatorname{dom} g$ and $g \cdot f=\operatorname{id}_{\operatorname{dom} f}$, then $g=f^{-1}$.
(64) If f is one-to-one and $\operatorname{rng} g=\operatorname{dom} f$ and $f \cdot g=\operatorname{id}_{\mathrm{rng} f}$, then $g=f^{-1}$.
(65) If f is one-to-one, then $\left(f^{-1}\right)^{-1}=f$.
(66) If f is one-to-one and g is one-to-one, then $(g \cdot f)^{-1}=f^{-1} \cdot g^{-1}$.
(67) $\left(\mathrm{id}_{X}\right)^{-1}=\mathrm{id}_{X}$.

Let us consider f, X. One can verify that $f \upharpoonright X$ is function-like.
One can prove the following propositions:
(68) $g=f \upharpoonright X$ iff dom $g=\operatorname{dom} f \cap X$ and for every x such that $x \in \operatorname{dom} g$ holds $g(x)=f(x)$.
(70) If $x \in \operatorname{dom}(f \upharpoonright X)$, then $(f \upharpoonright X)(x)=f(x)$.
(71) If $x \in \operatorname{dom} f \cap X$, then $(f \upharpoonright X)(x)=f(x)$.
(72) If $x \in X$, then $(f \upharpoonright X)(x)=f(x)$.
(73) If $x \in \operatorname{dom} f$ and $x \in X$, then $f(x) \in \operatorname{rng}(f \mid X)$.
(76) ${ }^{15} \quad \operatorname{dom}(f \mid X) \subseteq \operatorname{dom} f$ and $\operatorname{rng}(f \mid X) \subseteq \operatorname{rng} f$.
(82) If $X \subseteq Y$, then $f \upharpoonright X \upharpoonright Y=f \upharpoonright X$ and $f \upharpoonright Y \upharpoonright X=f \upharpoonright X$.
(84 ${ }^{17}$ If f is one-to-one, then $f \upharpoonright X$ is one-to-one.
Let us consider Y, f. Observe that $Y \upharpoonright f$ is function-like.
One can prove the following propositions:
(85) $g=Y \upharpoonright f$ if and only if the following conditions are satisfied:
(i) for every x holds $x \in \operatorname{dom} g$ iff $x \in \operatorname{dom} f$ and $f(x) \in Y$, and
(ii) for every x such that $x \in \operatorname{dom} g$ holds $g(x)=f(x)$.
(86) $\quad x \in \operatorname{dom}(Y \upharpoonright f)$ iff $x \in \operatorname{dom} f$ and $f(x) \in Y$.
(87) If $x \in \operatorname{dom}(Y \upharpoonright f)$, then $(Y \upharpoonright f)(x)=f(x)$.
(89 $\underbrace{18} \operatorname{dom}(Y \upharpoonright f) \subseteq \operatorname{dom} f$ and $\operatorname{rng}(Y \upharpoonright f) \subseteq \operatorname{rng} f$.
(97) If $X \subseteq Y$, then $Y \upharpoonright(X \upharpoonright f)=X \upharpoonright f$ and $X \upharpoonright(Y \upharpoonright f)=X \upharpoonright f$.

[^3]$(99)^{20}$ If f is one-to-one, then $Y \upharpoonright f$ is one-to-one.
Let us consider f, X. Then $f^{\circ} X$ can be characterized by the condition:
(Def. 12 2^{21} For every y holds $y \in f^{\circ} X$ iff there exists x such that $x \in \operatorname{dom} f$ and $x \in X$ and $y=f(x)$.
One can prove the following propositions:
(1172 If $x \in \operatorname{dom} f$, then $f^{\circ}\{x\}=\{f(x)\}$.
(118) If $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$, then $f^{\circ}\left\{x_{1}, x_{2}\right\}=\left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$.
$(120)^{23} \quad(Y \upharpoonright f)^{\circ} X \subseteq f^{\circ} X$.
(121) If f is one-to-one, then $f^{\circ}\left(X_{1} \cap X_{2}\right)=f^{\circ} X_{1} \cap f^{\circ} X_{2}$.
(122) If for all X_{1}, X_{2} holds $f^{\circ}\left(X_{1} \cap X_{2}\right)=f^{\circ} X_{1} \cap f^{\circ} X_{2}$, then f is one-to-one.
(123) If f is one-to-one, then $f^{\circ}\left(X_{1} \backslash X_{2}\right)=f^{\circ} X_{1} \backslash f^{\circ} X_{2}$.
(124) If for all X_{1}, X_{2} holds $f^{\circ}\left(X_{1} \backslash X_{2}\right)=f^{\circ} X_{1} \backslash f^{\circ} X_{2}$, then f is one-to-one.
(125) If X misses Y and f is one-to-one, then $f^{\circ} X$ misses $f^{\circ} Y$.
(126) $\quad(Y \upharpoonright f)^{\circ} X=Y \cap f^{\circ} X$.

Let us consider f, Y. Then $f^{-1}(Y)$ can be characterized by the condition:
(Def. 13) For every x holds $x \in f^{-1}(Y)$ iff $x \in \operatorname{dom} f$ and $f(x) \in Y$.
We now state a number of propositions:
$(137)^{24} f^{-1}\left(Y_{1} \cap Y_{2}\right)=f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$.
(138) $\quad f^{-1}\left(Y_{1} \backslash Y_{2}\right)=f^{-1}\left(Y_{1}\right) \backslash f^{-1}\left(Y_{2}\right)$.
(139) $\quad(R \mid X)^{-1}(Y)=X \cap R^{-1}(Y)$.
$(142)^{25} y \in \operatorname{rng} R$ iff $R^{-1}(\{y\}) \neq \emptyset$.
(143) If for every y such that $y \in Y$ holds $R^{-1}(\{y\}) \neq \emptyset$, then $Y \subseteq \operatorname{rng} R$.
(144) For every y such that $y \in \operatorname{rng} f$ there exists x such that $f^{-1}(\{y\})=\{x\}$ iff f is one-to-one.
(145) $\quad f^{\circ} f^{-1}(Y) \subseteq Y$.
(146) If $X \subseteq \operatorname{dom} R$, then $X \subseteq R^{-1}\left(R^{\circ} X\right)$.
(147) If $Y \subseteq \operatorname{rng} f$, then $f^{\circ} f^{-1}(Y)=Y$.
(148) $f^{\circ} f^{-1}(Y)=Y \cap f^{\circ} \operatorname{dom} f$.
(149) $\quad f^{\circ}\left(X \cap f^{-1}(Y)\right) \subseteq f^{\circ} X \cap Y$.
(150) $f^{\circ}\left(X \cap f^{-1}(Y)\right)=f^{\circ} X \cap Y$.
(151) $X \cap R^{-1}(Y) \subseteq R^{-1}\left(R^{\circ} X \cap Y\right)$.
(152) If f is one-to-one, then $f^{-1}\left(f^{\circ} X\right) \subseteq X$.

[^4](153) If for every X holds $f^{-1}\left(f^{\circ} X\right) \subseteq X$, then f is one-to-one.
(154) If f is one-to-one, then $f^{\circ} X=\left(f^{-1}\right)^{-1}(X)$.
(155) If f is one-to-one, then $f^{-1}(Y)=\left(f^{-1}\right)^{\circ} Y$.
(156) If $Y=\operatorname{rng} f$ and $\operatorname{dom} g=Y$ and $\operatorname{dom} h=Y$ and $g \cdot f=h \cdot f$, then $g=h$.
(157) If $f^{\circ} X_{1} \subseteq f^{\circ} X_{2}$ and $X_{1} \subseteq \operatorname{dom} f$ and f is one-to-one, then $X_{1} \subseteq X_{2}$.
(158) If $f^{-1}\left(Y_{1}\right) \subseteq f^{-1}\left(Y_{2}\right)$ and $Y_{1} \subseteq \operatorname{rng} f$, then $Y_{1} \subseteq Y_{2}$.
(159) f is one-to-one iff for every y there exists x such that $f^{-1}(\{y\}) \subseteq\{x\}$.
(160) If rng $R \subseteq \operatorname{dom} S$, then $R^{-1}(X) \subseteq(R \cdot S)^{-1}\left(S^{\circ} X\right)$.

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[2] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html

[^0]: ${ }^{1}$ The proposition (1) has been removed.
 ${ }^{2}$ The definitions (Def. 2) and (Def. 3) have been removed.
 ${ }^{3}$ The propositions (3)-(7) have been removed.

[^1]: ${ }^{4}$ The propositions (10) and (11) have been removed.
 ${ }^{5}$ The proposition (13) has been removed.
 ${ }^{6}$ The proposition (24) has been removed.
 ${ }^{7}$ The proposition (26) has been removed.
 ${ }^{8}$ The propositions (28)-(32) have been removed.

[^2]: ${ }^{9}$ The proposition (36) has been removed.
 ${ }^{10}$ The proposition (39) has been removed.
 ${ }^{11}$ The proposition (41) has been removed.
 ${ }^{12}$ The definitions (Def. 6) and (Def. 7) have been removed.
 ${ }^{13}$ The proposition (45) has been removed.

[^3]: ${ }^{14}$ The proposition (69) has been removed.
 ${ }^{15}$ The propositions (74) and (75) have been removed.
 ${ }^{16}$ The propositions (77)-(81) have been removed.
 ${ }^{17}$ The proposition (83) has been removed.
 ${ }^{18}$ The proposition (88) has been removed.
 ${ }^{19}$ The propositions (90)-(96) have been removed.

[^4]: ${ }^{20}$ The proposition (98) has been removed.
 ${ }^{21}$ The definitions (Def. 10) and (Def. 11) have been removed.
 ${ }^{22}$ The propositions (100)-(116) have been removed.
 ${ }^{23}$ The proposition (119) has been removed.
 ${ }^{24}$ The propositions (127)-(136) have been removed.
 ${ }^{25}$ The propositions (140) and (141) have been removed.

