Functions from a Set to a Set

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. The article is a continuation of [1]. We define the following concepts: a function from a set X into a set Y, denoted by "Function of X, Y ", the set of all functions from a set X into a set Y, denoted by $\operatorname{Funcs}(X, Y)$, and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1] in the new terminology. Also some basic facts about functions of two variables are proved.

MML Identifier: FUNCT_2.
WWW:http://mizar.org/JFM/Vol1/funct_2.html

The articles [4], [3], [5], [6], [7], [1], and [2] provide the notation and terminology for this paper.

1. Functions from a set to a set

In this paper $P, Q, X, Y, Z, x, x_{1}, x_{2}, y, z$ are sets.
Let us consider X, Y and let R be a relation between X and Y. We say that R is quasi total if and only if:
(Def. 1)(i) $X=\operatorname{dom} R$ if if $Y=\emptyset$, then $X=\emptyset$,
(ii) $R=\emptyset$, otherwise.

Let us consider X, Y. Observe that there exists a relation between X and Y which is quasi total and function-like.

Let us consider X, Y. One can verify that every partial function from X to Y which is total is also quasi total.

Let us consider X, Y. A function from X into Y is a quasi total function-like relation between X and Y.

We now state several propositions:
(3) Every function f is a function from $\operatorname{dom} f$ into $\operatorname{rng} f$.
(4) For every function f such that $\operatorname{rng} f \subseteq Y$ holds f is a function from $\operatorname{dom} f$ into Y.
(5) For every function f such that $\operatorname{dom} f=X$ and for every x such that $x \in X$ holds $f(x) \in Y$ holds f is a function from X into Y.
(6) For every function f from X into Y such that $Y \neq \emptyset$ and $x \in X$ holds $f(x) \in \operatorname{rng} f$.
(7) For every function f from X into Y such that $Y \neq \emptyset$ and $x \in X$ holds $f(x) \in Y$.

[^0](8) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ and $\operatorname{rng} f \subseteq Z$ holds f is a function from X into Z.
(9) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ and $Y \subseteq Z$ holds f is a function from X into Z.

In this article we present several logical schemes. The scheme FuncExl deals with sets \mathcal{A}, \mathcal{B} and a binary predicate \mathcal{P}, and states that: There exists a function f from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $\mathcal{P}[x, f(x)]$
provided the following condition is met:

- For every x such that $x \in \mathcal{A}$ there exists y such that $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$.

The scheme Lambdal deals with sets \mathcal{A}, \mathcal{B} and a unary functor \mathcal{F} yielding a set, and states that: There exists a function f from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $f(x)=\mathcal{F}(x)$
provided the following condition is met:

- For every x such that $x \in \mathcal{A}$ holds $\mathcal{F}(x) \in \mathcal{B}$.

Let us consider X, Y. The functor Y^{X} yielding a set is defined as follows:
(Def. 2) $\quad x \in Y^{X}$ iff there exists a function f such that $x=f$ and $\operatorname{dom} f=X$ and $\operatorname{rng} f \subseteq Y$.
We now state two propositions:
(112) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f \in Y^{X}$.
(12) For every function f from X into X holds $f \in X^{X}$.

Let X be a set and let Y be a non empty set. One can verify that Y^{X} is non empty.
Let X be a set. Note that X^{X} is non empty.
The following propositions are true:
$(14)^{3}$ If $X \neq \emptyset$, then $\emptyset^{X}=\emptyset$.
$(16)^{4}$ Let f be a function from X into Y. Suppose $Y \neq \emptyset$ and for every y such that $y \in Y$ there exists x such that $x \in X$ and $y=f(x)$. Then $\operatorname{rng} f=Y$.
(17) For every function f from X into Y such that $y \in Y$ and $\operatorname{rng} f=Y$ there exists x such that $x \in X$ and $f(x)=y$.
(18) For all functions f_{1}, f_{2} from X into Y such that for every x such that $x \in X$ holds $f_{1}(x)=$ $f_{2}(x)$ holds $f_{1}=f_{2}$.
(19) Let f be a function from X into Y and g be a function from Y into Z such that if $Y=\emptyset$, then $Z=\emptyset$ or $X=\emptyset$. Then $g \cdot f$ is a function from X into Z.
(20) Let f be a function from X into Y and g be a function from Y into Z. If $Y \neq \emptyset$ and $Z \neq \emptyset$ and $\operatorname{rng} f=Y$ and $\operatorname{rng} g=Z$, then $\operatorname{rng}(g \cdot f)=Z$.
(21) For every function f from X into Y and for every function g such that $Y \neq 0$ and $x \in X$ holds $(g \cdot f)(x)=g(f(x))$.
(22) Let f be a function from X into Y. Suppose $Y \neq \emptyset$. Then $\operatorname{rng} f=Y$ if and only if for every Z such that $Z \neq \emptyset$ and for all functions g, h from Y into Z such that $g \cdot f=h \cdot f$ holds $g=h$.
(23) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f \cdot \operatorname{id}_{X}=f$ and $\mathrm{id}_{Y} \cdot f=f$.

[^1](24) For every function f from X into Y and for every function g from Y into X such that $f \cdot g=\operatorname{id}_{Y}$ holds $\operatorname{rng} f=Y$.
(25) Let f be a function from X into Y such that if $Y=\emptyset$, then $X=\emptyset$. Then f is one-to-one if and only if for all x_{1}, x_{2} such that $x_{1} \in X$ and $x_{2} \in X$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ holds $x_{1}=x_{2}$.
(26) Let f be a function from X into Y and g be a function from Y into Z. Suppose if $Z=\emptyset$, then $Y=\emptyset$ and if $Y=\emptyset$, then $X=\emptyset$ and $g \cdot f$ is one-to-one. Then f is one-to-one.
(27) Let f be a function from X into Y. Suppose $X \neq \emptyset$ and $Y \neq \emptyset$. Then f is one-to-one if and only if for every Z and for all functions g, h from Z into X such that $f \cdot g=f \cdot h$ holds $g=h$.
(28) Let f be a function from X into Y and g be a function from Y into Z. If $Z \neq \emptyset$ and $\operatorname{rng}(g$. $f)=Z$ and g is one-to-one, then $\operatorname{rng} f=Y$.
(29) Let f be a function from X into Y and g be a function from Y into X. If $Y \neq \emptyset$ and $g \cdot f=\operatorname{id}_{X}$, then f is one-to-one and $\operatorname{rng} g=X$.
(30) Let f be a function from X into Y and g be a function from Y into Z. Suppose if $Z=\emptyset$, then $Y=\emptyset$ and $g \cdot f$ is one-to-one and $\operatorname{rng} f=Y$. Then f is one-to-one and g is one-to-one.
(31) For every function f from X into Y such that f is one-to-one and $\operatorname{rng} f=Y$ holds f^{-1} is a function from Y into X.
(32) For every function f from X into Y such that $Y \neq 0$ and f is one-to-one and $x \in X$ holds $f^{-1}(f(x))=x$.
(34 $\sqrt{5}$ Let f be a function from X into Y and g be a function from Y into X. Suppose $X \neq \emptyset$ and $Y \neq \emptyset$ and $\operatorname{rng} f=Y$ and f is one-to-one and for all y, x holds $y \in Y$ and $g(y)=x$ iff $x \in X$ and $f(x)=y$. Then $g=f^{-1}$.
(35) For every function f from X into Y such that $Y \neq \emptyset$ and $\operatorname{rng} f=Y$ and f is one-to-one holds $f^{-1} \cdot f=\mathrm{id}_{X}$ and $f \cdot f^{-1}=\mathrm{id}_{Y}$.
(36) Let f be a function from X into Y and g be a function from Y into X. If $X \neq \emptyset$ and $Y \neq \emptyset$ and $\operatorname{rng} f=Y$ and $g \cdot f=\operatorname{id}_{X}$ and f is one-to-one, then $g=f^{-1}$.
(37) Let f be a function from X into Y. Suppose $Y \neq \emptyset$ and there exists a function g from Y into X such that $g \cdot f=\operatorname{id}_{X}$. Then f is one-to-one.
(38) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ and $Z \subseteq X$ holds $f \upharpoonright Z$ is a function from Z into Y.
(40 $]^{6}$ For every function f from X into Y such that $X \subseteq Z$ holds $f \upharpoonright Z=f$.
(41) For every function f from X into Y such that $Y \neq \emptyset$ and $x \in X$ and $f(x) \in Z$ holds $(Z \upharpoonright f)(x)=$ $f(x)$.
(43 ${ }^{7}$ Let f be a function from X into Y. Suppose $Y \neq \emptyset$. Let given y. If there exists x such that $x \in X$ and $x \in P$ and $y=f(x)$, then $y \in f^{\circ} P$.
(44) For every function f from X into Y holds $f^{\circ} P \subseteq Y$.

Let us consider X, Y, let f be a function from X into Y, and let us consider P. Then $f^{\circ} P$ is a subset of Y.

Next we state three propositions:
(45) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f^{\circ} X=\operatorname{rng} f$.

[^2](46) For every function f from X into Y such that $Y \neq \emptyset$ and for every x holds $x \in f^{-1}(Q)$ iff $x \in X$ and $f(x) \in Q$.
(47) For every partial function f from X to Y holds $f^{-1}(Q) \subseteq X$.

Let us consider X, Y, let f be a partial function from X to Y, and let us consider Q. Then $f^{-1}(Q)$ is a subset of X.

The following propositions are true:
(48) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f^{-1}(Y)=X$.
(49) For every function f from X into Y holds for every y such that $y \in Y$ holds $f^{-1}(\{y\}) \neq \emptyset$ iff $\operatorname{rng} f=Y$.
(50) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ and $P \subseteq X$ holds $P \subseteq$ $f^{-1}\left(f^{\circ} P\right)$.
(51) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f^{-1}\left(f^{\circ} X\right)=X$.
$(53)^{8}$ Let f be a function from X into Y and g be a function from Y into Z. If if $Z=\emptyset$, then $Y=\emptyset$ and if $Y=\emptyset$, then $X=\emptyset$, then $f^{-1}(Q) \subseteq(g \cdot f)^{-1}\left(g^{\circ} Q\right)$.
(55 $]^{9}$ For every function f such that $\operatorname{dom} f=0$ holds f is a function from \emptyset into Y.
(59 ${ }^{10}$ For every function f from \emptyset into Y holds $f^{\circ} P=\emptyset$.
(60) For every function f from \emptyset into Y holds $f^{-1}(Q)=\emptyset$.
(61) For every function f from $\{x\}$ into Y such that $Y \neq \emptyset$ holds $f(x) \in Y$.
(62) For every function f from $\{x\}$ into Y such that $Y \neq \emptyset$ holds $\operatorname{rng} f=\{f(x)\}$.
(64 ${ }^{11}$ For every function f from $\{x\}$ into Y such that $Y \neq \emptyset$ holds $f^{\circ} P \subseteq\{f(x)\}$.
(65) For every function f from X into $\{y\}$ such that $x \in X$ holds $f(x)=y$.
(66) For all functions f_{1}, f_{2} from X into $\{y\}$ holds $f_{1}=f_{2}$.

Let us consider X and let f, g be functions from X into X. Then $g \cdot f$ is a function from X into X.

One can prove the following propositions:
(67) For every function f from X into X holds $\operatorname{dom} f=X$ and $\operatorname{nng} f \subseteq X$.
(7012 For every function f from X into X and for every function g such that $x \in X$ holds (g. $f)(x)=g(f(x))$.
(73) For all functions f, g from X into X such that $\operatorname{rng} f=X$ and $\operatorname{rng} g=X$ holds $\operatorname{rng}(g \cdot f)=X$.
(74) For every function f from X into X holds $f \cdot \operatorname{id}_{X}=f$ and $\mathrm{id}_{X} \cdot f=f$.
(75) For all functions f, g from X into X such that $g \cdot f=f$ and $\operatorname{rng} f=X$ holds $g=\operatorname{id}_{X}$.
(76) For all functions f, g from X into X such that $f \cdot g=f$ and f is one-to-one holds $g=\mathrm{id}_{X}$.
(77) Let f be a function from X into X. Then f is one-to-one if and only if for all x_{1}, x_{2} such that $x_{1} \in X$ and $x_{2} \in X$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ holds $x_{1}=x_{2}$.

[^3](79 ${ }^{14}$ For every function f from X into X holds $f^{\circ} X=\operatorname{rng} f$.
(82) For every function f from X into X holds $f^{-1}\left(f^{\circ} X\right)=X$.

Let X, Y be sets and let f be a function from X into Y. We say that f is onto if and only if:
(Def. 3) $\quad \operatorname{rng} f=Y$.
Let us consider X, Y and let f be a function from X into Y. We say that f is bijective if and only if:
(Def. 4) f is one-to-one and onto.
Let X, Y be sets. Observe that every function from X into Y which is bijective is also one-to-one and onto and every function from X into Y which is one-to-one and onto is also bijective.

Let us consider X. One can check that there exists a function from X into X which is bijective.
Let us consider X. A permutation of X is a bijective function from X into X.
We now state two propositions:
(83) For every function f from X into X such that f is one-to-one and $\operatorname{ngg} f=X$ holds f is a permutation of X.
(85) Let f be a function from X into X. Suppose f is one-to-one. Let given x_{1}, x_{2}. If $x_{1} \in X$ and $x_{2} \in X$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.

Let us consider X and let f, g be permutations of X. Then $g \cdot f$ is a permutation of X.
Let us consider X. Observe that every function from X into X which is reflexive and total is also bijective.

Let us consider X and let f be a permutation of X. Then f^{-1} is a permutation of X.
Next we state four propositions:
(86) For all permutations f, g of X such that $g \cdot f=g$ holds $f=\operatorname{id}_{X}$.
(87) For all permutations f, g of X such that $g \cdot f=\operatorname{id}_{X}$ holds $g=f^{-1}$.
(88) For every permutation f of X holds $f^{-1} \cdot f=\mathrm{id}_{X}$ and $f \cdot f^{-1}=\mathrm{id}_{X}$.
$(92)^{17}$
For every permutation f of X such that $P \subseteq X$ holds $f^{\circ} f^{-1}(P)=P$ and $f^{-1}\left(f^{\circ} P\right)=P$.
In the sequel C, D, E denote non empty sets.
Let us consider X, D. Note that every partial function from X to D which is quasi total is also total.

Let us consider X, D, Z, let f be a function from X into D, and let g be a function from D into Z. Then $g \cdot f$ is a function from X into Z.

In the sequel c denotes an element of C and d denotes an element of D.
Let C be a non empty set, let D be a set, let f be a function from C into D, and let c be an element of C. Then $f(c)$ is an element of D.

Now we present two schemes. The scheme FuncExD deals with non empty sets \mathcal{A}, \mathcal{B} and a binary predicate P, and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $\mathcal{P}[x, f(x)]$
provided the following condition is met:

- For every element x of \mathcal{A} there exists an element y of \mathcal{B} such that $\mathcal{P}[x, y]$.

The scheme LambdaD deals with non empty sets \mathcal{A}, \mathcal{B} and a unary functor \mathcal{F} yielding an element of \mathcal{B}, and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f(x)=\mathcal{F}(x)$
for all values of the parameters.
We now state several propositions:

[^4](113) For all functions f_{1}, f_{2} from X into Y such that for every element x of X holds $f_{1}(x)=$ $f_{2}(x)$ holds $f_{1}=f_{2}$.
(115 ${ }^{19}$ Let P be a set, f be a function from X into Y, and given y. If $y \in f^{\circ} P$, then there exists x such that $x \in X$ and $x \in P$ and $y=f(x)$.
(116) For every function f from X into Y and for every y such that $y \in f^{\circ} P$ there exists an element c of X such that $c \in P$ and $y=f(c)$.
(118) For all functions f_{1}, f_{2} from $[: X, Y:]$ into Z such that for all x, y such that $x \in X$ and $y \in Y$ holds $f_{1}(\langle x, y\rangle)=f_{2}(\langle x, y\rangle)$ holds $f_{1}=f_{2}$.
(119) For every function f from $[: X, Y:]$ into Z such that $x \in X$ and $y \in Y$ and $Z \neq 0$ holds $f(\langle x$, $y\rangle) \in Z$.

Now we present two schemes. The scheme FuncEx2 deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a ternary predicate P, and states that:

There exists a function f from $[: \mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $\mathscr{P}[x, y, f(\langle x, y\rangle)]$
provided the parameters satisfy the following condition:

- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ there exists z such that $z \in \mathcal{C}$ and $\mathcal{P}[x, y, z]$.

The scheme Lambda2 deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a binary functor \mathcal{F} yielding a set, and states that:

There exists a function f from $[: \mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for all x, y such that $x \in \mathcal{A}$
and $y \in \mathcal{B}$ holds $f(\langle x, y\rangle)=\mathcal{F}(x, y)$
provided the following condition is met:

- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.

The following proposition is true
(120) For all functions f_{1}, f_{2} from [:C, $\left.D:\right]$ into E such that for all c, d holds $f_{1}(\langle c, d\rangle)=f_{2}(\langle c$, $d\rangle$) holds $f_{1}=f_{2}$.

Now we present two schemes. The scheme FuncEx 2 D deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a ternary predicate \mathcal{P}, and states that:

There exists a function f from $[: \mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} holds $\mathcal{P}[x, y, f(\langle x, y\rangle)]$
provided the parameters meet the following requirement:

- For every element x of \mathcal{A} and for every element y of \mathcal{B} there exists an element z of \mathcal{C} such that $\mathcal{P}[x, y, z]$.
The scheme Lambda2D deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and a binary functor \mathcal{F} yielding an element of \mathcal{C}, and states that:

There exists a function f from $[: \mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for every element x of \mathcal{A} and for every element y of \mathcal{B} holds $f(\langle x, y\rangle)=\mathcal{F}(x, y)$
for all values of the parameters.

2. PARTIAL FUNCTIONS FROM A SET TO A SET (FROM [2])

Next we state the proposition
(121) For every set f such that $f \in Y^{X}$ holds f is a function from X into Y.

The scheme LambdalC deals with sets \mathcal{A}, \mathcal{B}, a unary functor \mathcal{F} yielding a set, a unary functor \mathcal{G} yielding a set, and a unary predicate \mathcal{P}, and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $f(x)=\mathcal{F}(x)$ and if not $\mathcal{P}[x]$, then $f(x)=\mathcal{G}(x)$

[^5]provided the following requirement is met:

- For every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then $\mathcal{F}(x) \in \mathcal{B}$ and if not $\mathcal{P}[x]$, then $\mathcal{G}(x) \in \mathcal{B}$.
We now state a number of propositions:
(130 ${ }^{21}$ For every partial function f from X to Y such that $\operatorname{dom} f=X$ holds f is a function from X into Y.
(131) For every partial function f from X to Y such that f is total holds f is a function from X into Y.
(132) Let f be a partial function from X to Y. Suppose if $Y=\emptyset$, then $X=\emptyset$ and f is a function from X into Y. Then f is total.
(133) For every function f from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f_{\lceil X \rightarrow Y}$ is total.
(134) For every function f from X into X holds $f_{\lceil X \rightarrow X}$ is total.
$(136)^{22}$ Let f be a partial function from X to Y such that if $Y=\emptyset$, then $X=\emptyset$. Then there exists a function g from X into Y such that for every x such that $x \in \operatorname{dom} f$ holds $g(x)=f(x)$.
$(141)^{23} Y^{X} \subseteq X \dot{\rightarrow} Y$.
(142) For all functions f, g from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ and $f \approx g$ holds $f=g$.
(143) For all functions f, g from X into X such that $f \approx g$ holds $f=g$.
$(145)^{24}$ Let f be a partial function from X to Y and g be a function from X into Y such that if $Y=\emptyset$, then $X=\emptyset$. Then $f \approx g$ if and only if for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(146) Let f be a partial function from X to X and g be a function from X into X. Then $f \approx g$ if and only if for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(148 2 For every partial function f from X to Y such that if $Y=\emptyset$, then $X=\emptyset$ there exists a function g from X into Y such that $f \approx g$.
(149) For every partial function f from X to X there exists a function g from X into X such that $f \approx g$.
(151) Let f, g be partial functions from X to Y and h be a function from X into Y. If if $Y=\emptyset$, then $X=\emptyset$ and $f \approx h$ and $g \approx h$, then $f \approx g$.
(152) Let f, g be partial functions from X to X and h be a function from X into X. If $f \approx h$ and $g \approx h$, then $f \approx g$.
(154 ${ }^{27}$ Let f, g be partial functions from X to Y. Suppose if $Y=\emptyset$, then $X=\emptyset$ and $f \approx g$. Then there exists a function h from X into Y such that $f \approx h$ and $g \approx h$.
(155) Let f be a partial function from X to Y and g be a function from X into Y. If if $Y=\emptyset$, then $X=\emptyset$ and $f \approx g$, then $g \in \operatorname{TotFuncs} f$.
(156) For every partial function f from X to X and for every function g from X into X such that $f \approx g$ holds $g \in \operatorname{TotFuncs} f$.
$(158)^{28}$ Let f be a partial function from X to Y and g be a set. If $g \in \operatorname{TotFuncs} f$, then g is a function from X into Y.

[^6](159) For every partial function f from X to Y holds TotFuncs $f \subseteq Y^{X}$.
(160) $\operatorname{TotFuncs}\left(\emptyset_{\lceil X \rightarrow Y}\right)=Y^{X}$.
(161) For every function f from X into Y such that if $Y=\emptyset$, then $X=0$ holds $\operatorname{TotFuncs}\left(f_{\mid X \dot{\rightarrow}}\right)=$ $\{f\}$.
(162) For every function f from X into X holds $\operatorname{TotFuncs}\left(f_{\mid X \rightarrow X}\right)=\{f\}$.
(164 2^{29} For every partial function f from X to $\{y\}$ and for every function g from X into $\{y\}$ holds TotFuncs $f=\{g\}$.
(165) For all partial functions f, g from X to Y such that $g \subseteq f$ holds TotFuncs $f \subseteq$ TotFuncs g.
(166) For all partial functions f, g from X to Y such that $\operatorname{dom} g \subseteq \operatorname{dom} f$ and $\operatorname{TotFuncs} f \subseteq$ TotFuncs g holds $g \subseteq f$.
(167) For all partial functions f, g from X to Y such that TotFuncs $f \subseteq$ TotFuncs g and for every y holds $Y \neq\{y\}$ holds $g \subseteq f$.
(168) For all partial functions f, g from X to Y such that for every y holds $Y \neq\{y\}$ and TotFuncs $f=$ TotFuncs g holds $f=g$.

Let A, B be non empty sets. Note that every function from A into B is non empty.

References

[1] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[2] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[6] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html
[7] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_ 1.html

Published January 2, 2004

[^7]
[^0]: ${ }^{1}$ The propositions (1) and (2) have been removed.

[^1]: ${ }^{2}$ The proposition (10) has been removed.
 ${ }^{3}$ The proposition (13) has been removed.
 ${ }^{4}$ The proposition (15) has been removed.

[^2]: ${ }^{5}$ The proposition (33) has been removed.
 ${ }^{6}$ The proposition (39) has been removed.
 ${ }^{7}$ The proposition (42) has been removed.

[^3]: ${ }^{8}$ The proposition (52) has been removed.
 ${ }^{9}$ The proposition (54) has been removed.
 ${ }^{10}$ The propositions (56)-(58) have been removed.
 ${ }^{11}$ The proposition (63) has been removed.
 ${ }^{12}$ The propositions (68) and (69) have been removed.
 ${ }^{13}$ The propositions (71) and (72) have been removed.

[^4]: ${ }^{14}$ The proposition (78) has been removed.
 ${ }^{15}$ The propositions (80) and (81) have been removed.
 ${ }^{16}$ The proposition (84) has been removed.
 ${ }^{17}$ The propositions (89)-(91) have been removed.

[^5]: ${ }^{18}$ The propositions (93)-(112) have been removed.
 ${ }^{19}$ The proposition (114) has been removed.
 ${ }^{20}$ The proposition (117) has been removed.

[^6]: ${ }^{21}$ The propositions (122)-(129) have been removed.
 ${ }^{22}$ The proposition (135) has been removed.
 ${ }^{23}$ The propositions (137)-(140) have been removed.
 ${ }^{24}$ The proposition (144) has been removed.
 ${ }^{25}$ The proposition (147) has been removed.
 ${ }^{26}$ The proposition (150) has been removed.
 ${ }^{27}$ The proposition (153) has been removed.
 ${ }^{28}$ The proposition (157) has been removed.

[^7]: ${ }^{29}$ The proposition (163) has been removed.

