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[14], [11], and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let D be a set, leT be a non empty set of finite sequence®ofind letSbe a non empty subset of
T. We see that the element 8fs a finite sequence of elementshf

Leti, j be even integers. One can verify that j is even.

One can prove the following propositions:

(1) Forallintegers, j holdsi is even iff j is even iffi — | is even.

(2) Let p be a finite sequence and), n, a be natural numbers. Suppose e
dom(p(m),...,p(n)). Then there exists a natural numbesuch thatk € domp andp(k) =
(p(m),...,p(n))(a) andk+1=m+aandm< k andk < n.

Let G be a graph. A vertex db is an element of the vertices &f

For simplicity, we adopt the following rule€3 is a graphy, vi, v, are vertices o6, cis a chain
of G, p, p1, p2 are paths of5, vs, v4, Vs are finite sequences of elements of the verticeS,af, X
are sets, and, mare natural numbers.

The following propositions are true:

(3) If vzis vertex sequence af thenvs is non empty.
(YH If e € the edges o6, then(e) is a path ofG.
(8) (p(m),...,p(n)) is a path ofG.

(9) Suppose rng; misses rngp, andv, is vertex sequence ¢f; andvs is vertex sequence of
p2 andva(lenvs) = vs(1). Thenp; ™ py is a path ofG.

(12F] 1f c=0, thencis cyclic.

1This work was partially supported by NSERC Grant OGP9207 and Shinshu Endowment Fund for Infor-
mation Science.

1 The propositions (4)—(6) have been removed.

2 The propositions (10) and (11) have been removed.
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Let G be a graph. Observe that there exists a path which is cyclic.
Next we state several propositions:

(13) For every cyclic pattp of G holds (p(m+ 1),..., p(lenp)) ~ {p(1),..., p(m)) is a cyclic
path ofG.

(14) If m+ 1 € domp, then ler{( (m+ 1),...,p(lenp)) ~ (p(1),...,p(m))) = lenp and
mg((p(m + 1)....., pllenp)} ~ (p(D)....., p(m))) = mgp and ((p(m+ 1),.... p(lenp)) ~
(p(2),...,p(M)))(1) = p(m+1).

(15) For every cyclic patip of G such thah € domp there exists a cyclic patpl of G such that
P (1) = p(n) and lenp’ = lenp and rng’ = rngp.
(16) Lets, t be vertices ofG. Supposes = (the source of5)(e) andt = (the target ofG)(e).
Then(t,s) is vertex sequence g@€).
(17) Suppose < the edges o6 andvs is vertex sequence afandvs(lenvs) = (the source of
G)(e). Then
(i) c¢~(e)isachain ofG, and

(i) there exists a finite sequenegof elements of the vertices & such that;, = v3 ~ ((the
source ofG)(e), (the target 0fG)(e)) andv; is vertex sequence af~ (€) andv; (1) = v3(1)
andv/ (lenv;) = (the target ofG)(e).

(18) Suppose € the edges o6 andvs is vertex sequence afandvs(lenvs) = (the target of
G)(e). Then
(i) c¢~(e)isachain ofG, and
(i) there exists a finite sequenukof elements of the vertices & such thaw; = vz ~ ((the
target ofG)(e), (the source of5)(e)) andV; is vertex sequence af~ (e) andv; (1) = v3(1)
andv; (lenv}) = (the source 06G)(e).
(19) Supposes is vertex sequence af Letn be a natural number. Suppase domc. Then
(i) va(n) = (the target ofG)(c(n)) andvs(n+ 1) = (the source 06)(c(n)), or
(i)  vz(n) = (the source o6G)(c(n)) andvz(n+ 1) = (the target ofG)(c(n)).

(20) If vz is vertex sequence afande € rngc, then (the target 0B)(e) € rngvs and (the source
of G)(e) € rngvs.

Let G be a graph and le{ be a set. Thef®-VSet(X) is a subset of the vertices &
We now state four propositions:

(21) G-VSet0) =

(22) If e the edges o6 ande € X, thenG-VSetX) is non empty.

(23) Gis connected if and only if for a1, vo such thatvy; # v, there exist, v such that is
non empty ands is vertex sequence afandvs(1) = v; andvs(lenvs) = v.

(24) LetG be a connected grapK,be a set, and be a vertex ofs. SupposeX meets the edges
of G andv ¢ G-VSet(X). Then there exists a vertak of G and there exists an elemembof
the edges o6 such that € G-VSet(X) bute ¢ X butV = (the target ofG)(e) or V' = (the
source ofG)(e).
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2. DEGREE OF A VERTEX

Let G be a graph, let be a vertex of5, and letX be a set. The functor Edges$inX) yields a subset
of the edges o6 and is defined as follows:

(Def. 1) For every set holdse € Edgeslrv, X) iff e € the edges 06 ande € X and (the target of
G)(e)=w

The functor EdgesOQ, X) yields a subset of the edges®fand is defined as follows:

(Def. 2) For every set holdse € EdgesOulv, X) iff e € the edges o6 ande € X and (the source
of G)(e) =w.

Let G be a graph, let be a vertex of5, and letX be a set. The functor EdgegAtX) yields a
subset of the edges &f and is defined as follows:

(Def. 3) EdgesAtv, X) = Edgesirv, X) U EdgesOuy, X).

Let G be a finite graph, let be a vertex of5, and letX be a set. One can check the following
observations:

x  Edgeslryv, X) is finite,
x  EdgesOuty, X) is finite, and
x EdgesAty, X) is finite.

Let G be a graph, let be a vertex of5, and letX be an empty set. One can check the following
observations:

x  Edgeslrv, X) is empty,
x EdgesOuty, X) is empty, and
x  EdgesAty, X) is empty.

Let G be a graph and letbe a vertex of5. The functor Edgeshnyields a subset of the edges
of G and is defined as follows:

(Def. 4) Edgeslw = Edgeslriv,the edges 06).
The functor EdgesOutyields a subset of the edges®fand is defined by:
(Def. 5) EdgesOut= EdgesOutv,the edges 06).
We now state two propositions:
(25) Edgeslv,X) C Edgeslrv.
(26) EdgesOut, X) C EdgesOut.
' 'L_etG be a finite graph and letbe a vertex os. Observe that Edgeslris finite and EdgesOut
° fIEI('[)?s;implicity, we adopt the following conventio is a finite graphy is a vertex ofG, cis a

chain ofG, vz is a finite sequence of elements of the vertice&oandX;, X; are sets.
One can prove the following propositions:

(27) cardEdgesin= EdgIn(v).
(28) cardEdgesOut= EdgOutv).

Let G be afinite graph, let be a vertex o5, and letX be a set. The functor DegrgeX) yields
a natural number and is defined as follows:

(Def. 6) Degreév, X) = card Edgesl(v,X) + card EdgesOQt, X).
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The following propositions are true:

(29)
(30)
(1)

The degree of = Degreéyv, the edges 06).
If Degreév, X) # O, then EdgesAt, X) is non empty.

Suppose € the edges ofs bute ¢ X butv = (the target ofG)(e) or v = (the source of

G)(e). Then the degree of# Degreéyv, X).

(32) If X C Xy, then card Edges(w, X3 \ X2) = card Edgeslfv, X;) — card Edgesl(v, X2).

(33) If Xz C Xy, then card EdgesOft X; \ X2) = card EdgesOuY, X; ) — card EdgesO@t, Xz).

(34) If Xp C Xy, then Degrefy, X3 \ X2) = Degreédv, X;) — Degreéyv, X»).

(35) Edgesliv, X) = Edgesliriv, X Nthe edges 06) and EdgesOut, X) = EdgesOutv, X Nthe
edges ofG).

(36) Degreév, X) = Degre€v, X Nthe edges 06).

(37) Ifcis non empty ands is vertex sequence af thenv € rngvs iff Degregv,rngc) # 0.

(38) f For every non empty finite connected gr&phnd for every vertex of G holds the degree
of v£0.

3. ADDING AN EDGE TO A GRAPH

Let G be a graph and let;, v, be vertices ofc. The functor AddNewEdge®1,Vv,) yields a strict
graph and is defined by the conditions (Def. 7).

(Def. 7)(i) The vertices of AddNewEdge,, v») = the vertices of5,

(if)
(iii)
(iv)

the edges of AddNewEddey, v2) = (the edges o6) U {the edges o6},
the source of AddNewEdde;, v2) = (the source 06)+-((the edges 06)——(v1)), and
the target of AddNewEdde1,Vv.) = (the target olG)+-((the edges 06)——(v2)).

Let G be a finite graph and lat;, v» be vertices ofG. Observe that AddNewEd@a, V) is

finite.

For simplicity, we adopt the following conventiof& denotes a grapl, vi, v, denote vertices
of G, c denotes a chain @b, p denotes a path @b, v; denotes a finite sequence of elements of the
vertices ofG, V' denotes a vertex of AddNewEdge, v»), p’ denotes a path of AddNewEdgeg, v»),
andv] denotes a finite sequence of elements of the vertices of AddNewdgs .

The following propositions are true:

(39)()

(i)
(iii)
(iv)
(40)

The edges of < the edges of AddNewEdge, v»),
the edges of5 = (the edges of AddNewEdge,v»)) \ {the edges oG},
(the source of AddNewEdde;, v»2))(the edges of) = vy, and
(the target of AddNewEddes, v2))(the edges 06) = vo.

Suppose € the edges o65. Then (the source of AddNewEdge,Vv2))(e) = (the source

of G)(e) and (the target of AddNewEd@a,v2))(e) = (the target ofG)(e).

(41)
(42)
(43)
(44)
(45)

If vi = vz andvs is vertex sequence af thenv; is vertex sequence af
cis a chain of AddNewEdde1, V).

pis a path of AddNewEdde;, v»).

If V = vy andv; # vp, then Edgeslf/, X) = Edgeslrivy, X).

If V = v, andv; # vy, then EdgesOWv¥, X) = EdgesOufvz, X).
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(46) IfV =vq andvy # v» and the edges @ € X, then EdgesOQ¢t’, X) = EdgesOuivy, X) U
{the edges o6} and EdgesOut;, X) misses{the edges oG}.

(47) IfV =voandv; # v» and the edges @ € X, then Edgesl/, X) = Edgesliivz, X) U{the
edges ofG} and Edgeslfv,, X) misses{the edges oG}.

(48) IfV =vandv#v;s andv # v,, then EdgeslfV, X) = Edgeslrfv, X).
(49) IfV =vandv# vy andv # v,, then EdgesOuyY, X) = EdgesOuty, X).
(50) If the edges o6 ¢ rngp’, thenp' is a path ofG.

(51) If the edges of5 ¢ rngp’ andvz = V| andV] is vertex sequence qf, thenvs is vertex
sequence ofy.

Let G be a connected graph and \g{ v» be vertices ofs. Observe that AddNewEdge, v»)
is connected.

For simplicity, we use the following conventiof is a finite graphy, vi, v» are vertices of,
vz is a finite sequence of elements of the vertice&oindv is a vertex of AddNewEdde, v»).

The following two propositions are true:

(52) Ifv =vandv; # v, andv=v; orv= v, and the edges db € X, then Degreg/,X) =
Degredv, X) + 1.

(53) If V =vandv#v; andv # v,, then Degreg/, X) = Degreév, X).

4. SOME PROPERTIES OF AND OPERATIONS ON CYCLES
We now state two propositions:

(54) For every cyclic patlk of G holds Degregv,rngc) is even.

(55) Letc be a path ofG. Supposec is non cyclic andvs is vertex sequence af. Then
Degreév,rngc) is even if and only ifv # v3(1) andv # vs(lenvs).

In the sequelG is a graphy is a vertex ofG, andvs is a finite sequence of elements of the
vertices ofG.

Let G be a graph. The functdB-CycleSet yields a non empty set of finite sequences of the
edges ofG and is defined by:

(Def. 8) For every set holdsx € G-CycleSet iffx is a cyclic path ofG.

One can prove the following two propositions:

(56) 0is an element o5-CycleSet.

(57) Letc be an element oB-CycleSet. Supposee G-VSetrngc). Then{c;c’ ranges over
elements of>-CycleSet: g’ = rngc A V,, (v3 is vertex sequence af A v3(1) =V)}isa
non empty subset @-CycleSet.

Let us conside®, vand letc be an element db-CycleSet. Let us assume that G-VSetrngc).
The functorc O vyielding an element 06-CycleSet is defined as follows:

(Def.9) c O v =choos¢{c’;c’ ranges over elements &CycleSet: mg =rngc A V,, (v3is
vertex sequence @ A v3(1) =v)}).

Let G be a graph and let;, c; be elements o6-CycleSet. Let us assume thatVSet(rngc; )
meetsG-VSetrngcy) and rnge; misses rngy. The functor CatCyclds;, c;) yields an element of
G-CycleSet and is defined as follows:

(Def. 10) There exists a vertexof G such thatv = choos¢(G-VSet(rngci)) N (G-VSet(rngc,)))
and CatCycle®,¢2) = (1 O V) ™ (C2 O V).



EULER CIRCUITS AND PATHS 6

The following proposition is true

(58) LetG be a graph ands, c; be elements o6-CycleSet. Supposé-VSetrngc;) meets
G-VSet(rngcy) but rngey misses rng; butc; # 0 or ¢, # 0. Then CatCycle&, c2) is non
empty.

In the sequet is a finite graphy is a vertex ofG, andvs is a finite sequence of elements of the
vertices ofG.

Let us consideG, v and letX be a set. Let us assume that Degveé) # 0. The functor
X-PathSefv) yields a non empty set of finite sequences of the edg&sanfd is defined as follows:

(Def. 11) X-PathSetv) = {c;c ranges over elements ok*: cisapath of G A cis non
emptyA V,, (vsis vertex sequence af A v3(1) =v)}.

We now state the proposition

(59) For every elemerp of X-PathSefv) and for every finite seY such thaty = the edges of
G and Degregv, X) # 0 holds lerp < cardy.

Let us considelG, v and letX be a set. Let us assume that for every vertexf G holds
Degreév, X) is even and Degrée X) # 0. The functorX-CycleSet yields a non empty subset of
G-CycleSet and is defined as follows:

(Def. 12) X-CycleSet = {c;c ranges over elements dB-CycleSet: rmg C X A cis non
emptyA V,, (vs is vertex sequence @f A v3(1) =v)}.

The following two propositions are true:

(60) If Degregv, X) # 0 and for every holds Degregy, X) is even, then for every elemenbf
X-CycleSet holdsc is non empty and rngC X andv € G-VSetrngc).

(61) LetG be afinite connected graph aotie an element db-CycleSet. Suppose riog# the
edges of5 andcis non empty. TheV;V ranges over vertices &: V' € G-VSetrngc) A the
degree of/ # Degre€V,rngc)} is a non empty subset of the verticesf

Let G be a finite connected graph and ebe an element o65-CycleSet. Let us assume
that rngc # the edges ofs andc is non empty. The functor ExtendCydeields an element of
G-CycleSet and is defined by the condition (Def. 13).

(Def. 13) There exists an elemewt of G-CycleSet and there exists a vertexof G such
that v = choos¢{V;V ranges over vertices o6s: V € G-VSetfrngc) A the degree
of vV # Degreév,rngc)}) and ¢ = choosé((the edges ofG) \ rngc)-CycleSet) and
ExtendCycle = CatCyclesc,c/).

Next we state the proposition

(62) LetG be afinite connected graph aotie an element dB-CycleSet. Suppose riog# the
edges ofs andc is non empty and for every vertenxof G holds the degree ofis even. Then
ExtendCycle& is non empty and cardrrog< cardrng ExtendCycle

5. EULER CIRCUITS AND PATHS
Let G be a graph and lgt be a path ofs. We say thap is Eulerian if and only if:
(Def. 14) rngp = the edges o6.
One can prove the following three propositions:

(63) LetG be a connected graphp,be a path of5, andvs be a finite sequence of elements of
the vertices ofG. Suppose is Eulerian andrs is vertex sequence gf. Then rngis = the
vertices ofG.
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(64) LetG be afinite connected graph. Then there exists a cyclic paBwdfich is Eulerian if

and only if for every vertex of G holds the degree aofis even.

(65) LetG be a finite connected graph. Then there exists a pat which is non cyclic and

Eulerian if and only if there exist verticesg, v, of G such that;, # v, and for every vertex
of G holds the degree afis even iffv # v; andv # v.
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