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1. PRELIMINARIES

Let D be a set, letT be a non empty set of finite sequences ofD, and letSbe a non empty subset of
T. We see that the element ofS is a finite sequence of elements ofD.

Let i, j be even integers. One can verify thati− j is even.
One can prove the following propositions:

(1) For all integersi, j holdsi is even iff j is even iff i− j is even.

(2) Let p be a finite sequence andm, n, a be natural numbers. Supposea ∈
dom〈p(m), . . . , p(n)〉. Then there exists a natural numberk such thatk ∈ domp and p(k) =
〈p(m), . . . , p(n)〉(a) andk+1 = m+a andm≤ k andk≤ n.

Let G be a graph. A vertex ofG is an element of the vertices ofG.
For simplicity, we adopt the following rules:G is a graph,v, v1, v2 are vertices ofG, c is a chain

of G, p, p1, p2 are paths ofG, v3, v4, v5 are finite sequences of elements of the vertices ofG, e, X
are sets, andn, m are natural numbers.

The following propositions are true:

(3) If v3 is vertex sequence ofc, thenv3 is non empty.

(7)1 If e∈ the edges ofG, then〈e〉 is a path ofG.

(8) 〈p(m), . . . , p(n)〉 is a path ofG.

(9) Suppose rngp1 misses rngp2 andv4 is vertex sequence ofp1 andv5 is vertex sequence of
p2 andv4(lenv4) = v5(1). Thenp1

a p2 is a path ofG.

(12)2 If c = /0, thenc is cyclic.

1This work was partially supported by NSERC Grant OGP9207 and Shinshu Endowment Fund for Infor-
mation Science.

1 The propositions (4)–(6) have been removed.
2 The propositions (10) and (11) have been removed.
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Let G be a graph. Observe that there exists a path ofG which is cyclic.
Next we state several propositions:

(13) For every cyclic pathp of G holds〈p(m+ 1), . . . , p(lenp)〉a 〈p(1), . . . , p(m)〉 is a cyclic
path ofG.

(14) If m+ 1 ∈ domp, then len(〈p(m+ 1), . . . , p(lenp)〉 a 〈p(1), . . . , p(m)〉) = lenp and
rng(〈p(m+ 1), . . . , p(lenp)〉 a 〈p(1), . . . , p(m)〉) = rngp and (〈p(m+ 1), . . . , p(lenp)〉 a

〈p(1), . . . , p(m)〉)(1) = p(m+1).

(15) For every cyclic pathp of G such thatn∈ domp there exists a cyclic pathp′ of G such that
p′(1) = p(n) and lenp′ = lenp and rngp′ = rngp.

(16) Let s, t be vertices ofG. Supposes= (the source ofG)(e) andt = (the target ofG)(e).
Then〈t,s〉 is vertex sequence of〈e〉.

(17) Supposee∈ the edges ofG andv3 is vertex sequence ofc andv3(lenv3) = (the source of
G)(e). Then

(i) ca 〈e〉 is a chain ofG, and

(ii) there exists a finite sequencev′1 of elements of the vertices ofG such thatv′1 = v3 aa 〈(the
source ofG)(e), (the target ofG)(e)〉 andv′1 is vertex sequence ofca 〈e〉 andv′1(1) = v3(1)
andv′1(lenv′1) = (the target ofG)(e).

(18) Supposee∈ the edges ofG andv3 is vertex sequence ofc andv3(lenv3) = (the target of
G)(e). Then

(i) ca 〈e〉 is a chain ofG, and

(ii) there exists a finite sequencev′1 of elements of the vertices ofG such thatv′1 = v3 aa 〈(the
target ofG)(e), (the source ofG)(e)〉 andv′1 is vertex sequence ofca 〈e〉 andv′1(1) = v3(1)
andv′1(lenv′1) = (the source ofG)(e).

(19) Supposev3 is vertex sequence ofc. Let n be a natural number. Supposen∈ domc. Then

(i) v3(n) = (the target ofG)(c(n)) andv3(n+1) = (the source ofG)(c(n)), or

(ii) v3(n) = (the source ofG)(c(n)) andv3(n+1) = (the target ofG)(c(n)).

(20) If v3 is vertex sequence ofc ande∈ rngc, then (the target ofG)(e) ∈ rngv3 and (the source
of G)(e) ∈ rngv3.

Let G be a graph and letX be a set. ThenG-VSet(X) is a subset of the vertices ofG.
We now state four propositions:

(21) G-VSet( /0) = /0.

(22) If e∈ the edges ofG ande∈ X, thenG-VSet(X) is non empty.

(23) G is connected if and only if for allv1, v2 such thatv1 6= v2 there existc, v3 such thatc is
non empty andv3 is vertex sequence ofc andv3(1) = v1 andv3(lenv3) = v2.

(24) LetG be a connected graph,X be a set, andv be a vertex ofG. SupposeX meets the edges
of G andv /∈ G-VSet(X). Then there exists a vertexv′ of G and there exists an elemente of
the edges ofG such thatv′ ∈ G-VSet(X) but e /∈ X but v′ = (the target ofG)(e) or v′ = (the
source ofG)(e).



EULER CIRCUITS AND PATHS 3

2. DEGREE OF A VERTEX

Let G be a graph, letv be a vertex ofG, and letX be a set. The functor EdgesIn(v,X) yields a subset
of the edges ofG and is defined as follows:

(Def. 1) For every sete holdse∈ EdgesIn(v,X) iff e∈ the edges ofG ande∈ X and (the target of
G)(e) = v.

The functor EdgesOut(v,X) yields a subset of the edges ofG and is defined as follows:

(Def. 2) For every sete holdse∈ EdgesOut(v,X) iff e∈ the edges ofG ande∈ X and (the source
of G)(e) = v.

Let G be a graph, letv be a vertex ofG, and letX be a set. The functor EdgesAt(v,X) yields a
subset of the edges ofG and is defined as follows:

(Def. 3) EdgesAt(v,X) = EdgesIn(v,X)∪EdgesOut(v,X).

Let G be a finite graph, letv be a vertex ofG, and letX be a set. One can check the following
observations:

∗ EdgesIn(v,X) is finite,

∗ EdgesOut(v,X) is finite, and

∗ EdgesAt(v,X) is finite.

Let G be a graph, letv be a vertex ofG, and letX be an empty set. One can check the following
observations:

∗ EdgesIn(v,X) is empty,

∗ EdgesOut(v,X) is empty, and

∗ EdgesAt(v,X) is empty.

Let G be a graph and letv be a vertex ofG. The functor EdgesInv yields a subset of the edges
of G and is defined as follows:

(Def. 4) EdgesInv = EdgesIn(v, the edges ofG).

The functor EdgesOutv yields a subset of the edges ofG and is defined by:

(Def. 5) EdgesOutv = EdgesOut(v, the edges ofG).

We now state two propositions:

(25) EdgesIn(v,X)⊆ EdgesInv.

(26) EdgesOut(v,X)⊆ EdgesOutv.

Let G be a finite graph and letv be a vertex ofG. Observe that EdgesInv is finite and EdgesOutv
is finite.

For simplicity, we adopt the following convention:G is a finite graph,v is a vertex ofG, c is a
chain ofG, v3 is a finite sequence of elements of the vertices ofG, andX1, X2 are sets.

One can prove the following propositions:

(27) cardEdgesInv = EdgIn(v).

(28) cardEdgesOutv = EdgOut(v).

Let G be a finite graph, letv be a vertex ofG, and letX be a set. The functor Degree(v,X) yields
a natural number and is defined as follows:

(Def. 6) Degree(v,X) = cardEdgesIn(v,X)+cardEdgesOut(v,X).
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The following propositions are true:

(29) The degree ofv = Degree(v, the edges ofG).

(30) If Degree(v,X) 6= 0, then EdgesAt(v,X) is non empty.

(31) Supposee∈ the edges ofG but e /∈ X but v = (the target ofG)(e) or v = (the source of
G)(e). Then the degree ofv 6= Degree(v,X).

(32) If X2 ⊆ X1, then cardEdgesIn(v,X1\X2) = cardEdgesIn(v,X1)−cardEdgesIn(v,X2).

(33) If X2 ⊆ X1, then cardEdgesOut(v,X1\X2) = cardEdgesOut(v,X1)−cardEdgesOut(v,X2).

(34) If X2 ⊆ X1, then Degree(v,X1\X2) = Degree(v,X1)−Degree(v,X2).

(35) EdgesIn(v,X) = EdgesIn(v,X∩ the edges ofG) and EdgesOut(v,X) = EdgesOut(v,X∩ the
edges ofG).

(36) Degree(v,X) = Degree(v,X∩ the edges ofG).

(37) If c is non empty andv3 is vertex sequence ofc, thenv∈ rngv3 iff Degree(v, rngc) 6= 0.

(38) For every non empty finite connected graphG and for every vertexv of G holds the degree
of v 6= 0.

3. ADDING AN EDGE TO A GRAPH

Let G be a graph and letv1, v2 be vertices ofG. The functor AddNewEdge(v1,v2) yields a strict
graph and is defined by the conditions (Def. 7).

(Def. 7)(i) The vertices of AddNewEdge(v1,v2) = the vertices ofG,

(ii) the edges of AddNewEdge(v1,v2) = (the edges ofG)∪{the edges ofG},
(iii) the source of AddNewEdge(v1,v2) = (the source ofG)+·((the edges ofG)7−→. (v1)), and

(iv) the target of AddNewEdge(v1,v2) = (the target ofG)+·((the edges ofG)7−→. (v2)).

Let G be a finite graph and letv1, v2 be vertices ofG. Observe that AddNewEdge(v1,v2) is
finite.

For simplicity, we adopt the following convention:G denotes a graph,v, v1, v2 denote vertices
of G, c denotes a chain ofG, p denotes a path ofG, v3 denotes a finite sequence of elements of the
vertices ofG, v′ denotes a vertex of AddNewEdge(v1,v2), p′ denotes a path of AddNewEdge(v1,v2),
andv′1 denotes a finite sequence of elements of the vertices of AddNewEdge(v1,v2).

The following propositions are true:

(39)(i) The edges ofG∈ the edges of AddNewEdge(v1,v2),

(ii) the edges ofG = (the edges of AddNewEdge(v1,v2))\{the edges ofG},
(iii) (the source of AddNewEdge(v1,v2))(the edges ofG) = v1, and

(iv) (the target of AddNewEdge(v1,v2))(the edges ofG) = v2.

(40) Supposee∈ the edges ofG. Then (the source of AddNewEdge(v1,v2))(e) = (the source
of G)(e) and (the target of AddNewEdge(v1,v2))(e) = (the target ofG)(e).

(41) If v′1 = v3 andv3 is vertex sequence ofc, thenv′1 is vertex sequence ofc.

(42) c is a chain of AddNewEdge(v1,v2).

(43) p is a path of AddNewEdge(v1,v2).

(44) If v′ = v1 andv1 6= v2, then EdgesIn(v′,X) = EdgesIn(v1,X).

(45) If v′ = v2 andv1 6= v2, then EdgesOut(v′,X) = EdgesOut(v2,X).
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(46) If v′ = v1 andv1 6= v2 and the edges ofG∈ X, then EdgesOut(v′,X) = EdgesOut(v1,X)∪
{the edges ofG} and EdgesOut(v1,X) misses{the edges ofG}.

(47) If v′ = v2 andv1 6= v2 and the edges ofG∈ X, then EdgesIn(v′,X) = EdgesIn(v2,X)∪{the
edges ofG} and EdgesIn(v2,X) misses{the edges ofG}.

(48) If v′ = v andv 6= v1 andv 6= v2, then EdgesIn(v′,X) = EdgesIn(v,X).

(49) If v′ = v andv 6= v1 andv 6= v2, then EdgesOut(v′,X) = EdgesOut(v,X).

(50) If the edges ofG /∈ rngp′, thenp′ is a path ofG.

(51) If the edges ofG /∈ rngp′ andv3 = v′1 andv′1 is vertex sequence ofp′, thenv3 is vertex
sequence ofp′.

Let G be a connected graph and letv1, v2 be vertices ofG. Observe that AddNewEdge(v1,v2)
is connected.

For simplicity, we use the following convention:G is a finite graph,v, v1, v2 are vertices ofG,
v3 is a finite sequence of elements of the vertices ofG, andv′ is a vertex of AddNewEdge(v1,v2).

The following two propositions are true:

(52) If v′ = v andv1 6= v2 andv = v1 or v = v2 and the edges ofG∈ X, then Degree(v′,X) =
Degree(v,X)+1.

(53) If v′ = v andv 6= v1 andv 6= v2, then Degree(v′,X) = Degree(v,X).

4. SOME PROPERTIES OF AND OPERATIONS ON CYCLES

We now state two propositions:

(54) For every cyclic pathc of G holds Degree(v, rngc) is even.

(55) Let c be a path ofG. Supposec is non cyclic andv3 is vertex sequence ofc. Then
Degree(v, rngc) is even if and only ifv 6= v3(1) andv 6= v3(lenv3).

In the sequelG is a graph,v is a vertex ofG, andv3 is a finite sequence of elements of the
vertices ofG.

Let G be a graph. The functorG-CycleSet yields a non empty set of finite sequences of the
edges ofG and is defined by:

(Def. 8) For every setx holdsx∈G-CycleSet iffx is a cyclic path ofG.

One can prove the following two propositions:

(56) /0 is an element ofG-CycleSet.

(57) Letc be an element ofG-CycleSet. Supposev∈ G-VSet(rngc). Then{c′;c′ ranges over
elements ofG-CycleSet: rngc′ = rngc ∧

∨
v3

(v3 is vertex sequence ofc′ ∧ v3(1) = v)} is a
non empty subset ofG-CycleSet.

Let us considerG, vand letcbe an element ofG-CycleSet. Let us assume thatv∈G-VSet(rngc).
The functorc 	 v yielding an element ofG-CycleSet is defined as follows:

(Def. 9) c 	 v = choose({c′;c′ ranges over elements ofG-CycleSet: rngc′ = rngc ∧
∨

v3
(v3 is

vertex sequence ofc′ ∧ v3(1) = v)}).

Let G be a graph and letc1, c2 be elements ofG-CycleSet. Let us assume thatG-VSet(rngc1)
meetsG-VSet(rngc2) and rngc1 misses rngc2. The functor CatCycles(c1,c2) yields an element of
G-CycleSet and is defined as follows:

(Def. 10) There exists a vertexv of G such thatv = choose((G-VSet(rngc1))∩ (G-VSet(rngc2)))
and CatCycles(c1,c2) = (c1 	 v)a (c2 	 v).
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The following proposition is true

(58) Let G be a graph andc1, c2 be elements ofG-CycleSet. SupposeG-VSet(rngc1) meets
G-VSet(rngc2) but rngc1 misses rngc2 but c1 6= /0 or c2 6= /0. Then CatCycles(c1,c2) is non
empty.

In the sequelG is a finite graph,v is a vertex ofG, andv3 is a finite sequence of elements of the
vertices ofG.

Let us considerG, v and letX be a set. Let us assume that Degree(v,X) 6= 0. The functor
X-PathSet(v) yields a non empty set of finite sequences of the edges ofG and is defined as follows:

(Def. 11) X-PathSet(v) = {c;c ranges over elements ofX∗: c is a path of G ∧ cis non
empty∧

∨
v3

(v3 is vertex sequence ofc ∧ v3(1) = v)}.

We now state the proposition

(59) For every elementp of X-PathSet(v) and for every finite setY such thatY = the edges of
G and Degree(v,X) 6= 0 holds lenp≤ cardY.

Let us considerG, v and letX be a set. Let us assume that for every vertexv of G holds
Degree(v,X) is even and Degree(v,X) 6= 0. The functorX-CycleSetv yields a non empty subset of
G-CycleSet and is defined as follows:

(Def. 12) X-CycleSetv = {c;c ranges over elements ofG-CycleSet: rngc ⊆ X ∧ cis non
empty∧

∨
v3

(v3 is vertex sequence ofc ∧ v3(1) = v)}.

The following two propositions are true:

(60) If Degree(v,X) 6= 0 and for everyv holds Degree(v,X) is even, then for every elementc of
X-CycleSetv holdsc is non empty and rngc⊆ X andv∈G-VSet(rngc).

(61) LetG be a finite connected graph andc be an element ofG-CycleSet. Suppose rngc 6= the
edges ofGandc is non empty. Then{v′;v′ ranges over vertices ofG: v′ ∈G-VSet(rngc) ∧ the
degree ofv′ 6= Degree(v′, rngc)} is a non empty subset of the vertices ofG.

Let G be a finite connected graph and letc be an element ofG-CycleSet. Let us assume
that rngc 6= the edges ofG andc is non empty. The functor ExtendCyclec yields an element of
G-CycleSet and is defined by the condition (Def. 13).

(Def. 13) There exists an elementc′ of G-CycleSet and there exists a vertexv of G such
that v = choose({v′;v′ ranges over vertices ofG: v′ ∈ G-VSet(rngc) ∧ the degree
of v′ 6= Degree(v′, rngc)}) and c′ = choose(((the edges ofG) \ rngc)-CycleSetv) and
ExtendCyclec = CatCycles(c,c′).

Next we state the proposition

(62) LetG be a finite connected graph andc be an element ofG-CycleSet. Suppose rngc 6= the
edges ofG andc is non empty and for every vertexv of G holds the degree ofv is even. Then
ExtendCyclec is non empty and cardrngc < cardrngExtendCyclec.

5. EULER CIRCUITS AND PATHS

Let G be a graph and letp be a path ofG. We say thatp is Eulerian if and only if:

(Def. 14) rngp = the edges ofG.

One can prove the following three propositions:

(63) LetG be a connected graph,p be a path ofG, andv3 be a finite sequence of elements of
the vertices ofG. Supposep is Eulerian andv3 is vertex sequence ofp. Then rngv3 = the
vertices ofG.
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(64) LetG be a finite connected graph. Then there exists a cyclic path ofG which is Eulerian if
and only if for every vertexv of G holds the degree ofv is even.

(65) LetG be a finite connected graph. Then there exists a path ofG which is non cyclic and
Eulerian if and only if there exist verticesv1, v2 of G such thatv1 6= v2 and for every vertexv
of G holds the degree ofv is even iffv 6= v1 andv 6= v2.

ACKNOWLEDGMENTS

We would like to thank Cz. Bylínski for many helpful comments.
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