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Some Lemmas for the Jordan Curve Theoreij
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Summary. | present some miscellaneous simple facts that are still missing in the li-
brary. The only common feature is that, most of them, were needed as lemmas in the proof of
the Jordan curve theorem.

MML Identifier: JCT_MISC.

WWW: http://mizar.orqg/JFM/Voll2/jct_misc.html

The articles[[1B],[[6], [[2B], [[19],[124],[14],[[25],[[5], [3], [I2], [121], [[8], [[1], [[16], [[1B], [122],[T12],
[10], [9], [27], [15], [20], [7], [11], and [14] provide the notation and terminology for this paper.

1. PRELIMINARIES

The scheméNonEmptydeals with a non empty se1 and a unary functoff yielding a set, and
states that:
{¥ (a) : aranges over elements gf} is non empty
for all values of the parameters.
One can prove the following propositions:

(38 For all setsA, B and for every functionf such thatA C domf and f°’A C B holdsA C
f~1(B).

(4) For every functiorf and for all set#\, B such thaiA missesB holds f ~%(A) missesf ~1(B).

(5) LetS X be setsf be a function fronSinto X, andA be a subset ok such that ifX = 0,
thenS= 0. Then(f~1(A))¢ = f~1(A%).

(6) LetSbe a 1-sorted structur&, be a non empty sef, be a function from the carrier &
into X, andA be a subset ok. Then(f~1(A))¢ = f~1(A°).

We adopt the following rulest, j, m, n denote natural numbers angds, rg, S, t denote real
numbers.
Next we state several propositions:

(7) fm<n thenn—'(n—"m)=m.
(QE] For all real numbers, b such that € [a,b] ands € [a,b] holds'5* € [a,b].

(10) For every increasing sequerideof naturals and for all, j such thai < j holdsN (i) <
Ni(j).

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
1 The propositions (1) and (2) have been removed.
2 The proposition (8) has been removed.
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(A1) [ro—so|=Ir—sl|<ro—r|+|so—9.
(12) Ifte]r, 9, then|t| < max(r|,|s]).
Let A, B, C be non empty sets and Iétbe a function fromA into :B,CJ]. Then prif)is a
function fromA into B and it can be characterized by the condition:
(Def. 1) For every elementof A holds pri f)(x) = f(X)1.
Then prZ f) is a function fromA into C and it can be characterized by the condition:
(Def. 2) For every elementof A holds prZ f)(x) = f(x)2.

The schemé@®oubleChoicedeals with non empty setg, B, C and a ternary predicatg, and
states that:
There exists a functioa from 4 into B and there exists a functidnfrom 4 into C
such that for every elemenbf 2 holds®?[i,a(i), b(i)]
provided the parameters satisfy the following condition:
e For every elemernitof 4 there exists an elemeat of B and there exists an element
b; of C such thatP]i,a;,by].
Next we state the proposition

(13) LetS T be non empty topological spaces aBde a subset of S T]. Suppose that for
every pointx of [ S, T ] such thak € G there exists a subsé of Sand there exists a subset
G, of T such thaG; is open ands; is open andk € [ Gy, Gz ] and[: Gy, G2 ] C G. ThenG s
open.

2. TOPOLOGICAL PROPERTIES OFSETS OFREAL NUMBERS

One can prove the following proposition
(14) For all compact subsefs B of R holdsAN B is compact.
Let Abe a subset dR. We say thaf is connected if and only if:
(Def. 3) For all real numbens ssuch that € Aands e Aholds]r,s| C A.
Next we state the proposition

(15) LetT be a non empty topological spadehe a continuous real map of andA be a subset
of T. If Ais connected, thefi°Ais connected.

Let A, B be subsets dR. The functorp(A, B) yielding a real number is defined by:

(Def. 4) There exists a subs¥tof R such thatX = {|r — g|;r ranges over elements &, s ranges
over elements dR: r € A A se€ B} andp(A,B) = infX.

Let us observe that the functp(A, B) is commutative.
We now state several propositions:

(16) For all subsets, B of R and for allr, ssuch thar € Aands € B holds|r —s| > p(A,B).

(17) For all subsets, B of R and for all non empty subse® D of R such thatC C A and
D C B holdsp(A,B) < p(C,D).

(18) For all non empty compact subs&tsB of R there exist real numbers s such thatr € A
andse Bandp(A,B) =|r —g.

(19) For all non empty compact subsétsB of R holdsp(A,B) > 0.
(20) For all non empty compact subsétsB of R such thatA missesB holdsp(A,B) > 0.

(21) Lete, f be real numbers and, B be compact subsets &. SupposeA missesB and
AC [e f] andB C [, f]. Let She a function froniN into 2*. Suppose that for every natural
numberi holdsS(i) is connected an(i) meetsA andS(i) meetsB. Then there exists a real
number such that € [e, f] andr ¢ AUB and for every natural numbeéthere exists a natural
numberk such thai < k andr € S(k).
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