On the Decomposition of a Simple Closed Curve into Two Arcs

Andrzej Trybulec University of Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. The purpose of the paper is to prove lemmas needed for the Jordan curve theorem. The main result is that the decomposition of a simple closed curve into two arcs with the ends p_1, p_2 is unique in the sense that every arc on the curve with the same ends must be equal to one of them.

MML Identifier: JORDAN16.
WWW: http://mizar.org/JFM/Vol14/jordan16.html

The articles [25], [24], [27], [1], [26], [28], [3], [5], [9], [4], [22], [17], [21], [8], [7], [20], [2], [23], [15], [10], [6], [11], [19], [18], [12], [14], [13], and [16] provide the notation and terminology for this paper.

One can prove the following proposition

(1) Let S_1 be a finite non empty subset of \mathbb{R} and e be a real number. If for every real number r such that $r \in S_1$ holds r < e, then max $S_1 < e$.

For simplicity, we follow the rules: *C* is a simple closed curve, *A*, *A*₁, *A*₂ are subsets of \mathcal{E}_{T}^{2} , *p*, *p*₁, *p*₂, *q*, *q*₁, *q*₂ are points of \mathcal{E}_{T}^{2} , and *n* is a natural number.

Let us consider *n*. Observe that there exists a subset of \mathcal{E}_{T}^{n} which is trivial. One can prove the following propositions:

- (2) For all sets *a*, *b*, *c*, *X* such that $a \in X$ and $b \in X$ and $c \in X$ holds $\{a, b, c\} \subseteq X$.
- (3) $\emptyset_{\mathcal{E}^n_{\mathrm{T}}}$ is Bounded.
- (4) LowerArc(C) \neq UpperArc(C).
- (5) Segment $(A, p_1, p_2, q_1, q_2) \subseteq A$.
- (6) For every non empty topological space T and for all subsets A, B of T such that $A \subseteq B$ holds $T \upharpoonright A$ is a subspace of $T \upharpoonright B$.
- (7) If *A* is an arc from p_1 to p_2 and $q \in A$, then $q \in \text{LSegment}(A, p_1, p_2, q)$.
- (8) If *A* is an arc from p_1 to p_2 and $q \in A$, then $q \in RSegment(A, p_1, p_2, q)$.
- (9) If A is an arc from p_1 to p_2 and LE q_1, q_2, A, p_1, p_2 , then $q_1 \in \text{Segment}(A, p_1, p_2, q_1, q_2)$ and $q_2 \in \text{Segment}(A, p_1, p_2, q_1, q_2)$.
- (10) Segment $(p,q,C) \subseteq C$.

© Association of Mizar Users

- (11) If $p \in C$ and $q \in C$, then $p \leq_C q$ or $q \leq_C p$.
- (12) Let X, Y be non empty topological spaces, Y_0 be a non empty subspace of Y, f be a map from X into Y, and g be a map from X into Y_0 . If f = g and f is continuous, then g is continuous.
- (13) Let *S*, *T* be non empty topological spaces, S_0 be a non empty subspace of *S*, T_0 be a non empty subspace of *T*, and *f* be a map from *S* into *T*. Suppose *f* is a homeomorphism. Let *g* be a map from S_0 into T_0 . If $g = f |S_0|$ and *g* is onto, then *g* is a homeomorphism.
- (14) Let P_1 , P_2 , P_3 be subsets of \mathcal{E}_T^2 and p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose P_1 is an arc from p_1 to p_2 and P_2 is an arc from p_1 to p_2 and P_3 is an arc from p_1 to p_2 and $P_2 \cap P_3 = \{p_1, p_2\}$ and $P_1 \subseteq P_2 \cup P_3$. Then $P_1 = P_2$ or $P_1 = P_3$.
- (15) Let *C* be a simple closed curve, A_1 , A_2 be subsets of \mathcal{E}_T^2 , and p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose A_1 is an arc from p_1 to p_2 and A_2 is an arc from p_1 to p_2 and $A_1 \subseteq C$ and $A_2 \subseteq C$ and $A_1 \neq A_2$. Then $A_1 \cup A_2 = C$ and $A_1 \cap A_2 = \{p_1, p_2\}$.
- (16) Let A_1, A_2 be subsets of \mathcal{E}_T^2 and p_1, p_2, q_1, q_2 be points of \mathcal{E}_T^2 . If A_1 is an arc from p_1 to p_2 and $A_1 \cap A_2 = \{q_1, q_2\}$, then $A_1 \neq A_2$.
- (17) Let *C* be a simple closed curve, A_1 , A_2 be subsets of \mathcal{E}_T^2 , and p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose A_1 is an arc from p_1 to p_2 and A_2 is an arc from p_1 to p_2 and $A_1 \subseteq C$ and $A_2 \subseteq C$ and $A_1 \cap A_2 = \{p_1, p_2\}$. Then $A_1 \cup A_2 = C$.
- (18) Suppose $A_1 \subseteq C$ and $A_2 \subseteq C$ and $A_1 \neq A_2$ and A_1 is an arc from p_1 to p_2 and A_2 is an arc from p_1 to p_2 . Let given A. If A is an arc from p_1 to p_2 and $A \subseteq C$, then $A = A_1$ or $A = A_2$.
- (19) Let *C* be a simple closed curve and *A* be a non empty subset of \mathcal{E}_{T}^{2} . If *A* is an arc from $W_{\min}(C)$ to $E_{\max}(C)$ and $A \subseteq C$, then A = LowerArc(C) or A = UpperArc(C).
- (20) Suppose *A* is an arc from p_1 to p_2 and LE q_1 , q_2 , *A*, p_1 , p_2 . Then there exists a map *g* from \mathbb{I} into $(\mathcal{E}^2_{\Gamma})|A$ and there exist real numbers s_1 , s_2 such that *g* is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_1) = q_1$ and $g(s_2) = q_2$ and $0 \le s_1$ and $s_1 \le s_2$ and $s_2 \le 1$.
- (21) Suppose *A* is an arc from p_1 to p_2 and LE q_1, q_2, A, p_1, p_2 and $q_1 \neq q_2$. Then there exists a map *g* from \mathbb{I} into $(\mathcal{E}_{\Gamma}^2) \upharpoonright A$ and there exist real numbers s_1, s_2 such that *g* is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_1) = q_1$ and $g(s_2) = q_2$ and $0 \leq s_1$ and $s_1 < s_2$ and $s_2 \leq 1$.
- (22) If A is an arc from p_1 to p_2 and LE q_1, q_2, A, p_1, p_2 , then Segment (A, p_1, p_2, q_1, q_2) is non empty.
- (23) If $p \in C$, then $p \in \text{Segment}(p, W_{\min}(C), C)$ and $W_{\min}(C) \in \text{Segment}(p, W_{\min}(C), C)$.

Let f be a partial function from \mathbb{R} to \mathbb{R} . We say that f is continuous if and only if:

(Def. 1) f is continuous on dom f.

Let *f* be a function from \mathbb{R} into \mathbb{R} . Let us observe that *f* is continuous if and only if:

(Def. 2) f is continuous on \mathbb{R} .

Let *a*, *b* be real numbers. The functor AffineMap(a,b) yielding a function from \mathbb{R} into \mathbb{R} is defined by:

(Def. 3) For every real number x holds $(AffineMap(a,b))(x) = a \cdot x + b$.

Let *a*, *b* be real numbers. One can check that AffineMap(a,b) is continuous. Let us observe that there exists a function from \mathbb{R} into \mathbb{R} which is continuous. Next we state a number of propositions:

(24) Let f, g be continuous partial functions from \mathbb{R} to \mathbb{R} . Then $g \cdot f$ is a continuous partial function from \mathbb{R} to \mathbb{R} .

- (25) For all real numbers a, b holds (AffineMap(a,b))(0) = b.
- (26) For all real numbers a, b holds (AffineMap(a,b))(1) = a+b.
- (27) For all real numbers a, b such that $a \neq 0$ holds AffineMap(a, b) is one-to-one.
- (28) For all real numbers *a*, *b*, *x*, *y* such that a > 0 and x < y holds (AffineMap(a,b))(x) < (AffineMap(a,b))(y).
- (29) For all real numbers a, b, x, y such that a < 0 and x < y holds (AffineMap(a,b))(x) > (AffineMap(a,b))(y).
- (30) For all real numbers a, b, x, y such that $a \ge 0$ and $x \le y$ holds $(AffineMap(a,b))(x) \le (AffineMap(a,b))(y)$.
- (31) For all real numbers a, b, x, y such that $a \le 0$ and $x \le y$ holds $(AffineMap(a,b))(x) \ge (AffineMap(a,b))(y)$.
- (32) For all real numbers a, b such that $a \neq 0$ holds rng AffineMap $(a,b) = \mathbb{R}$.
- (33) For all real numbers a, b such that $a \neq 0$ holds $(\text{AffineMap}(a,b))^{-1} = \text{AffineMap}(a^{-1}, -\frac{b}{a})$.
- (34) For all real numbers a, b such that a > 0 holds $(AffineMap(a,b))^{\circ}[0,1] = [b,a+b]$.
- (35) For every map f from \mathbb{R}^1 into \mathbb{R}^1 and for all real numbers a, b such that $a \neq 0$ and f = AffineMap(a,b) holds f is a homeomorphism.
- (36) If A is an arc from p_1 to p_2 and LE q_1 , q_2 , A, p_1 , p_2 and $q_1 \neq q_2$, then Segment (A, p_1, p_2, q_1, q_2) is an arc from q_1 to q_2 .
- (37) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a subset of \mathcal{E}_T^2 . Suppose $P \subseteq C$ and P is an arc from p_1 to p_2 and $W_{\min}(C) \in P$ and $E_{\max}(C) \in P$. Then UpperArc $(C) \subseteq P$ or LowerArc $(C) \subseteq P$.

References

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ pcomps_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/partfunl.html.
- [6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/pscomp_1.html.
- [7] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/compts_1.html.
- [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/tops_2.html.
- [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [10] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [12] Agata Darmochwał and Yatsuka Nakamura. The topological space Z²_T. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [13] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^2 . Simple closed curves. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html.
- [14] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/jordan5c.html.

- [15] Zbigniew Karno. Continuity of mappings over the union of subspaces. Journal of Formalized Mathematics, 4, 1992. http://mizar. org/JFM/Vol4/tmap_1.html.
- [16] Yatsuka Nakamura. On the dividing function of the simple closed curve into segments. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/jordan7.html.
- [17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [18] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of simple closed curves and the order of their points. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/V019/jordan6.html.
- [19] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/jordan2c.html.
- [20] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_ 2.html.
- [21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.
- [22] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.
- [23] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [24] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [25] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [26] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [27] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [28] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received September 16, 2002

Published January 2, 2004