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Summary. This article contains the notions of trivial and non-trivial leftmodules and
rings, cyclic submodules and inclusion of submodules. A few basic theorems related to these
notions are proved.

MML Identifier: LMOD_6.

WWW: http://mizar.org/JFM/Vol4/lmod_6.html

The articles [6], [2], [11], [12], [1], [7], [3], [10], [9], [8], [4], and [5] provide the notation and
terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following convention:x is a set,K is a ring,r is a scalar ofK, V, M, M1,
M2, N are left modules overK, a is a vector ofV, m, m1, m2 are vectors ofM, n, n1, n2 are vectors
of N, A is a subset ofV, l is a linear combination ofA, andW, W1, W2, W3 are subspaces ofV.

Let us considerK, V. We introduce Sub(V) as a synonym of SubspacesV.
The following four propositions are true:

(1) If M1 = the vector space structure ofM2, thenx∈M1 iff x∈M2.

(2) For every vectorv of the vector space structure ofV such thata = v holdsr ·a = r ·v.

(3) The vector space structure ofV is a strict subspace ofV.

(4) V is a subspace ofΩV .

2. TRIVIAL AND NON -TRIVIAL MODULES AND RINGS

Let us considerK. Let us observe thatK is trivial if and only if:

(Def. 2)1 0K = 1K .

Next we state three propositions:

(5) If K is trivial, then for everyr holdsr = 0K and for everya holdsa = 0V .

(6) If K is trivial, thenV is trivial.

(7) V is trivial iff the vector space structure ofV = 0V .

1 The definition (Def. 1) has been removed.

1 c© Association of Mizar Users
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3. SUBMODULES AND SUBSETS

Let us considerK, V and letW be a strict subspace ofV. The functor@W yielding an element of
Sub(V) is defined by:

(Def. 3) @W = W.

We now state the proposition

(9)2 Every subset ofW is a subset ofV.

Let us considerK, V, W and letA be a subset ofW. The functor@A yielding a subset ofV is
defined as follows:

(Def. 5)3 @A = A.

Let us considerK, V, W and letA be a non empty subset ofW. Observe that@A is non empty.
One can prove the following propositions:

(10) x∈ ΩV iff x∈V.

(11) x∈ @(ΩW) iff x∈W.

(12) A⊆ ΩLin(A).

(13) If A 6= /0 andA is linearly closed, then∑ l ∈ A.

(15)4 If 0V ∈ A andA is linearly closed, thenA = ΩLin(A).

4. CYCLIC SUBMODULES

Let us considerK, V, a. Then{a} is a subset ofV.
Let us considerK, V, a. The functor∏∗a yields a strict subspace ofV and is defined as follows:

(Def. 6) ∏∗a = Lin({a}).

5. INCLUSION OF LEFTR-MODULES

Let us considerK, M, N. The predicateM ⊆ N is defined by:

(Def. 7) M is a subspace ofN.

Let us note that the predicateM ⊆ N is reflexive.
One can prove the following propositions:

(16) If M ⊆ N, then ifx∈M, thenx∈ N and ifx is a vector ofM, thenx is a vector ofN.

(17) SupposeM ⊆ N. Then 0M = 0N and if m1 = n1 andm2 = n2, thenm1 +m2 = n1 +n2 and
if m= n, thenr ·m= r ·n and if m= n, then−n = −m and if m1 = n1 andm2 = n2, then
m1−m2 = n1−n2 and 0N ∈M and 0M ∈N and ifn1 ∈M andn2 ∈M, thenn1+n2 ∈M and if
n∈M, thenr ·n∈M and ifn∈M, then−n∈M and ifn1 ∈M andn2 ∈M, thenn1−n2 ∈M.

(18) SupposeM1 ⊆ N andM2 ⊆ N. Then

(i) 0(M1) = 0(M2),

(ii) 0(M1) ∈M2,

(iii) if the carrier ofM1 ⊆ the carrier ofM2, thenM1 ⊆M2,

(iv) if for every n such thatn∈M1 holdsn∈M2, thenM1 ⊆M2,

(v) if the carrier ofM1 = the carrier ofM2 andM1 is strict andM2 is strict, thenM1 = M2, and

(vi) 0(M1) ⊆M2.

2 The proposition (8) has been removed.
3 The definition (Def. 4) has been removed.
4 The proposition (14) has been removed.
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(21)5 For all strict left modulesV, M overK such thatV ⊆M andM ⊆V holdsV = M.

(22) If V ⊆M andM ⊆ N, thenV ⊆ N.

(23) If M ⊆ N, then0M ⊆ N.

(24) If M ⊆ N, then0N ⊆M.

(25) If M ⊆ N, thenM ⊆ ΩN.

(26) W1 ⊆W1 +W2 andW2 ⊆W1 +W2.

(27) W1∩W2 ⊆W1 andW1∩W2 ⊆W2.

(28) If W1 ⊆W2, thenW1∩W3 ⊆W2∩W3.

(29) If W1 ⊆W3, thenW1∩W2 ⊆W3.

(30) If W1 ⊆W2 andW1 ⊆W3, thenW1 ⊆W2∩W3.

(31) W1∩W2 ⊆W1 +W2.

(32) W1∩W2 +W2∩W3 ⊆W2∩ (W1 +W3).

(33) If W1 ⊆W2, thenW2∩ (W1 +W3) = W1∩W2 +W2∩W3.

(34) W2 +W1∩W3 ⊆ (W1 +W2)∩ (W2 +W3).

(35) If W1 ⊆W2, thenW2 +W1∩W3 = (W1 +W2)∩ (W2 +W3).

(36) If W1 ⊆W2, thenW1 ⊆W2 +W3.

(37) If W1 ⊆W3 andW2 ⊆W3, thenW1 +W2 ⊆W3.

(38) For all subsetsA, B of V such thatA⊆ B holds Lin(A)⊆ Lin(B).

(39) For all subsetsA, B of V holds Lin(A∩B)⊆ Lin(A)∩Lin(B).

(40) If M1 ⊆M2, thenΩ(M1) ⊆ Ω(M2).

(41) W1 ⊆W2 iff for every a such thata∈W1 holdsa∈W2.

(42) W1 ⊆W2 iff Ω(W1) ⊆ Ω(W2).

(43) W1 ⊆W2 iff @(Ω(W1))⊆ @(Ω(W2)).

(44) 0W ⊆V and0V ⊆W and0(W1) ⊆W2.
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