Submodules

Michał Muzalewski Warsaw University Białystok

Summary. This article contains the notions of trivial and non-trivial leftmodules and rings, cyclic submodules and inclusion of submodules. A few basic theorems related to these notions are proved.

MML Identifier: LMOD_6.

WWW: http://mizar.org/JFM/Vol4/lmod_6.html

The articles [6], [2], [11], [12], [1], [7], [3], [10], [9], [8], [4], and [5] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we use the following convention: x is a set, K is a ring, r is a scalar of K, V, M, M_1 , M_2 , N are left modules over K, a is a vector of V, m, m_1 , m_2 are vectors of M, n, n_1 , n_2 are vectors of N, A is a subset of V, I is a linear combination of A, and A, A, A, A, A is a subspaces of A.

Let us consider K, V. We introduce Sub(V) as a synonym of Subspaces V.

The following four propositions are true:

- (1) If M_1 = the vector space structure of M_2 , then $x \in M_1$ iff $x \in M_2$.
- (2) For every vector v of the vector space structure of V such that a = v holds $r \cdot a = r \cdot v$.
- (3) The vector space structure of V is a strict subspace of V.
- (4) V is a subspace of Ω_V .

2. TRIVIAL AND NON-TRIVIAL MODULES AND RINGS

Let us consider *K*. Let us observe that *K* is trivial if and only if:

$$(\text{Def. 2})^1 \quad 0_K = \mathbf{1}_K.$$

Next we state three propositions:

- (5) If *K* is trivial, then for every *r* holds $r = 0_K$ and for every *a* holds $a = 0_V$.
- (6) If K is trivial, then V is trivial.
- (7) V is trivial iff the vector space structure of $V = \mathbf{0}_V$.

1

¹ The definition (Def. 1) has been removed.

SUBMODULES 2

3. Submodules and subsets

Let us consider K, V and let W be a strict subspace of V. The functor ${}^{@}W$ yielding an element of Sub(V) is defined by:

(Def. 3)
$${}^{@}W = W$$
.

We now state the proposition

 $(9)^2$ Every subset of W is a subset of V.

Let us consider K, V, W and let A be a subset of W. The functor ${}^{@}A$ yielding a subset of V is defined as follows:

$$(\text{Def. 5})^3$$
 @ $A = A$.

Let us consider K, V, W and let A be a non empty subset of W. Observe that ${}^{@}A$ is non empty. One can prove the following propositions:

- (10) $x \in \Omega_V \text{ iff } x \in V.$
- (11) $x \in {}^{@}(\Omega_W)$ iff $x \in W$.
- (12) $A \subseteq \Omega_{\operatorname{Lin}(A)}$.
- (13) If $A \neq \emptyset$ and A is linearly closed, then $\sum l \in A$.
- (15)⁴ If $0_V \in A$ and A is linearly closed, then $A = \Omega_{Lin(A)}$.

4. CYCLIC SUBMODULES

Let us consider K, V, a. Then $\{a\}$ is a subset of V.

Let us consider K, V, a. The functor $\prod^* a$ yields a strict subspace of V and is defined as follows:

(Def. 6)
$$\prod^* a = \text{Lin}(\{a\}).$$

5. Inclusion of left R-modules

Let us consider K, M, N. The predicate $M \subseteq N$ is defined by:

(Def. 7) M is a subspace of N.

Let us note that the predicate $M \subseteq N$ is reflexive.

One can prove the following propositions:

- (16) If $M \subseteq N$, then if $x \in M$, then $x \in N$ and if x is a vector of M, then x is a vector of N.
- (17) Suppose $M \subseteq N$. Then $0_M = 0_N$ and if $m_1 = n_1$ and $m_2 = n_2$, then $m_1 + m_2 = n_1 + n_2$ and if m = n, then $r \cdot m = r \cdot n$ and if m = n, then -n = -m and if $m_1 = n_1$ and $m_2 = n_2$, then $m_1 m_2 = n_1 n_2$ and $0_N \in M$ and $0_M \in N$ and if $n_1 \in M$ and $n_2 \in M$, then $n_1 + n_2 \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$, then $n \cdot n \in M$ and if $n \in M$.
- (18) Suppose $M_1 \subseteq N$ and $M_2 \subseteq N$. Then
 - (i) $0_{(M_1)} = 0_{(M_2)}$,
- (ii) $0_{(M_1)} \in M_2$,
- (iii) if the carrier of $M_1 \subseteq$ the carrier of M_2 , then $M_1 \subseteq M_2$,
- (iv) if for every n such that $n \in M_1$ holds $n \in M_2$, then $M_1 \subseteq M_2$,
- (v) if the carrier of M_1 = the carrier of M_2 and M_1 is strict and M_2 is strict, then $M_1 = M_2$, and
- (vi) $\mathbf{0}_{(M_1)} \subseteq M_2$.

² The proposition (8) has been removed.

³ The definition (Def. 4) has been removed.

⁴ The proposition (14) has been removed.

SUBMODULES 3

- (21)⁵ For all strict left modules V, M over K such that $V \subseteq M$ and $M \subseteq V$ holds V = M.
- (22) If $V \subseteq M$ and $M \subseteq N$, then $V \subseteq N$.
- (23) If $M \subseteq N$, then $\mathbf{0}_M \subseteq N$.
- (24) If $M \subseteq N$, then $\mathbf{0}_N \subseteq M$.
- (25) If $M \subseteq N$, then $M \subseteq \Omega_N$.
- (26) $W_1 \subseteq W_1 + W_2$ and $W_2 \subseteq W_1 + W_2$.
- (27) $W_1 \cap W_2 \subseteq W_1$ and $W_1 \cap W_2 \subseteq W_2$.
- (28) If $W_1 \subseteq W_2$, then $W_1 \cap W_3 \subseteq W_2 \cap W_3$.
- (29) If $W_1 \subseteq W_3$, then $W_1 \cap W_2 \subseteq W_3$.
- (30) If $W_1 \subseteq W_2$ and $W_1 \subseteq W_3$, then $W_1 \subseteq W_2 \cap W_3$.
- (31) $W_1 \cap W_2 \subseteq W_1 + W_2$.
- $(32) W_1 \cap W_2 + W_2 \cap W_3 \subseteq W_2 \cap (W_1 + W_3).$
- (33) If $W_1 \subseteq W_2$, then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (34) $W_2 + W_1 \cap W_3 \subseteq (W_1 + W_2) \cap (W_2 + W_3)$.
- (35) If $W_1 \subseteq W_2$, then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.
- (36) If $W_1 \subseteq W_2$, then $W_1 \subseteq W_2 + W_3$.
- (37) If $W_1 \subseteq W_3$ and $W_2 \subseteq W_3$, then $W_1 + W_2 \subseteq W_3$.
- (38) For all subsets A, B of V such that $A \subseteq B$ holds $Lin(A) \subseteq Lin(B)$.
- (39) For all subsets A, B of V holds $Lin(A \cap B) \subseteq Lin(A) \cap Lin(B)$.
- (40) If $M_1 \subseteq M_2$, then $\Omega_{(M_1)} \subseteq \Omega_{(M_2)}$.
- (41) $W_1 \subseteq W_2$ iff for every a such that $a \in W_1$ holds $a \in W_2$.
- $(42) \quad W_1 \subseteq W_2 \text{ iff } \Omega_{(W_1)} \subseteq \Omega_{(W_2)}.$
- $(43) \quad W_1 \subseteq W_2 \text{ iff } ^{@}(\Omega_{(W_1)}) \subseteq ^{@}(\Omega_{(W_2)}).$
- (44) $\mathbf{0}_W \subseteq V$ and $\mathbf{0}_V \subseteq W$ and $\mathbf{0}_{(W_1)} \subseteq W_2$.

REFERENCES

- [1] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1.html.
- [2] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [4] Michał Muzalewski. Free modules. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/mod_3.html.
- [5] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.

⁵ The propositions (19) and (20) have been removed.

SUBMODULES 4

- [8] Wojciech A. Trybulec. Linear combinations in vector space. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_6.html.
- [9] Wojciech A. Trybulec. Operations on subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/vectsp_5.html.
- [10] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_4.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 19, 1992

Published January 2, 2004