Representation Theorem for Boolean Algebras

Jarosław Stanisław Walijewski Warsaw University Białystok

MML Identifier: LOPCLSET.

WWW: http://mizar.org/JFM/Vol5/lopclset.html

The articles [13], [8], [15], [11], [16], [5], [7], [6], [4], [14], [12], [17], [2], [3], [9], [10], and [1] provide the notation and terminology for this paper.

In this paper T denotes a non empty topological space and X denotes a subset of T.

Let T be a non empty topological structure. The functor OpenClosedSet(T) yielding a family of subsets of T is defined by:

(Def. 1) OpenClosedSet(T) = {x;x ranges over subsets of T: x is open and closed}.

Let T be a non empty topological space. Observe that $\operatorname{OpenClosedSet}(T)$ is non empty. We now state three propositions:

- $(2)^{1}$ If $X \in \text{OpenClosedSet}(T)$, then X is open.
- (3) If $X \in \text{OpenClosedSet}(T)$, then X is closed.
- (4) If *X* is open and closed, then $X \in \text{OpenClosedSet}(T)$.

In the sequel x denotes an element of OpenClosedSet(T).

Let us consider T and let C, D be elements of OpenClosedSet(T). Then $C \cup D$ is an element of OpenClosedSet(T). Then $C \cap D$ is an element of OpenClosedSet(T).

Let us consider T. The functor join(T) yields a binary operation on OpenClosedSet(T) and is defined as follows:

(Def. 2) For all elements A, B of OpenClosedSet(T) holds $(join(T))(A, B) = A \cup B$.

The functor meet(T) yielding a binary operation on OpenClosedSet(T) is defined as follows:

(Def. 3) For all elements A, B of OpenClosedSet(T) holds $(meet(T))(A, B) = A \cap B$.

One can prove the following propositions:

- (5) For all elements x, y of $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ and for all elements x', y' of OpenClosedSet(T) such that x = x' and y = y' holds $x \sqcup y = x' \cup y'$.
- (6) For all elements x, y of $\langle \mathsf{OpenClosedSet}(T), \mathsf{join}(T), \mathsf{meet}(T) \rangle$ and for all elements x', y' of $\mathsf{OpenClosedSet}(T)$ such that x = x' and y = y' holds $x \sqcap y = x' \cap y'$.
- (7) \emptyset_T is an element of OpenClosedSet(T).

1

¹ The proposition (1) has been removed.

- (8) Ω_T is an element of OpenClosedSet(T).
- (9) x^{c} is an element of OpenClosedSet(T).
- (10) $\langle \text{OpenClosedSet}(T), \text{join}(T), \text{meet}(T) \rangle$ is a lattice.

Let T be a non empty topological space. The functor OpenClosedSetLatt(T) yields a lattice and is defined as follows:

(Def. 4) OpenClosedSetLatt(T) = $\langle OpenClosedSet(T), join(T), meet(T) \rangle$.

One can prove the following propositions:

- (11) For every non empty topological space T and for all elements x, y of OpenClosedSetLatt(T) holds $x \sqcup y = x \cup y$.
- (12) For every non empty topological space T and for all elements x, y of OpenClosedSetLatt(T) holds $x \sqcap y = x \cap y$.
- (13) The carrier of OpenClosedSetLatt(T) = OpenClosedSet(T).
- (14) OpenClosedSetLatt(T) is Boolean.
- (15) Ω_T is an element of OpenClosedSetLatt(T).
- (16) \emptyset_T is an element of OpenClosedSetLatt(T).

In the sequel x, X denote sets.

Let us observe that there exists a Boolean lattice which is non trivial.

We adopt the following rules: B_1 denotes a non trivial Boolean lattice, a, b denote elements of B_1 , and U_1 , F denote filters of B_1 .

Let us consider B_1 . The functor ultraset (B_1) yields a subset of $2^{\text{the carrier of } B_1}$ and is defined as follows:

(Def. 5) ultraset(B_1) = {F : F is an ultrafilter}.

Let us consider B_1 . Observe that ultraset(B_1) is non empty.

The following propositions are true:

- (18)² $x \in \text{ultraset}(B_1)$ iff there exists U_1 such that $U_1 = x$ and U_1 is an ultrafilter.
- (19) For every a holds $\{F : F \text{ is an ultrafilter } \land a \in F\} \subseteq \text{ultraset}(B_1)$.

Let us consider B_1 . The functor UFilter(B_1) yielding a function is defined by:

(Def. 6) dom UFilter(B_1) = the carrier of B_1 and for every element a of B_1 holds (UFilter(B_1))(a) = $\{U_1 : U_1 \text{ is an ultrafilter } \land a \in U_1\}.$

Next we state several propositions:

- (20) $x \in (UFilter(B_1))(a)$ iff there exists F such that F = x and F is an ultrafilter and $a \in F$.
- (21) $F \in (\text{UFilter}(B_1))(a)$ iff F is an ultrafilter and $a \in F$.
- (22) For every F such that F is an ultrafilter holds $a \sqcup b \in F$ iff $a \in F$ or $b \in F$.
- $(23) \quad (UFilter(B_1))(a \sqcap b) = (UFilter(B_1))(a) \cap (UFilter(B_1))(b).$
- (24) $(\text{UFilter}(B_1))(a \sqcup b) = (\text{UFilter}(B_1))(a) \cup (\text{UFilter}(B_1))(b).$

Let us consider B_1 . Then UFilter(B_1) is a function from the carrier of B_1 into $2^{\text{ultraset}(B_1)}$. Let us consider B_1 . The functor StoneR(B_1) yields a set and is defined by:

² The proposition (17) has been removed.

(Def. 7) StoneR(B_1) = rng UFilter(B_1).

Let us consider B_1 . One can check that StoneR(B_1) is non empty.

The following two propositions are true:

- (25) StoneR(B_1) $\subseteq 2^{\text{ultraset}(B_1)}$.
- (26) $x \in \text{StoneR}(B_1)$ iff there exists a such that $(\text{UFilter}(B_1))(a) = x$.

Let us consider B_1 . The functor StoneSpace(B_1) yielding a strict topological space is defined by:

(Def. 8) The carrier of StoneSpace(B_1) = ultraset(B_1) and the topology of StoneSpace(B_1) = $\{\bigcup A; A \text{ ranges over families of subsets of ultraset}(B_1) : A \subseteq \text{StoneR}(B_1) \}$.

Let us consider B_1 . Note that StoneSpace(B_1) is non empty.

We now state two propositions:

- (27) If *F* is an ultrafilter and $F \notin (\text{UFilter}(B_1))(a)$, then $a \notin F$.
- (28) ultraset(B_1) \ (UFilter(B_1))(a) = (UFilter(B_1))(a^c).

Let us consider B_1 . The functor StoneBLattice(B_1) yields a lattice and is defined by:

(Def. 9) StoneBLattice(B_1) = OpenClosedSetLatt(StoneSpace(B_1)).

One can prove the following four propositions:

- (29) UFilter(B_1) is one-to-one.
- (30) \bigcup StoneR(B_1) = ultraset(B_1).
- (31) For all sets A, B, X such that $X \subseteq \bigcup (A \cup B)$ and for every set Y such that $Y \in B$ holds Y misses X holds $X \subseteq \bigcup A$.
- (32) For every non empty set X holds there exists a finite subset of X which is non empty.

Let D be a non empty set. One can verify that there exists a finite subset of D which is non empty.

The following propositions are true:

- (34)³ Let *L* be a non trivial Boolean lattice and *D* be a non empty subset of *L*. Suppose $\bot_L \in [D)$. Then there exists a non empty finite subset *B* of the carrier of *L* such that $B \subseteq D$ and $\bigcap_B^f = \bot_L$.
- (35) For every lower bound lattice L it is not true that there exists a filter F of L such that F is an ultrafilter and $\bot_L \in F$.
- (36) (UFilter(B_1))($\bot_{(B_1)}$) = \emptyset .
- (37) $(UFilter(B_1))(\top_{(B_1)}) = ultraset(B_1).$
- (38) If ultraset(B_1) = $\bigcup X$ and X is a subset of StoneR(B_1), then there exists a finite subset Y of X such that ultraset(B_1) = $\bigcup Y$.
- $(40)^4$ StoneR(B_1) = OpenClosedSet(StoneSpace(B_1)).

Let us consider B_1 . Then UFilter(B_1) is a homomorphism from B_1 to StoneBLattice(B_1). Next we state four propositions:

- (41) $\operatorname{rng} \operatorname{UFilter}(B_1) = \operatorname{the carrier of StoneBLattice}(B_1).$
- (42) UFilter(B_1) is isomorphism.
- (43) B_1 and StoneBLattice(B_1) are isomorphic.
- (44) For every non trivial Boolean lattice B_1 there exists a non empty topological space T such that B_1 and OpenClosedSetLatt(T) are isomorphic.

³ The proposition (33) has been removed.

⁴ The proposition (39) has been removed.

REFERENCES

- $[1] \begin{tabular}{ll} Grzegorz Bancerek. Cardinal numbers. {\it Journal of Formalized Mathematics}, 1, 1989. $$ http://mizar.org/JFM/Vol1/card_1.html. \\ \end{tabular}$
- [2] Grzegorz Bancerek. Filters part I. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/filter_0.html.
- [3] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1.
- [4] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/partfunl.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [10] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/lattice4.html.
- [11] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- $[15] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1,1989.} \\ \text{http://mizar.org/JFM/Voll/subset_l.html.}$
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [17] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html.

Received July 14, 1993

Published January 2, 2004