The Product and the Determinant of Matrices with Entries in a Field

Katarzyna Zawadzka
Warsaw University
Białystok

Summary. Concerned with a generalization of concepts introduced in [14], i.e. there are introduced the sum and the product of matrices of any dimension of elements of any field.

MML Identifier: MATRIX 3.
WWW: http://mizar.org/JFM/Vol5/matrix_3.html

The articles [19], [8], [24], [20], [13], [25], [6], [7], [3], [5], [4], [17], [23], [16], [18], [11], [10], [9], [14], [22], [15], [1], [21], [26], [2], and [12] provide the notation and terminology for this paper.

1. AuXiliary Theorems

We adopt the following rules: i, j, k, l, n, m are natural numbers, D is a non empty set, and K is a field.

The following proposition is true
(1) If $n=n+k$, then $k=0$.

Let us consider K, n, m. The functor $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}$ yields a matrix over K of dimension $n \times m$ and is defined by:
(Def. 1) $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}=n \mapsto\left(m \mapsto 0_{K}\right)$.
Let us consider K and let A be a matrix over K. The functor $-A$ yields a matrix over K and is defined by:
(Def. 2) $\operatorname{len}(-A)=\operatorname{len} A$ and width $(-A)=$ width A and for all i, j such that $\langle i, j\rangle \in$ the indices of A holds $(-A) \circ(i, j)=-(A \circ(i, j))$.

Let us consider K and let A, B be matrices over K. The functor $A+B$ yields a matrix over K and is defined by:
(Def. 3) $\operatorname{len}(A+B)=\operatorname{len} A$ and width $(A+B)=\operatorname{width} A$ and for all i, j such that $\langle i, j\rangle \in$ the indices of A holds $(A+B) \circ(i, j)=(A \circ(i, j))+(B \circ(i, j))$.

The following propositions are true:
$\left(3 \prod^{1} \prod_{(i, j)=0_{K}}\right.$ For all i, j such that $\langle i, j\rangle \in$ the indices of $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}$ holds $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m} \circ$
(4) For all matrices A, B over K such that len $A=\operatorname{len} B$ and width $A=\operatorname{width} B$ holds $A+B=$ $B+A$.
(5) For all matrices A, B, C over K such that len $A=\operatorname{len} B$ and len $A=\operatorname{len} C$ and width $A=$ width B and width $A=$ width C holds $(A+B)+C=A+(B+C)$.
(6) For every matrix A over K of dimension $n \times m$ holds $A+\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}=A$.
(7) For every matrix A over K of dimension $n \times m$ holds $A+-A=\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}$.

Let us consider K and let A, B be matrices over K. Let us assume that width $A=\operatorname{len} B$. The functor $A \cdot B$ yielding a matrix over K is defined by:
(Def. 4) $\quad \operatorname{len}(A \cdot B)=\operatorname{len} A$ and width $(A \cdot B)=\operatorname{width} B$ and for all i, j such that $\langle i, j\rangle \in$ the indices of

$$
A \cdot B \text { holds }(A \cdot B) \circ(i, j)=\operatorname{Line}(A, i) \cdot B_{\square, j}
$$

Let us consider n, k, m, let us consider K, let A be a matrix over K of dimension $n \times k$, and let B be a matrix over K of dimension width $A \times m$. Then $A \cdot B$ is a matrix over K of dimension len $A \times$ width B.

Let us consider K, let M be a matrix over K, and let a be an element of K. The functor $a \cdot M$ yields a matrix over K and is defined as follows:
(Def. 5) $\quad \operatorname{len}(a \cdot M)=\operatorname{len} M$ and $\operatorname{width}(a \cdot M)=\operatorname{width} M$ and for all i, j such that $\langle i, j\rangle \in$ the indices of M holds $(a \cdot M) \circ(i, j)=a \cdot(M \circ(i, j))$.
Let us consider K, let M be a matrix over K, and let a be an element of K. The functor $M \cdot a$ yielding a matrix over K is defined as follows:
(Def. 6) $M \cdot a=a \cdot M$.
One can prove the following propositions:
(8) For all finite sequences p, q of elements of the carrier of K such that len $p=\operatorname{len} q$ holds $\operatorname{len}(p \bullet q)=\operatorname{len} p$ and $\operatorname{len}(p \bullet q)=\operatorname{len} q$.
(9) For all i, l such that $\langle i, l\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $l=i$ holds $\operatorname{Line}\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}, i\right)(l)=\mathbf{1}_{K}$.
(10) For all i, l such that $\langle i, l\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $l \neq i$ holds $\operatorname{Line}\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}, i\right)(l)=0_{K}$.

[^0](11) For all l, j such that $\langle l, j\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $l=j$ holds $\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)_{\square, j}(l)=\mathbf{1}_{K}$.
(12) For all l, j such that $\langle l, j\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $l \neq j$ holds $\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)_{\square, j}(l)=0_{K}$.
(13) For every add-associative right zeroed right complementable non empty loop structure K holds $\sum\left(n \mapsto 0_{K}\right)=0_{K}$.
(14) Let K be an add-associative right zeroed right complementable non empty loop structure, p be a finite sequence of elements of the carrier of K, and given i. If $i \in \operatorname{dom} p$ and for every k such that $k \in \operatorname{dom} p$ and $k \neq i$ holds $p(k)=0_{K}$, then $\sum p=p(i)$.
(15) For all finite sequences p, q of elements of the carrier of K holds $\operatorname{len}(p \bullet q)=$ $\min (\operatorname{len} p, \operatorname{len} q)$.
(16) Let p, q be finite sequences of elements of the carrier of K and given i. Suppose $i \in \operatorname{dom} p$ and $p(i)=\mathbf{1}_{K}$ and for every k such that $k \in \operatorname{dom} p$ and $k \neq i$ holds $p(k)=0_{K}$. Let given j such that $j \in \operatorname{dom}(p \bullet q)$. Then
(i) if $i=j$, then $(p \bullet q)(j)=q(i)$, and
(ii) if $i \neq j$, then $(p \bullet q)(j)=0_{K}$.
(17) For all i, j such that $\langle i, j\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ holds if $i=j$, then $\operatorname{Line}\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}, i\right)(j)=\mathbf{1}_{K}$ and if $i \neq j$, then $\operatorname{Line}\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}, i\right)(j)=0_{K}$.
(18) For all i, j such that $\langle i, j\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ holds if $i=j$, then $\left.\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)_{\square, j}(i)=\mathbf{1}_{K}$ and if $i \neq j$, then $\left(\left(\begin{array}{ccc}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)_{\square, j}(i)=0_{K}$.
(19) Let p, q be finite sequences of elements of the carrier of K and given i. Suppose $i \in \operatorname{dom} p$ and $i \in \operatorname{dom} q$ and $p(i)=\mathbf{1}_{K}$ and for every k such that $k \in \operatorname{dom} p$ and $k \neq i$ holds $p(k)=0_{K}$. Then $\Sigma(p \bullet q)=q(i)$.
(20) For every matrix A over K of dimension n holds $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n} \cdot A=A$.
(21) For every matrix A over K of dimension n holds $A \cdot\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}=A$.
(22) For all elements a, b of K holds $\langle\langle a\rangle\rangle \cdot\langle\langle b\rangle\rangle=\langle\langle a \cdot b\rangle\rangle$.
(23) For all elements $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}$ of K holds $\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \cdot\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)=$ $\left(\begin{array}{cc}a_{1} \cdot a_{2}+b_{1} \cdot c_{2} & a_{1} \cdot b_{2}+b_{1} \cdot d_{2} \\ c_{1} \cdot a_{2}+d_{1} \cdot c_{2} & c_{1} \cdot b_{2}+d_{1} \cdot d_{2}\end{array}\right)$.
(24) For all matrices A, B over K such that width $A=\operatorname{len} B$ and width $B \neq 0$ holds $(A \cdot B)^{\mathrm{T}}=$ $B^{\mathrm{T}} \cdot A^{\mathrm{T}}$.

2. The Product of Matrices

Let I, J be non empty sets, let X be an element of Fin I, and let Y be an element of Fin J. Then $[: X$, $Y:]$ is an element of Fin[:I, $J:]$.

Let I, J, D be non empty sets, let G be a binary operation on D, let f be a function from I into D, and let g be a function from J into D. Then $G \circ(f, g)$ is a function from $[: I, J:]$ into D.

We now state a number of propositions:
(25) Let I, J, D be non empty sets, F, G be binary operations on D, f be a function from I into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose F is commutative and associative but $[: Y, X:] \neq \emptyset$ or F has a unity but G is commutative. Then $F-\sum_{[X, Y:}(G \circ(f, g))=F-\sum_{[Y, X:]}(G \circ(g, f))$.
(26) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, and g be a function from J into D. Suppose F is commutative and associative and has a unity. Let x be an element of I and y be an element of J. Then $F-\sum_{:\{x\},\{y\}:}(G \circ(f, g))=$ $F-\sum_{\{x\}} G^{\circ}\left(f, F-\sum_{\{y\}} g\right)$.
(27) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Let x be an element of I. Then $F-\sum_{\{\{x\}, Y:]}(G \circ(f, g))=F-\sum_{\{x\}} G^{\circ}\left(f, F-\sum_{Y} g\right)$.
(28) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Then $F-\sum_{: X, Y: ~}(G \circ(f, g))=F-\sum_{X} G^{\circ}\left(f, F-\sum_{Y} g\right)$.
(29) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, and g be a function from J into D. Suppose F is commutative and associative and has a unity and G is commutative. Let x be an element of I and y be an element of J. Then $F-\sum_{:\{x\},\{y\}:}(G \circ(f, g))=F-\sum_{\{y\}} G^{\circ}\left(F-\sum_{\{x\}} f, g\right)$.
(30) Let I, J be non empty sets, F, G be binary operations on D, f be a function from I into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose that
(i) $\quad F$ is commutative and associative and has a unity and an inverse operation, and
(ii) G is distributive w.r.t. F and commutative.

Then $F-\sum_{[X, Y:]}(G \circ(f, g))=F-\sum_{Y} G^{\circ}\left(F-\sum_{X} f, g\right)$.
(31) Let I, J be non empty sets, F be a binary operation on D, f be a function from $[: I, J:]$ into D, g be a function from I into D, and Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation. Let x be an element of I. If for every element i of I holds $g(i)=F-\sum_{Y}(\operatorname{curry} f)(i)$, then $F-\sum_{\{\{x\}, Y:]} f=F-\sum_{\{x\}} g$.
(32) Let I, J be non empty sets, F be a binary operation on D, f be a function from $[: I, J:]$ into D, g be a function from I into D, X be an element of Fin I, and Y be an element of Fin J. Suppose for every element i of I holds $g(i)=F-\sum_{Y}($ curry $f)(i)$ and F is commutative and associative and has a unity and an inverse operation. Then $F-\sum_{\{X, Y:]} f=F-\sum_{X} g$.
(33) Let I, J be non empty sets, F be a binary operation on D, f be a function from $[: I, J:]$ into D, g be a function from J into D, and X be an element of Fin I. Suppose F is commutative and associative and has a unity and an inverse operation. Let y be an element of J. If for every element j of J holds $g(j)=F-\sum_{X}\left(\right.$ curry $\left.^{\prime} f\right)(j)$, then $F-\sum_{\{X,\{y\}:} f=F-\sum_{\{y\}} g$.
(34) Let I, J be non empty sets, F be a binary operation on D, f be a function from $[: I, J:]$ into D, g be a function from J into D, X be an element of Fin I, and Y be an element of Fin J. Suppose for every element j of J holds $g(j)=F-\sum_{X}\left(\right.$ curry $\left.^{\prime} f\right)(j)$ and F is commutative and associative and has a unity and an inverse operation. Then $F-\sum_{\{X, Y:]} f=F-\sum_{Y} g$.
(35) For all matrices A, B, C over K such that width $A=\operatorname{len} B$ and width $B=\operatorname{len} C$ holds $(A \cdot B)$. $C=A \cdot(B \cdot C)$.

3. DETERMINANT

Let us consider n, K, let M be a matrix over K of dimension n, and let p be an element of the permutations of n-element set. The functor p-Path M yielding a finite sequence of elements of the carrier of K is defined by:
(Def. 7) $\operatorname{len}(p-\operatorname{Path} M)=n$ and for all i, j such that $i \in \operatorname{dom}(p-\operatorname{Path} M)$ and $j=p(i)$ holds $(p-\operatorname{Path} M)(i)=M \circ(i, j)$.

Let us consider n, K and let M be a matrix over K of dimension n. The product on paths of M yields a function from the permutations of n-element set into the carrier of K and is defined by the condition (Def. 8).
(Def. 8) Let p be an element of the permutations of n-element set. Then (the product on paths of $M)(p)=(-1)^{\operatorname{sgn}(p)}$ (the multiplication of $\left.K \circledast(p-\operatorname{Path} M)\right)$.

Let us consider n, let us consider K, and let M be a matrix over K of dimension n. The functor Det M yielding an element of the carrier of K is defined as follows:
(Def. 9) $\operatorname{Det} M=($ the addition of $K)-\sum_{\Omega_{\text {ine }}^{f}}$ \qquad (the product on paths of M).

In the sequel a denotes an element of K.
Next we state the proposition

$$
\begin{equation*}
\operatorname{Det}\langle\langle a\rangle\rangle=a . \tag{36}
\end{equation*}
$$

Let us consider n, let us consider K, and let M be a matrix over K of dimension n. The diagonal of M yields a finite sequence of elements of the carrier of K and is defined by:
(Def. 10) len (the diagonal of $M)=n$ and for every i such that $i \in \operatorname{Seg} n$ holds (the diagonal of $M)(i)=$ $M \circ(i, i)$.

REFERENCES

 org/JFM/Vol1/nat_1.html[2] Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ funct_5.html
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[4] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html
[5] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html
[6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. Zfmisc_1.html
[9] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finseqop.html
[10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html
[11] Czesław Byliński. Semigroup operations on finite subsets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/setwop_2.html.
[12] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/cat_2.html
[13] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/matrix_1.html.
[15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Journal of Formalized Mathematics, 4, 1992. http://mizar. org/JFM/Vol4/matrix_2.html
[16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html
[17] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop_1.html.
[18] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/setwiseo.html.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[21] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
[22] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/finsub_1.html.
[23] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ rlvect_1.html
[24] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[25] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html
[26] Katarzyna Zawadzka. Sum and product of finite sequences of elements of a field. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/fvsum_1.html.

[^0]: ${ }^{1}$ The proposition (2) has been removed.

