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Summary. In this article we introduce some definitions concerning measurable func-
tions and prove related properties.
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The articles [18], [13], [21], [3], [19], [10], [16], [22], [11], [2], [20], [17], [14], [1], [4], [5], [6],
[7], [8], [9], [12], and [15] provide the notation and terminology for this paper.

1. CARDINAL NUMBERS OFZ AND Q

In this paperk is a natural number,r is a real number,i is an integer, andq is a rational number.
The subsetZ− of R is defined by:

(Def. 1) r ∈ Z− iff there existsk such thatr =−k.

Let us note thatZ− is non empty.
The following three propositions are true:

(1) N≈ Z−.

(2) Z = Z−∪N.

(3) N≈ Z.

Z is a subset ofR.
Let n be a natural number. The functorQ(n) yielding a subset ofQ is defined by:

(Def. 2) q∈Q(n) iff there existsi such thatq = i
n.

Let n be a natural number. One can verify thatQ(n+1) is non empty.
We now state two propositions:

(4) For every natural numbern holdsZ≈Q(n+1).

(5) N≈Q.
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2. BASIC OPERATIONS OFEXTENDED REAL VALUED FUNCTIONS

Let C be a non empty set, letf be a partial function fromC to R, and letx be a set. Thenf (x) is an
extended real number.

Let C be a non empty set and letf1, f2 be partial functions fromC to R. The functor f1 + f2
yields a partial function fromC to R and is defined by:

(Def. 3) dom( f1+ f2)= dom f1∩dom f2\( f1−1({−∞})∩ f2−1({+∞})∪ f1−1({+∞})∩ f2−1({−∞}))
and for every elementc of C such thatc∈ dom( f1 + f2) holds( f1 + f2)(c) = f1(c)+ f2(c).

The functorf1− f2 yields a partial function fromC to R and is defined by:

(Def. 4) dom( f1− f2)= dom f1∩dom f2\( f1−1({+∞})∩ f2−1({+∞})∪ f1−1({−∞})∩ f2−1({−∞}))
and for every elementc of C such thatc∈ dom( f1− f2) holds( f1− f2)(c) = f1(c)− f2(c).

The functorf1 f2 yielding a partial function fromC to R is defined by:

(Def. 5) dom( f1 f2) = dom f1∩dom f2 and for every elementc of C such thatc∈ dom( f1 f2) holds
( f1 f2)(c) = f1(c) · f2(c).

LetC be a non empty set, letf be a partial function fromC to R, and letr be a real number. The
functorr f yielding a partial function fromC to R is defined as follows:

(Def. 6) dom(r f ) = dom f and for every elementc of C such thatc∈ dom(r f ) holds(r f )(c) =
R(r) · f (c).

We now state the proposition

(6) Let C be a non empty set,f be a partial function fromC to R, andr be a real number.
Supposer 6= 0. Let c be an element ofC. If c∈ dom(r f ), then f (c) = (r f )(c)

R(r) .

Let C be a non empty set and letf be a partial function fromC to R. The functor− f yields a
partial function fromC to R and is defined as follows:

(Def. 7) dom(− f ) = dom f and for every elementc of C such thatc∈ dom(− f ) holds(− f )(c) =
− f (c).

The extended real number1 is defined by:

(Def. 8) 1 = 1.

LetC be a non empty set, letf be a partial function fromC to R, and letr be a real number. The
functor r

f yields a partial function fromC to R and is defined by:

(Def. 9) dom( r
f ) = dom f \ f−1({0R}) and for every elementc of C such thatc ∈ dom( r

f ) holds

( r
f )(c) = R(r)

f (c) .

Next we state the proposition

(7) LetC be a non empty set andf be a partial function fromC to R. Then dom( 1
f ) = dom f \

f−1({0R}) and for every elementc of C such thatc∈ dom( 1
f ) holds( 1

f )(c) = 1
f (c) .

Let C be a non empty set and letf be a partial function fromC to R. The functor| f | yielding a
partial function fromC to R is defined by:

(Def. 10) dom| f |= dom f and for every elementc of C such thatc∈ dom| f | holds| f |(c) = | f (c)|.
Next we state two propositions:

(9)1 For every non empty setC and for all partial functionsf1, f2 from C to R holds f1 + f2 =
f2 + f1.

(10) For every non empty setC and for all partial functionsf1, f2 from C to R holds f1 f2 =
f2 f1.

Let C be a non empty set and letf1, f2 be partial functions fromC to R. Let us notice that the
functor f1 + f2 is commutative. Let us note that the functorf1 f2 is commutative.

1 The proposition (8) has been removed.
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3. LEVEL SETS

Next we state several propositions:

(11) For every real numberr there exists a natural numbern such thatr ≤ n.

(12) For every real numberr there exists a natural numbern such that−n≤ r.

(13) For all real numbersr, ssuch thatr < s there exists a natural numbern such that 1
n+1 < s−r.

(14) For all real numbersr, ssuch that for every natural numbern holdsr− 1
n+1 ≤ sholdsr ≤ s.

(15) For every extended real numbera such that for every real numberr holdsR(r) < a holds
a = +∞.

(16) For every extended real numbera such that for every real numberr holdsa < R(r) holds
a =−∞.

Let X be a set, letSbe aσ-field of subsets ofX, and letA be a set. We say thatA is measurable
onS if and only if:

(Def. 11) A∈ S.

Next we state the proposition

(17) LetX, A be sets andSbe aσ-field of subsets ofX. ThenA is measurable onS if and only
if for every σ-measureM onSholdsA is measurable w.r.t.M.

For simplicity, we adopt the following convention:X is a non empty set,x is an element ofX,
f , g are partial functions fromX to R, S is aσ-field of subsets ofX, F is a function fromN into S,
A is a set,a is an extended real number,r, s are real numbers, andn is a natural number.

Let us considerX, f , a. The functor LE-dom( f ,a) yields a subset ofX and is defined as follows:

(Def. 12) x∈ LE-dom( f ,a) iff x∈ dom f and there exists an extended real numbery such thaty =
f (x) andy < a.

The functor LEQ-dom( f ,a) yields a subset ofX and is defined as follows:

(Def. 13) x ∈ LEQ-dom( f ,a) iff x ∈ dom f and there exists an extended real numbery such that
y = f (x) andy≤ a.

The functor GT-dom( f ,a) yielding a subset ofX is defined by:

(Def. 14) x∈ GT-dom( f ,a) iff x∈ dom f and there exists an extended real numbery such thaty =
f (x) anda < y.

The functor GTE-dom( f ,a) yielding a subset ofX is defined by:

(Def. 15) x ∈ GTE-dom( f ,a) iff x ∈ dom f and there exists an extended real numbery such that
y = f (x) anda≤ y.

The functor EQ-dom( f ,a) yields a subset ofX and is defined by:

(Def. 16) x∈ EQ-dom( f ,a) iff x∈ dom f and there exists an extended real numbery such thaty =
f (x) anda = y.

One can prove the following propositions:

(18) For allX, S, f , A, a such thatA⊆ dom f holdsA∩GTE-dom( f ,a) = A\A∩LE-dom( f ,a).

(19) For allX, S, f , A, a such thatA⊆ dom f holdsA∩GT-dom( f ,a) = A\A∩LEQ-dom( f ,a).

(20) For allX, S, f , A, a such thatA⊆ dom f holdsA∩LEQ-dom( f ,a) = A\A∩GT-dom( f ,a).
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(21) For allX, S, f , A, a such thatA⊆ dom f holdsA∩LE-dom( f ,a) = A\A∩GTE-dom( f ,a).

(22) For allX, S, f , A, a holdsA∩EQ-dom( f ,a) = A∩GTE-dom( f ,a)∩LEQ-dom( f ,a).

(23) For allX, S, F , f , A, r such that for everyn holdsF(n) = A∩GT-dom( f ,R(r− 1
n+1)) holds

A∩GTE-dom( f ,R(r)) =
⋂

rngF.

(24) For all X, S, F , f , A and for every real numberr such that for everyn holds F(n) =
A∩LE-dom( f ,R(r + 1

n+1)) holdsA∩LEQ-dom( f ,R(r)) =
⋂

rngF.

(25) For all X, S, F , f , A and for every real numberr such that for everyn holds F(n) =
A∩LEQ-dom( f ,R(r− 1

n+1)) holdsA∩LE-dom( f ,R(r)) =
⋃

rngF.

(26) For allX, S, F , f , A, r such that for everyn holdsF(n) = A∩GTE-dom( f ,R(r + 1
n+1))

holdsA∩GT-dom( f ,R(r)) =
⋃

rngF.

(27) For allX, S, F , f , A such that for everyn holdsF(n) = A∩GT-dom( f ,R(n)) holdsA∩
EQ-dom( f ,+∞) =

⋂
rngF.

(28) For allX, S, F , f , A such that for everyn holdsF(n) = A∩LE-dom( f ,R(n)) holdsA∩
LE-dom( f ,+∞) =

⋃
rngF.

(29) For all X, S, F , f , A such that for everyn holds F(n) = A∩ LE-dom( f ,R(−n)) holds
A∩EQ-dom( f ,−∞) =

⋂
rngF.

(30) For all X, S, F , f , A such that for everyn holds F(n) = A∩GT-dom( f ,R(−n)) holds
A∩GT-dom( f ,−∞) =

⋃
rngF.

4. MEASURABLE FUNCTIONS

Let X be a non empty set, letSbe aσ-field of subsets ofX, let f be a partial function fromX to R,
and letA be an element ofS. We say thatf is measurable onA if and only if:

(Def. 17) For every real numberr holdsA∩LE-dom( f ,R(r)) is measurable onS.

In the sequelA, B denote elements ofS.
The following propositions are true:

(31) Let givenX, S, f , A. SupposeA⊆ dom f . Then f is measurable onA if and only if for
every real numberr holdsA∩GTE-dom( f ,R(r)) is measurable onS.

(32) Let givenX, S, f , A. Then f is measurable onA if and only if for every real numberr holds
A∩LEQ-dom( f ,R(r)) is measurable onS.

(33) Let givenX, S, f , A. SupposeA⊆ dom f . Then f is measurable onA if and only if for
every real numberr holdsA∩GT-dom( f ,R(r)) is measurable onS.

(34) For allX, S, f , A, B such thatB⊆ A and f is measurable onA holds f is measurable onB.

(35) For allX, S, f , A, B such thatf is measurable onA and f is measurable onB holds f is
measurable onA∪B.

(36) For all X, S, f , A, r, s such that f is measurable onA and A ⊆ dom f holds A∩
GT-dom( f ,R(r))∩LE-dom( f ,R(s)) is measurable onS.

(37) For allX, S, f , A such thatf is measurable onA andA⊆ dom f holdsA∩EQ-dom( f ,+∞)
is measurable onS.

(38) For allX, S, f , A such thatf is measurable onA holdsA∩EQ-dom( f ,−∞) is measurable
onS.
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(39) For allX, S, f , A such thatf is measurable onA andA⊆ dom f holdsA∩GT-dom( f ,−∞)∩
LE-dom( f ,+∞) is measurable onS.

(40) Let givenX, S, f , g, A, r. Supposef is measurable onA andg is measurable onA and
A⊆ domg. ThenA∩LE-dom( f ,R(r))∩GT-dom(g,R(r)) is measurable onS.

(41) For allX, S, f , A, r such thatf is measurable onA andA⊆ dom f holdsr f is measurable
onA.
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