On Paracompactness of Metrizable Spaces

Leszek Borys Warsaw University Białystok

Summary. The aim is to prove, using Mizar System, one of the most important result in general topology, namely the Stone Theorem on paracompactness of metrizable spaces [18]. Our proof is based on [17] (and also [15]). We prove first auxiliary fact that every open cover of any metrizable space has a locally finite open refinement. We show next the main theorem that every metrizable space is paracompact. The remaining material is devoted to concepts and certain properties needed for the formulation and the proof of that theorem (see also [4]).

MML Identifier: PCOMPS_2.
WWW: http://mizar.org/JFM/Vol4/pcomps_2.html

The articles [19], [7], [21], [1], [20], [10], [5], [6], [13], [12], [9], [14], [4], [16], [2], [22], [3], [11], and [8] provide the notation and terminology for this paper.

1. SELECTED PROPERTIES OF REAL NUMBERS

In this paper r, u denote real numbers and n, k denote natural numbers. The following propositions are true:

- (3)¹ If r > 0 and u > 0, then there exists a natural number k such that $\frac{u}{2^k} \le r$.
- (4) If $k \ge n$ and $r \ge 1$, then $r^k \ge r^n$.

2. CERTAIN FUNCTIONS DEFINED ON FAMILIES OF SETS

In the sequel *R* denotes a binary relation and *A* denotes a set. One can prove the following proposition

(5) If *R* well orders *A*, then $R|^2A$ well orders *A* and $A = \text{field}(R|^2A)$.

The scheme *MinSet* deals with a set \mathcal{A} , a binary relation \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

There exists a set *X* such that $X \in \mathcal{A}$ and $\mathcal{P}[X]$ and for every set *Y* such that $Y \in \mathcal{A}$ and $\mathcal{P}[Y]$ holds $\langle X, Y \rangle \in \mathcal{B}$

provided the parameters satisfy the following conditions:

- \mathcal{B} well orders \mathcal{A} , and
- There exists a set *X* such that $X \in \mathcal{A}$ and $\mathcal{P}[X]$.

Let F_1 be a set, let R be a binary relation, and let B be an element of F_1 . The functor $\bigcup_{\beta \le RB} \beta$ is defined by:

¹ The propositions (1) and (2) have been removed.

(Def. 1) $\bigcup_{\beta <_R B} \beta = \bigcup (R - \operatorname{Seg}(B)).$

Let F_1 be a set and let R be a binary relation. The disjoint family of F_1 , R is defined as follows:

(Def. 2) $A \in$ the disjoint family of F_1 , R iff there exists an element B of F_1 such that $B \in F_1$ and $A = B \setminus \bigcup_{\beta \leq_R B} \beta$.

Let *X* be a set, let *n* be a natural number, and let *f* be a function from \mathbb{N} into 2^X . The functor $\bigcup_{\kappa \leq n} f(\kappa)$ is defined as follows:

(Def. 3) $\bigcup_{\kappa < n} f(\kappa) = \bigcup (f^{\circ}(\operatorname{Seg} n \setminus \{n\})).$

3. PARACOMPACTNESS OF METRIZABLE SPACES

For simplicity, we adopt the following convention: P_1 denotes a non empty topological space, P_2 denotes a metric space, F_1 , G_1 , H_1 denote families of subsets of P_1 , and V, W denote subsets of P_1 . One can prove the following propositions:

- (6) Suppose P_1 is a T_3 space. Let given F_1 . Suppose F_1 is a cover of P_1 and open. Then there exists H_1 such that H_1 is open and a cover of P_1 and for every V such that $V \in H_1$ there exists W such that $W \in F_1$ and $\overline{V} \subseteq W$.
- (7) Let given P_1 , F_1 . Suppose P_1 is a T_2 space and paracompact and F_1 is a cover of P_1 and open. Then there exists G_1 such that G_1 is open and a cover of P_1 and $clf G_1$ is finer than F_1 and G_1 is locally finite.
- (8) Let *f* be a function from [: the carrier of P_1 , the carrier of P_1 :] into \mathbb{R} . Suppose *f* is a metric of the carrier of P_1 . Suppose $P_2 = \text{MetrSp}((\text{the carrier of } P_1), f)$. Then the carrier of $P_2 = \text{the carrier of } P_1$.
- (11)² Let f be a function from [:the carrier of P_1 , the carrier of P_1 :] into \mathbb{R} . Suppose f is a metric of the carrier of P_1 . Suppose $P_2 = \text{MetrSp}((\text{the carrier of } P_1), f)$. Then F_1 is a family of subsets of P_1 if and only if F_1 is a family of subsets of P_2 .

In the sequel *n* denotes a natural number.

Let P_2 be a non empty set, let g be a function from \mathbb{N} into $(2^{2^{P_2}})^*$, and let us consider n. Then g(n) is a finite sequence of elements of $2^{2^{P_2}}$.

One can prove the following two propositions:

- (12) Suppose P_1 is metrizable. Let F_1 be a family of subsets of P_1 . Suppose F_1 is a cover of P_1 and open. Then there exists a family G_1 of subsets of P_1 which is open, a cover of P_1 , finer than F_1 , and locally finite.
- (13) If P_1 is metrizable, then P_1 is paracompact.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Grzegorz Bancerek. The well ordering relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ wellordl.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [4] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ pcomps_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.

² The propositions (9) and (10) have been removed.

- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html.
- [9] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/compts_1.html.
- [10] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [11] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/JFM/Vol2/metric_1.html.
- [13] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.
- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.
- [15] Hanna Patkowska. Wstęp do Topologii. PWN, Warszawa, 1974.
- [16] Konrad Raczkowski. Integer and rational exponents. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ prepower.html.
- [17] M. E. Rudin. A new proof that metric spaces are paracompact. Proc. Amer. Math. Soc., 20:603, 1969.
- [18] A. H. Stone. Paracompactness and product spaces. Bull. Amer. Math. Soc., 54:977-982, 1948.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received July 23, 1992

Published January 2, 2004