Solving Roots of Polynomial Equations of Degree 2 and 3 with Real Coefficients

Xiquan Liang
Northeast Normal University
China

Abstract

Summary. In this paper, we describe the definition of the first, second, and third degree algebraic equations and their properties. In Section 1, we defined the simple firstdegree and second-degree (quadratic) equation and discussed the relation between the roots of each equation and their coefficients. Also, we clarified the form of the root within the range of real numbers. Furthermore, the extraction of the root using the discriminant of equation is clarified. In Section 2, we defined the third-degree (cubic) equation and clarified the relation between the three roots of this equation and its coefficient. Also, the form of these roots for various conditions is discussed. This solution is known as the Cardano solution.

MML Identifier: POLYEQ_1.
WWW:http://mizar.org/JFM/Vol12/polyeq_1.html

The articles [1], [4], [3], and [2] provide the notation and terminology for this paper.

1. EQUation of Degree 1 and 2

In this paper $a, a^{\prime}, a_{1}, a_{2}, a_{3}, b, b^{\prime}, c, c^{\prime}, d, d^{\prime}, h, p, q, x, x_{1}, x_{2}, x_{3}, u, v, y$ are real numbers.
Let a, b, x be real numbers. The functor Poly $1(a, b, x)$ is defined as follows:
(Def. 1) $\operatorname{Poly} 1(a, b, x)=a \cdot x+b$.
Let a, b, x be real numbers. Observe that $\operatorname{Poly} 1(a, b, x)$ is real.
Let a, b, x be real numbers. Then $\operatorname{Poly} 1(a, b, x)$ is a real number.
The following three propositions are true:
(1) If $a \neq 0$ and $\operatorname{Poly} 1(a, b, x)=0$, then $x=-\frac{b}{a}$.
(2) $\operatorname{Poly} 1(0,0, x)=0$.
(3) If $b \neq 0$, then it is not true that there exists x such that $\operatorname{Poly} 1(0, b, x)=0$.

Let a, b, c, x be real numbers. The functor $\operatorname{Poly} 2(a, b, c, x)$ is defined as follows:
(Def. 2) $\operatorname{Poly} 2(a, b, c, x)=a \cdot x^{2}+b \cdot x+c$.
Let a, b, c, x be real numbers. Note that $\operatorname{Poly} 2(a, b, c, x)$ is real.
Let a, b, c, x be real numbers. Then $\operatorname{Poly} 2(a, b, c, x)$ is a real number.
Next we state several propositions:
(4) If for every x holds $\operatorname{Poly} 2(a, b, c, x)=\operatorname{Poly} 2\left(a^{\prime}, b^{\prime}, c^{\prime}, x\right)$, then $a=a^{\prime}$ and $b=b^{\prime}$ and $c=c^{\prime}$.
(5) If $a \neq 0$ and $\Delta(a, b, c) \geq 0$, then for every x such that $\operatorname{Poly} 2(a, b, c, x)=0$ holds $x=$ $\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}$ or $x=\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}$.
(6) If $a \neq 0$ and $\Delta(a, b, c)=0$ and $\operatorname{Poly} 2(a, b, c, x)=0$, then $x=-\frac{b}{2 \cdot a}$.
(7) If $a \neq 0$ and $\Delta(a, b, c)<0$, then it is not true that there exists x such that $\operatorname{Poly} 2(a, b, c, x)=0$.
(8) If $b \neq 0$ and for every x holds $\operatorname{Poly} 2(0, b, c, x)=0$, then $x=-\frac{c}{b}$.
(9) $\operatorname{Poly} 2(0,0,0, x)=0$.
(10) If $c \neq 0$, then it is not true that there exists x such that $\operatorname{Poly} 2(0,0, c, x)=0$.

Let a, x, x_{1}, x_{2} be real numbers. The functor $\operatorname{Quard}\left(a, x_{1}, x_{2}, x\right)$ is defined by:
(Def. 3) $\operatorname{Quard}\left(a, x_{1}, x_{2}, x\right)=a \cdot\left(\left(x-x_{1}\right) \cdot\left(x-x_{2}\right)\right)$.
Let a, x, x_{1}, x_{2} be real numbers. Observe that $\operatorname{Quard}\left(a, x_{1}, x_{2}, x\right)$ is real.
Let a, x, x_{1}, x_{2} be real numbers. Then $\operatorname{Quard}\left(a, x_{1}, x_{2}, x\right)$ is a real number.
Next we state the proposition
(11) If $a \neq 0$ and for every x holds $\operatorname{Poly} 2(a, b, c, x)=\operatorname{Quard}\left(a, x_{1}, x_{2}, x\right)$, then $\frac{b}{a}=-\left(x_{1}+x_{2}\right)$ and $\frac{c}{a}=x_{1} \cdot x_{2}$.

2. EQuation of Degree 3

Let a, b, c, d, x be real numbers. The functor $\operatorname{Poly} 3(a, b, c, d, x)$ is defined as follows:
(Def. 4) $\operatorname{Poly} 3(a, b, c, d, x)=a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d$.
Let a, b, c, d, x be real numbers. Observe that $\operatorname{Poly} 3(a, b, c, d, x)$ is real.
Let a, b, c, d, x be real numbers. Then $\operatorname{Poly} 3(a, b, c, d, x)$ is a real number.
The following proposition is true
(12) If for every x holds $\operatorname{Poly} 3(a, b, c, d, x)=\operatorname{Poly} 3\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, x\right)$, then $a=a^{\prime}$ and $b=b^{\prime}$ and $c=c^{\prime}$ and $d=d^{\prime}$.

Let $a, x, x_{1}, x_{2}, x_{3}$ be real numbers. The functor $\operatorname{Tri}\left(a, x_{1}, x_{2}, x_{3}, x\right)$ is defined by:
(Def. 5) $\operatorname{Tri}\left(a, x_{1}, x_{2}, x_{3}, x\right)=a \cdot\left(\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot\left(x-x_{3}\right)\right)$.
Let $a, x, x_{1}, x_{2}, x_{3}$ be real numbers. Observe that $\operatorname{Tri}\left(a, x_{1}, x_{2}, x_{3}, x\right)$ is real.
Let $a, x, x_{1}, x_{2}, x_{3}$ be real numbers. Then $\operatorname{Tri}\left(a, x_{1}, x_{2}, x_{3}, x\right)$ is a real number.
Next we state a number of propositions:
(13) If $a \neq 0$ and for every x holds $\operatorname{Poly} 3(a, b, c, d, x)=\operatorname{Tri}\left(a, x_{1}, x_{2}, x_{3}, x\right)$, then $\frac{b}{a}=$ $-\left(x_{1}+x_{2}+x_{3}\right)$ and $\frac{c}{a}=x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{1} \cdot x_{3}$ and $\frac{d}{a}=-x_{1} \cdot x_{2} \cdot x_{3}$.
(14) $(y+h)^{3}=y^{3}+\left(3 \cdot h \cdot y^{2}+3 \cdot h^{2} \cdot y\right)+h^{3}$.
(15) Suppose $a \neq 0$ and $\operatorname{Poly} 3(a, b, c, d, x)=0$. Let given $a_{1}, a_{2}, a_{3}, h, y$. Suppose $y=x+\frac{b}{3 \cdot a}$ and $h=-\frac{b}{3 \cdot a}$ and $a_{1}=\frac{b}{a}$ and $a_{2}=\frac{c}{a}$ and $a_{3}=\frac{d}{a}$. Then $y^{3}+\left(\left(3 \cdot h+a_{1}\right) \cdot y^{2}+\left(3 \cdot h^{2}+2 \cdot\left(a_{1}\right.\right.\right.$. $\left.\left.h)+a_{2}\right) \cdot y\right)+\left(h^{3}+a_{1} \cdot h^{2}+\left(a_{2} \cdot h+a_{3}\right)\right)=0$.
(16) Suppose $a \neq 0$ and $\operatorname{Poly} 3(a, b, c, d, x)=0$. Let given $a_{1}, a_{2}, a_{3}, h, y$. Suppose $y=x+\frac{b}{3 \cdot a}$ and $h=-\frac{b}{3 \cdot a}$ and $a_{1}=\frac{b}{a}$ and $a_{2}=\frac{c}{a}$ and $a_{3}=\frac{d}{a}$. Then $y^{3}+0 \cdot y^{2}+\frac{3 \cdot a \cdot c-b^{2}}{3 \cdot a^{2}} \cdot y+\left(2 \cdot\left(\frac{b}{3 \cdot a}\right)^{3}+\right.$ $\left.\frac{3 \cdot a \cdot d-b \cdot c}{3 \cdot a^{2}}\right)=0$.
(17) Suppose $y^{3}+0 \cdot y^{2}+\frac{3 \cdot a \cdot c-b^{2}}{3 \cdot a^{2}} \cdot y+\left(2 \cdot\left(\frac{b}{3 \cdot a}\right)^{3}+\frac{3 \cdot a \cdot d-b \cdot c}{3 \cdot a^{2}}\right)=0$. Let given p, q. If $p=\frac{3 \cdot a \cdot c-b^{2}}{3 \cdot a^{2}}$ and $q=2 \cdot\left(\frac{b}{3 \cdot a}\right)^{3}+\frac{3 \cdot a \cdot d-b \cdot c}{3 \cdot a^{2}}$, then $\operatorname{Poly} 3(1,0, p, q, y)=0$.
(18) If $\operatorname{Poly} 3(1,0, p, q, y)=0$, then for all u, v such that $y=u+v$ and $3 \cdot v \cdot u+p=0$ holds $u^{3}+v^{3}=-q$ and $u^{3} \cdot v^{3}=\left(-\frac{p}{3}\right)^{3}$.
(19) Suppose $\operatorname{Poly} 3(1,0, p, q, y)=0$. Let given u, v. Suppose $y=u+v$ and $3 \cdot v \cdot u+p=0$. Then
(i) $y=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\left(\frac{p}{3}\right)^{3}}}$, or
(ii) $y=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\left(\frac{p}{3}\right)^{3}}}$, or
(iii) $y=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\left(\frac{p}{3}\right)^{3}}}$.
(20) If $b \neq 0$ and $\Delta(b, c, d)>0$ and $\operatorname{Poly} 3(0, b, c, d, x)=0$, then $x=\frac{-c+\sqrt{\Delta(b, c, d)}}{2 \cdot b}$ or $x=$ $\frac{-c-\sqrt{\Delta(b, c, d)}}{2 \cdot b}$.
(21) Suppose $a \neq 0$ and $p=\frac{c}{a}$ and $q=\frac{d}{a}$ and $\operatorname{Poly} 3(a, 0, c, d, x)=0$. Let given u, v. Suppose $x=u+v$ and $3 \cdot v \cdot u+p=0$. Then
(i) $x=\sqrt[3]{-\frac{d}{2 \cdot a}+\sqrt{\frac{d^{2}}{4 \cdot a^{2}}+\left(\frac{c}{3 \cdot a}\right)^{3}}}+\sqrt[3]{-\frac{d}{2 \cdot a}-\sqrt{\frac{d^{2}}{4 \cdot a^{2}}+\left(\frac{c}{3 \cdot a}\right)^{3}}}$, or
(ii) $x=\sqrt[3]{-\frac{d}{2 \cdot a}+\sqrt{\frac{d^{2}}{4 \cdot a^{2}}+\left(\frac{c}{3 \cdot a}\right)^{3}}}+\sqrt[3]{-\frac{d}{2 \cdot a}+\sqrt{\frac{d^{2}}{4 \cdot a^{2}}+\left(\frac{c}{3 \cdot a}\right)^{3}}}$, or
(iii) $x=\sqrt[3]{-\frac{d}{2 \cdot a}-\sqrt{\frac{d^{2}}{4 \cdot a^{2}}+\left(\frac{c}{3 \cdot a}\right)^{3}}}+\sqrt[3]{-\frac{d}{2 \cdot a}-\sqrt{\frac{d^{2}}{4 \cdot a^{2}}+\left(\frac{c}{3 \cdot a}\right)^{3}}}$.
(22) If $a \neq 0$ and $\Delta(a, b, c) \geq 0$ and $\operatorname{Poly} 3(a, b, c, 0, x)=0$, then $x=0$ or $x=\frac{-b+\sqrt{\Delta(a, b, c)}}{2 \cdot a}$ or $x=\frac{-b-\sqrt{\Delta(a, b, c)}}{2 \cdot a}$.
(23) If $a \neq 0$ and $\frac{c}{a}<0$ and $\operatorname{Poly} 3(a, 0, c, 0, x)=0$, then $x=0$ or $x=\sqrt{-\frac{c}{a}}$ or $x=-\sqrt{-\frac{c}{a}}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Jan Popiołek. Quadratic inequalities. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/quin_1.html.
[3] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/power.html
[4] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.

