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Summary. In this paper, we describe the definition of the fourth degree algebraic
equations and their properties. We clarify the relation between the four roots of this equation
and its coefficient. Also, the form of these roots for various conditions is discussed. This
solution is known as the Cardano solution.
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The articles [1], [4], [2], and [3] provide the notation and terminology for this paper.
Let a, b, c, d, e, x be real numbers. The functor Four(a,b,c,d,e,x) is defined as follows:

(Def. 1) Four(a,b,c,d,e,x) = a·x4 +b·x3 +c·x2 +d ·x+e.

Let a, b, c, d, e, x be real numbers. Observe that Four(a,b,c,d,e,x) is real.
We now state several propositions:

(1) Let a, c, e, x be real numbers. Supposea 6= 0 ande 6= 0 andc2− 4 · a · e > 0. Suppose

Four(a,0,c,0,e,x) = 0. Then x 6= 0 but x =
√

−c+
√

∆(a,c,e)
2·a or x =

√
−c−

√
∆(a,c,e)

2·a or x =

−
√

−c+
√

∆(a,c,e)
2·a or x =−

√
−c−

√
∆(a,c,e)

2·a .

(2) Let a, b, c, x, y be real numbers. Supposea 6= 0 andy = x+ 1
x . If Four(a,b,c,b,a,x) = 0,

thenx 6= 0 and(a·y2 +b·y+c)−2·a = 0.

(3) Let a, b, c, x, y be real numbers. Supposea 6= 0 and (b2 − 4 · a · c) + 8 · a2 > 0
and y = x + 1

x . Suppose Four(a,b,c,b,a,x) = 0. Let y1, y2 be real numbers. Suppose

y1 = −b+
√

(b2−4·a·c)+8·a2

2·a andy2 = −b−
√

(b2−4·a·c)+8·a2

2·a . Thenx 6= 0 but x = y1+
√

∆(1,−y1,1)
2

or x = y2+
√

∆(1,−y2,1)
2 or x = y1−

√
∆(1,−y1,1)

2 or x = y2−
√

∆(1,−y2,1)
2 .

(4) For every real numberx holdsx3 = x2 ·x andx3 ·x = x4 andx2 ·x2 = x4.

(5) For all real numbersx, y such thatx+ y 6= 0 holds(x+ y)4 = (x3 +(3 · y · x2 +3 · y2 · x)+
y3) ·x+(x3 +(3·y·x2 +3·y2 ·x)+y3) ·y.

(6) For all real numbersx, y such thatx+y 6= 0 holds(x+y)4 = x4 +(4·y·x3 +6·y2 ·x2 +4·
y3 ·x)+y4.

(7) Leta1, a2, a3, a4, a5, b1, b2, b3, b4, b5 be real numbers. Suppose that for every real number
x holds Four(a1,a2,a3,a4,a5,x) = Four(b1,b2,b3,b4,b5,x). Thena5 = b5 and((a1−a2)+
a3)−a4 = ((b1−b2)+b3)−b4 anda1 +a2 +a3 +a4 = b1 +b2 +b3 +b4.
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(8) Let a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 be real numbers. Suppose that for every real
numberx holds Four(a1,a2,a3,a4,a5,x) = Four(b1,b2,b3,b4,b5,x). Thena1−b1 = b3−a3

anda2−b2 = b4−a4.

(9) Leta1, a2, a3, a4, a5, b1, b2, b3, b4, b5 be real numbers. Suppose that for every real number
x holds Four(a1,a2,a3,a4,a5,x) = Four(b1,b2,b3,b4,b5,x). Thena1 = b1 anda2 = b2 and
a3 = b3 anda4 = b4 anda5 = b5.

Let a1, x1, x2, x3, x4, x be real numbers. The functor Four0(a1,x1,x2,x3,x4,x) is defined as
follows:

(Def. 2) Four0(a1,x1,x2,x3,x4,x) = a1 · ((x−x1) · (x−x2) · (x−x3) · (x−x4)).

Let a1, x1, x2, x3, x4, x be real numbers. One can check that Four0(a1,x1,x2,x3,x4,x) is real.
Next we state four propositions:

(10) Let a1, a2, a3, a4, a5, x, x1, x2, x3, x4 be real numbers. Supposea1 6= 0. Suppose
that for every real numberx holds Four(a1,a2,a3,a4,a5,x) = Four0(a1,x1,x2,x3,x4,x). Then
a1·x4+a2·x3+a3·x2+a4·x+a5

a1
= ((x2 ·x2− (x1 +x2 +x3) · (x2 ·x))+(x1 ·x3 +x2 ·x3 +x1 ·x2) ·x2)−

x1 ·x2 ·x3 ·x− (x−x1) · (x−x2) · (x−x3) ·x4.

(11) Let a1, a2, a3, a4, a5, x, x1, x2, x3, x4 be real numbers. Supposea1 6= 0. Suppose
that for every real numberx holds Four(a1,a2,a3,a4,a5,x) = Four0(a1,x1,x2,x3,x4,x). Then
a1·x4+a2·x3+a3·x2+a4·x+a5

a1
= (((x4−(x1+x2+x3+x4) ·x3)+(x1 ·x2+x1 ·x3+x1 ·x4+(x2 ·x3+

x2 ·x4)+x3 ·x4) ·x2)− (x1 ·x2 ·x3 +x1 ·x2 ·x4 +x1 ·x3 ·x4 +x2 ·x3 ·x4) ·x)+x1 ·x2 ·x3 ·x4.

(12) Let a1, a2, a3, a4, a5, x1, x2, x3, x4 be real numbers. Supposea1 6= 0 and for ev-
ery real numberx holds Four(a1,a2,a3,a4,a5,x) = Four0(a1,x1,x2,x3,x4,x). Then a2

a1
=

−(x1 +x2 +x3 +x4) and a3
a1

= x1 · x2 + x1 · x3 + x1 · x4 + (x2 · x3 + x2 · x4) + x3 · x4 and a4
a1

=
−(x1 ·x2 ·x3 +x1 ·x2 ·x4 +x1 ·x3 ·x4 +x2 ·x3 ·x4) and a5

a1
= x1 ·x2 ·x3 ·x4.

(13) Let a, k, y be real numbers. Supposea 6= 0. Suppose that for every real numberx holds
x4 +a4 = k ·a·x · (x2 +a2). Then(y4−k ·y3−k ·y)+1 = 0.
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