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Summary. We introduce the field of quotients over an integral domain following the
well-known construction using pairs over integral domains. In addition we define ring ho-
momorphisms and prove some basic facts about fields of quotients including their universal
property.
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The articles [11], [4], [14], [15], [12], [2], [3], [9], [10], [13], [7], [6], [1], [8], and [5] provide the
notation and terminology for this paper.

1. PRELIMINARIES

Let I be a non empty zero structure. The functorQ(I) is a subset of[: the carrier ofI , the carrier of
I :] and is defined by:

(Def. 1) For every setu holdsu ∈ Q(I) iff there exist elementsa, b of I such thatu = 〈〈a, b〉〉 and
b 6= 0I .

The following proposition is true

(1) For every non degenerated non empty multiplicative loop with zero structureI holdsQ(I)
is non empty.

Let I be a non degenerated non empty multiplicative loop with zero structure. Note thatQ(I) is
non empty.

Next we state the proposition

(2) Let I be a non degenerated non empty multiplicative loop with zero structure andu be an
element ofQ(I). Thenu2 6= 0I .

Let I be a non degenerated non empty multiplicative loop with zero structure and letu be an
element ofQ(I). Thenu1 is an element ofI . Thenu2 is an element ofI .

Let I be a non degenerated integral domain-like non empty double loop structure and letu, v be
elements ofQ(I). The functoru+v yields an element ofQ(I) and is defined by:

(Def. 2) u+v = 〈〈u1 ·v2 +v1 ·u2, u2 ·v2〉〉.

Let I be a non degenerated integral domain-like non empty double loop structure and letu, v be
elements ofQ(I). The functoru·v yields an element ofQ(I) and is defined as follows:

(Def. 3) u·v = 〈〈u1 ·v1, u2 ·v2〉〉.
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Next we state two propositions:

(4)1 Let I be a non degenerated integral domain-like associative commutative Abelian add-
associative distributive non empty double loop structure andu, v, w be elements ofQ(I).
Thenu+(v+w) = (u+v)+w andu+v = v+u.

(5) Let I be a non degenerated integral domain-like associative commutative Abelian non
empty double loop structure andu, v, w be elements ofQ(I). Thenu · (v ·w) = (u · v) ·w
andu·v = v·u.

Let I be a non degenerated integral domain-like associative commutative Abelian add-associative
distributive non empty double loop structure and letu, v be elements ofQ(I). Let us notice that the
functoru+v is commutative.

Let I be a non degenerated integral domain-like associative commutative Abelian non empty
double loop structure and letu, v be elements ofQ(I). Let us notice that the functoru·v is commu-
tative.

Let I be a non degenerated non empty multiplicative loop with zero structure and letu be an
element ofQ(I). The functor QClass(u) is a subset ofQ(I) and is defined by:

(Def. 4) For every elementz of Q(I) holdsz∈ QClass(u) iff z1 ·u2 = z2 ·u1.

We now state the proposition

(6) Let I be a non degenerated commutative non empty multiplicative loop with zero structure
andu be an element ofQ(I). Thenu∈ QClass(u).

Let I be a non degenerated commutative non empty multiplicative loop with zero structure and
let u be an element ofQ(I). Observe that QClass(u) is non empty.

Let I be a non degenerated non empty multiplicative loop with zero structure. The functor
Quot(I) is a family of subsets ofQ(I) and is defined by:

(Def. 5) For every subsetA of Q(I) holdsA∈Quot(I) iff there exists an elementu of Q(I) such that
A = QClass(u).

Next we state the proposition

(7) For every non degenerated non empty multiplicative loop with zero structureI holds
Quot(I) is non empty.

Let I be a non degenerated non empty multiplicative loop with zero structure. Observe that
Quot(I) is non empty.

Next we state two propositions:

(8) Let I be a non degenerated integral domain-like commutative ring andu, v be elements of
Q(I). If there exists an elementw of Quot(I) such thatu∈ w andv∈ w, thenu1 ·v2 = v1 ·u2.

(9) Let I be a non degenerated integral domain-like commutative ring andu, v be elements of
Quot(I). If u meetsv, thenu = v.

2. DEFINING THE OPERATIONS

Let I be a non degenerated integral domain-like commutative ring and letu, v be elements of
Quot(I). The functoru+q v yielding an element of Quot(I) is defined by the condition (Def. 6).

(Def. 6) Letzbe an element ofQ(I). Thenz∈ u+q v if and only if there exist elementsa, b of Q(I)
such thata∈ u andb∈ v andz1 · (a2 ·b2) = z2 · (a1 ·b2 +b1 ·a2).

Let I be a non degenerated integral domain-like commutative ring and letu, v be elements of
Quot(I). The functoru·q v yielding an element of Quot(I) is defined by the condition (Def. 7).

1 The proposition (3) has been removed.
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(Def. 7) Letz be an element ofQ(I). Thenz∈ u ·q v if and only if there exist elementsa, b of Q(I)
such thata∈ u andb∈ v andz1 · (a2 ·b2) = z2 · (a1 ·b1).

Let I be a non degenerated non empty multiplicative loop with zero structure and letu be an
element ofQ(I). Then QClass(u) is an element of Quot(I).

Next we state two propositions:

(11)2 For every non degenerated integral domain-like commutative ringI and for all elementsu,
v of Q(I) holds QClass(u)+q QClass(v) = QClass(u+v).

(12) For every non degenerated integral domain-like commutative ringI and for all elementsu,
v of Q(I) holds QClass(u) ·q QClass(v) = QClass(u·v).

Let I be a non degenerated integral domain-like commutative ring. The functor 0q(I) yielding
an element of Quot(I) is defined by:

(Def. 8) For every elementz of Q(I) holdsz∈ 0q(I) iff z1 = 0I .

Let I be a non degenerated integral domain-like commutative ring. The functor 1q(I) yields an
element of Quot(I) and is defined by:

(Def. 9) For every elementz of Q(I) holdsz∈ 1q(I) iff z1 = z2.

Let I be a non degenerated integral domain-like commutative ring and letu be an element of
Quot(I). The functor−qu yielding an element of Quot(I) is defined as follows:

(Def. 10) For every elementz of Q(I) holdsz∈ −qu iff there exists an elementa of Q(I) such that
a∈ u andz1 ·a2 = z2 ·−a1.

Let I be a non degenerated integral domain-like commutative ring and letu be an element of
Quot(I). Let us assume thatu 6= 0q(I). The functoru−1

q yields an element of Quot(I) and is defined
by:

(Def. 11) For every elementz of Q(I) holdsz∈ u−1
q iff there exists an elementa of Q(I) such that

a∈ u andz1 ·a1 = z2 ·a2.

Next we state several propositions:

(13) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of Quot(I). Thenu+q (v+q w) = (u+q v)+q w andu+q v = v+q u.

(14) Let I be a non degenerated integral domain-like commutative ring andu be an element of
Quot(I). Thenu+q 0q(I) = u and 0q(I)+q u = u.

(15) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of Quot(I). Thenu·q (v·q w) = (u·q v) ·q w andu·q v = v·q u.

(16) Let I be a non degenerated integral domain-like commutative ring andu be an element of
Quot(I). Thenu·q 1q(I) = u and 1q(I) ·q u = u.

(17) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of Quot(I). Then(u+q v) ·q w = (u·q w)+q (v·q w).

(18) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of Quot(I). Thenu·q (v+q w) = (u·q v)+q (u·q w).

(19) Let I be a non degenerated integral domain-like commutative ring andu be an element of
Quot(I). Thenu+q−qu = 0q(I) and−qu+q u = 0q(I).

(20) Let I be a non degenerated integral domain-like commutative ring andu be an element of
Quot(I). If u 6= 0q(I), thenu·q u−1

q = 1q(I) andu−1
q ·q u = 1q(I).

2 The proposition (10) has been removed.
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(21) For every non degenerated integral domain-like commutative ringI holds 1q(I) 6= 0q(I).

Let I be a non degenerated integral domain-like commutative ring. The functor+q(I) yields a
binary operation on Quot(I) and is defined by:

(Def. 12) For all elementsu, v of Quot(I) holds(+q(I))(u, v) = u+q v.

Let I be a non degenerated integral domain-like commutative ring. The functor·q(I) yielding a
binary operation on Quot(I) is defined as follows:

(Def. 13) For all elementsu, v of Quot(I) holds(·q(I))(u, v) = u·q v.

Let I be a non degenerated integral domain-like commutative ring. The functor−q(I) yields a
unary operation on Quot(I) and is defined as follows:

(Def. 14) For every elementu of Quot(I) holds(−q(I))(u) = −qu.

Let I be a non degenerated integral domain-like commutative ring. The functor−1
q (I) yielding a

unary operation on Quot(I) is defined by:

(Def. 15) For every elementu of Quot(I) holds(−1
q (I))(u) = u−1

q .

The following propositions are true:

(22) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of Quot(I). Then(+q(I))((+q(I))(u, v), w) = (+q(I))(u, (+q(I))(v, w)).

(23) For every non degenerated integral domain-like commutative ringI and for all elementsu,
v of Quot(I) holds(+q(I))(u, v) = (+q(I))(v, u).

(24) Let I be a non degenerated integral domain-like commutative ring andu be an element of
Quot(I). Then(+q(I))(u, 0q(I)) = u and(+q(I))(0q(I), u) = u.

(25) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of Quot(I). Then(·q(I))((·q(I))(u, v), w) = (·q(I))(u, (·q(I))(v, w)).

(26) For every non degenerated integral domain-like commutative ringI and for all elementsu,
v of Quot(I) holds(·q(I))(u, v) = (·q(I))(v, u).

(27) Let I be a non degenerated integral domain-like commutative ring andu be an element of
Quot(I). Then(·q(I))(u, 1q(I)) = u and(·q(I))(1q(I), u) = u.

(28) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of Quot(I). Then(·q(I))((+q(I))(u, v), w) = (+q(I))((·q(I))(u, w), (·q(I))(v, w)).

(29) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of Quot(I). Then(·q(I))(u, (+q(I))(v, w)) = (+q(I))((·q(I))(u, v), (·q(I))(u, w)).

(30) Let I be a non degenerated integral domain-like commutative ring andu be an element of
Quot(I). Then(+q(I))(u, (−q(I))(u)) = 0q(I) and(+q(I))((−q(I))(u), u) = 0q(I).

(31) Let I be a non degenerated integral domain-like commutative ring andu be an element of
Quot(I). If u 6= 0q(I), then(·q(I))(u, (−1

q (I))(u)) = 1q(I) and(·q(I))((−1
q (I))(u), u) = 1q(I).

3. DEFINING THE FIELD OF QUOTIENTS

Let I be a non degenerated integral domain-like commutative ring. The field of quotients ofI
yielding a strict double loop structure is defined as follows:

(Def. 16) The field of quotients ofI = 〈Quot(I),+q(I), ·q(I),1q(I),0q(I)〉.

Let I be a non degenerated integral domain-like commutative ring. Observe that the field of
quotients ofI is non empty.

One can prove the following propositions:
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(32) LetI be a non degenerated integral domain-like commutative ring. Then

(i) the carrier of the field of quotients ofI = Quot(I),

(ii) the addition of the field of quotients ofI = +q(I),

(iii) the multiplication of the field of quotients ofI = ·q(I),
(iv) the zero of the field of quotients ofI = 0q(I), and

(v) the unity of the field of quotients ofI = 1q(I).

(33) Let I be a non degenerated integral domain-like commutative ring andu, v be elements of
the field of quotients ofI . Then(+q(I))(u, v) is an element of the field of quotients ofI .

(34) Let I be a non degenerated integral domain-like commutative ring andu be an element of
the field of quotients ofI . Then(−q(I))(u) is an element of the field of quotients ofI .

(35) Let I be a non degenerated integral domain-like commutative ring andu, v be elements of
the field of quotients ofI . Then(·q(I))(u, v) is an element of the field of quotients ofI .

(36) Let I be a non degenerated integral domain-like commutative ring andu be an element of
the field of quotients ofI . Then(−1

q (I))(u) is an element of the field of quotients ofI .

(37) Let I be a non degenerated integral domain-like commutative ring andu, v be elements of
the field of quotients ofI . Thenu+v = (+q(I))(u, v).

Let I be a non degenerated integral domain-like commutative ring. Observe that the field of
quotients ofI is add-associative, right zeroed, and right complementable.

We now state a number of propositions:

(38) Let I be a non degenerated integral domain-like commutative ring andu be an element of
the field of quotients ofI . Then−u = (−q(I))(u).

(39) Let I be a non degenerated integral domain-like commutative ring andu, v be elements of
the field of quotients ofI . Thenu·v = (·q(I))(u, v).

(40) Let I be a non degenerated integral domain-like commutative ring. Then
1the field of quotients ofI = 1q(I) and 0the field of quotients ofI = 0q(I).

(41) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of the field of quotients ofI . Then(u+v)+w = u+(v+w).

(42) Let I be a non degenerated integral domain-like commutative ring andu, v be elements of
the field of quotients ofI . Thenu+v = v+u.

(43) Let I be a non degenerated integral domain-like commutative ring andu be an element of
the field of quotients ofI . Thenu+0the field of quotients ofI = u.

(45)3 Let I be a non degenerated integral domain-like commutative ring andu be an element of
the field of quotients ofI . Then1the field of quotients ofI ·u = u.

(46) Let I be a non degenerated integral domain-like commutative ring andu, v be elements of
the field of quotients ofI . Thenu·v = v·u.

(47) Let I be a non degenerated integral domain-like commutative ring andu, v, w be elements
of the field of quotients ofI . Then(u·v) ·w = u· (v·w).

(48) Let I be a non degenerated integral domain-like commutative ring andu be an element of
the field of quotients ofI . Supposeu 6= 0the field of quotients ofI . Then there exists an elementv
of the field of quotients ofI such thatu·v = 1the field of quotients ofI .

3 The proposition (44) has been removed.
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(49) Let I be a non degenerated integral domain-like commutative ring. Then the field of quo-
tients ofI is an add-associative right zeroed right complementable Abelian commutative as-
sociative left unital distributive field-like non degenerated non empty double loop structure.

Let I be a non degenerated integral domain-like commutative ring. One can check that the field
of quotients ofI is Abelian, commutative, associative, left unital, distributive, field-like, and non
degenerated.

We now state the proposition

(50) Let I be a non degenerated integral domain-like commutative ring andx be an element
of the field of quotients ofI . Supposex 6= 0the field of quotients ofI . Let a be an element ofI .
Supposea 6= 0I . Let u be an element ofQ(I). Supposex = QClass(u) andu = 〈〈a, 1I 〉〉. Let v
be an element ofQ(I). If v = 〈〈1I , a〉〉, thenx−1 = QClass(v).

Let us note that every add-associative right zeroed right complementable commutative associa-
tive left unital distributive field-like non degenerated non empty double loop structure is integral
domain-like and right unital.

Let us note that there exists a non empty double loop structure which is add-associative, right
zeroed, right complementable, Abelian, commutative, associative, left unital, distributive, field-like,
and non degenerated.

Let F be a commutative associative left unital distributive field-like non empty double loop
structure and letx, y be elements ofF . The functorxy yielding an element ofF is defined as follows:

(Def. 17) x
y = x ·y−1.

The following two propositions are true:

(51) LetF be a non degenerated field-like commutative ring anda, b, c, d be elements ofF . If
b 6= 0F andd 6= 0F , then a

b ·
c
d = a·c

b·d .

(52) LetF be a non degenerated field-like commutative ring anda, b, c, d be elements ofF . If
b 6= 0F andd 6= 0F , then a

b + c
d = a·d+c·b

b·d .

4. DEFINING RING HOMOMORPHISMS

Let R, Sbe non empty double loop structures and letf be a map fromR into S. We say thatf is ring
homomorphism if and only if:

(Def. 21)4 f is additive, multiplicative, and unity-preserving.

Let R, Sbe non empty double loop structures. Note that every map fromR into Swhich is ring
homomorphism is also additive, multiplicative, and unity-preserving and every map fromR into S
which is additive, multiplicative, and unity-preserving is also ring homomorphism.

Let R, Sbe non empty double loop structures and letf be a map fromR into S. We say thatf is
ring epimorphism if and only if:

(Def. 22) f is ring homomorphism and rngf = the carrier ofS.

We say thatf is ring monomorphism if and only if:

(Def. 23) f is ring homomorphism and one-to-one.

We introducef is embedding as a synonym off is ring monomorphism.
Let R, Sbe non empty double loop structures and letf be a map fromR into S. We say thatf is

ring isomorphism if and only if:

(Def. 24) f is ring monomorphism and ring epimorphism.

4 The definitions (Def. 18)–(Def. 20) have been removed.
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Let R, Sbe non empty double loop structures. Observe that every map fromR into Swhich is
ring isomorphism is also ring monomorphism and ring epimorphism and every map fromR into S
which is ring monomorphism and ring epimorphism is also ring isomorphism.

The following propositions are true:

(53) For all ringsR, S and for every mapf from R into S such thatf is ring homomorphism
holds f (0R) = 0S.

(54) LetR, Sbe rings andf be a map fromR into S. Supposef is ring monomorphism. Letx
be an element ofR. Then f (x) = 0S if and only if x = 0R.

(55) Let R, S be non degenerated field-like commutative rings andf be a map fromR into S.
Supposef is ring homomorphism. Letx be an element ofR. If x 6= 0R, then f (x−1) = f (x)−1.

(56) Let R, S be non degenerated field-like commutative rings andf be a map fromR into S.
Supposef is ring homomorphism. Letx, y be elements ofR. If y 6= 0R, then f (x · y−1) =
f (x) · f (y)−1.

(57) LetR, S, T be rings andf be a map fromR into S. Supposef is ring homomorphism. Let
g be a map fromS into T. If g is ring homomorphism, theng· f is ring homomorphism.

(58) For every non empty double loop structureRholds idR is ring homomorphism.

Let Rbe a non empty double loop structure. Note that idR is ring homomorphism.
Let R, Sbe non empty double loop structures. We say thatR is embedded inS if and only if:

(Def. 25) There exists a map fromR into Swhich is ring monomorphism.

Let R, Sbe non empty double loop structures. We say thatR is ring isomorphic toS if and only
if:

(Def. 26) There exists a map fromR into Swhich is ring isomorphism.

Let us note that the predicateR is ring isomorphic toS is symmetric.

5. SOME FURTHER PROPERTIES

Let I be a non empty zero structure and letx, y be elements ofI . Let us assume thaty 6= 0I . The
functor quotient(x,y) yielding an element ofQ(I) is defined as follows:

(Def. 27) quotient(x,y) = 〈〈x, y〉〉.

Let I be a non degenerated integral domain-like commutative ring. The canonical homomor-
phism of I into quotient field is a map fromI into the field of quotients ofI and is defined as
follows:

(Def. 28) For every elementx of I holds (the canonical homomorphism ofI into quotient field)(x) =
QClass(quotient(x,1I )).

Next we state four propositions:

(59) Let I be a non degenerated integral domain-like commutative ring. Then the canonical
homomorphism ofI into quotient field is ring homomorphism.

(60) Let I be a non degenerated integral domain-like commutative ring. Then the canonical
homomorphism ofI into quotient field is embedding.

(61) Let I be a non degenerated integral domain-like commutative ring. ThenI is embedded in
the field of quotients ofI .

(62) Let F be a non degenerated field-like integral domain-like commutative ring. ThenF is
ring isomorphic to the field of quotients ofF .
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Let I be a non degenerated integral domain-like commutative ring. One can verify that the field
of quotients ofI is integral domain-like, right unital, and right distributive.

Next we state the proposition

(63) Let I be a non degenerated integral domain-like commutative ring. Then the field of quo-
tients of the field of quotients ofI is ring isomorphic to the field of quotients ofI .

Let I , F be non empty double loop structures and letf be a map fromI into F . We say thatF is
a field of quotients forI via f if and only if the conditions (Def. 29) are satisfied.

(Def. 29)(i) f is ring monomorphism, and

(ii) for every add-associative right zeroed right complementable Abelian commutative asso-
ciative left unital distributive field-like non degenerated non empty double loop structureF ′

and for every mapf ′ from I into F ′ such thatf ′ is ring monomorphism there exists a maph
from F into F ′ such thath is ring homomorphism andh· f = f ′ and for every maph′ from F
into F ′ such thath′ is ring homomorphism andh′ · f = f ′ holdsh′ = h.

One can prove the following propositions:

(64) Let I be a non degenerated integral domain-like commutative ring. Then there exists an
add-associative right zeroed right complementable Abelian commutative associative left uni-
tal distributive field-like non degenerated non empty double loop structureF and there exists
a mapf from I into F such thatF is a field of quotients forI via f .

(65) Let I be an integral domain-like commutative ring,F , F ′ be add-associative right zeroed
right complementable Abelian commutative associative left unital distributive field-like non
degenerated non empty double loop structures,f be a map fromI into F , and f ′ be a map
from I into F ′. SupposeF is a field of quotients forI via f andF ′ is a field of quotients forI
via f ′. ThenF is ring isomorphic toF ′.
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[1] Czesław Bylínski. Binary operations.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/binop_1.html.
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