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Summary. A continuation of [17]. As the example of real unitary spaces, we intro-
duce the arithmetic addition and multiplication in the set of square sum able real sequences
and introduce the scaler products also. This set has the structure of the Hilbert space.
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The articles [15], [18], [4], [1], [16], [6], [19], [2], [3], [17], [10], [11], [12], [13], [9], [7], [8], [14],
and [5] provide the notation and terminology for this paper.

1. HILBERT SPACE OFREAL SEQUENCES

One can prove the following propositions:

(1) The carrier of l2-Space= the set of l2-real sequences and for every setx holds x is an
element of l2-Space iffx is a sequence of real numbers and idseq(x) idseq(x) is summable
and for every setx holdsx is a vector of l2-Space iffx is a sequence of real numbers and
idseq(x) idseq(x) is summable and 0l2-Space= Zeroseq and for every vectoru of l2-Space
holds u = idseq(u) and for all vectorsu, v of l2-Space holdsu+ v = idseq(u) + idseq(v)
and for every real numberr and for every vectoru of l2-Space holdsr · u = r idseq(u)
and for every vectoru of l2-Space holds−u = −idseq(u) and idseq(−u) = −idseq(u) and
for all vectorsu, v of l2-Space holdsu− v = idseq(u)− idseq(v) and for all vectorsv, w
of l2-Space holds idseq(v) idseq(w) is summable and for all vectorsv, w of l2-Space holds
(v|w) = ∑(idseq(v) idseq(w)).

(2) Letx, y, zbe points of l2-Space anda be a real number. Then(x|x) = 0 iff x = 0l2-Spaceand
0≤ (x|x) and(x|y) = (y|x) and((x+y)|z) = (x|z)+(y|z) and((a·x)|y) = a· (x|y).

Let us observe that l2-Space is real unitary space-like.
Next we state the proposition

(3) For every sequencev1 of l2-Space such thatv1 is a Cauchy sequence holdsv1 is convergent.

Let us observe that l2-Space is Hilbert and complete.
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2. MISCELLANEOUS

We now state several propositions:

(4) Let r1 be a sequence of real numbers. Suppose for every natural numbern holds 0≤ r1(n)
andr1 is summable. Then

(i) for every natural numbern holdsr1(n)≤ (∑κ
α=0(r1)(α))κ∈N(n),

(ii) for every natural numbern holds 0≤ (∑κ
α=0(r1)(α))κ∈N(n),

(iii) for every natural numbern holds(∑κ
α=0(r1)(α))κ∈N(n)≤ ∑ r1, and

(iv) for every natural numbern holdsr1(n)≤ ∑ r1.

(5) For all real numbersx, y holds(x+y) · (x+y)≤ 2·x·x+2·y·y and for all real numbersx,
y holdsx ·x≤ 2· (x−y) · (x−y)+2·y·y.

(6) Let e be a real number ands1 be a sequence of real numbers. Supposes1 is convergent
and there exists a natural numberk such that for every natural numberi such thatk≤ i holds
s1(i)≤ e. Then lims1 ≤ e.

(7) Let c be a real number ands1 be a sequence of real numbers. Supposes1 is convergent.
Let r1 be a sequence of real numbers. Suppose that for every natural numberi holdsr1(i) =
(s1(i)−c) · (s1(i)−c). Thenr1 is convergent and limr1 = (lim s1−c) · (lim s1−c).

(8) Let c be a real number ands1, s2 be sequences of real numbers. Supposes1 is convergent
ands2 is convergent. Letr1 be a sequence of real numbers. Suppose that for every natural
numberi holds r1(i) = (s1(i)− c) · (s1(i)− c) + s2(i). Then r1 is convergent and limr1 =
(lim s1−c) · (lim s1−c)+ lim s2.
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