Operations on Subspaces in Real Unitary Space

Noboru Endou
Gifu National College of Technology

Takashi Mitsuishi
Miyagi University

Yasunari Shidama
Shinshu University
Nagano

Summary. In this article, we extend an operation of real linear space to real unitary space. We show theorems proved in [8] on real unitary space.

MML Identifier: RUSUB_2.
WWW:http://mizar.org/JFM/Vol14/rusub_2.html

The articles [7], [3], [10], [11], [2], [1], [13], [12], [6], [9], [5], and [4] provide the notation and terminology for this paper.

1. Definitions of Sum and Intersection of Subspaces

Let V be a real unitary space and let W_{1}, W_{2} be subspaces of V. The functor $W_{1}+W_{2}$ yields a strict subspace of V and is defined as follows:
(Def. 1) The carrier of $W_{1}+W_{2}=\{v+u ; v$ ranges over vectors of V, u ranges over vectors of V : $\left.v \in W_{1} \wedge u \in W_{2}\right\}$.

Let V be a real unitary space and let W_{1}, W_{2} be subspaces of V. The functor $W_{1} \cap W_{2}$ yielding a strict subspace of V is defined as follows:
(Def. 2) The carrier of $W_{1} \cap W_{2}=\left(\right.$ the carrier of $\left.W_{1}\right) \cap\left(\right.$ the carrier of $\left.W_{2}\right)$.

2. Theorems of Sum and Intersecton of Subspaces

The following propositions are true:
(1) Let V be a real unitary space, W_{1}, W_{2} be subspaces of V, and x be a set. Then $x \in W_{1}+W_{2}$ if and only if there exist vectors v_{1}, v_{2} of V such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $x=v_{1}+v_{2}$.
(2) Let V be a real unitary space, W_{1}, W_{2} be subspaces of V, and v be a vector of V. If $v \in W_{1}$ or $v \in W_{2}$, then $v \in W_{1}+W_{2}$.
(3) Let V be a real unitary space, W_{1}, W_{2} be subspaces of V, and x be a set. Then $x \in W_{1} \cap W_{2}$ if and only if $x \in W_{1}$ and $x \in W_{2}$.
(4) For every real unitary space V and for every strict subspace W of V holds $W+W=W$.
(5) For every real unitary space V and for all subspaces W_{1}, W_{2} of V holds $W_{1}+W_{2}=W_{2}+W_{1}$
(6) For every real unitary space V and for all subspaces W_{1}, W_{2}, W_{3} of V holds $W_{1}+\left(W_{2}+\right.$ $\left.W_{3}\right)=\left(W_{1}+W_{2}\right)+W_{3}$.
(7) Let V be a real unitary space and W_{1}, W_{2} be subspaces of V. Then W_{1} is a subspace of $W_{1}+W_{2}$ and W_{2} is a subspace of $W_{1}+W_{2}$.
(8) Let V be a real unitary space, W_{1} be a subspace of V, and W_{2} be a strict subspace of V. Then W_{1} is a subspace of W_{2} if and only if $W_{1}+W_{2}=W_{2}$.
(9) For every real unitary space V and for every strict subspace W of V holds $\mathbf{0}_{V}+W=W$ and $W+\mathbf{0}_{V}=W$.
(10) Let V be a real unitary space. Then $\mathbf{0}_{V}+\Omega_{V}=$ the unitary space structure of V and $\Omega_{V}+$ $\mathbf{0}_{V}=$ the unitary space structure of V.
(11) Let V be a real unitary space and W be a subspace of V. Then $\Omega_{V}+W=$ the unitary space structure of V and $W+\Omega_{V}=$ the unitary space structure of V.
(12) For every strict real unitary space V holds $\Omega_{V}+\Omega_{V}=V$.
(13) For every real unitary space V and for every strict subspace W of V holds $W \cap W=W$.
(14) For every real unitary space V and for all subspaces W_{1}, W_{2} of V holds $W_{1} \cap W_{2}=W_{2} \cap W_{1}$.
(15) For every real unitary space V and for all subspaces W_{1}, W_{2}, W_{3} of V holds $W_{1} \cap\left(W_{2} \cap W_{3}\right)=$ $\left(W_{1} \cap W_{2}\right) \cap W_{3}$.
(16) Let V be a real unitary space and W_{1}, W_{2} be subspaces of V. Then $W_{1} \cap W_{2}$ is a subspace of W_{1} and $W_{1} \cap W_{2}$ is a subspace of W_{2}.
(17) Let V be a real unitary space, W_{2} be a subspace of V, and W_{1} be a strict subspace of V. Then W_{1} is a subspace of W_{2} if and only if $W_{1} \cap W_{2}=W_{1}$.
(18) For every real unitary space V and for every subspace W of V holds $\mathbf{0}_{V} \cap W=\mathbf{0}_{V}$ and $W \cap \mathbf{0}_{V}=\mathbf{0}_{V}$.
(19) For every real unitary space V holds $\mathbf{0}_{V} \cap \Omega_{V}=\mathbf{0}_{V}$ and $\Omega_{V} \cap \mathbf{0}_{V}=\mathbf{0}_{V}$.
(20) For every real unitary space V and for every strict subspace W of V holds $\Omega_{V} \cap W=W$ and $W \cap \Omega_{V}=W$.
(21) For every strict real unitary space V holds $\Omega_{V} \cap \Omega_{V}=V$.
(22) For every real unitary space V and for all subspaces W_{1}, W_{2} of V holds $W_{1} \cap W_{2}$ is a subspace of $W_{1}+W_{2}$.
(23) For every real unitary space V and for every subspace W_{1} of V and for every strict subspace W_{2} of V holds $W_{1} \cap W_{2}+W_{2}=W_{2}$.
(24) For every real unitary space V and for every subspace W_{1} of V and for every strict subspace W_{2} of V holds $W_{2} \cap\left(W_{2}+W_{1}\right)=W_{2}$.
(25) For every real unitary space V and for all subspaces W_{1}, W_{2}, W_{3} of V holds $W_{1} \cap W_{2}+W_{2} \cap$ W_{3} is a subspace of $W_{2} \cap\left(W_{1}+W_{3}\right)$.
(26) Let V be a real unitary space and W_{1}, W_{2}, W_{3} be subspaces of V. If W_{1} is a subspace of W_{2}, then $W_{2} \cap\left(W_{1}+W_{3}\right)=W_{1} \cap W_{2}+W_{2} \cap W_{3}$.
(27) For every real unitary space V and for all subspaces W_{1}, W_{2}, W_{3} of V holds $W_{2}+W_{1} \cap W_{3}$ is a subspace of $\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(28) Let V be a real unitary space and W_{1}, W_{2}, W_{3} be subspaces of V. If W_{1} is a subspace of W_{2}, then $W_{2}+W_{1} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap\left(W_{2}+W_{3}\right)$.
(29) Let V be a real unitary space and W_{1}, W_{2}, W_{3} be subspaces of V. If W_{1} is a strict subspace of W_{3}, then $W_{1}+W_{2} \cap W_{3}=\left(W_{1}+W_{2}\right) \cap W_{3}$.
(30) For every real unitary space V and for all strict subspaces W_{1}, W_{2} of V holds $W_{1}+W_{2}=W_{2}$ iff $W_{1} \cap W_{2}=W_{1}$.
(31) Let V be a real unitary space, W_{1} be a subspace of V, and W_{2}, W_{3} be strict subspaces of V. If W_{1} is a subspace of W_{2}, then $W_{1}+W_{3}$ is a subspace of $W_{2}+W_{3}$.
(32) Let V be a real unitary space and W_{1}, W_{2} be subspaces of V. Then there exists a subspace W of V such that the carrier of $W=\left(\right.$ the carrier of $\left.W_{1}\right) \cup\left(\right.$ the carrier of $\left.W_{2}\right)$ if and only if W_{1} is a subspace of W_{2} or W_{2} is a subspace of W_{1}.

3. Introduction of a Set of Subspaces of Real Unitary Space

Let V be a real unitary space. The functor Subspaces V yielding a set is defined as follows:
(Def. 3) For every set x holds $x \in$ Subspaces V iff x is a strict subspace of V.
Let V be a real unitary space. Note that Subspaces V is non empty.
The following proposition is true
(33) For every strict real unitary space V holds $V \in$ Subspaces V.

4. Definition of the Direct Sum and Linear Complement of Subspaces

Let V be a real unitary space and let W_{1}, W_{2} be subspaces of V. We say that V is the direct sum of W_{1} and W_{2} if and only if:
(Def. 4) The unitary space structure of $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\mathbf{0}_{V}$.
Let V be a real unitary space and let W be a subspace of V. A subspace of V is called a linear complement of W if:
(Def. 5) V is the direct sum of it and W.
Let V be a real unitary space and let W be a subspace of V. Observe that there exists a linear complement of W which is strict.

The following two propositions are true:
(34) Let V be a real unitary space and W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Then W_{2} is a linear complement of W_{1}.
(35) Let V be a real unitary space, W be a subspace of V, and L be a linear complement of W. Then V is the direct sum of L and W and the direct sum of W and L.

5. Theorems Concerning the Sum, Linear Complement and Coset of Subspace

One can prove the following propositions:
(36) Let V be a real unitary space, W be a subspace of V, and L be a linear complement of W. Then $W+L=$ the unitary space structure of V and $L+W=$ the unitary space structure of V.
(37) Let V be a real unitary space, W be a subspace of V, and L be a linear complement of W. Then $W \cap L=\mathbf{0}_{V}$ and $L \cap W=\mathbf{0}_{V}$.
(38) Let V be a real unitary space and W_{1}, W_{2} be subspaces of V. If V is the direct sum of W_{1} and W_{2}, then V is the direct sum of W_{2} and W_{1}.
(39) Every real unitary space V is the direct sum of $\mathbf{0}_{V}$ and Ω_{V} and the direct sum of Ω_{V} and $\mathbf{0}_{V}$.
(40) Let V be a real unitary space, W be a subspace of V, and L be a linear complement of W. Then W is a linear complement of L.
(41) For every real unitary space V holds $\mathbf{0}_{V}$ is a linear complement of Ω_{V} and Ω_{V} is a linear complement of $\mathbf{0}_{V}$.
(42) Let V be a real unitary space, W_{1}, W_{2} be subspaces of V, C_{1} be a coset of W_{1}, and C_{2} be a coset of W_{2}. If C_{1} meets C_{2}, then $C_{1} \cap C_{2}$ is a coset of $W_{1} \cap W_{2}$.
(43) Let V be a real unitary space and W_{1}, W_{2} be subspaces of V. Then V is the direct sum of W_{1} and W_{2} if and only if for every $\operatorname{coset} C_{1}$ of W_{1} and for every coset C_{2} of W_{2} there exists a vector v of V such that $C_{1} \cap C_{2}=\{v\}$.

6. Decomposition of a Vector of Real Unitary Space

Next we state three propositions:
(44) Let V be a real unitary space and W_{1}, W_{2} be subspaces of V. Then $W_{1}+W_{2}=$ the unitary space structure of V if and only if for every vector v of V there exist vectors v_{1}, v_{2} of V such that $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $v=v_{1}+v_{2}$.
(45) Let V be a real unitary space, W_{1}, W_{2} be subspaces of V, and $v, v_{1}, v_{2}, u_{1}, u_{2}$ be vectors of V. Suppose V is the direct sum of W_{1} and W_{2} and $v=v_{1}+v_{2}$ and $v=u_{1}+u_{2}$ and $v_{1} \in W_{1}$ and $u_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $u_{2} \in W_{2}$. Then $v_{1}=u_{1}$ and $v_{2}=u_{2}$.
(46) Let V be a real unitary space and W_{1}, W_{2} be subspaces of V. Suppose that
(i) $\quad V=W_{1}+W_{2}$, and
(ii) there exists a vector v of V such that for all vectors $v_{1}, v_{2}, u_{1}, u_{2}$ of V such that $v=v_{1}+v_{2}$ and $v=u_{1}+u_{2}$ and $v_{1} \in W_{1}$ and $u_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $u_{2} \in W_{2}$ holds $v_{1}=u_{1}$ and $v_{2}=u_{2}$. Then V is the direct sum of W_{1} and W_{2}.

Let V be a real unitary space, let v be a vector of V, and let W_{1}, W_{2} be subspaces of V. Let us assume that V is the direct sum of W_{1} and W_{2}. The functor $v_{\left\langle W_{1}, W_{2}\right\rangle}$ yields an element of [: the carrier of V, the carrier of V :] and is defined as follows:
(Def. 6) $\quad v=\left(v\left\langle W_{1}, W_{2}\right\rangle\right)_{\mathbf{1}}+\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{2}}$ and $\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{1}} \in W_{1}$ and $\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{2}} \in W_{2}$.
One can prove the following propositions:
(47) Let V be a real unitary space, v be a vector of V, and W_{1}, W_{2} be subspaces of V. If V is the direct sum of W_{1} and W_{2}, then $\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{1}}=\left(v_{\left\langle W_{2}, W_{1}\right\rangle}\right)_{\mathbf{2}}$.
(48) Let V be a real unitary space, v be a vector of V, and W_{1}, W_{2} be subspaces of V. If V is the direct sum of W_{1} and W_{2}, then $\left(v_{\left\langle W_{1}, W_{2}\right\rangle}\right)_{\mathbf{2}}=\left(v_{\left\langle W_{2}, W_{1}\right\rangle}\right)_{\mathbf{1}}$.
(49) Let V be a real unitary space, W be a subspace of V, L be a linear complement of W, v be a vector of V, and t be an element of [: the carrier of V, the carrier of V :]. If $t_{1}+t_{2}=v$ and $t_{\mathbf{1}} \in W$ and $t_{\mathbf{2}} \in L$, then $t=v_{\langle W, L\rangle}$.
(50) Let V be a real unitary space, W be a subspace of V, L be a linear complement of W, and v be a vector of V. Then $(v\langle W, L\rangle)_{1}+(v\langle w, L\rangle)_{\mathbf{2}}=v$.
(51) Let V be a real unitary space, W be a subspace of V, L be a linear complement of W, and v be a vector of V. Then $(v\langle W, L\rangle)_{\mathbf{1}} \in W$ and $\left(v{ }_{\langle W, L\rangle}\right)_{\mathbf{2}} \in L$.
(52) Let V be a real unitary space, W be a subspace of V, L be a linear complement of W, and v be a vector of V. Then $(v\langle w, L\rangle)_{\mathbf{1}}=\left(v_{\langle L, W\rangle}\right)_{\mathbf{2}}$.
(53) Let V be a real unitary space, W be a subspace of V, L be a linear complement of W, and v be a vector of V. Then $(v\langle W, L\rangle)_{\mathbf{2}}=(v\langle L, W\rangle)_{\mathbf{1}}$.

7. Introduction of Operations on Set of Subspaces

Let V be a real unitary space. The functor SubJoin V yielding a binary operation on Subspaces V is defined as follows:
(Def. 7) For all elements A_{1}, A_{2} of Subspaces V and for all subspaces W_{1}, W_{2} of V such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $($ SubJoin $V)\left(A_{1}, A_{2}\right)=W_{1}+W_{2}$.

Let V be a real unitary space. The functor SubMeet V yielding a binary operation on Subspaces V is defined by:
(Def. 8) For all elements A_{1}, A_{2} of Subspaces V and for all subspaces W_{1}, W_{2} of V such that $A_{1}=W_{1}$ and $A_{2}=W_{2}$ holds $($ SubMeet $V)\left(A_{1}, A_{2}\right)=W_{1} \cap W_{2}$.

8. Theorems of Functions SubJoin, SubMeet

One can prove the following proposition
(54) For every real unitary space V holds \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a lattice.

Let V be a real unitary space. One can check that $\langle\operatorname{Subspaces} V$, SubJoin V, SubMeet $V\rangle$ is latticelike.

The following propositions are true:
(55) For every real unitary space V holds $\langle\operatorname{Subspaces} V$, $\operatorname{SubJoin} V$, SubMeet $V\rangle$ is lowerbounded.
(56) For every real unitary space V holds \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is upperbounded.
(57) For every real unitary space V holds \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is a bound lattice.
(58) For every real unitary space V holds \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is modular.
(59) For every real unitary space V holds \langle Subspaces V, SubJoin V, SubMeet $V\rangle$ is complemented.

Let V be a real unitary space. Observe that \langle Subspaces V, $\operatorname{SubJoin} V$, SubMeet $V\rangle$ is lowerbounded, upper-bounded, modular, and complemented.

We now state the proposition
(60) Let V be a real unitary space and W_{1}, W_{2}, W_{3} be strict subspaces of V. If W_{1} is a subspace of W_{2}, then $W_{1} \cap W_{3}$ is a subspace of $W_{2} \cap W_{3}$.

9. Auxiliary Theorems in Real Unitary Space

One can prove the following propositions:
(61) Let V be a real unitary space and W be a strict subspace of V. Suppose that for every vector v of V holds $v \in W$. Then $W=$ the unitary space structure of V.
(62) Let V be a real unitary space, W be a subspace of V, and v be a vector of V. Then there exists a coset C of W such that $v \in C$.
(63) Let V be a real unitary space, W be a subspace of V, v be a vector of V, and x be a set. Then $x \in v+W$ if and only if there exists a vector u of V such that $u \in W$ and $x=v+u$.

REFERENCES

[1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[4] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Subspaces and cosets of subspace of real unitary space. Journal of Formalized Mathematics, 14, 2002. http://mizar.org/JFM/Vol14/rusub_1.html.
[5] Jan Popiołek. Introduction to Banach and Hilbert spaces — part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/bhsp_1.html]
[6] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/domain_1.html.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[8] Wojciech A. Trybulec. Operations on subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/rlsub_2.html
[9] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ rlvect_1.html
[10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[11] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html
[12] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html
[13] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ lattices.html

Received October 9, 2002
Published January 2, 2004

