Operations on Subspaces in Real Unitary Space

Noboru Endou Gifu National College of Technology Takashi Mitsuishi Miyagi University

Yasunari Shidama Shinshu University Nagano

Summary. In this article, we extend an operation of real linear space to real unitary space. We show theorems proved in [8] on real unitary space.

MML Identifier: RUSUB_2.
WWW: http://mizar.org/JFM/Vol14/rusub_2.html

The articles [7], [3], [10], [11], [2], [1], [13], [12], [6], [9], [5], and [4] provide the notation and terminology for this paper.

1. DEFINITIONS OF SUM AND INTERSECTION OF SUBSPACES

Let V be a real unitary space and let W_1 , W_2 be subspaces of V. The functor $W_1 + W_2$ yields a strict subspace of V and is defined as follows:

(Def. 1) The carrier of $W_1 + W_2 = \{v + u; v \text{ ranges over vectors of } V, u \text{ ranges over vectors of } V: v \in W_1 \land u \in W_2\}.$

Let *V* be a real unitary space and let W_1 , W_2 be subspaces of *V*. The functor $W_1 \cap W_2$ yielding a strict subspace of *V* is defined as follows:

(Def. 2) The carrier of $W_1 \cap W_2$ = (the carrier of W_1) \cap (the carrier of W_2).

2. Theorems of Sum and Intersecton of Subspaces

The following propositions are true:

- (1) Let V be a real unitary space, W_1 , W_2 be subspaces of V, and x be a set. Then $x \in W_1 + W_2$ if and only if there exist vectors v_1 , v_2 of V such that $v_1 \in W_1$ and $v_2 \in W_2$ and $x = v_1 + v_2$.
- (2) Let *V* be a real unitary space, W_1 , W_2 be subspaces of *V*, and *v* be a vector of *V*. If $v \in W_1$ or $v \in W_2$, then $v \in W_1 + W_2$.
- (3) Let V be a real unitary space, W_1 , W_2 be subspaces of V, and x be a set. Then $x \in W_1 \cap W_2$ if and only if $x \in W_1$ and $x \in W_2$.
- (4) For every real unitary space V and for every strict subspace W of V holds W + W = W.
- (5) For every real unitary space V and for all subspaces W_1 , W_2 of V holds $W_1 + W_2 = W_2 + W_1$.

- (6) For every real unitary space V and for all subspaces W_1 , W_2 , W_3 of V holds $W_1 + (W_2 + W_3) = (W_1 + W_2) + W_3$.
- (7) Let V be a real unitary space and W_1 , W_2 be subspaces of V. Then W_1 is a subspace of $W_1 + W_2$ and W_2 is a subspace of $W_1 + W_2$.
- (8) Let V be a real unitary space, W_1 be a subspace of V, and W_2 be a strict subspace of V. Then W_1 is a subspace of W_2 if and only if $W_1 + W_2 = W_2$.
- (9) For every real unitary space V and for every strict subspace W of V holds $\mathbf{0}_V + W = W$ and $W + \mathbf{0}_V = W$.
- (10) Let *V* be a real unitary space. Then $\mathbf{0}_V + \Omega_V$ = the unitary space structure of *V* and $\Omega_V + \mathbf{0}_V$ = the unitary space structure of *V*.
- (11) Let *V* be a real unitary space and *W* be a subspace of *V*. Then $\Omega_V + W =$ the unitary space structure of *V* and $W + \Omega_V =$ the unitary space structure of *V*.
- (12) For every strict real unitary space V holds $\Omega_V + \Omega_V = V$.
- (13) For every real unitary space V and for every strict subspace W of V holds $W \cap W = W$.
- (14) For every real unitary space V and for all subspaces W_1 , W_2 of V holds $W_1 \cap W_2 = W_2 \cap W_1$.
- (15) For every real unitary space V and for all subspaces W_1, W_2, W_3 of V holds $W_1 \cap (W_2 \cap W_3) = (W_1 \cap W_2) \cap W_3$.
- (16) Let V be a real unitary space and W_1 , W_2 be subspaces of V. Then $W_1 \cap W_2$ is a subspace of W_1 and $W_1 \cap W_2$ is a subspace of W_2 .
- (17) Let V be a real unitary space, W_2 be a subspace of V, and W_1 be a strict subspace of V. Then W_1 is a subspace of W_2 if and only if $W_1 \cap W_2 = W_1$.
- (18) For every real unitary space V and for every subspace W of V holds $\mathbf{0}_V \cap W = \mathbf{0}_V$ and $W \cap \mathbf{0}_V = \mathbf{0}_V$.
- (19) For every real unitary space V holds $\mathbf{0}_V \cap \Omega_V = \mathbf{0}_V$ and $\Omega_V \cap \mathbf{0}_V = \mathbf{0}_V$.
- (20) For every real unitary space *V* and for every strict subspace *W* of *V* holds $\Omega_V \cap W = W$ and $W \cap \Omega_V = W$.
- (21) For every strict real unitary space V holds $\Omega_V \cap \Omega_V = V$.
- (22) For every real unitary space V and for all subspaces W_1 , W_2 of V holds $W_1 \cap W_2$ is a subspace of $W_1 + W_2$.
- (23) For every real unitary space V and for every subspace W_1 of V and for every strict subspace W_2 of V holds $W_1 \cap W_2 + W_2 = W_2$.
- (24) For every real unitary space V and for every subspace W_1 of V and for every strict subspace W_2 of V holds $W_2 \cap (W_2 + W_1) = W_2$.
- (25) For every real unitary space V and for all subspaces W_1 , W_2 , W_3 of V holds $W_1 \cap W_2 + W_2 \cap W_3$ is a subspace of $W_2 \cap (W_1 + W_3)$.
- (26) Let V be a real unitary space and W_1 , W_2 , W_3 be subspaces of V. If W_1 is a subspace of W_2 , then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (27) For every real unitary space V and for all subspaces W_1 , W_2 , W_3 of V holds $W_2 + W_1 \cap W_3$ is a subspace of $(W_1 + W_2) \cap (W_2 + W_3)$.
- (28) Let V be a real unitary space and W_1 , W_2 , W_3 be subspaces of V. If W_1 is a subspace of W_2 , then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.

- (29) Let V be a real unitary space and W_1 , W_2 , W_3 be subspaces of V. If W_1 is a strict subspace of W_3 , then $W_1 + W_2 \cap W_3 = (W_1 + W_2) \cap W_3$.
- (30) For every real unitary space V and for all strict subspaces W_1 , W_2 of V holds $W_1 + W_2 = W_2$ iff $W_1 \cap W_2 = W_1$.
- (31) Let V be a real unitary space, W_1 be a subspace of V, and W_2 , W_3 be strict subspaces of V. If W_1 is a subspace of W_2 , then $W_1 + W_3$ is a subspace of $W_2 + W_3$.
- (32) Let *V* be a real unitary space and W_1 , W_2 be subspaces of *V*. Then there exists a subspace *W* of *V* such that the carrier of W = (the carrier of $W_1) \cup ($ the carrier of $W_2)$ if and only if W_1 is a subspace of W_2 or W_2 is a subspace of W_1 .
 - 3. INTRODUCTION OF A SET OF SUBSPACES OF REAL UNITARY SPACE

Let V be a real unitary space. The functor Subspaces V yielding a set is defined as follows:

(Def. 3) For every set x holds $x \in \text{Subspaces } V$ iff x is a strict subspace of V.

Let V be a real unitary space. Note that Subspaces V is non empty. The following proposition is true

- (33) For every strict real unitary space V holds $V \in \text{Subspaces } V$.
 - 4. DEFINITION OF THE DIRECT SUM AND LINEAR COMPLEMENT OF SUBSPACES

Let V be a real unitary space and let W_1 , W_2 be subspaces of V. We say that V is the direct sum of W_1 and W_2 if and only if:

(Def. 4) The unitary space structure of $V = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_V$.

Let V be a real unitary space and let W be a subspace of V. A subspace of V is called a linear complement of W if:

(Def. 5) V is the direct sum of it and W.

Let V be a real unitary space and let W be a subspace of V. Observe that there exists a linear complement of W which is strict.

The following two propositions are true:

- (34) Let V be a real unitary space and W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Then W_2 is a linear complement of W_1 .
- (35) Let V be a real unitary space, W be a subspace of V, and L be a linear complement of W. Then V is the direct sum of L and W and the direct sum of W and L.
- 5. THEOREMS CONCERNING THE SUM, LINEAR COMPLEMENT AND COSET OF SUBSPACE

One can prove the following propositions:

- (36) Let V be a real unitary space, W be a subspace of V, and L be a linear complement of W. Then W + L = the unitary space structure of V and L + W = the unitary space structure of V.
- (37) Let *V* be a real unitary space, *W* be a subspace of *V*, and *L* be a linear complement of *W*. Then $W \cap L = \mathbf{0}_V$ and $L \cap W = \mathbf{0}_V$.
- (38) Let V be a real unitary space and W_1 , W_2 be subspaces of V. If V is the direct sum of W_1 and W_2 , then V is the direct sum of W_2 and W_1 .
- (39) Every real unitary space V is the direct sum of $\mathbf{0}_V$ and Ω_V and the direct sum of Ω_V and $\mathbf{0}_V$.

- (40) Let V be a real unitary space, W be a subspace of V, and L be a linear complement of W. Then W is a linear complement of L.
- (41) For every real unitary space V holds $\mathbf{0}_V$ is a linear complement of Ω_V and Ω_V is a linear complement of $\mathbf{0}_V$.
- (42) Let V be a real unitary space, W_1 , W_2 be subspaces of V, C_1 be a coset of W_1 , and C_2 be a coset of W_2 . If C_1 meets C_2 , then $C_1 \cap C_2$ is a coset of $W_1 \cap W_2$.
- (43) Let *V* be a real unitary space and W_1 , W_2 be subspaces of *V*. Then *V* is the direct sum of W_1 and W_2 if and only if for every coset C_1 of W_1 and for every coset C_2 of W_2 there exists a vector *v* of *V* such that $C_1 \cap C_2 = \{v\}$.
 - 6. DECOMPOSITION OF A VECTOR OF REAL UNITARY SPACE

Next we state three propositions:

- (44) Let V be a real unitary space and W_1 , W_2 be subspaces of V. Then $W_1 + W_2$ = the unitary space structure of V if and only if for every vector v of V there exist vectors v_1 , v_2 of V such that $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$.
- (45) Let V be a real unitary space, W_1 , W_2 be subspaces of V, and v, v_1 , v_2 , u_1 , u_2 be vectors of V. Suppose V is the direct sum of W_1 and W_2 and $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$. Then $v_1 = u_1$ and $v_2 = u_2$.
- (46) Let V be a real unitary space and W_1 , W_2 be subspaces of V. Suppose that
- (i) $V = W_1 + W_2$, and
- (ii) there exists a vector v of V such that for all vectors v_1 , v_2 , u_1 , u_2 of V such that $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$ holds $v_1 = u_1$ and $v_2 = u_2$. Then V is the direct sum of W_1 and W_2 .

Let *V* be a real unitary space, let *v* be a vector of *V*, and let W_1 , W_2 be subspaces of *V*. Let us assume that *V* is the direct sum of W_1 and W_2 . The functor $v_{\langle W_1, W_2 \rangle}$ yields an element of [: the carrier of *V*, the carrier of *V* :] and is defined as follows:

(Def. 6) $v = (v_{\langle W_1, W_2 \rangle})_1 + (v_{\langle W_1, W_2 \rangle})_2$ and $(v_{\langle W_1, W_2 \rangle})_1 \in W_1$ and $(v_{\langle W_1, W_2 \rangle})_2 \in W_2$.

One can prove the following propositions:

- (47) Let V be a real unitary space, v be a vector of V, and W_1 , W_2 be subspaces of V. If V is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_1 = (v_{\langle W_2, W_1 \rangle})_2$.
- (48) Let V be a real unitary space, v be a vector of V, and W_1 , W_2 be subspaces of V. If V is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_2 = (v_{\langle W_2, W_1 \rangle})_1$.
- (49) Let *V* be a real unitary space, *W* be a subspace of *V*, *L* be a linear complement of *W*, *v* be a vector of *V*, and *t* be an element of [: the carrier of *V*, the carrier of *V* :]. If $t_1 + t_2 = v$ and $t_1 \in W$ and $t_2 \in L$, then $t = v_{\{W,L\}}$.
- (50) Let *V* be a real unitary space, *W* be a subspace of *V*, *L* be a linear complement of *W*, and *v* be a vector of *V*. Then $(v_{\{W,L\}})_1 + (v_{\{W,L\}})_2 = v$.
- (51) Let V be a real unitary space, W be a subspace of V, L be a linear complement of W, and v be a vector of V. Then $(v_{\langle WL \rangle})_1 \in W$ and $(v_{\langle WL \rangle})_2 \in L$.
- (52) Let *V* be a real unitary space, *W* be a subspace of *V*, *L* be a linear complement of *W*, and *v* be a vector of *V*. Then $(v_{\{W,L\}})_1 = (v_{\{L,W\}})_2$.
- (53) Let V be a real unitary space, W be a subspace of V, L be a linear complement of W, and v be a vector of V. Then $(v_{\langle W,L \rangle})_2 = (v_{\langle L,W \rangle})_1$.

7. INTRODUCTION OF OPERATIONS ON SET OF SUBSPACES

Let *V* be a real unitary space. The functor SubJoin *V* yielding a binary operation on Subspaces *V* is defined as follows:

(Def. 7) For all elements A_1 , A_2 of Subspaces V and for all subspaces W_1 , W_2 of V such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubJoinV) $(A_1, A_2) = W_1 + W_2$.

Let V be a real unitary space. The functor SubMeet V yielding a binary operation on Subspaces V is defined by:

(Def. 8) For all elements A_1 , A_2 of Subspaces V and for all subspaces W_1 , W_2 of V such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubMeet V) $(A_1, A_2) = W_1 \cap W_2$.

8. THEOREMS OF FUNCTIONS SUBJOIN, SUBMEET

One can prove the following proposition

(54) For every real unitary space V holds (Subspaces V, SubJoin V, SubMeet V) is a lattice.

Let *V* be a real unitary space. One can check that $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is lattice-like.

The following propositions are true:

- (55) For every real unitary space V holds $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is lower-bounded.
- (56) For every real unitary space V holds $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is upperbounded.
- (57) For every real unitary space V holds (Subspaces V, SubJoin V, SubMeet V) is a bound lattice.
- (58) For every real unitary space V holds (Subspaces V, SubJoin V, SubMeet V) is modular.
- (59) For every real unitary space V holds $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is complemented.

Let V be a real unitary space. Observe that $\langle Subspaces V, SubJoin V, SubMeet V \rangle$ is lowerbounded, upper-bounded, modular, and complemented.

We now state the proposition

(60) Let V be a real unitary space and W_1 , W_2 , W_3 be strict subspaces of V. If W_1 is a subspace of W_2 , then $W_1 \cap W_3$ is a subspace of $W_2 \cap W_3$.

9. AUXILIARY THEOREMS IN REAL UNITARY SPACE

One can prove the following propositions:

- (61) Let *V* be a real unitary space and *W* be a strict subspace of *V*. Suppose that for every vector v of *V* holds $v \in W$. Then W = the unitary space structure of *V*.
- (62) Let V be a real unitary space, W be a subspace of V, and v be a vector of V. Then there exists a coset C of W such that $v \in C$.
- (63) Let *V* be a real unitary space, *W* be a subspace of *V*, *v* be a vector of *V*, and *x* be a set. Then $x \in v + W$ if and only if there exists a vector *u* of *V* such that $u \in W$ and x = v + u.

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/binop_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [4] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Subspaces and cosets of subspace of real unitary space. Journal of Formalized Mathematics, 14, 2002. http://mizar.org/JFM/Voll4/rusub_1.html.
- [5] Jan Popiolek. Introduction to Banach and Hilbert spaces part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/bhsp_1.html.
- [6] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/domain_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [8] Wojciech A. Trybulec. Operations on subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlsub_2.html.
- [9] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ rlvect_1.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [11] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [12] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.
- [13] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ lattices.html.

Received October 9, 2002

Published January 2, 2004