Term Orders

Christoph Schwarzweller
University of Tuebingen

Summary. We continue the formalization of [5] towards Gröbner Bases. Here we deal with term orders, that is with orders on bags. We introduce the notions of head term, head coefficient, and head monomial necessary to define reduction for polynomials.

MML Identifier: TERMORD.
WWW: [http://mizar.org/JFM/Vol14/termord.html]

The articles [18], [16], [22], [23], [1], [10], [24], [7], [8], [3], [2], [12], [20], [17], [4], [6], [9], [11], [25], [14], [13], [19], [21], and [15] provide the notation and terminology for this paper.

1. Preliminaries

Let us observe that there exists a loop structure which is non trivial.

Let us note that there exists a non trivial loop structure which is add-associative, right complementable, and right zeroed.

Let X be a set and let b be a bag of X. We say that b is non-zero if and only if:

(Def. 1) $b \neq \text{EmptyBag}X$.

We now state two propositions:

(1) For every set X and for all bags b_1, b_2 of X holds $b_1 \mid b_2$ iff there exists a bag b of X such that $b_2 = b_1 + b$.

(2) Let n be an ordinal number, L be an add-associative right complementable right zeroed unital distributive non empty double loop structure, and p be a series of n, L. Then $0_pL \ast p = 0_nL$.

Let n be an ordinal number, let L be an add-associative right complementable right zeroed unital distributive non empty double loop structure, and let m_1, m_2 be monomials of n, L. Note that $m_1 \ast m_2$ is monomial-like.

Let n be an ordinal number, let L be an add-associative right complementable right zeroed unital distributive non empty double loop structure, and let c_1, c_2 be constant polynomials of n, L. Observe that $c_1 \ast c_2$ is constant.

One can prove the following propositions:

(3) Let n be an ordinal number, L be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, b, b' be bags of n, and a, a' be non-zero elements of L. Then $\text{Monom}(a \cdot a', b + b') = \text{Monom}(a, b) \ast \text{Monom}(a', b')$.

(4) Let n be an ordinal number, L be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, and a, a' be elements of L. Then $a \cdot a' \cdot (n, L) = (a \cdot (n, L)) \ast (a', (n, L))$.

© Association of Mizar Users
2. Term Orders

Let n be an ordinal number. Note that there exists a term order of n which is admissible and connected.

Let n be a natural number. Observe that every admissible term order of n is well founded.

Let n be an ordinal number, let T be a term order of n, and let b, b' be bags of n. The predicate $b \leq_T b'$ is defined by:

(Def. 2) $\langle b, b' \rangle \in T$.

Let n be an ordinal number, let T be a term order of n, and let b, b' be bags of n. The predicate $b <_T b'$ is defined as follows:

(Def. 3) $b \leq_T b'$ and $b \neq b'$.

Let n be an ordinal number, let T be a term order of n, and let b_1, b_2 be bags of n. The functor $\min_T(b_1, b_2)$ yields a bag of n is defined as follows:

(Def. 4) $\min_T(b_1, b_2) = \begin{cases} b_1, & \text{if } b_1 \leq_T b_2, \\ b_2, & \text{otherwise.} \end{cases}$

The functor $\max_T(b_1, b_2)$ yields a bag of n and is defined as follows:

(Def. 5) $\max_T(b_1, b_2) = \begin{cases} b_1, & \text{if } b_2 \leq_T b_1, \\ b_2, & \text{otherwise.} \end{cases}$

The following propositions are true:

(5) Let n be an ordinal number, T be a connected term order of n, and b_1, b_2 be bags of n. Then $b_1 \leq_T b_2$ if and only if $b_2 \not<_T b_1$.

(6) For every ordinal number n and for every term order T of n and for every bag b of n holds $b \leq_T b$.

(7) Let n be an ordinal number, T be a term order of n, and b_1, b_2 be bags of n. If $b_1 \leq_T b_2$ and $b_2 \leq_T b_1$, then $b_1 = b_2$.

(8) Let n be an ordinal number, T be a term order of n, and b_1, b_2, b_3 be bags of n. If $b_1 \leq_T b_2$ and $b_2 \leq_T b_3$, then $b_1 \leq_T b_3$.

(9) For every ordinal number n and for every admissible term order T of n and for every bag b of n holds $\text{EmptyBag} n \leq_T b$.

(10) Let n be an ordinal number, T be an admissible term order of n, and b_1, b_2 be bags of n. If $b_1 \mid b_2$, then $b_1 \leq_T b_2$.

(11) For every ordinal number n and for every term order T of n and for all bags b_1, b_2 of n holds $\min_T(b_1, b_2) \equiv b_1$ or $\min_T(b_1, b_2) = b_2$.

(12) For every ordinal number n and for every term order T of n and for all bags b_1, b_2 of n holds $\max_T(b_1, b_2) = b_1$ or $\max_T(b_1, b_2) = b_2$.

(13) Let n be an ordinal number, T be a connected term order of n, and b_1, b_2 be bags of n. Then $\min_T(b_1, b_2) \leq_T b_1$ and $\min_T(b_1, b_2) \leq_T b_2$.

(14) Let n be an ordinal number, T be a connected term order of n, and b_1, b_2 be bags of n. Then $b_1 \leq_T \max_T(b_1, b_2)$ and $b_2 \leq_T \max_T(b_1, b_2)$.

(15) Let n be an ordinal number, T be a connected term order of n, and b_1, b_2 be bags of n. Then $\min_T(b_1, b_2) = \min_T(b_2, b_1)$ and $\max_T(b_1, b_2) = \max_T(b_2, b_1)$.

(16) Let n be an ordinal number, T be a connected term order of n, and b_1, b_2 be bags of n. Then $\min_T(b_1, b_2) = b_1$ if and only if $\max_T(b_1, b_2) = b_2$.

3. **Head Terms, Head Monomials, and Head Coefficients**

Let n be an ordinal number, let T be a connected term order of n, let L be a non empty zero structure, and let p be a polynomial of n, L. The functor HT(p, T) yielding an element of Bagsn is defined by:

(Def. 6) Support $p = \emptyset$ and HT(p, T) = EmptyBagn or HT(p, T) \in Support p and for every bag b of n such that $b \in$ Support p holds $b \leq_T$ HT(p, T).

Let n be an ordinal number, let T be a connected term order of n, let L be a non empty zero structure, and let p be a polynomial of n, L. The functor HC(p, T) yielding an element of L is defined by:

(Def. 7) HC(p, T) = p(HT(p, T)).

Let n be an ordinal number, let T be a connected term order of n, let L be a non empty zero structure, and let p be a polynomial of n, L. The functor HM(p, T) yielding a monomial of n, L is defined by:

(Def. 8) HM(p, T) = Monom(HC(p, T), HT(p, T)).

Let n be an ordinal number, let T be a connected term order of n, let L be a non trivial zero structure, and let p be a non-zero polynomial of n, L. Observe that HM(p, T) is non-zero and HC(p, T) is non-zero.

We now state a number of propositions:

17. Let n be an ordinal number, T be a connected term order of n, L be a non empty zero structure, and p be a polynomial of n, L. Then HC(p, T) = 0 if and only if $p = 0_L$.

18. Let n be an ordinal number, T be a connected term order of n, L be a non trivial zero structure, and p be a polynomial of n, L. Then (HM(p, T))(HT(p, T)) = p(HT(p, T)).

19. Let n be an ordinal number, T be a connected term order of n, L be a non trivial zero structure, p be a polynomial of n, L, and b be a bag of n. If $b \neq$ HT(p, T), then (HM(p, T))(b) = 0_L.

20. Let n be an ordinal number, T be a connected term order of n, L be a non trivial zero structure, and p be a polynomial of n, L. Then SupportHM(p, T) \subseteq Support p.

21. Let n be an ordinal number, T be a connected term order of n, L be a non trivial zero structure, and p be a polynomial of n, L. Then SupportHM(p, T) = \emptyset or SupportHM(p, T) = {HT(p, T)}.

22. Let n be an ordinal number, T be a connected term order of n, L be a non trivial zero structure, and p be a polynomial of n, L. Then termHM(p, T) = HT(p, T) and coefficientHM(p, T) = HC(p, T).

23. Let n be an ordinal number, T be a connected term order of n, L be a non empty zero structure, and m be a monomial of n, L. Then HT(m, T) = termm and HC(m, T) = coefficientm and HM(m, T) = m.

24. Let n be an ordinal number, T be a connected term order of n, L be a non empty zero structure, and c be a constant polynomial of n, L. Then HT(c, T) = EmptyBagn and HC(c, T) = c(EmptyBagn).

25. Let n be an ordinal number, T be a connected term order of n, L be a non empty zero structure, and a be an element of L. Then HT(a_L(n, L), T) = EmptyBagn and HC(a_L(n, L), T) = a.

26. Let n be an ordinal number, T be a connected term order of n, L be a non trivial zero structure, and p be a polynomial of n, L. Then HT($HM(p, T), T$) = HT(p, T).

27. Let n be an ordinal number, T be a connected term order of n, L be a non trivial zero structure, and p be a polynomial of n, L. Then HC($HM(p, T), T$) = HC(p, T).
(28) Let \(n \) be an ordinal number, \(T \) be a connected term order of \(n, L \) be a non empty zero structure, and \(p \) be a polynomial of \(n, L \). Then \(\text{HM}(\text{HM}(p, T), T) = \text{HM}(p, T) \).

(29) Let \(n \) be an ordinal number, \(T \) be an admissible connected term order of \(n, L \) be an add-associative right complementable left zeroed right zeroed unital distributive integral domain-like non trivial double loop structure, and \(p, q \) be non-zero polynomials of \(n, L \). Then \(\text{HT}(p, T) + \text{HT}(q, T) \subseteq \text{Support}(p + q) \).

(30) Let \(n \) be an ordinal number, \(L \) be an add-associative right complementable right zeroed unital distributive non empty double loop structure, and \(p, q \) be polynomials of \(n, L \). Then \(\text{Support}(p + q) \subseteq \{s + t; s \text{ ranges over elements of Bags} n, t \text{ ranges over elements of Bags} n : s \in \text{Support} p \wedge t \in \text{Support} q \} \).

(31) Let \(n \) be an ordinal number, \(T \) be an admissible connected term order of \(n, L \) be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, and \(p, q \) be non-zero polynomials of \(n, L \). Then \(\text{HT}(p + q, T) = \text{HT}(p, T) + \text{HT}(q, T) \).

(32) Let \(n \) be an ordinal number, \(T \) be an admissible connected term order of \(n, L \) be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, and \(p, q \) be non-zero polynomials of \(n, L \). Then \(\text{HC}(p + q, T) = \text{HC}(p, T) \cdot \text{HC}(q, T) \).

(33) Let \(n \) be an ordinal number, \(T \) be an admissible connected term order of \(n, L \) be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, and \(p, q \) be non-zero polynomials of \(n, L \). Then \(\text{HM}(p + q, T) = \text{HM}(p, T) \cdot \text{HM}(q, T) \).

(34) Let \(n \) be an ordinal number, \(T \) be an admissible connected term order of \(n, L \) be a right zeroed non empty loop structure, and \(p, q \) be polynomials of \(n, L \). Then \(\text{HT}(p + q, T) \leq_T \max_T (\text{HT}(p, T), \text{HT}(q, T)) \).

4. Reductum of a Polynomial

Let \(n \) be an ordinal number, let \(T \) be a connected term order of \(n, L \) be an add-associative right complementable right zeroed non empty loop structure, and let \(p \) be a polynomial of \(n, L \). The functor \(\text{Red}(p, T) \) yielding a polynomial of \(n, L \) is defined as follows:

(Def. 9) \(\text{Red}(p, T) = p - \text{HM}(p, T) \).

One can prove the following propositions:

(35) Let \(n \) be an ordinal number, \(T \) be a connected term order of \(n, L \) be an add-associative right complementable right zeroed non trivial loop structure, and \(p \) be a polynomial of \(n, L \). Then \(\text{Support} \text{Red}(p, T) \subseteq \text{Support} p \).

(36) Let \(n \) be an ordinal number, \(T \) be a connected term order of \(n, L \) be an add-associative right complementable right zeroed non trivial loop structure, and \(p \) be a polynomial of \(n, L \). Then \(\text{Support} \text{Red}(p, T) = \text{Support} p \setminus \{\text{HT}(p, T)\} \).

(37) Let \(n \) be an ordinal number, \(T \) be a connected term order of \(n, L \) be an add-associative right complementable right zeroed non trivial loop structure, and \(p \) be a polynomial of \(n, L \). Then \(\text{Support}(\text{HM}(p, T) + \text{Red}(p, T)) = \text{Support} p \).

(38) Let \(n \) be an ordinal number, \(T \) be a connected term order of \(n, L \) be an add-associative right complementable right zeroed non trivial loop structure, and \(p \) be a polynomial of \(n, L \). Then \(\text{HM}(p, T) + \text{Red}(p, T) = p \).

(39) Let \(n \) be an ordinal number, \(T \) be a connected term order of \(n, L \) be an add-associative right complementable right zeroed non trivial loop structure, and \(p \) be a polynomial of \(n, L \). Then \((\text{Red}(p, T)) (\text{HT}(p, T)) = 0_L \).
Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed non trivial loop structure, p be a polynomial of n, L, and b be a bag of n. If $b \in \text{Support } p$ and $b \neq \text{HT}(p, T)$, then $(\text{Red}(p, T))(b) = p(b)$.

ACKNOWLEDGMENTS

I’d like to thank Piotr Rudnicki for valuable discussions on how to represent term orders in Mizar.

REFERENCES

Received December 20, 2002

Published January 2, 2004