The Brouwer Fixed Point Theorem for Intervals¹

Toshihiko Watanabe Shinshu University Nagano

Summary. The aim is to prove, using Mizar System, the following simplest version of the Brouwer Fixed Point Theorem [3]. For every continuous mapping $f : \mathbb{I} \to \mathbb{I}$ of the topological unit interval \mathbb{I} there exists a point x such that f(x) = x (see e.g. [9], [4]).

MML Identifier: TREAL_1.

WWW: http://mizar.org/JFM/Vol4/treal_1.html

The articles [17], [20], [1], [19], [21], [5], [6], [10], [16], [15], [7], [14], [11], [13], [2], [8], [12], and [18] provide the notation and terminology for this paper.

1. PROPERTIES OF TOPOLOGICAL INTERVALS

In this paper a, b, c, d are real numbers.

One can prove the following propositions:

- (1) If $a \le c$ and $d \le b$, then $[c,d] \subseteq [a,b]$.
- (2) If $a \le c$ and $b \le d$ and $c \le b$, then $[a,b] \cup [c,d] = [a,d]$.
- (3) If $a \le c$ and $b \le d$ and $c \le b$, then $[a,b] \cap [c,d] = [c,b]$.
- (4) For every subset A of \mathbb{R}^1 such that A = [a, b] holds A is closed.
- (5) If $a \le b$, then $[a, b]_T$ is a closed subspace of \mathbb{R}^1 .
- (6) If $a \le c$ and $d \le b$ and $c \le d$, then $[c, d]_T$ is a closed subspace of $[a, b]_T$.
- (7) If $a \le c$ and $b \le d$ and $c \le b$, then $[a, d]_T = [a, b]_T \cup [c, d]_T$ and $[c, b]_T = [a, b]_T \cap [c, d]_T$.

Let a, b be real numbers. Let us assume that $a \le b$. The functor $a_{[a,b]_T}$ yields a point of $[a,b]_T$ and is defined as follows:

(Def. 1)
$$a_{[a,b]_T} = a$$
.

The functor $b_{[a,b]_T}$ yields a point of $[a,b]_T$ and is defined by:

(Def. 2)
$$b_{[a,b]_T} = b$$
.

One can prove the following two propositions:

- (8) $0_{\mathbb{I}} = 0_{[0,1]_{\mathbb{T}}}$ and $1_{\mathbb{I}} = 1_{[0,1]_{\mathbb{T}}}$.
- (9) If $a \le b$ and $b \le c$, then $a_{[a,b]_T} = a_{[a,c]_T}$ and $c_{[b,c]_T} = c_{[a,c]_T}$.

¹This paper was done under the supervision of Z. Karno while the author was visiting the Institute of Mathematics of Warsaw University in Białystok.

2. CONTINUOUS MAPPINGS BETWEEN TOPOLOGICAL INTERVALS

Let a, b be real numbers. Let us assume that $a \le b$. Let t_1 , t_2 be points of $[a, b]_T$. The functor $L_{01}(t_1, t_2)$ yielding a map from $[0, 1]_T$ into $[a, b]_T$ is defined as follows:

(Def. 3) For every point s of $[0, 1]_T$ and for all real numbers r, r_1 , r_2 such that s = r and $r_1 = t_1$ and $r_2 = t_2$ holds $(L_{01}(t_1, t_2))(s) = (1 - r) \cdot r_1 + r \cdot r_2$.

Next we state four propositions:

- (10) Suppose $a \le b$. Let t_1 , t_2 be points of $[a, b]_T$, s be a point of $[0, 1]_T$, and r, r_1 , r_2 be real numbers. If s = r and $r_1 = t_1$ and $r_2 = t_2$, then $(L_{01}(t_1, t_2))(s) = (r_2 r_1) \cdot r + r_1$.
- (11) If $a \le b$, then for all points t_1 , t_2 of $[a, b]_T$ holds $L_{01}(t_1, t_2)$ is a continuous map from $[0, 1]_T$ into $[a, b]_T$.
- (12) If $a \le b$, then for all points t_1 , t_2 of $[a, b]_T$ holds $(L_{01}(t_1, t_2))(0_{[0,1]_T}) = t_1$ and $(L_{01}(t_1, t_2))(1_{[0,1]_T}) = t_2$.
- (13) $L_{01}(0_{[0,1]_T},1_{[0,1]_T}) = id_{[0,1]_T}.$

Let a, b be real numbers. Let us assume that a < b. Let t_1 , t_2 be points of $[0, 1]_T$. The functor $P_{01}(a, b, t_1, t_2)$ yielding a map from $[a, b]_T$ into $[0, 1]_T$ is defined by the condition (Def. 4).

(Def. 4) Let *s* be a point of $[a, b]_T$ and r, r_1, r_2 be real numbers. If s = r and $r_1 = t_1$ and $r_2 = t_2$, then $(P_{01}(a, b, t_1, t_2))(s) = \frac{(b-r) \cdot r_1 + (r-a) \cdot r_2}{b-a}$.

Next we state several propositions:

- (14) Suppose a < b. Let t_1 , t_2 be points of $[0, 1]_T$, s be a point of $[a, b]_T$, and r, r_1 , r_2 be real numbers. If s = r and $r_1 = t_1$ and $r_2 = t_2$, then $(P_{01}(a, b, t_1, t_2))(s) = \frac{r_2 r_1}{b a} \cdot r + \frac{b \cdot r_1 a \cdot r_2}{b a}$.
- (15) If a < b, then for all points t_1 , t_2 of $[0, 1]_T$ holds $P_{01}(a, b, t_1, t_2)$ is a continuous map from $[a, b]_T$ into $[0, 1]_T$.
- (16) If a < b, then for all points t_1 , t_2 of $[0, 1]_T$ holds $(P_{01}(a, b, t_1, t_2))(a_{[a,b]_T}) = t_1$ and $(P_{01}(a, b, t_1, t_2))(b_{[a,b]_T}) = t_2$.
- $(17) \quad P_{01}(0,1,0_{[0,1]_T},1_{[0,1]_T}) = id_{[0,1]_T}.$
- (18) If a < b, then $\mathrm{id}_{[a,b]_{\mathrm{T}}} = \mathrm{L}_{01}(a_{[a,b]_{\mathrm{T}}},b_{[a,b]_{\mathrm{T}}}) \cdot \mathrm{P}_{01}(a,b,0_{[0,1]_{\mathrm{T}}},1_{[0,1]_{\mathrm{T}}})$ and $\mathrm{id}_{[0,1]_{\mathrm{T}}} = \mathrm{P}_{01}(a,b,0_{[0,1]_{\mathrm{T}}},1_{[0,1]_{\mathrm{T}}}) \cdot \mathrm{L}_{01}(a_{[a,b]_{\mathrm{T}}},b_{[a,b]_{\mathrm{T}}}).$
- (19) If a < b, then $\mathrm{id}_{[a,b]_{\mathrm{T}}} = \mathrm{L}_{01}(b_{[a,b]_{\mathrm{T}}}, a_{[a,b]_{\mathrm{T}}}) \cdot \mathrm{P}_{01}(a,b,1_{[0,1]_{\mathrm{T}}},0_{[0,1]_{\mathrm{T}}})$ and $\mathrm{id}_{[0,1]_{\mathrm{T}}} = \mathrm{P}_{01}(a,b,1_{[0,1]_{\mathrm{T}}},0_{[0,1]_{\mathrm{T}}}) \cdot \mathrm{L}_{01}(b_{[a,b]_{\mathrm{T}}},a_{[a,b]_{\mathrm{T}}}).$
- (20) Suppose a < b. Then $L_{01}(a_{[a,b]_T},b_{[a,b]_T})$ is a homeomorphism and $(L_{01}(a_{[a,b]_T},b_{[a,b]_T}))^{-1} = P_{01}(a,b,0_{[0,1]_T},1_{[0,1]_T})$ and $P_{01}(a,b,0_{[0,1]_T},1_{[0,1]_T})$ is a homeomorphism and $(P_{01}(a,b,0_{[0,1]_T},1_{[0,1]_T}))^{-1} = L_{01}(a_{[a,b]_T},b_{[a,b]_T})$.
- (21) Suppose a < b. Then $L_{01}(b_{[a,b]_{\mathrm{T}}}, a_{[a,b]_{\mathrm{T}}})$ is a homeomorphism and $(L_{01}(b_{[a,b]_{\mathrm{T}}}, a_{[a,b]_{\mathrm{T}}}))^{-1} = P_{01}(a,b,1_{[0,1]_{\mathrm{T}}},0_{[0,1]_{\mathrm{T}}})$ and $P_{01}(a,b,1_{[0,1]_{\mathrm{T}}},0_{[0,1]_{\mathrm{T}}})$ is a homeomorphism and $(P_{01}(a,b,1_{[0,1]_{\mathrm{T}}},0_{[0,1]_{\mathrm{T}}}))^{-1} = L_{01}(b_{[a,b]_{\mathrm{T}}},a_{[a,b]_{\mathrm{T}}})$.

3. Connectedness of Intervals and Brouwer Fixed Point Theorem for Intervals

We now state several propositions:

- (22) \mathbb{I} is connected.
- (23) If $a \le b$, then $[a, b]_T$ is connected.
- (24) For every continuous map f from \mathbb{I} into \mathbb{I} there exists a point x of \mathbb{I} such that f(x) = x.
- (25) If $a \le b$, then for every continuous map f from $[a, b]_T$ into $[a, b]_T$ there exists a point x of $[a, b]_T$ such that f(x) = x.
- (26) Let X, Y be non empty subspaces of \mathbb{R}^1 and f be a continuous map from X into Y. Given real numbers a, b such that $a \leq b$ and $[a,b] \subseteq$ the carrier of X and $[a,b] \subseteq$ the carrier of Y and $f^{\circ}[a,b] \subseteq [a,b]$. Then there exists a point x of X such that f(x) = x.
- (27) Let X, Y be non empty subspaces of \mathbb{R}^1 and f be a continuous map from X into Y. Given real numbers a, b such that $a \le b$ and $[a,b] \subseteq$ the carrier of X and $f^{\circ}[a,b] \subseteq [a,b]$. Then there exists a point x of X such that f(x) = x.

ACKNOWLEDGMENTS

The author wishes to express his thanks to Professors A. Trybulec and Z. Karno for their useful suggestions and many valuable comments.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall.html.
- [2] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [3] L. Brouwer. Über Abbildungen von Mannigfaltigkeiten. Mathematische Annalen, 38(71):97-115, 1912.
- [4] Robert H. Brown. The Lefschetz Fixed Point Theorem. Scott-Foresman, New York, 1971.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [9] James Dugundji and Andrzej Granas. Fixed Point Theory, volume I. PWN Polish Scientific Publishers, Warsaw, 1982.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric 1.html.
- [12] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/tsep_1.html.
- [13] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/groat_1. html.
- [14] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/connsp_1.html.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.

- [17] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [18] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [19] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received August 17, 1992

Published January 2, 2004