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Summary. The aim is to prove, using Mizar System, the following simplest version
of the Brouwer Fixed Point Theorem [3].For every continuous mapping f: I → I of the
topological unit intervalI there exists a point x such that f(x) = x (see e.g. [9], [4]).

MML Identifier: TREAL_1.

WWW: http://mizar.org/JFM/Vol4/treal_1.html

The articles [17], [20], [1], [19], [21], [5], [6], [10], [16], [15], [7], [14], [11], [13], [2], [8], [12],
and [18] provide the notation and terminology for this paper.

1. PROPERTIES OFTOPOLOGICAL INTERVALS

In this papera, b, c, d are real numbers.
One can prove the following propositions:

(1) If a≤ c andd≤ b, then[c,d]⊆ [a,b].

(2) If a≤ c andb≤ d andc≤ b, then[a,b]∪ [c,d] = [a,d].

(3) If a≤ c andb≤ d andc≤ b, then[a,b]∩ [c,d] = [c,b].

(4) For every subsetA of R1 such thatA = [a,b] holdsA is closed.

(5) If a≤ b, then[a, b]T is a closed subspace ofR1.

(6) If a≤ c andd≤ b andc≤ d, then[c, d]T is a closed subspace of[a, b]T.

(7) If a≤ c andb≤ d andc≤ b, then[a, d]T = [a, b]T∪ [c, d]T and[c, b]T = [a, b]T∩ [c, d]T.

Let a, b be real numbers. Let us assume thata≤ b. The functora[a,b]T yields a point of[a, b]T
and is defined as follows:

(Def. 1) a[a,b]T = a.

The functorb[a,b]T yields a point of[a, b]T and is defined by:

(Def. 2) b[a,b]T = b.

One can prove the following two propositions:

(8) 0I = 0[0,1]T and 1I = 1[0,1]T .

(9) If a≤ b andb≤ c, thena[a,b]T = a[a,c]T andc[b,c]T = c[a,c]T .

1This paper was done under the supervision of Z. Karno while the author was visiting the Institute of
Mathematics of Warsaw University in Białystok.
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2. CONTINUOUS MAPPINGSBETWEEN TOPOLOGICAL INTERVALS

Let a, b be real numbers. Let us assume thata≤ b. Let t1, t2 be points of[a, b]T. The functor
L01(t1, t2) yielding a map from[0, 1]T into [a, b]T is defined as follows:

(Def. 3) For every pointsof [0, 1]T and for all real numbersr, r1, r2 such thats= r andr1 = t1 and
r2 = t2 holds(L01(t1, t2))(s) = (1− r) · r1 + r · r2.

Next we state four propositions:

(10) Supposea≤ b. Let t1, t2 be points of[a, b]T, s be a point of[0, 1]T, andr, r1, r2 be real
numbers. Ifs= r andr1 = t1 andr2 = t2, then(L01(t1, t2))(s) = (r2− r1) · r + r1.

(11) If a≤ b, then for all pointst1, t2 of [a, b]T holds L01(t1, t2) is a continuous map from[0, 1]T
into [a, b]T.

(12) If a ≤ b, then for all points t1, t2 of [a, b]T holds (L01(t1, t2))(0[0,1]T) = t1 and
(L01(t1, t2))(1[0,1]T) = t2.

(13) L01(0[0,1]T ,1[0,1]T) = id[0,1]T .

Let a, b be real numbers. Let us assume thata < b. Let t1, t2 be points of[0, 1]T. The functor
P01(a,b, t1, t2) yielding a map from[a, b]T into [0, 1]T is defined by the condition (Def. 4).

(Def. 4) Lets be a point of[a, b]T andr, r1, r2 be real numbers. Ifs= r andr1 = t1 andr2 = t2,

then(P01(a,b, t1, t2))(s) = (b−r)·r1+(r−a)·r2
b−a .

Next we state several propositions:

(14) Supposea < b. Let t1, t2 be points of[0, 1]T, s be a point of[a, b]T, andr, r1, r2 be real
numbers. Ifs= r andr1 = t1 andr2 = t2, then(P01(a,b, t1, t2))(s) = r2−r1

b−a · r + b·r1−a·r2
b−a .

(15) If a < b, then for all pointst1, t2 of [0, 1]T holds P01(a,b, t1, t2) is a continuous map from
[a, b]T into [0, 1]T.

(16) If a < b, then for all pointst1, t2 of [0, 1]T holds (P01(a,b, t1, t2))(a[a,b]T) = t1 and
(P01(a,b, t1, t2))(b[a,b]T) = t2.

(17) P01(0,1,0[0,1]T ,1[0,1]T) = id[0,1]T .

(18) If a < b, then id[a,b]T = L01(a[a,b]T ,b[a,b]T) · P01(a,b,0[0,1]T ,1[0,1]T) and id[0,1]T =
P01(a,b,0[0,1]T ,1[0,1]T) ·L01(a[a,b]T ,b[a,b]T).

(19) If a < b, then id[a,b]T = L01(b[a,b]T ,a[a,b]T) · P01(a,b,1[0,1]T ,0[0,1]T) and id[0,1]T =
P01(a,b,1[0,1]T ,0[0,1]T) ·L01(b[a,b]T ,a[a,b]T).

(20) Supposea< b. Then L01(a[a,b]T ,b[a,b]T) is a homeomorphism and(L01(a[a,b]T ,b[a,b]T))−1 =
P01(a,b,0[0,1]T ,1[0,1]T) and P01(a,b,0[0,1]T ,1[0,1]T) is a homeomorphism and(P01(a,b,0[0,1]T ,1[0,1]T))−1 =
L01(a[a,b]T ,b[a,b]T).

(21) Supposea< b. Then L01(b[a,b]T ,a[a,b]T) is a homeomorphism and(L01(b[a,b]T ,a[a,b]T))−1 =
P01(a,b,1[0,1]T ,0[0,1]T) and P01(a,b,1[0,1]T ,0[0,1]T) is a homeomorphism and(P01(a,b,1[0,1]T ,0[0,1]T))−1 =
L01(b[a,b]T ,a[a,b]T).
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3. CONNECTEDNESS OFINTERVALS AND BROUWERFIXED POINT THEOREM FOR

INTERVALS

We now state several propositions:

(22) I is connected.

(23) If a≤ b, then[a, b]T is connected.

(24) For every continuous mapf from I into I there exists a pointx of I such thatf (x) = x.

(25) If a≤ b, then for every continuous mapf from [a, b]T into [a, b]T there exists a pointx of
[a, b]T such thatf (x) = x.

(26) LetX, Y be non empty subspaces ofR1 and f be a continuous map fromX into Y. Given
real numbersa, b such thata≤ b and[a,b]⊆ the carrier ofX and[a,b]⊆ the carrier ofY and
f ◦[a,b]⊆ [a,b]. Then there exists a pointx of X such thatf (x) = x.

(27) LetX, Y be non empty subspaces ofR1 and f be a continuous map fromX into Y. Given
real numbersa, b such thata≤ b and[a,b]⊆ the carrier ofX and f ◦[a,b]⊆ [a,b]. Then there
exists a pointx of X such thatf (x) = x.
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