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Summary. The aim is to prove, using Mizar System, the following simplest version
of the Brouwer Fixed Point Theorer|[3JFor every continuous mapping :fl — I of the
topological unit intervall there exists a point x such thafx) = x (see e.g.[[9],14]).

MML Identifier: TREAL_1.

WWW: http://mizar.org/JFM/Vold/treal 1.html

The articles[[1r7],[[20],[T1],[[19],[T21],[16].[16],[[10],[[16],[[15] (7], [14] [[11], [13],12] [18].[[12],
and [18] provide the notation and terminology for this paper.

1. PROPERTIES OFTOPOLOGICALINTERVALS

In this paper, b, ¢, d are real numbers.
One can prove the following propositions:

(1) Ifa<candd <b,then|c,d] C [a,bh].

(2) Ifa<candb<dandc<b,then[abjulc,d] = [a,d].

(3) Ifa<candb<dandc<b,then[abjnc,d]=][c,b].

(4) For every subséh of R! such thaiA = [a, b] holdsA is closed.

(5) Ifa<b,then|a, bt is a closed subspace Bf.

(6) Ifa<candd<bandc<d,then]c,d]yis a closed subspace fa b|r.

(7) lfa<candb<dandc<b,then[a, d]t = [a, bJtU]c, d]t and]c, b]t = [a, bjtn]c, d].

Leta, b be real numbers. Let us assume taat b. The functora, ), yields a point ofa, bt
and is defined as follows:

(Def. 1) aap,=a
The functorby, ), yields a point ofia, bjr and is defined by:
(Def. 2) b[a.b]T =h.
One can prove the following two propositions:
(8) G =0p; and k=1 y;.

(9) Ifa<bandb<c,thenagy, = ajag; andCp g, = Ciacy-

1This paper was done under the supervision of Z. Karno while the author was visiting the Institute of
Mathematics of Warsaw University in Bialystok.
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2. CONTINUOUS MAPPINGSBETWEEN TOPOLOGICAL INTERVALS

Let a, b be real numbers. Let us assume that b. Let t;, t, be points offa, b]r. The functor
Loi(t1,t2) yielding a map fron0, 1]t into [a, b]t is defined as follows:

(Def. 3) For every poins of [0, 1]t and for all real numbens ry, r, such thas=r andr; =t; and
r, =tz holds(Loa(t1,t2))(S) = (1 —r)-ro+r-ra.

Next we state four propositions:

(10) Supposea < b. Lett;, to be points offa, b]r, s be a point of[0, 1]y, andr, r4, r» be real
numbers. Iis=r andr; =t; andry =ty, then(Lo1(t1,t2))(S) = (ra—r1) -r +r1.

(11) Ifa< b, then for all paintd;, t; of [a, bt holds Los(t1,t2) is a continuous map fron®, 1)t
into [a, blt.

(12) If a < b, then for all pointst;, t of [a bjt holds (L01(t1,t2))(0[0’1]T) =1t; and
(Loa(t1,t2))(Ljo.17) =to-
(13)  Loa(00.17»Lj0,17) = idjo, 1)1 -

Let a, b be real numbers. Let us assume that b. Letts, t; be points of|0, 1]r. The functor
Poi(a, b,t1,t2) yielding a map frona, bt into [0, 1]t is defined by the condition (Def. 4).
(Def. 4) Letsbe a point ofa, b]t andr, rq, rp be real numbers. §=r andri =t; andr; = ty,
then(Pox(a,b, 11, t) ) (s) = -tz

—a

Next we state several propositions:

(14) Supposea < b. Lett;, t, be points of[0, 1], s be a point of[a, b]r, andr, r4, r» be real
numbers. Ifs=r andr; =t; andr =tp, then(Po1(a,b,ty,t2))(s) = Bt -1 + %

(15) If a< b, then for all pointdy, t2 of [0, 1]t holds R1(a,b,t1,t2) is a continuous map from
[a, b]t into [0, 1]T.

(16) If a < b, then for all pointst;, to of [0, 1]y holds (Poa(a,b,ta,t2))(aap,) = t1 and
(Pox(a, b,tlatZ))(b[a,b]T) =ts.

(17)  R(0,1,010 111, Ljo,17) = idg, 1y -

(18) If a < b, then idap, = Loa(dabj;,Paby;) - Poa(a 0,001, Loy,) and idg gy, =
Po1(a, 0,010,111 Ljo,117) - Lo1(&apjr» Bjapir)-

(19) If a < b, then idap, = Lou(bjap;daby) - Poa(a b Lo 1;,001;) and idoy, =
Pox(@,0, 1011, O0.131) - Loa(Prajr» Afabiy )-

(20) Supposa < b. Then Loi(aja by, bja ) is @ homeomorphism ar{tloa(aya by ; b[a’bh))*l =

P01(a, b, 0[0~1]T s 1[0’1]1_) and %1(&, b, 0[071]1_, 1[071].'_) isa homeomorphism ar(%l(a, b, 0[0~1]T s 1[0’1]1_))_1 =

Loa(@a by Plapr)-

(21) Supposa < b. Then Loi(bja by, &a ) IS @ homeomorphism ar{tloa(bja a[a’bh))‘l =

POl(aa bv 1[0,1]1- ) 0[0,1]1') and Fbl(av ba 1[0,1]T70[0,1]T) isa homeomorphism an/\901<aa bv 1[0,1]1- ) 0[0,1]1'))_1

Lo1(Ppajr» &abyr)-
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3. CONNECTEDNESS OHNTERVALS AND BROUWERFIXED POINT THEOREM FOR
INTERVALS

We now state several propositions:

(22) Tis connected.
(23) Ifa<b,thenla, bt is connected.
(24) For every continuous mapfrom I into I there exists a point of I such thatf (x) = x.

(25) Ifa< b, then for every continuous mapfrom [a, bt into [a, b]t there exists a point of
[a, bt such thatf (x) = x.

(26) LetX,Y be non empty subspaces®t and f be a continuous map fro into Y. Given
real numbers, b such thata < b and[a, b] C the carrier ofX and[a, b] C the carrier ofy and
f°[a,b] C [a,b]. Then there exists a pointof X such thatf (x) = x.

(27) LetX,Y be non empty subspaces®f and f be a continuous map froiX into Y. Given
real numbers, b such that < b and[a, b] C the carrier ofX and f°[a,b] C [a,b]. Then there
exists a poink of X such thatf (x) = x.
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