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Summary. We formalize [10, pp. 87-89].
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The articles([15],[],[[18],[18],[[0],[[19],[[17] [I5],[[5], [14],[16]. [1],[[2],[[1],[[20], [3].[8],[[4],
and [12] provide the notation and terminology for this paper.

1. PRELIMINARIES

The schemé.ambdaCDdeals with a non empty set, a unary functorf yielding a set, a unary
functor G yielding a set, and a unary predicafteand states that:
There exists a functiofi such that doni = 2 and for every elementof 4 holds if
P[X], thenf(x) = F(x) and if not?[x], thenf(x) = G(X)
for all values of the parameters.
One can prove the following propositions:

(1) LetL be a non empty reflexive transitive relational structure @ndbe elements of.. If
x <y, then compactbelo(x) C compactbelowy).

(2) For every non empty reflexive relational structlwreand for every elememnt of L holds
compactbelo\x) is a subset of CompactSubidtj.

(3) For every relational structurle and for every relational substructugeof L holds every
subset ofSis a subset of.

(4) For every non empty reflexive transitive relational structuvéth l.u.b.'s holds the carrier
of L is an ideal ofL.

(5) LetL; be alower-bounded non empty reflexive antisymmetric relational structurezand
be a non empty reflexive antisymmetric relational structure. Suppose the relational struc-
ture of Ly = the relational structure of, and L; is up-complete. Then the carrier of
CompactSublaft.1) = the carrier of CompactSubléit).

2. ALGEBRAIC AND ARITHMETIC LATTICES

One can prove the following three propositions:
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(6) For every algebraic lower-bounded lattickolds every continuous subframelofs alge-
braic.

(7) Let X, E be sets and. be a continuous subframe 0%2 Then E € the carrier of
CompactSublaft) if and only if there exists an elemeht of Zé such thatF is finite and
E =N{Y;Y ranges over elements bf F C Y} andF C E.

(8) For every lower-bounded sup-semilatticéolds (Ids(L),C) is a continuous subframe of
ZtChe carrier ofL_

Let L be a non empty reflexive transitive relational structure. Observe that there exists an ideal
of L which is principal.
Next we state several propositions:

(9) For every lower-bounded sup-semilatticand for every non empty directed subXebf
(Ids(L), C) holds suX = UX.

(10) For every lower-bounded sup-semilatt®holds(Ids(S), C) is algebraic.

(11) LetShbe a lower-bounded sup-semilattice ande an element oflds(S),C). Thenx is
compact if and only ik is a principal ideal ofs

(12) LetSbe a lower-bounded sup-semilattice ande an element oflds(S),C). Thenx is
compact if and only if there exists an elemeardf Ssuch thak = |a.

(13) Let L be a lower-bounded sup-semilattice anfi be a map fromL into
CompactSublattlds(L),C)). If for every elementx of L holds f(x) = |x, then f is iso-
morphic.

(14) For every lower-bounded latti&holds(Ids(S), C) is arithmetic.

(15) For every lower-bounded sup-semilatticéolds CompactSubldtt) is a lower-bounded
sup-semilattice.

(16) LetL be an algebraic lower-bounded sup-semilattice dnbe a map fromL into
(lds(CompactSublaft)), C). If for every elemenix of L holds f(x) = compactbeloy),
thenf is isomorphic.

(17) LetL be an algebraic lower-bounded sup-semilattice armk an element of. Then
compactbelo\x) is a principal ideal of CompactSubldt} if and only if x is compact.

3. MAPS

We now state three propositions:

(18) LetLs, Ly be non empty relational structures,be a subset df;, x be an element df,
andf be a map fronk, into Ly. If f is isomorphic, thex < X iff f(x) < f°X.

(19) LetLs, Ly be non empty relational structures,be a subset df;, x be an element df,
andf be a map fronk, into Ly. If f is isomorphic, themx > X iff f(x) > f°X.

(20) LetLs, Lo be non empty antisymmetric relational structures arm a map froni; into
L,. If f is isomorphic, therf is infs-preserving and sups-preserving.

LetLs, L> be non empty antisymmetric relational structures. One can check that every map from
L1 into Ly which is isomorphic is also infs-preserving and sups-preserving.
One can prove the following propositions:

(21) Letl,, Ly, L3 be non empty transitive antisymmetric relational structuresfabd a map
from L, into L,. Supposef is infs-preserving. Suppode is a full infs-inheriting relational
substructure of 3 andL3 is complete. Then there exists a mgfrom L, into L3 such that
f = gandgis infs-preserving.
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(22) Letl,, Ly, L3 be non empty transitive antisymmetric relational structuresfabd a map
from Ly into Lp. Supposef is monotone and directed-sups-preserving. Suppgse a full
directed-sups-inheriting relational substructuré.gfindL; is complete. Then there exists a
mapg from Lz into L3 such thatf = g andg is directed-sups-preserving.

(23) For every lower-bounded sup-semilattickolds(lds(CompactSublaft.)), C) is a contin-

uous subframe off?e carrier ofCompactSubIa(L).

(24) LetL be an algebraic lower-bounded lattice. Then there exists a gnfapm L into

2tge carrier ofCompactSublaft.) such that

(i) gisinfs-preserving, directed-sups-preserving, and one-to-one, and
(i) for every elemenk of L holdsg(x) = compactbeloyx).
(25) Letl be anon empty set arddbe a relational structure yielding nonempty reflexive-yielding

many sorted set indexed by Suppose that for every elemerdf | holdsJ(i) is an algebraic
lower-bounded lattice. TheJ is an algebraic lower-bounded lattice.

(26) LetLy, L be non empty relational structures. Suppose the relational structure-othe
relational structure of,. ThenlL; andL; are isomorphic.

(27) LetLy, Ly be up-complete non empty posets dnide a map fronk; into L,. Suppose is
isomorphic. Let, y be elements of;. Thenx < y if and only if f(x) < f(y).

(28) LetLy, Lo be up-complete non empty posets dnlde a map fronk; into L,. Suppose is
isomorphic. Letx be an element df;. Thenxis compact if and only iff (x) is compact.

(29) LetlLq, Lo be up-complete non empty posets ahthe a map from; into Lo. If f is
isomorphic, then for every elemextdf L1 holdsf°® compactbelovix) = compactbeloWf (x)).

(30) For all non empty posets, L, such thatl; andL, are isomorphic andl; is up-complete
holdsL; is up-complete.

(31) For all non empty posets, L, such thal; andL; are isomorphic andl; is complete and
satisfies axiom K holdk; satisfies axiom K.

(32) LetLy, Ly be sup-semilattices. SuppdsgandL; are isomorphic ant; is lower-bounded
and algebraic. Thehj; is algebraic.

(33) For every continuous lower-bounded sup-semilattihelds SupMagL ) is infs-preserving
and sups-preserving.
(34) LetL be alower-bounded lattice. Then

(i) if L is algebraic, then there exists a non emptyXeind there exists a full relational
substructuré& of Zé such thasSis infs-inheriting and directed-sups-inheriting dndndSare
isomorphic, and

(i) if there exists a seX and there exists a full relational substruct&ref Zé such thatSis
infs-inheriting and directed-sups-inheriting andndSare isomorphic, theh is algebraic.
(35) LetL be alower-bounded lattice. Then

(i) if Lis algebraic, then there exists a non emptyXsand there exists a closure mafrom
2>g< into Zé such that is directed-sups-preserving ahdnd Imc are isomorphic, and

(i) if there exists a seX and there exists a closure magrom Zé into 2§ such thatc is
directed-sups-preserving ahdand Imc are isomorphic, theh is algebraic.
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