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The articles [15], [7], [18], [13], [9], [19], [17], [5], [6], [14], [16], [1], [2], [11], [20], [3], [8], [4],
and [12] provide the notation and terminology for this paper.

1. PRELIMINARIES

The schemeLambdaCDdeals with a non empty setA , a unary functorF yielding a set, a unary
functorG yielding a set, and a unary predicateP , and states that:

There exists a functionf such that domf = A and for every elementx of A holds if
P [x], then f (x) = F (x) and if notP [x], then f (x) = G(x)

for all values of the parameters.
One can prove the following propositions:

(1) Let L be a non empty reflexive transitive relational structure andx, y be elements ofL. If
x≤ y, then compactbelow(x)⊆ compactbelow(y).

(2) For every non empty reflexive relational structureL and for every elementx of L holds
compactbelow(x) is a subset of CompactSublatt(L).

(3) For every relational structureL and for every relational substructureS of L holds every
subset ofS is a subset ofL.

(4) For every non empty reflexive transitive relational structureL with l.u.b.’s holds the carrier
of L is an ideal ofL.

(5) Let L1 be a lower-bounded non empty reflexive antisymmetric relational structure andL2

be a non empty reflexive antisymmetric relational structure. Suppose the relational struc-
ture of L1 = the relational structure ofL2 and L1 is up-complete. Then the carrier of
CompactSublatt(L1) = the carrier of CompactSublatt(L2).

2. ALGEBRAIC AND ARITHMETIC LATTICES

One can prove the following three propositions:
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(6) For every algebraic lower-bounded latticeL holds every continuous subframe ofL is alge-
braic.

(7) Let X, E be sets andL be a continuous subframe of 2X
⊆. Then E ∈ the carrier of

CompactSublatt(L) if and only if there exists an elementF of 2X
⊆ such thatF is finite and

E =
⋂
{Y;Y ranges over elements ofL: F ⊆Y} andF ⊆ E.

(8) For every lower-bounded sup-semilatticeL holds〈Ids(L),⊆〉 is a continuous subframe of
2the carrier ofL
⊆ .

Let L be a non empty reflexive transitive relational structure. Observe that there exists an ideal
of L which is principal.

Next we state several propositions:

(9) For every lower-bounded sup-semilatticeL and for every non empty directed subsetX of
〈Ids(L),⊆〉 holds supX =

⋃
X.

(10) For every lower-bounded sup-semilatticeSholds〈Ids(S),⊆〉 is algebraic.

(11) Let S be a lower-bounded sup-semilattice andx be an element of〈Ids(S),⊆〉. Thenx is
compact if and only ifx is a principal ideal ofS.

(12) Let S be a lower-bounded sup-semilattice andx be an element of〈Ids(S),⊆〉. Thenx is
compact if and only if there exists an elementa of Ssuch thatx = ↓a.

(13) Let L be a lower-bounded sup-semilattice andf be a map from L into
CompactSublatt(〈Ids(L),⊆〉). If for every elementx of L holds f (x) = ↓x, then f is iso-
morphic.

(14) For every lower-bounded latticeSholds〈Ids(S),⊆〉 is arithmetic.

(15) For every lower-bounded sup-semilatticeL holds CompactSublatt(L) is a lower-bounded
sup-semilattice.

(16) Let L be an algebraic lower-bounded sup-semilattice andf be a map fromL into
〈Ids(CompactSublatt(L)),⊆〉. If for every elementx of L holds f (x) = compactbelow(x),
then f is isomorphic.

(17) Let L be an algebraic lower-bounded sup-semilattice andx be an element ofL. Then
compactbelow(x) is a principal ideal of CompactSublatt(L) if and only if x is compact.

3. MAPS

We now state three propositions:

(18) LetL1, L2 be non empty relational structures,X be a subset ofL1, x be an element ofL1,
and f be a map fromL1 into L2. If f is isomorphic, thenx≤ X iff f (x)≤ f ◦X.

(19) LetL1, L2 be non empty relational structures,X be a subset ofL1, x be an element ofL1,
and f be a map fromL1 into L2. If f is isomorphic, thenx≥ X iff f (x)≥ f ◦X.

(20) LetL1, L2 be non empty antisymmetric relational structures andf be a map fromL1 into
L2. If f is isomorphic, thenf is infs-preserving and sups-preserving.

Let L1, L2 be non empty antisymmetric relational structures. One can check that every map from
L1 into L2 which is isomorphic is also infs-preserving and sups-preserving.

One can prove the following propositions:

(21) LetL1, L2, L3 be non empty transitive antisymmetric relational structures andf be a map
from L1 into L2. Supposef is infs-preserving. SupposeL2 is a full infs-inheriting relational
substructure ofL3 andL3 is complete. Then there exists a mapg from L1 into L3 such that
f = g andg is infs-preserving.
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(22) LetL1, L2, L3 be non empty transitive antisymmetric relational structures andf be a map
from L1 into L2. Supposef is monotone and directed-sups-preserving. SupposeL2 is a full
directed-sups-inheriting relational substructure ofL3 andL3 is complete. Then there exists a
mapg from L1 into L3 such thatf = g andg is directed-sups-preserving.

(23) For every lower-bounded sup-semilatticeL holds〈Ids(CompactSublatt(L)),⊆〉 is a contin-

uous subframe of 2the carrier ofCompactSublatt(L)
⊆ .

(24) Let L be an algebraic lower-bounded lattice. Then there exists a mapg from L into

2the carrier ofCompactSublatt(L)
⊆ such that

(i) g is infs-preserving, directed-sups-preserving, and one-to-one, and

(ii) for every elementx of L holdsg(x) = compactbelow(x).

(25) LetI be a non empty set andJ be a relational structure yielding nonempty reflexive-yielding
many sorted set indexed byI . Suppose that for every elementi of I holdsJ(i) is an algebraic
lower-bounded lattice. Then∏J is an algebraic lower-bounded lattice.

(26) LetL1, L2 be non empty relational structures. Suppose the relational structure ofL1 = the
relational structure ofL2. ThenL1 andL2 are isomorphic.

(27) LetL1, L2 be up-complete non empty posets andf be a map fromL1 into L2. Supposef is
isomorphic. Letx, y be elements ofL1. Thenx� y if and only if f (x)� f (y).

(28) LetL1, L2 be up-complete non empty posets andf be a map fromL1 into L2. Supposef is
isomorphic. Letx be an element ofL1. Thenx is compact if and only iff (x) is compact.

(29) Let L1, L2 be up-complete non empty posets andf be a map fromL1 into L2. If f is
isomorphic, then for every elementx of L1 holds f ◦ compactbelow(x) = compactbelow( f (x)).

(30) For all non empty posetsL1, L2 such thatL1 andL2 are isomorphic andL1 is up-complete
holdsL2 is up-complete.

(31) For all non empty posetsL1, L2 such thatL1 andL2 are isomorphic andL1 is complete and
satisfies axiom K holdsL2 satisfies axiom K.

(32) LetL1, L2 be sup-semilattices. SupposeL1 andL2 are isomorphic andL1 is lower-bounded
and algebraic. ThenL2 is algebraic.

(33) For every continuous lower-bounded sup-semilatticeL holds SupMap(L) is infs-preserving
and sups-preserving.

(34) LetL be a lower-bounded lattice. Then

(i) if L is algebraic, then there exists a non empty setX and there exists a full relational
substructureSof 2X

⊆ such thatSis infs-inheriting and directed-sups-inheriting andL andSare
isomorphic, and

(ii) if there exists a setX and there exists a full relational substructureSof 2X
⊆ such thatS is

infs-inheriting and directed-sups-inheriting andL andSare isomorphic, thenL is algebraic.

(35) LetL be a lower-bounded lattice. Then

(i) if L is algebraic, then there exists a non empty setX and there exists a closure mapc from
2X
⊆ into 2X

⊆ such thatc is directed-sups-preserving andL and Imc are isomorphic, and

(ii) if there exists a setX and there exists a closure mapc from 2X
⊆ into 2X

⊆ such thatc is
directed-sups-preserving andL and Imc are isomorphic, thenL is algebraic.
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