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Summary. We present the Mizar formalization of theorem 4.17, Chapter I from [13]:
a free continuous lattice withmgenerators is isomorphic to the lattice of filters of 2X (X = m)
which is freely generated by{↑ x : x∈ X} (the set of ultrafilters).

MML Identifier: WAYBEL22.

WWW: http://mizar.org/JFM/Vol10/waybel22.html

The articles [20], [10], [25], [18], [26], [8], [9], [3], [12], [16], [1], [2], [19], [24], [4], [22], [23],
[17], [21], [5], [14], [27], [6], [11], [7], and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(1) For every upper-bounded semilatticeL and for every non empty directed subsetF of
〈Filt(L),⊆〉 holds supF =

⋃
F.

(2) Let L, S, T be complete non empty posets,f be a CLHomomorphism ofL, S, andg be a
CLHomomorphism ofS, T. Theng· f is a CLHomomorphism ofL, T.

(3) For every non empty relational structureL holds idL is infs-preserving.

(4) For every non empty relational structureL holds idL is directed-sups-preserving.

(5) For every complete non empty posetL holds idL is a CLHomomorphism ofL, L.

(6) For every upper-bounded non empty posetL with g.l.b.’s holds〈Filt(L),⊆〉 is a continuous
subframe of 2the carrier ofL

⊆ .

LetL be an upper-bounded non empty poset with g.l.b.’s. Observe that〈Filt(L),⊆〉 is continuous.
Let L be an upper-bounded non empty poset. One can check that every element of〈Filt(L),⊆〉

is non empty.

2. FREE GENERATORS OFCONTINUOUS LATTICES

Let S be a continuous complete non empty poset and letA be a set. We say thatA is a set of free
generators ofS if and only if the condition (Def. 1) is satisfied.
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(Def. 1) Let T be a continuous complete non empty poset andf be a function fromA into the
carrier ofT. Then there exists a CLHomomorphismh of S, T such thath�A= f and for every
CLHomomorphismh′ of S, T such thath′�A = f holdsh′ = h.

The following propositions are true:

(7) Let S be a continuous complete non empty poset andA be a set. IfA is a set of free
generators ofS, thenA is a subset ofS.

(8) Let Sbe a continuous complete non empty poset andA be a set. SupposeA is a set of free
generators ofS. Let h′ be a CLHomomorphism ofS, S. If h′�A = idA, thenh′ = idS.

3. REPRESENTATIONTHEOREM FORFREE CONTINUOUS LATTICES

In the sequelX denotes a set,F denotes a filter of 2X⊆, x denotes an element of 2X
⊆, andzdenotes an

element ofX.
Let us considerX. The fixed ultrafilters ofX is a family of subsets of 2X⊆ and is defined as

follows:

(Def. 2) The fixed ultrafilters ofX = {↑x :
∨

z x = {z}}.

Next we state three propositions:

(9) The fixed ultrafilters ofX ⊆ Filt(2X
⊆).

(10) the fixed ultrafilters ofX = X .

(11) F =
⊔

(〈Filt(2X
⊆),⊆〉){d

−e(〈Filt(2X
⊆),⊆〉){↑x :

∨
z (x = {z} ∧ z∈Y)};Y ranges over subsets ofX:

Y ∈ F}.

Let us considerX, let L be a continuous complete non empty poset, and letf be a function from
the fixed ultrafilters ofX into the carrier ofL. The extension off to homomorphism is a map from
〈Filt(2X

⊆),⊆〉 into L and is defined by the condition (Def. 3).

(Def. 3) LetF1 be an element of〈Filt(2X
⊆),⊆〉. Then (the extension off to homomorphism)(F1) =⊔

L{d
−eL{ f (↑x) :

∨
z (x = {z} ∧ z∈Y)};Y ranges over subsets ofX: Y ∈ F1}.

We now state two propositions:

(12) LetL be a continuous complete non empty poset andf be a function from the fixed ultra-
filters ofX into the carrier ofL. Then the extension off to homomorphism is monotone.

(13) LetL be a continuous complete non empty poset andf be a function from the fixed ultra-
filters ofX into the carrier ofL. Then (the extension off to homomorphism)(>〈Filt(2X

⊆),⊆〉) =
>L.

Let us considerX, let L be a continuous complete non empty poset, and letf be a function
from the fixed ultrafilters ofX into the carrier ofL. One can verify that the extension off to
homomorphism is directed-sups-preserving.

Let us considerX, let L be a continuous complete non empty poset, and letf be a function
from the fixed ultrafilters ofX into the carrier ofL. One can check that the extension off to
homomorphism is infs-preserving.

We now state several propositions:

(14) Let L be a continuous complete non empty poset andf be a function from the fixed ul-
trafilters ofX into the carrier ofL. Then (the extension off to homomorphism)�(the fixed
ultrafilters ofX) = f .

(15) LetL be a continuous complete non empty poset,f be a function from the fixed ultrafilters
of X into the carrier ofL, andh be a CLHomomorphism of〈Filt(2X

⊆),⊆〉, L. Supposeh�the
fixed ultrafilters ofX = f . Thenh = the extension off to homomorphism.
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(16) The fixed ultrafilters ofX is a set of free generators of〈Filt(2X
⊆),⊆〉.

(17) LetL, M be continuous complete lattices andF , G be sets. SupposeF is a set of free gen-
erators ofL andG is a set of free generators ofM andF = G. ThenL andM are isomorphic.

(18) LetL be a continuous complete lattice andG be a set. SupposeG is a set of free generators
of L andG = X . ThenL and〈Filt(2X

⊆),⊆〉 are isomorphic.
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[11] Czesław Bylínski. Galois connections.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/waybel_1.html.

[12] Mariusz Giero. More on products of many sorted algebras.Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/
Vol8/pralg_3.html.

[13] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott.A Compendium of Continuous Lattices. Springer-Verlag,
Berlin, Heidelberg, New York, 1980.

[14] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures.Journal of
Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/yellow_1.html.

[15] Robert Milewski. Completely-irreducible elements.Journal of Formalized Mathematics, 10, 1998.http://mizar.org/JFM/Vol10/
waybel16.html.

[16] Michał Muzalewski. Categories of groups.Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1.
html.

[17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU.Journal of Formalized Mathematics, 4, 1992. http:
//mizar.org/JFM/Vol4/ami_1.html.

[18] Beata Padlewska. Families of sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/setfam_1.html.

[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Vol1/pre_topc.html.

[20] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[21] Andrzej Trybulec. Function domains and Frænkel operator.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/
Vol2/fraenkel.html.

[22] Andrzej Trybulec. Many-sorted sets.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/Vol5/pboole.html.

[23] Andrzej Trybulec. Many sorted algebras.Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.
html.

[24] Wojciech A. Trybulec. Partially ordered sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/orders_
1.html.

[25] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[26] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol3/funct_6.html
http://mizar.org/JFM/Vol3/funct_6.html
http://mizar.org/JFM/Vol4/lattice3.html
http://mizar.org/JFM/Vol8/yellow_0.html
http://mizar.org/JFM/Vol8/yellow_0.html
http://mizar.org/JFM/Vol8/waybel_0.html
http://mizar.org/JFM/Vol8/waybel_0.html
http://mizar.org/JFM/Vol8/waybel_3.html
http://mizar.org/JFM/Vol8/waybel_3.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol8/waybel_1.html
http://mizar.org/JFM/Vol8/pralg_3.html
http://mizar.org/JFM/Vol8/pralg_3.html
http://mizar.org/JFM/Vol8/yellow_1.html
http://mizar.org/JFM/Vol10/waybel16.html
http://mizar.org/JFM/Vol10/waybel16.html
http://mizar.org/JFM/Vol3/grcat_1.html
http://mizar.org/JFM/Vol3/grcat_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol1/setfam_1.html
http://mizar.org/JFM/Vol1/pre_topc.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol2/fraenkel.html
http://mizar.org/JFM/Vol2/fraenkel.html
http://mizar.org/JFM/Vol5/pboole.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol1/orders_1.html
http://mizar.org/JFM/Vol1/orders_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html


REPRESENTATION THEOREM FOR FREE CONTINUOUS. . . 4
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