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Summary. The goal of this article is to construct a language of the ZF set the-
ory and to develop a notational and conceptual base which facilitates a convenient
usage of the language.

The articles [5], [6], [3], [4], [1], and [2] provide the terminology and notation for this
paper. For simplicity we adopt the following convention: k, n will have the type Nat;
D will have the type DOMAIN; « will have the type Any; p, g will have the type
FinSequence of NAT. The constant VAR has the type SUBDOMAIN of NAT, and is
defined by

it={k:5<k}.
The following proposition is true

(1) VAR ={k:5<k}.

Variable stands for Element of VAR.
One can prove the following proposition

(2) a is Variable iff a is Element of VAR ..

Let us consider n. The functor
£n,
with values of the type Variable, is defined by
it=5+n.
One can prove the following proposition
(3) En=5+n.
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In the sequel =z, y, z, t denote objects of the type Variable. Let us consider x. Let

us note that it makes sense to consider the following functor on a restricted area. Then
<> is FinSequence of NAT .
We now define two new functors. Let us consider x, y. The functor
r=y,
with values of the type FinSequence of NAT), is defined by
it =<0>" <a>" <y>.

The functor

x ey,
yields the type FinSequence of NAT and is defined by

it =<1>"7 <> "7 <y>.

Next we state four propositions:

(4) r=y=<0>" <z>" <y>,
(5) Tey=<1>" <> <y>,
(6) r=y==z=timpliesz =2z & y = t,
(7) rey=czetimpliesz =z &y =1t.

We now define two new functors. Let us consider p. The functor
-p
with values of the type FinSequence of NAT, is defined by
it =<2>""p.
Let us consider q. The functor
PAG
with values of the type FinSequence of NAT, is defined by
it=<3>"p ¢
Next we state three propositions:
(8) op=<2>""p,
(9) pPAg=<3>"p g,

(10) - p = -qimplies p = q.
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Let us consider z, p. The functor
V(z,p),
yields the type FinSequence of NAT and is defined by
it=<4>" <z>""p.
The following propositions are true:

(11) V(z,p) = <4>" <z> " p,
(12) V(z,p) =V (y,q) impliesz =y & p=gq.

The constant WFF has the type DOMAIN, and is defined by

(for a st a € it holds a is FinSequence of NAT) &

(forz,y holds x=y € it & x ey € it) & (forp st p € it holds —p € it) &
(forp,gstp €it & g € it holds p A g € it) & (forz,p st p € it holds V (z,p) € it) &
for D st
(for a st a € D holds a is FinSequence of NAT) &
(forx,yholdsz=ye D& xey € D) & (forpst p € D holds —p € D)

& (forp,gstpe D& g€ Dholds pA g€ D) &forz,pstpe DholdsV(x,p) € D
holds it C D.

One can prove the following proposition

(13) (for a st a € WFF holds a is FinSequence of NAT) &
(for z,y holds x=y € WFF & z ey € WFF) &
(for p st p € WFF holds —-p € WFF) &
(for p,q st p € WFF & ¢ € WFF holds p A ¢ € WFF) &
(for z,p st p € WFF holds V (z,p) € WFF) & for D st
(fora st @ € D holds a is FinSequence of NAT) &
(forz,yholdsz=ye D& xey € D) & (forpst pe Dholds -pe D) &
(forp,gstpe D& ge DholdspA g€ D)
& forz,p st p e D holds V(x,p) € D
holds WFF C D.

The mode

ZF-formula,,
which widens to the type FinSequence of NAT, is defined by

it is Element of WFF .
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We now state two propositions:
(14) a is ZF-formula iff a € WFF |
(15) a is ZF-formula iff a is Element of WFF .

In the sequel F, F1, G, G1, H, H1 denote objects of the type ZF-formula. Let
us consider x, y. Let us note that it makes sense to consider the following functors on
restricted areas. Then

T=y is ZF-formula,
TEY is ZF-formula .

Let us consider H. Let us note that it makes sense to consider the following functor
on a restricted area. Then

-H is ZF-formula .

Let us consider G. Let us note that it makes sense to consider the following functor on
a restricted area. Then
HAG is ZF-formula .

Let us consider z, H. Let us note that it makes sense to consider the following functor
on a restricted area. Then

V(x,H) is ZF-formula .
We now define five new predicates. Let us consider H. The predicate
H is_a_equality is defined by exx,yst H=x=y.
The predicate
H is_a_membership is defined by exx,yst H=xey.
The predicate
H is_negative is defined by exHlst H=-H1.
The predicate
H is_conjunctive is defined by exF\Gst H=FANG.
The predicate
H is_universal is defined by exx,Hlst H=V(z,H1).
The following proposition is true
(16) (H is_.a_equality iff exz,y st H =2=9y) &
(H is_a_membership iff exz,y st H =z ey) &
(H is_negative iffex H1 st H = - H1) &

(H is_conjunctive iff ex F,G st H = F A G)
& (His_universal iff exz,H1 st H =V (z, H1)).
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Let us consider H. The predicate

H is_atomic is defined by H is_a_equality or H is_a_membership.
Next we state a proposition

(17) H is_atomic iff H is_a_equality or H is_a_membership .

We now define two new functors. Let us consider F', G. The functor

FvaG,

yields the type ZF-formula and is defined by

it:ﬁ(ﬁF/\ﬁG).

The functor
F =G,

yields the type ZF-formula and is defined by

it:ﬁ(F/\ﬁG).

The following two propositions are true:

(18) FVG=-(-FA-G),
(19) F=G==(FAN-G).
Let us consider F'; G. The functor
F&@G,
yields the type ZF-formula and is defined by
it=(F=G)AN(G=F).
We now state a proposition
(20) F&GE@=(F=G) NG=F).
Let us consider z, H. The functor
3 (z, H),
yields the type ZF-formula and is defined by
it=-V(x,- H).

The following proposition is true

(21) 3 (a, H) = =V (2, H).
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We now define four new predicates. Let us consider H. The predicate

H is_disjunctive is defined by exF\Gst H=FVG.

The predicate

H is_conditional is defined by exF\Gst H=F=(G.

The predicate

H is_biconditional is defined by exF\Gst H=F &G

The predicate

H is_existential is defined by exx,Hl st H=3(z,H1).

The following proposition is true
(22) (H is_disjunctive iffex F,Gst H = FVG) &
(H is_conditional iffex F,Gst H =F = G) &
(H is_biconditional iff ex ;G st H = F < Q)
& (H is_existential iff exx,H1 st H = 3 (z, H1)).
We now define two new functors. Let us consider z, y, H. The functor
v (:C? Y, H)a
yields the type ZF-formula and is defined by
it =V (2,V (y, H)).

The functor
3 (:L') y? H)’

yields the type ZF-formula and is defined by
it=3(z,3(y, H)).

The following proposition is true
(23) V(,y, H) =V (2,V (y, H)) & 3(z,y, H) = (2,3 (y, H)).

We now define two new functors. Let us consider x, y, z, H. The functor

V(z,y, 2, H),
with values of the type ZF-formula, is defined by
it=V(z,V(y,z, H)).

The functor
3 (:I:7 y? Z7 H)’
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with values of the type ZF-formula, is defined by

it=3(z,3(y,2, H)).

We now state several propositions:

(24)

(25)

(26)
(27)
(28)
(29)

(30)

V(z,y,z, H) =V (2,V(y,2,H)) & 3 (z,y,2,H) =3 (x,3 (y, 2, H)),

H is_a_equality

or H is_a_membership or H is_negative or H is_conjunctive or H is_universal,

H is_atomic or H is_negative or H is_conjunctive or H is_universal,

H is_atomic implies len H = 3,
His_atomicor ex Hl st len H1 + 1 <len H,
3 <lenH,

len H = 3 implies H is_atomic.

One can prove the following propositions:

(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)

(40)

(41)

(42)

forz,y holds (z=y).1=0& (zey).1 =1,
for H holds (—H).1 =2,
for F,G holds (FAG).1 =3,
for z,H holds V (z, H).1 = 4,
H is_a_equality implies H.1 = 0,
H is_a_membership implies H.1 = 1,
H is_negative implies H.1 = 2,
H is_conjunctive implies H.1 = 3,
H is_universal implies H.1 =4,

His_a_equality & H.1 = 0 or H is_a_membership & H.1 =1 or
H is_negative & H.1 = 2

or H is_conjunctive & H.1 = 3 or H is_universal & H.1 =4,
H.1 =0 implies H is_a_equality,

H.1 =1 implies H is_a_membership,
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(43) H.1 =2 implies H is_negative,
(44) H.1 =3 implies H is_conjunctive,
(45) H.1 =4 implies H is_universal.

In the sequel sq denotes an object of the type FinSequence. We now state several

propositions:

(46) H =F " sqimplies H = F,

(47) HANG=H1ANGlimplies H=H1 & G =G1,
(48) FVvG=F1vGlimplies F = F1 & G = (1,
(49) F=_G=F1=Glimplies F = F1 & G = G1,
(50) F& G=F14<Glimplies F =F1 & G =G1,
(51) I(z,H) =3 (y,G) impliesz =y & H = G.

We now define two new functors. Let us consider H. Assume that the following
holds

H is_atomic.

The functor
Var1 f[7

yields the type Variable and is defined by

it=H.2.

The functor
Varg H s

yields the type Variable and is defined by

it=H.3.

One can prove the following three propositions:

(52) H is_atomic implies Var; H = H.2 & Varo H = H .3,
(53) H is_a_equality implies H = (Var; H) = Vary H,
(54) H is_a_membership implies H = (Var; H) € Vary H.

Let us consider H. Assume that the following holds

H is_negative.
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The functor
the_argument_of H,

with values of the type ZF-formula, is defined by

—it = H.
We now state a proposition

(55) H is_negative implies H = — the_argument_of H.

We now define two new functors. Let us consider H. Assume that the following
holds

H is_conjunctive or H is_disjunctive.

The functor
the_left_argument_of H,

with values of the type ZF-formula, is defined by

exHlstitANH1=H, if H is_conjunctive,
exHlstitv Hl = H, otherwise.

The functor
the_right_argument_of H,

with values of the type ZF-formula, is defined by

exHlst HIANit=H, if H is_conjunctive,
exHlst H1Vit = H, otherwise.

One can prove the following propositions:
(56) H is_conjunctive implies (F' = the_left_argument_of H iff exG st FAG = H)
& (F = the right_argument_of H iffex G st GAF = H),

(57) H is_disjunctive implies (F' = the_left_argument_of H iff ex G st FV G = H)
& (F = theright_argument of H iffex G st GV F = H),

(58) H is_conjunctive

implies H = (the_left_argument_of H) A the_right_argument_of H,

(59) H is_disjunctive
implies H = (the_left_argument_of H) V the_right_argument_of H.

We now define two new functors. Let us consider H. Assume that the following
holds

H is_universal or H is_existential .
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The functor
bound_in H,

with values of the type Variable, is defined by
exHlstV(it,Hl)=H, if H is_universal ,
exHlst3(it,Hl) = H, otherwise.

The functor
the_scope_of H,

with values of the type ZF-formula, is defined by

exx stV (x,it) = H, if H is_universal

exx st 3(x,it) = H, otherwise.

Next we state four propositions:
(60) H is_universal implies (x = bound.in H iffex H1 stV (z, H1) = H)
& (H1 = the_scopeof H iff exx st V (z, H1) = H),

(61) H is_existential implies (x = bound.in H iffex H1 st 3 (x, H1) = H)
& (H1 = the_scopeof H iff exx st 3 (x, H1) = H),

(62) H is_universal implies H =V (bound_in H,the_scope_of H),
(63) H is_existential implies H = 3 (bound_in H,the_scope_of H).

We now define two new functors. Let us consider H. Assume that the following
holds

H is_conditional .

The functor
the_antecedent_of H,

with values of the type ZF-formula, is defined by

exHlst H=it= HI1.

The functor

the_consequent_of H,
with values of the type ZF-formula, is defined by

exHlst H=Hl=it.

The following propositions are true:

(64) H is_conditional implies (F' = the_antecedent-of H iff ex G st H = F = G)
& (F = the_consequent_of H iff ex G st H = G = F),
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(65) H is_conditional implies H = (the_antecedent_of H) = the_consequent_of H.

We now define two new functors. Let us consider H. Assume that the following
holds

H is_biconditional .

The functor
the_left_side_of H,

yields the type ZF-formula and is defined by

exHlst H=1it< HI1.

The functor
the_right_side_of H,

with values of the type ZF-formula, is defined by

exHlst H=Hl&it.

We now state two propositions:

(66) H is_biconditional implies (F' = the_left_side of H iffex G st H = F < G)
& (F = therightside_of H iffexG st H =G < F),

(67) H is_biconditional implies H = (the_left_side_of H) < the_right_side_of H.

Let us consider H, F'. The predicate

H is_immediate_constituent_of F'

is defined by

F=-Hor(exHlst F=HAHlor F=HIANH)orexxzst F=VY(z,H).

We now state a number of propositions:

(68) H is_immediate_constituent_of F' iff
F=-Hor(exHlst F=HANHlorF=HlANH)orexzstF=VY(z,H),

(69) not H is_immediate_constituent_of x = y,

(70) not H is_immediate_constituent_of x € y,

(71) F is_immediate_constituent_of -~ H iff I = H,

(72) F is.immediate_constituent_of GAH iff F =G or F = H,

(73) F is_.immediate_constituent_of ¥ (z, H) iff F' = H,
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(74) H is_atomic implies not F' is_immediate_constituent_of H,
(75) H is_negative
implies (F is_immediate_constituent_of H iff F' = the_argument_of H),

(76) H is_conjunctive implies (F' is_immediate_constituent_of H

iff F = the_left_argument_of H or F' = the_right_argument_of H),

(77) H is_universal
implies (F is_immediate_constituent_-of H iff F' = the_scope-of H).

In the sequel L will denote an object of the type FinSequence. Let us consider H,
F'. The predicate
H is_subformula_of F’

is defined by
exnLstl<n&lenL=n& L1=H&Ln=F&forkstl<k&k<n
exH1,F1st L.k=H1& L.(k+1)=F1 & H1 is.immediate_constituent_of F'1.
Next we state two propositions:

(78) H issubformula_of F iffexn,Lst 1 <n&lenL=n& L.1=H& Ln=F&
forkst1 <k&k<nexH1F1
st L.k=H1& L.(k+1)=F1& H1 is.immediate_constituent_of F'1,

(79) H is_subformula_of H.

Let us consider H, F'. The predicate

H is_proper_subformula_of F' is defined by H is_subformula_of F' & H # F.

We now state several propositions:

(80) H is_proper_subformula_of F' iff H is_subformula_of F' & H # F,
(81) H is_immediate_constituent_of F' implies len H < len F,

(82) H is_immediate_constituent_of F' implies H is_proper_subformula_of F
(83) H is_proper_subformula_of F' implies len H < len F,

(84) H is_proper_subformula_of F'

implies ex G st G is_.immediate_constituent_of F.

The following propositions are true:

(85) F is_proper_subformula_of G' & G is_proper_subformula_of H

implies F' is_proper_subformula_of H,



(86)

(96)
(97)

(98)
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F is_subformula_of G & G is_subformula_of H implies F' is_subformula_of H,
G is_subformula_of H & H is_subformula_of G implies G = H,
not F' is_proper_subformula_of x = y,
not F' is_proper_subformula_of = € y,
F is_proper_subformula_of = H implies F' is_subformula_of H,

F is_proper_subformula_of G A H

implies F' is_subformula_of G' or F' is_subformula_of H,
F is_proper_subformula_of V (x, H) implies F is_subformula_of H,
H is_atomic implies not F' is_proper_subformula_of H,
H is_negative implies the_argument_of H is_proper_subformula_of H,

H is_conjunctive implies the_left_argument_of H is_proper_subformula_of H

& the_right_argument_of H is_proper_subformula_of H,
H is_universal implies the_scope_of H is_proper_subformula_of H,
H is_subformula_of z=y iff H = x =y,

H is_subformulaof z ey iff H =xey.

Let us consider H. The functor

Subformulae H,

yields the type set and is defined by

acitiffexF st F = a & F is_subformula_of H.

We now state a number of propositions:

(99)
(100)
(101)
(102)
(103)

(104)

a € Subformulae H iff ex F' st F' = a & F is_subformula_of H,
G € Subformulae H implies G is_subformula_of H,
F is_subformula_of H implies Subformulae F' C Subformulae H,
Subformulaez =y = {z =y},
Subformulaex e y = {z e y},

Subformulae - H = Subformulae H U {- H},
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(105) Subformulae (H A F) = Subformulae H U Subformulae F U {H A F},
(106) SubformulaeV (z, H) = Subformulae H U {V (x, H)},

(107) H is_atomic iff Subformulae H = {H},

(108) H is_negative

implies Subformulae H = Subformulae the_argument_of H U {H },

(109) H is_conjunctive implies Subformulae H = Subformulae

the_left_argument_of H U Subformulae the_right_argument_of H U { H },
(110) H is_universal implies Subformulae H = Subformulae the_scope_of H U {H },

(111) (H is-immediate_constituent_of G
or H is_proper_subformula_of G or H is_subformula_of G)
& G € Subformulae F
implies H € Subformulae F.

In the article we present several logical schemes. The scheme ZF_Ind deals with a

unary predicate P states that the following holds

for H holds P[H]|

provided the parameter satisfies the following conditions:

. for H st H is_atomic holds P[H],
. for H st H is_negative & P[the_argument_of H] holds P[H],
. for H st

H is_conjunctive & Pthe_left_argument_of H| & P|[the_right_argument_of H]
holds P[H],

o for H st H is_universal & P[the_scope_of H] holds P[H].

The scheme ZF_Complnd deals with a unary predicate P states that the following
holds

for H holds P[H]

provided the parameter satisfies the following condition:

e  for H st for F' st F is_proper_subformula_of H holds P[F] holds P[H].
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