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Summary. The goal of this article is to construct a language of the ZF set the-

ory and to develop a notational and conceptual base which facilitates a convenient

usage of the language.

The articles [5], [6], [3], [4], [1], and [2] provide the terminology and notation for this

paper. For simplicity we adopt the following convention: k, n will have the type Nat;

D will have the type DOMAIN; a will have the type Any; p, q will have the type

FinSequence of NAT. The constant VAR has the type SUBDOMAIN of NAT, and is

defined by

it = { k : 5 ≤ k }.

The following proposition is true

(1) VAR = { k : 5 ≤ k }.

Variable stands for Element of VAR .

One can prove the following proposition

(2) a is Variable iff a is Element of VAR .

Let us consider n. The functor

ξ n,

with values of the type Variable, is defined by

it = 5 + n.

One can prove the following proposition

(3) ξ n = 5 + n.
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In the sequel x, y, z, t denote objects of the type Variable. Let us consider x. Let

us note that it makes sense to consider the following functor on a restricted area. Then

<x> is FinSequence of NAT .

We now define two new functors. Let us consider x, y. The functor

x -- y,

with values of the type FinSequence of NAT, is defined by

it = <0> ⌢ <x> ⌢ <y>.

The functor

x ǫ y,

yields the type FinSequence of NAT and is defined by

it = <1> ⌢ <x> ⌢ <y>.

Next we state four propositions:

(4) x -- y = <0> ⌢ <x> ⌢ <y>,

(5) x ǫ y = <1> ⌢ <x> ⌢ <y>,

(6) x -- y = z -- t implies x = z & y = t,

(7) x ǫ y = z ǫ t implies x = z & y = t.

We now define two new functors. Let us consider p. The functor

¬ p,

with values of the type FinSequence of NAT, is defined by

it = <2> ⌢ p.

Let us consider q. The functor

p ∧ q,

with values of the type FinSequence of NAT, is defined by

it = <3> ⌢ p ⌢ q.

Next we state three propositions:

(8) ¬ p = <2> ⌢ p,

(9) p ∧ q = <3> ⌢ p ⌢ q,

(10) ¬ p = ¬ q implies p = q.
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Let us consider x, p. The functor

∀ (x, p),

yields the type FinSequence of NAT and is defined by

it = <4> ⌢ <x> ⌢ p.

The following propositions are true:

(11) ∀ (x, p) = <4> ⌢ <x> ⌢ p,

(12) ∀ (x, p) = ∀ (y, q) implies x = y & p = q.

The constant WFF has the type DOMAIN, and is defined by

(for a st a ∈ it holds a is FinSequence of NAT) &

(for x,y holds x -- y ∈ it & x ǫ y ∈ it) & (for p st p ∈ it holds ¬ p ∈ it) &

(for p,q st p ∈ it & q ∈ it holds p ∧ q ∈ it) & (forx,p st p ∈ it holds ∀ (x, p) ∈ it) &

forD st

(for a st a ∈ D holds a is FinSequence of NAT) &

(for x,y holds x -- y ∈ D & x ǫ y ∈ D) & (for p st p ∈ D holds ¬ p ∈ D)

& (for p,q st p ∈ D & q ∈ D holds p ∧ q ∈ D) & forx,p st p ∈ D holds ∀ (x, p) ∈ D

holds it ⊆ D.

One can prove the following proposition

(13) (for a st a ∈ WFF holds a is FinSequence of NAT) &

(forx,y holds x -- y ∈ WFF & x ǫ y ∈ WFF) &

(for p st p ∈ WFF holds ¬ p ∈ WFF) &

(for p,q st p ∈ WFF & q ∈ WFF holds p ∧ q ∈ WFF) &

(forx,p st p ∈ WFF holds ∀ (x, p) ∈ WFF) & forD st

(for a st a ∈ D holds a is FinSequence of NAT) &

(for x,y holds x -- y ∈ D & x ǫ y ∈ D) & (for p st p ∈ D holds ¬ p ∈ D) &

(for p,q st p ∈ D & q ∈ D holds p ∧ q ∈ D)

& forx,p st p ∈ D holds ∀ (x, p) ∈ D

holds WFF ⊆ D.

The mode

ZF-formula ,

which widens to the type FinSequence of NAT, is defined by

it is Element of WFF .
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We now state two propositions:

(14) a is ZF-formula iff a ∈ WFF ,

(15) a is ZF-formula iff a is Element of WFF .

In the sequel F , F1, G, G1, H , H1 denote objects of the type ZF-formula. Let

us consider x, y. Let us note that it makes sense to consider the following functors on

restricted areas. Then

x -- y is ZF-formula ,

x ǫ y is ZF-formula .

Let us consider H . Let us note that it makes sense to consider the following functor

on a restricted area. Then

¬H is ZF-formula .

Let us consider G. Let us note that it makes sense to consider the following functor on

a restricted area. Then

H ∧ G is ZF-formula .

Let us consider x, H . Let us note that it makes sense to consider the following functor

on a restricted area. Then

∀ (x, H) is ZF-formula .

We now define five new predicates. Let us consider H . The predicate

H is a equality is defined by exx,y st H = x -- y.

The predicate

H is a membership is defined by exx,y st H = x ǫ y.

The predicate

H is negative is defined by exH1 st H = ¬H1.

The predicate

H is conjunctive is defined by exF,G st H = F ∧ G.

The predicate

H is universal is defined by exx,H1 st H = ∀ (x, H1).

The following proposition is true

(16) (H is a equality iff exx,y st H = x -- y) &

(H is a membership iff exx,y st H = x ǫ y) &

(H is negative iff exH1 st H = ¬H1) &

(H is conjunctive iff exF,G st H = F ∧ G)

& (H is universal iff exx,H1 st H = ∀ (x, H1)).
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Let us consider H . The predicate

H is atomic is defined by H is a equality or H is a membership .

Next we state a proposition

(17) H is atomic iff H is a equality or H is a membership .

We now define two new functors. Let us consider F , G. The functor

F ∨ G,

yields the type ZF-formula and is defined by

it = ¬ (¬F ∧ ¬G).

The functor

F ⇒ G,

yields the type ZF-formula and is defined by

it = ¬ (F ∧ ¬G).

The following two propositions are true:

(18) F ∨ G = ¬ (¬F ∧ ¬G),

(19) F ⇒ G = ¬ (F ∧ ¬G).

Let us consider F , G. The functor

F ⇔ G,

yields the type ZF-formula and is defined by

it = (F ⇒ G) ∧ (G ⇒ F ).

We now state a proposition

(20) F ⇔ G = (F ⇒ G) ∧ (G ⇒ F ).

Let us consider x, H . The functor

∃ (x, H),

yields the type ZF-formula and is defined by

it = ¬∀ (x,¬H).

The following proposition is true

(21) ∃ (x, H) = ¬∀ (x,¬H).
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We now define four new predicates. Let us consider H . The predicate

H is disjunctive is defined by exF,G st H = F ∨ G.

The predicate

H is conditional is defined by exF,G st H = F ⇒ G.

The predicate

H is biconditional is defined by exF,G st H = F ⇔ G.

The predicate

H is existential is defined by exx,H1 st H = ∃ (x, H1).

The following proposition is true

(22) (H is disjunctive iff exF,G st H = F ∨ G) &

(H is conditional iff exF,G st H = F ⇒ G) &

(H is biconditional iff exF,G st H = F ⇔ G)

& (H is existential iff exx,H1 st H = ∃ (x, H1)).

We now define two new functors. Let us consider x, y, H . The functor

∀ (x, y, H),

yields the type ZF-formula and is defined by

it = ∀ (x,∀ (y, H)).

The functor

∃ (x, y, H),

yields the type ZF-formula and is defined by

it = ∃ (x,∃ (y, H)).

The following proposition is true

(23) ∀ (x, y, H) = ∀ (x,∀ (y, H)) & ∃ (x, y, H) = ∃ (x,∃ (y, H)).

We now define two new functors. Let us consider x, y, z, H . The functor

∀ (x, y, z, H),

with values of the type ZF-formula, is defined by

it = ∀ (x,∀ (y, z, H)).

The functor

∃ (x, y, z, H),
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with values of the type ZF-formula, is defined by

it = ∃ (x,∃ (y, z, H)).

We now state several propositions:

(24) ∀ (x, y, z, H) = ∀ (x,∀ (y, z, H)) & ∃ (x, y, z, H) = ∃ (x,∃ (y, z, H)),

(25) H is a equality

or H is a membership or H is negative or H is conjunctive or H is universal ,

(26) H is atomic or H is negative or H is conjunctive or H is universal ,

(27) H is atomic implies len H = 3,

(28) H is atomic or exH1 st len H1 + 1 ≤ len H,

(29) 3 ≤ len H,

(30) len H = 3 implies H is atomic .

One can prove the following propositions:

(31) forx,y holds (x -- y).1 = 0 & (x ǫ y).1 = 1,

(32) forH holds (¬H).1 = 2,

(33) forF,G holds (F ∧ G).1 = 3,

(34) forx,H holds ∀ (x, H).1 = 4,

(35) H is a equality implies H.1 = 0,

(36) H is a membership implies H.1 = 1,

(37) H is negative implies H.1 = 2,

(38) H is conjunctive implies H.1 = 3,

(39) H is universal implies H.1 = 4,

(40) H is a equality & H.1 = 0 or H is a membership & H.1 = 1 or

H is negative & H.1 = 2

or H is conjunctive & H.1 = 3 or H is universal & H.1 = 4,

(41) H.1 = 0 implies H is a equality ,

(42) H.1 = 1 implies H is a membership ,
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(43) H.1 = 2 implies H is negative ,

(44) H.1 = 3 implies H is conjunctive ,

(45) H.1 = 4 implies H is universal .

In the sequel sq denotes an object of the type FinSequence. We now state several

propositions:

(46) H = F ⌢ sq implies H = F,

(47) H ∧ G = H1 ∧ G1 implies H = H1 & G = G1,

(48) F ∨ G = F1 ∨ G1 implies F = F1 & G = G1,

(49) F ⇒ G = F1 ⇒ G1 implies F = F1 & G = G1,

(50) F ⇔ G = F1 ⇔ G1 implies F = F1 & G = G1,

(51) ∃ (x, H) = ∃ (y, G) implies x = y & H = G.

We now define two new functors. Let us consider H . Assume that the following

holds

H is atomic .

The functor

Var1 H,

yields the type Variable and is defined by

it = H.2.

The functor

Var2 H,

yields the type Variable and is defined by

it = H.3.

One can prove the following three propositions:

(52) H is atomic implies Var1 H = H.2 & Var2 H = H.3,

(53) H is a equality implies H = (Var1 H) -- Var2 H,

(54) H is a membership implies H = (Var1 H) ǫ Var2 H.

Let us consider H . Assume that the following holds

H is negative .
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The functor

the argument of H,

with values of the type ZF-formula, is defined by

¬ it = H.

We now state a proposition

(55) H is negative implies H = ¬ the argument of H.

We now define two new functors. Let us consider H . Assume that the following

holds

H is conjunctive or H is disjunctive .

The functor

the left argument of H,

with values of the type ZF-formula, is defined by

exH1 st it ∧ H1 = H, if H is conjunctive ,

exH1 st it ∨ H1 = H, otherwise.

The functor

the right argument of H,

with values of the type ZF-formula, is defined by

exH1 st H1 ∧ it = H, if H is conjunctive ,

exH1 st H1 ∨ it = H, otherwise.

One can prove the following propositions:

(56) H is conjunctive implies (F = the left argument of H iff exG st F ∧ G = H)

& (F = the right argument of H iff exG st G ∧ F = H),

(57) H is disjunctive implies (F = the left argument of H iff exG st F ∨ G = H)

& (F = the right argument of H iff exG st G ∨ F = H),

(58) H is conjunctive

implies H = (the left argument of H) ∧ the right argument of H,

(59) H is disjunctive

implies H = (the left argument of H) ∨ the right argument of H.

We now define two new functors. Let us consider H . Assume that the following

holds

H is universal or H is existential .
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The functor

bound in H,

with values of the type Variable, is defined by

exH1 st ∀ (it ,H1) = H, if H is universal ,

exH1 st ∃ (it ,H1) = H, otherwise.

The functor

the scope of H,

with values of the type ZF-formula, is defined by

exx st ∀ (x, it) = H, if H is universal ,

exx st ∃ (x, it) = H, otherwise.

Next we state four propositions:

(60) H is universal implies (x = bound in H iff exH1 st ∀ (x, H1) = H)

& (H1 = the scope of H iff exx st ∀ (x, H1) = H),

(61) H is existential implies (x = bound in H iff exH1 st ∃ (x, H1) = H)

& (H1 = the scope of H iff exx st ∃ (x, H1) = H),

(62) H is universal implies H = ∀ (bound in H,the scope of H),

(63) H is existential implies H = ∃ (bound in H,the scope of H).

We now define two new functors. Let us consider H . Assume that the following

holds

H is conditional .

The functor

the antecedent of H,

with values of the type ZF-formula, is defined by

exH1 st H = it⇒ H1.

The functor

the consequent ofH,

with values of the type ZF-formula, is defined by

exH1 st H = H1 ⇒ it .

The following propositions are true:

(64) H is conditional implies (F = the antecedent of H iff exG st H = F ⇒ G)

& (F = the consequent of H iff exG st H = G ⇒ F ),



A Model of ZF Set Theory Language 141

(65) H is conditional implies H = (the antecedent of H) ⇒ the consequent of H.

We now define two new functors. Let us consider H . Assume that the following

holds

H is biconditional .

The functor

the left side of H,

yields the type ZF-formula and is defined by

exH1 st H = it⇔ H1.

The functor

the right side of H,

with values of the type ZF-formula, is defined by

exH1 st H = H1 ⇔ it .

We now state two propositions:

(66) H is biconditional implies (F = the left side ofH iff exG st H = F ⇔ G)

& (F = the right side of H iff exG st H = G ⇔ F ),

(67) H is biconditional implies H = (the left side ofH) ⇔ the right side of H.

Let us consider H , F . The predicate

H is immediate constituent of F

is defined by

F = ¬H or (exH1 st F = H ∧ H1 or F = H1 ∧ H) or exx st F = ∀ (x, H).

We now state a number of propositions:

(68) H is immediate constituent of F iff

F = ¬H or (exH1 st F = H ∧ H1 or F = H1 ∧ H) or exx st F = ∀ (x, H),

(69) notH is immediate constituent of x -- y,

(70) notH is immediate constituent of x ǫ y,

(71) F is immediate constituent of ¬H iff F = H,

(72) F is immediate constituent of G ∧ H iff F = G or F = H,

(73) F is immediate constituent of ∀ (x, H) iff F = H,
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(74) H is atomic implies notF is immediate constituent of H,

(75) H is negative

implies (F is immediate constituent of H iff F = the argument ofH),

(76) H is conjunctive implies (F is immediate constituent of H

iff F = the left argument of H or F = the right argument of H),

(77) H is universal

implies (F is immediate constituent of H iff F = the scope of H).

In the sequel L will denote an object of the type FinSequence. Let us consider H ,

F . The predicate

H is subformula of F

is defined by

exn,L st 1 ≤ n & len L = n & L.1 = H & L.n = F & for k st 1 ≤ k & k < n

exH1,F1 st L.k = H1 & L.(k + 1) = F1 & H1 is immediate constituent of F1.

Next we state two propositions:

(78) H is subformula of F iff exn,L st 1 ≤ n & len L = n & L.1 = H & L.n = F &

for k st 1 ≤ k & k < n exH1,F1

st L.k = H1 & L.(k + 1) = F1 & H1 is immediate constituent of F1,

(79) H is subformula of H.

Let us consider H , F . The predicate

H is proper subformula of F is defined by H is subformula of F & H 6= F.

We now state several propositions:

(80) H is proper subformula of F iff H is subformula of F & H 6= F,

(81) H is immediate constituent of F implies len H < len F,

(82) H is immediate constituent of F implies H is proper subformula of F,

(83) H is proper subformula of F implies len H < len F,

(84) H is proper subformula of F

implies exG st G is immediate constituent of F.

The following propositions are true:

(85) F is proper subformula of G & G is proper subformula of H

implies F is proper subformula of H,
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(86) F is subformula of G & G is subformula of H implies F is subformula of H,

(87) G is subformula of H & H is subformula of G implies G = H,

(88) notF is proper subformula of x -- y,

(89) notF is proper subformula of x ǫ y,

(90) F is proper subformula of ¬H implies F is subformula of H,

(91) F is proper subformula of G ∧ H

implies F is subformula of G or F is subformula of H,

(92) F is proper subformula of ∀ (x, H) implies F is subformula of H,

(93) H is atomic implies notF is proper subformula of H,

(94) H is negative implies the argument ofH is proper subformula of H,

(95) H is conjunctive implies the left argument of H is proper subformula of H

& the right argument ofH is proper subformula of H,

(96) H is universal implies the scope ofH is proper subformula of H,

(97) H is subformula of x -- y iff H = x -- y,

(98) H is subformula of x ǫ y iff H = x ǫ y.

Let us consider H . The functor

Subformulae H,

yields the type set and is defined by

a ∈ it iff exF st F = a & F is subformula of H.

We now state a number of propositions:

(99) a ∈ Subformulae H iff exF st F = a & F is subformula of H,

(100) G ∈ Subformulae H implies G is subformula of H,

(101) F is subformula of H implies Subformulae F ⊆ Subformulae H,

(102) Subformulae x -- y = {x -- y},

(103) Subformulae x ǫ y = {x ǫ y},

(104) Subformulae¬H = Subformulae H ∪ {¬H},
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(105) Subformulae (H ∧ F ) = Subformulae H ∪ Subformulae F ∪ {H ∧ F},

(106) Subformulae∀ (x, H) = Subformulae H ∪ {∀ (x, H)},

(107) H is atomic iff Subformulae H = {H},

(108) H is negative

implies Subformulae H = Subformulae the argument of H ∪ {H},

(109) H is conjunctive implies Subformulae H = Subformulae

the left argument ofH ∪ Subformulae the right argument of H ∪ {H},

(110) H is universal implies Subformulae H = Subformulae the scope of H ∪ {H},

(111) (H is immediate constituent of G

or H is proper subformula of G or H is subformula of G)

& G ∈ Subformulae F

implies H ∈ Subformulae F.

In the article we present several logical schemes. The scheme ZF Ind deals with a

unary predicate P states that the following holds

forH holds P [H ]

provided the parameter satisfies the following conditions:

• forH st H is atomic holds P [H ],

• forH st H is negative & P [the argument of H ] holds P [H ],

• forH st

H is conjunctive & P [the left argument ofH ] & P [the right argument ofH ]

holds P [H ],

• forH st H is universal & P [the scope of H ] holds P [H ].

The scheme ZF CompInd deals with a unary predicate P states that the following

holds

forH holds P [H ]

provided the parameter satisfies the following condition:

• forH st forF st F is proper subformula of H holds P [F ] holds P [H ].
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