Classes of Conjugation. Normal Subgroups

Wojciech A. Trybulec
Warsaw University

Summary. Theorems that were not proved in [8] and in [9] are discussed. In the article we define notion of conjugation for elements, subsets and subgroups of a group. We define the classes of conjugation. Normal subgroups of a group and normalizer of a subset of a group or of a subgroup are introduced. We also define the set of all subgroups of a group. An auxiliary theorem that belongs rather to [1] is proved.

MML Identifier: GROUP_3.

The papers [3], [10], [5], [2], [8], [9], [6], [4], and [7] provide the notation and terminology for this paper. For simplicity we follow a convention: \(x, y \) are arbitrary, \(X \) denotes a set, \(G \) denotes a group, \(a, b, c, d, g, h \) denote elements of \(G \), \(A, B, C, D \) denote subsets of \(G \), \(H, H_1, H_2, H_3 \) denote subgroups of \(G \), \(n \) denotes a natural number, and \(i \) denotes an integer. Next we state a number of propositions:

1. \((a \cdot b) \cdot b^{-1} = a \) and \((a \cdot b^{-1}) \cdot b = a \) and \((b^{-1} \cdot b) \cdot a = a \) and \((b \cdot b^{-1}) \cdot a = a \) and \(a \cdot (b \cdot b^{-1}) = a \) and \(a \cdot (b^{-1} \cdot b) = a \) and \(b^{-1} \cdot (b \cdot a) = a \) and \(b \cdot (b^{-1} \cdot a) = a \).
2. \(G \) is an Abelian group if and only if the operation of \(G \) is commutative.
3. \(\{1\}_G \) is an Abelian group.
4. If \(A \subseteq B \) and \(C \subseteq D \), then \(A \cdot C \subseteq B \cdot D \).
5. If \(A \subseteq B \), then \(a \cdot A \subseteq a \cdot B \) and \(A \cdot a \subseteq B \cdot a \).
6. If \(H_1 \) is a subgroup of \(H_2 \), then \(a \cdot H_1 \subseteq a \cdot H_2 \) and \(H_1 \cdot a \subseteq H_2 \cdot a \).
7. \(a \cdot H = \{a\} \cdot H \).
8. \(H \cdot a = H \cdot \{a\} \).
9. \((a \cdot A) \cdot H = a \cdot (A \cdot H) \).
10. \((A \cdot a) \cdot H = A \cdot (a \cdot H) \).
11. \((a \cdot H) \cdot A = a \cdot (H \cdot A) \).
12. \((A \cdot H) \cdot a = A \cdot (H \cdot a) \).

\(^1\)Supported by RPBP.III-24.C1
(13) \((H \cdot a) \cdot A = H \cdot (a \cdot A)\).
(14) \((H \cdot A) \cdot a = H \cdot (A \cdot a)\).
(15) \((H_1 \cdot a) \cdot H_2 = H_1 \cdot (a \cdot H_2)\).

Let us consider \(G\). The functor \(\text{SubGr} \, G\) yielding a non-empty set is defined by:

(Def.1) \(x \in \text{SubGr} \, G\) if and only if \(x\) is a subgroup of \(G\).

In the sequel \(D\) denotes a non-empty set. Next we state four propositions:

(16) If for every \(x\) holds \(x \in D\) if and only if \(x\) is a subgroup of \(G\), then \(D = \text{SubGr} \, G\).
(17) \(x \in \text{SubGr} \, G\) if and only if \(x\) is a subgroup of \(G\).
(18) \(G \in \text{SubGr} \, G\).
(19) If \(G\) is finite, then \(\text{SubGr} \, G\) is finite.

Let us consider \(G, a, b\). The functor \(a \cdot b\) yielding an element of \(G\) is defined as follows:

(Def.2) \(a \cdot b = (b^{-1} \cdot a) \cdot b\).

One can prove the following propositions:

(20) \(a \cdot b = (b^{-1} \cdot a) \cdot b\) and \(a \cdot b = b^{-1} \cdot (a \cdot b)\).
(21) If \(a^g = b^g\), then \(a = b\).
(22) \((1_G)^a = 1_G\).
(23) If \(a \cdot b = 1_G\), then \(a = 1_G\).
(24) \(a^{1_G} = a\).
(25) \(a^a = a\).
(26) \((a^a)^{-1} = a\) and \((a^{-1})^a = a^{-1}\).
(27) \(a \cdot b = a\) if and only if \(a \cdot b = b \cdot a\).
(28) \((a \cdot b)^g = a^g \cdot b^g\).
(29) \((a^g)^h = a^{gh}\).
(30) \(((a^b)^{-1})^a = a\) and \(((a^b)^{-1})^b = a\).
(31) \(a^b = c\) if and only if \(a \cdot b = b \cdot a\).
(32) \((a^{-1})^b = (a^b)^{-1}\).
(33) \((a^n)^b = (a^b)^n\).
(34) \((a^i)^b = (a^b)^i\).
(35) If \(G\) is an Abelian group, then \(a \cdot b = a\).
(36) If for all \(a, b\) holds \(a \cdot b = a\), then \(G\) is an Abelian group.

Let us consider \(G, A, B\). The functor \(A^B\) yielding a subset of \(G\) is defined as follows:

(Def.3) \(A^B = \{g^h : g \in A \land h \in B\}\).

We now state a number of propositions:

(37) \(A^B = \{g^h : g \in A \land h \in B\}\).
Classes of Conjugation. Normal Subgroups

(38) $x \in A^B$ if and only if there exist g, h such that $x = g^h$ and $g \in A$ and $h \in B$.

(39) $A^B \neq \emptyset$ if and only if $A \neq \emptyset$ and $B \neq \emptyset$.

(40) $A^B \subseteq (B^{-1} \cdot A) \cdot B$.

(41) $(A \cdot B)^C \subseteq A^C \cdot B^C$.

(42) $(A^B)^C = A^{B \cdot C}$.

(43) $(A^{-1})^B = (A^B)^{-1}$.

(44) $\{a\}^B = \{a^b\}$.

(45) $\{a\}^{B,c} = \{a^b, a^c\}$.

(46) $\{a, b\}^c = \{a^c, b^c\}$.

(47) $\{a, b\}^{c,d} = \{a^c, a^d, b^c, b^d\}$.

We now define two new functors. Let us consider G, A, g. The functor A^g yields a subset of G and is defined as follows:

(Def.4) $A^g = A^{\{g\}}$.

The functor g^A yields a subset of G and is defined by:

(Def.5) $g^A = \{g\}^A$.

Next we state a number of propositions:

(48) $A^g = A^{\{g\}}$.

(49) $g^A = \{g\}^A$.

(50) $x \in A^g$ if and only if there exists h such that $x = h^g$ and $h \in A$.

(51) $x \in g^A$ if and only if there exists h such that $x = g^h$ and $h \in A$.

(52) $g^A \subseteq (A^{-1} \cdot g) \cdot A$.

(53) $(A^B)^g = A^{B \cdot g}$.

(54) $(A^g)^B = A^g \cdot B$.

(55) $(g^A)^B = g^{A \cdot B}$.

(56) $(A^a)^b = A^{a \cdot b}$.

(57) $(a^A)^b = a^{A \cdot b}$.

(58) $(a^b)^A = a^{b \cdot A}$.

(59) $A^g = (g^{-1} \cdot A) \cdot g$.

(60) $(A \cdot B)^a \subseteq A^a \cdot B^a$.

(61) $A^{1_G} = A$.

(62) If $A \neq \emptyset$, then $(1_G)^A = \{1_G\}$.

(63) $((A^a)^a)^{-1} = A$ and $((A^a)^{-1})^a = A$.

(64) $A = B^g$ if and only if $B = (A^g)^{-1}$.

(65) G is an Abelian group if and only if for all A, B such that $B \neq \emptyset$ holds $A^B = A$.

(66) G is an Abelian group if and only if for all A, g holds $A^g = A$.

(67) G is an Abelian group if and only if for all A, g such that $A \neq \emptyset$ holds $g^A = \{g\}$.
Let us consider G, H, a. The functor H^a yielding a subgroup of G is defined by:

(Def.6) the carrier of $H^a = \overline{a}^i$.

The following propositions are true:

(68) If the carrier of $H_1 = \overline{a}^i$, then $H_1 = H^a$.
(69) The carrier of $H^a = \overline{H}^a$.
(70) $x \in H^a$ if and only if there exists g such that $x = g^a$ and $g \in H$.
(71) The carrier of $H^a = (a^{-1} \cdot H) \cdot a$.
(72) $(H^a)^b = H^{a \cdot b}$.
(73) $H_1^G = H$.
(74) $((H^a)^a)^{-1} = H$ and $((H^a)^{-1})^a = H$.
(75) $H_1 = H_2^a$ if and only if $H_2 = (H_1^a)^{-1}$.
(76) $(H_1 \cap H_2)^a = H_1^a \cap H_2^a$.
(77) $\text{Ord}(H) = \text{Ord}(H^a)$.
(78) H is finite if and only if H^a is finite.
(79) If H is finite, then $\text{ord}(H) = \text{ord}(H^a)$.
(80) $\{1\}_G^a = \{1\}_G$.
(81) If $H^a = \{1\}_G$, then $H = \{1\}_G$.
(82) $\Omega_{G^a} = G$.
(83) If $H^a = G$, then $H = G$.
(84) $|\ast : H| = |\ast : H^a|$.
(85) If the left cosets of H is finite, then $|\ast : H|_N = |\ast : H^a|_N$.
(86) If G is an Abelian group, then for all H, a holds $H^a = H$.

Let us consider G, a, b. We say that a and b are conjugated if and only if:

(Def.7) there exists g such that $a = b^g$.

We now state several propositions:

(87) a and b are conjugated if and only if there exists g such that $a = b^g$.
(88) a and b are conjugated if and only if there exists g such that $b = a^g$.
(89) a and a are conjugated.
(90) If a and b are conjugated, then b and a are conjugated.
(91) If a and b are conjugated and b and c are conjugated, then a and c are conjugated.
(92) If a and 1_G are conjugated or 1_G and a are conjugated, then $a = 1_G$.
(93) $a^{1_G} = \{b : a \text{ and } b \text{ are conjugated}\}$.

Let us consider G, a. The functor a^\ast yielding a subset of G is defined by:

(Def.8) $a^\ast = a^{1_G}$.

We now state several propositions:

(94) $a^\ast = a^{1_G}$.
(95) \(x \in a^* \) if and only if there exists \(b \) such that \(b = x \) and \(a \) and \(b \) are conjugated.

(96) \(a \in b^* \) if and only if \(a \) and \(b \) are conjugated.

(97) \(a^g \in a^* \).

(98) \(a \in a^* \).

(99) If \(a \in b^* \), then \(b \in a^* \).

(100) \(a^* = b^* \) if and only if \(a^* \) meets \(b^* \).

(101) \(a^* = \{1_G\} \) if and only if \(a = 1_G \).

(102) \(a^*: A = A \cdot a^* \).

Let us consider \(G, A, B \). We say that \(A \) and \(B \) are conjugated if and only if:

(Def.9) there exists \(g \) such that \(A = B^g \).

We now state several propositions:

(103) \(A \) and \(B \) are conjugated if and only if there exists \(g \) such that \(A = B^g \).

(104) \(A \) and \(B \) are conjugated if and only if there exists \(g \) such that \(B = A^g \).

(105) \(A \) and \(A \) are conjugated.

(106) If \(A \) and \(B \) are conjugated, then \(B \) and \(A \) are conjugated.

(107) If \(A \) and \(B \) are conjugated and \(B \) and \(C \) are conjugated, then \(A \) and \(C \) are conjugated.

(108) \(\{a\} \) and \(\{b\} \) are conjugated if and only if \(a \) and \(b \) are conjugated.

(109) If \(A \) and \(H_1 \) are conjugated, then there exists \(H_2 \) such that the carrier of \(H_2 \) is \(A \).

Let us consider \(G, A \). The functor \(A^* \) yielding a family of subsets of the carrier of \(G \) is defined as follows:

(Def.10) \(A^* = \{B : A \) and \(B \) are conjugated \} \).

The following propositions are true:

(110) \(A^* = \{B : A \) and \(B \) are conjugated \} \).

(111) \(x \in A^* \) if and only if there exists \(B \) such that \(x = B \) and \(A \) and \(B \) are conjugated.

(112) If \(x \in A^* \), then \(x \) is a subset of \(G \).

(113) \(A \in B^* \) if and only if \(A \) and \(B \) are conjugated.

(114) \(A^g \in A^* \).

(115) \(A \in A^* \).

(116) If \(A \in B^* \), then \(B \in A^* \).

(117) \(A^* = B^* \) if and only if \(A^* \) meets \(B^* \).

(118) \(\{a\}^* = \{\{b\} : b \in a^* \} \).

(119) If \(G \) is finite, then \(A^* \) is finite.

Let us consider \(G, H_1, H_2 \). We say that \(H_1 \) and \(H_2 \) are conjugated if and only if:

(Def.11) there exists \(g \) such that \(H_1 = H_2^g \).
The following propositions are true:

(120) \(H_1 \) and \(H_2 \) are conjugated if and only if there exists \(g \) such that \(H_1 = H_2^g \).

(121) \(H_1 \) and \(H_2 \) are conjugated if and only if there exists \(g \) such that \(H_2 = H_1^g \).

(122) \(H_1 \) and \(H_1 \) are conjugated.

(123) If \(H_1 \) and \(H_2 \) are conjugated, then \(H_2 \) and \(H_1 \) are conjugated.

(124) If \(H_1 \) and \(H_2 \) are conjugated and \(H_2 \) and \(H_3 \) are conjugated, then \(H_1 \) and \(H_3 \) are conjugated.

In the sequel \(L \) denotes a subset of \(\text{SubGr} G \). Let us consider \(G, H \). The functor \(H^* \) yielding a subset of \(\text{SubGr} G \) is defined as follows:

(Def.12) \(x \in H^* \) if and only if there exists \(H_1 \) such that \(x = H_1 \) and \(H_1 \) and \(H \) are conjugated.

One can prove the following propositions:

(125) If for every \(x \) holds \(x \in L \) if and only if there exists \(H \) such that \(x = H \) and \(H_1 \) and \(H \) are conjugated, then \(L = H_1^* \).

(126) \(x \in H_1^* \) if and only if there exists \(H_2 \) such that \(x = H_2 \) and \(H_1 \) and \(H_2 \) are conjugated.

(127) If \(x \in H^* \), then \(x \) is a subgroup of \(G \).

(128) \(H_1 \in H_2^* \) if and only if \(H_1 \) and \(H_2 \) are conjugated.

(129) \(H^0 \in H^* \).

(130) \(H \in H^* \).

(131) If \(H_1 \in H_2^* \), then \(H_2 \in H_1^* \).

(132) \(H_1^* = H_2^* \) if and only if \(H_1^* \) meets \(H_2^* \).

(133) If \(G \) is finite, then \(H^* \) is finite.

(134) \(H_1 \) and \(H_2 \) are conjugated if and only if \(\overline{H_1} \) and \(\overline{H_2} \) are conjugated.

Let us consider \(G \). A subgroup of \(G \) is called a normal subgroup of \(G \) if:

(Def.13) for every \(a \) holds \(a^a = a \).

One can prove the following proposition

(135) If for every \(a \) holds \(H = H^a \), then \(H \) is a normal subgroup of \(G \).

In the sequel \(N, N_1, N_2 \) will denote ha normal subgroups of \(G \). We now state a number of propositions:

(136) \(N^a = N \).

(137) \(\{1\}_G \) is a normal subgroup of \(G \) and \(\Omega_G \) is a normal subgroup of \(G \).

(138) \(N_1 \cap N_2 \) is a normal subgroup of \(G \).

(139) If \(G \) is an Abelian group, then \(H \) is a normal subgroup of \(G \).

(140) \(H \) is a normal subgroup of \(G \) if and only if for every \(a \) holds \(a \cdot H = H \cdot a \).

(141) \(H \) is a normal subgroup of \(G \) if and only if for every \(a \) holds \(a \cdot H \subseteq H \cdot a \).

(142) \(H \) is a normal subgroup of \(G \) if and only if for every \(a \) holds \(H \cdot a \subseteq a \cdot H \).

(143) \(H \) is a normal subgroup of \(G \) if and only if for every \(A \) holds \(A \cdot H = H \cdot A \).
(144) H is a normal subgroup of G if and only if for every a holds H is a subgroup of H^a.

(145) H is a normal subgroup of G if and only if for every a holds H^a is a subgroup of H.

(146) H is a normal subgroup of G if and only if $H^* = \{H\}$.

(147) H is a normal subgroup of G if and only if for every a such that $a \in H$ holds $a^* \subseteq H$.

(148) $N_1 \cdot N_2 = N_2 \cdot N_1$.

(149) There exists N such that the carrier of $N = N_1 \cdot N_2$.

(150) The left cosets of N = the right cosets of N.

(151) If the left cosets of H is finite and $|\cdot : H|_N = 2$, then H is a normal subgroup of G.

Let us consider G, A. The functor $N(A)$ yielding a subgroup of G is defined by:

(Def.14) the carrier of $N(A) = \{h : A^h = A\}$.

We now state several propositions:

(152) If the carrier of $H = \{h : A^h = A\}$, then $H = N(A)$.

(153) The carrier of $N(A) = \{h : A^h = A\}$.

(154) $x \in N(A)$ if and only if there exists h such that $x = h$ and $A^h = A$.

(155) $\overline{A^*} = |\cdot : N(A)|$.

(156) If A^* is finite or the left cosets of $N(A)$ is finite, then $\text{card } A^* = |\cdot : N(A)|_N$.

(157) $\overline{a^*} = |\cdot : N(\{a\})|_N$.

(158) If a^* is finite or the left cosets of $N(\{a\})$ is finite, then $\text{card } a^* = |\cdot : N(\{a\})|_N$.

Let us consider G, H. The functor $N(H)$ yields a subgroup of G and is defined as follows:

(Def.15) $N(H) = N(\overline{H})$.

We now state several propositions:

(159) $N(H) = N(\overline{H})$.

(160) $x \in N(H)$ if and only if there exists h such that $x = h$ and $H^h = H$.

(161) $\overline{N(H)} = |\cdot : N(H)|_N$.

(162) If H^* is finite or the left cosets of $N(H)$ is finite, then $\text{card } H^* = |\cdot : N(H)|_N$.

(163) H is a normal subgroup of G if and only if $N(H) = G$.

(164) $N(\{1\}_G) = G$.

(165) $N(\Omega_G) = G$.

(166) If X is finite and $\text{card } X = 2$, then there exist x, y such that $x \neq y$ and $X = \{x, y\}$.
References

Received August 10, 1990