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Summary. We introduce the notion of weak directed geometrical
bundle. We prove representation theorems for directed and weak directed
geometrical bundles which establish a one-to-one correspondence between
such structures and appropriate 2-divisible abelian groups. To this aim
we construct over an arbitrary weak directed geometrical bundle a group
defined entirely in terms of geometrical notions - the group of (abstract)
“free vectors”.

MML Identifier: AFVECT0.

The terminology and notation used here have been introduced in the following
articles: [8], [3], [4], [10], [11], [7], [5], [6], [1], [9], and [2]. An affine structure is
said to be a weak affine vector space if:

(Def.1) (i) there exist elements a, b of the points of it such that a 6= b,
(ii) for all elements a, b, c of the points of it such that a, b � c, c holds

a = b,
(iii) for all elements a, b, c, d, p, q of the points of it such that a, b � p, q

and c, d � p, q holds a, b � c, d,
(iv) for every elements a, b, c of the points of it there exists an element d

of the points of it such that a, b � c, d,
(v) for all elements a, b, c, a′, b′, c′ of the points of it such that a, b � a′, b′

and a, c � a′, c′ holds b, c � b′, c′,
(vi) for every elements a, c of the points of it there exists an element b of

the points of it such that a, b � b, c,

1Supported by RPBP.III-24.C3

135
c© 1991 Fondation Philippe le Hodey

ISSN 0777–4028



136 Grzegorz Lewandowski et al.

(vii) for all elements a, b, c, d of the points of it such that a, b � c, d holds
a, c � b, d.

We see that the space of free vectors is a weak affine vector space.

We adopt the following convention: A1 will be a weak affine vector space and
a, b, c, d, f , a′, b′, c′, d′, f ′, p, q, r, o will be elements of the points of A1. The
following propositions are true:

(2)2 a, b � a, b.

(3) a, a � a, a.

(4) If a, b � c, d, then c, d � a, b.

(5) If a, b � a, c, then b = c.

(6) If a, b � c, d and a, b � c, d′, then d = d′.

(7) For all a, b holds a, a � b, b.

(8) If a, b � c, d, then b, a � d, c.

(9) If a, b � c, d and a, c � b′, d, then b = b′.

(10) If b, c � b′, c′ and a, d � b, c and a, d′ � b′, c′, then d = d′.

(11) If a, b � a′, b′ and c, d � b, a and c, d′ � b′, a′, then d = d′.

(12) If a, b � a′, b′ and c, d � c′, d′ and b, f � c, d and b′, f ′ � c′, d′, then
a, f � a′, f ′.

(13) If a, b � a′, b′ and a, c � c′, b′, then b, c � c′, a′.

Let us consider A1, a, b. We say that a, b are in a maximal distance if and
only if:

(Def.2) a, b � b, a and a 6= b.

One can prove the following propositions:

(15)3 a, a are not in a maximal distance.

(16) There exist a, b such that a 6= b and a, b are not in a maximal distance.

(17) If a, b are in a maximal distance, then b, a are in a maximal distance.

(18) If a, b are in a maximal distance and a, c are in a maximal distance,
then b = c or b, c are in a maximal distance.

(19) If a, b are in a maximal distance and a, b � c, d, then c, d are in a
maximal distance.

Let us consider A1, a, b, c. We say that b is a midpoint of a, c if and only if:

(Def.3) a, b � b, c.

We now state a number of propositions:

(21)4 If b is a midpoint of a, c, then b is a midpoint of c, a.

(22) b is a midpoint of a, b if and only if a = b.

(23) b is a midpoint of a, a if and only if a = b or a, b are in a maximal
distance.

2The proposition (1) was either repeated or obvious.
3The proposition (14) was either repeated or obvious.
4The proposition (20) was either repeated or obvious.
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(24) There exists b such that b is a midpoint of a, c.

(25) If b is a midpoint of a, c and b′ is a midpoint of a, c, then b = b′ or b,
b′ are in a maximal distance.

(26) There exists c such that b is a midpoint of a, c.

(27) If b is a midpoint of a, c and b is a midpoint of a, c′, then c = c′.

(28) If b is a midpoint of a, c and b, b′ are in a maximal distance, then b′ is
a midpoint of a, c.

(29) If b is a midpoint of a, c and b′ is a midpoint of a, c′ and b, b′ are in a
maximal distance, then c = c′.

(30) If p is a midpoint of a, a′ and p is a midpoint of b, b′, then a, b � b′, a′.

(31) If p is a midpoint of a, a′ and q is a midpoint of b, b′ and p, q are in a
maximal distance, then a, b � b′, a′.

Let us consider A1, a, b. The functor PSym(a, b) yields an element of the
points of A1 and is defined as follows:

(Def.4) a is a midpoint of b, PSym(a, b).

One can prove the following propositions:

(32) PSym(p, a) = b if and only if p is a midpoint of a, b.

(33) PSym(p, a) = b if and only if a, p � p, b.

(34) p is a midpoint of a, PSym(p, a).

(35) PSym(p, a) = a if and only if a = p or a, p are in a maximal distance.

(36) PSym(p,PSym(p, a)) = a.

(37) If PSym(p, a) = PSym(p, b), then a = b.

(38) There exists a such that PSym(p, a) = b.

(39) a, b � PSym(p, b),PSym(p, a).

(40) a, b � c, d if and only if
PSym(p, a),PSym(p, b) � PSym(p, c),PSym(p, d).

(41) a, b are in a maximal distance if and only if PSym(p, a), PSym(p, b) are
in a maximal distance.

(42) b is a midpoint of a, c if and only if PSym(p, b) is a midpoint of
PSym(p, a), PSym(p, c).

(43) PSym(p, a) = PSym(q, a) if and only if p = q or p, q are in a maximal
distance.

(44) PSym(q,PSym(p,PSym(q, a))) = PSym(PSym(q, p), a).

(45) PSym(p,PSym(q, a)) = PSym(q,PSym(p, a)) if and only if p = q or p,
q are in a maximal distance or q, PSym(p, q) are in a maximal distance.

(46) PSym(p,PSym(q,PSym(r, a))) = PSym(r,PSym(q,PSym(p, a))).

(47) There exists d such that PSym(a,PSym(b,PSym(c, p))) = PSym(d, p).

(48) There exists c such that PSym(a,PSym(c, p)) = PSym(c,PSym(b, p)).

Let us consider A1, o, a, b. The functor Padd(o, a, b) yielding an element of
the points of A1 is defined as follows:
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(Def.5) o, a � b,Padd(o, a, b).

Next we state the proposition

(49) Padd(o, a, b) = c if and only if o, a � b, c.

Let us consider A1, o, a. The functor Pcom(o, a) yielding an element of the
points of A1 is defined as follows:

(Def.6) o is a midpoint of a, Pcom(o, a).

One can prove the following propositions:

(50) Pcom(o, a) = b if and only if o is a midpoint of a, b.

(51) Pcom(o, a) = b if and only if a, o � o, b.

Let us consider A1, o. The functor Padd o yielding a binary operation on the
points of A1 is defined as follows:

(Def.7) for all a, b holds (Padd o)(a, b) = Padd(o, a, b).

Let us consider A1, o. The functor Pcom o yielding a unary operation on the
points of A1 is defined as follows:

(Def.8) for every a holds (Pcom o)(a) = Pcom(o, a).

The following propositions are true:

(52) For every binary operation O on the points of A1 holds O = Padd o if
and only if for all a, b holds O(a, b) = Padd(o, a, b).

(53) For every unary operation O on the points of A1 holds O = Pcom o if
and only if for every a holds O(a) = Pcom(o, a).

Let us consider A1, o. The functor GroupVect(A1, o) yields a group structure
and is defined by:

(Def.9) GroupVect(A1, o) = 〈 the points of A1,Padd o,Pcom o, o〉.

The following two propositions are true:

(54) For every X being a group structure holds X = GroupVect(A1, o) if
and only if X = 〈 the points of A1,Padd o,Pcom o, o〉.

(55) For all A1, o holds the carrier of GroupVect(A1, o) = the points of A1

and the addition of GroupVect(A1, o) = Padd o and the reverse-map of
GroupVect(A1, o) = Pcom o and the zero of GroupVect(A1, o) = o.

In the sequel a, b, c will denote elements of GroupVect(A1, o). One can prove
the following propositions:

(56) For an arbitrary x holds x is an element of the points of A1 if and only
if x is an element of GroupVect(A1, o).

(57) For all elements a, b of GroupVect(A1, o) and for all elements a′, b′ of
the points of A1 such that a = a′ and b = b′ holds a + b = (Padd o)(a′,

b′).

(58) For every element a of GroupVect(A1, o) and for every element a′ of the
points of A1 such that a = a′ holds −a = (Pcom o)(a′).

(59) 0GroupVect(A1,o) = o.
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(60) For every uniquely 2-divisible group A2 and for all elements a, b of A2

and for all elements a′, b′ of the carrier of A2 such that a = a′ and b = b′

holds a + b = a′#b′.

(61) a + b = b + a.

(62) (a + b) + c = a + (b + c).

(63) a + 0GroupVect(A1,o) = a.

(64) a + (−a) = 0GroupVect(A1,o).

(65) GroupVect(A1, o) is an Abelian group.

Let us consider A1, o. Then GroupVect(A1, o) is an Abelian group.

In the sequel a, b will be elements of the carrier of GroupVect(A1, o). Next
we state the proposition

(66) For every a there exists b such that (the addition of GroupVect(A1, o))(b,
b) = a.

Let us consider A1, o. Then GroupVect(A1, o) is a 2-divisible group.

In the sequel A1 will denote a space of free vectors and o will denote an
element of the points of A1. One can prove the following proposition

(67) For every element a of the carrier of GroupVect(A1, o) such that (the
addition of
GroupVect(A1, o))(a, a) = 0GroupVect(A1,o)

holds a = 0GroupVect(A1,o).

Let us consider A1, o. Then GroupVect(A1, o) is a uniquely 2-divisible group.

A uniquely 2-divisible group is said to be a proper uniquely two divisible
group if:

(Def.10) there exist elements a, b of the carrier of it such that a 6= b.

The following proposition is true

(69)5 GroupVect(A1, o) is a proper uniquely two divisible group.

Let us consider A1, o. Then GroupVect(A1, o) is a proper uniquely two
divisible group.

Next we state the proposition

(70) For every proper uniquely two divisible group A2 holds Vectors(A2) is
a space of free vectors.

Let A2 be a proper uniquely two divisible group. Then Vectors(A2) is a space
of free vectors.

We now state two propositions:

(71) For every A1 and for every element o of the points of A1 holds A1 =
Vectors(GroupVect(A1, o)).

(72) For every A3 being an affine structure holds A3 is a space of free vectors
if and only if there exists a proper uniquely two divisible group A2 such
that A3 = Vectors(A2).

5The proposition (68) was either repeated or obvious.
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Let X, Y be group structures, and let f be a function from the carrier of X

into the carrier of Y . We say that f is an isomorphism of X and Y if and only
if:

(Def.11) f is one-to-one and rng f = the carrier of Y and for all elements a, b of
X holds f(a + b) = f(a) + f(b) and f(0X) = 0Y and f(−a) = −f(a).

Let X, Y be group structures. We say that X, Y are isomorph if and only
if:

(Def.12) there exists a function f from the carrier of X into the carrier of Y such
that f is an isomorphism of X and Y .

In the sequel A2 will be a proper uniquely two divisible group and f will be a
function from the carrier of A2 into the carrier of A2. The following propositions
are true:

(75)6 Let o′ be an element of A2. Let o be an element of the points of
Vectors(A2). Suppose for every element x of A2 holds f(x) = o′ + x and
o = o′. Then for all elements a, b of A2 holds f(a + b) = (Padd o)(f(a),
f(b)) and f(0A2

) = 0GroupVect(Vectors(A2),o) and f(−a) = (Pcom o)(f(a)).

(76) For every element o′ of A2 such that for every element b of A2 holds
f(b) = o′ + b holds f is one-to-one.

(77) For every element o′ of A2 and for every element o of the points of
Vectors(A2) such that for every element b of A2 holds f(b) = o′ + b and
o = o′ holds rng f = the carrier of GroupVect(Vectors(A2), o).

(78) For every proper uniquely two divisible group A2 and for every element
o′ of A2 and for every element o of the points of Vectors(A2) such that
o = o′ holds A2, GroupVect(Vectors(A2), o) are isomorph.
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