Basic Concepts for Petri Nets with Boolean Markings Pauline N. Kawamoto Shinshu University Nagano Yasushi Fuwa Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano Summary. Contains basic concepts for Petri nets with Boolean markings and the firability/firing of single transitions as well as sequences of transitions [7]. The concept of a Boolean marking is introduced as a mapping of a Boolean TRUE/FALSE to each of the places in a place/transition net. This simplifies the conventional definitions of the firability and firing of a transition. One note of caution in this article - the definition of firing a transition does not require that the transition be firable. Therefore, it is advisable to check that transitions ARE firable before firing them. MML Identifier: BOOLMARK The papers [12], [1], [15], [17], [18], [4], [5], [13], [10], [11], [9], [2], [3], [14], [6], [16], and [8] provide the notation and terminology for this paper. ### 1. PRELIMINARIES The following four propositions are true: - (1) Let A, B be non empty set, and let f be a function from A into B, and let C be a subset of A, and let v be an element of B. Then $f + (C \mapsto v)$ is a function from A into B. - (2) Let X, Y be non empty set, and let A, B be subsets of X, and let f be a function from X into Y. If $f \circ A \cap f \circ B = \emptyset$, then $A \cap B = \emptyset$. - (3) For all sets A, B and for every function f and for arbitrary x such that $A \cap B = \emptyset$ holds $(f + (A \longmapsto x)) \circ B = f \circ B$. - (4) Let n be a natural number, and let D be a non empty set, and let d be an element of D, and let z be a finite sequence of elements of D. If len z = n, then $\pi_{n+1}(z \cap \langle d \rangle) = d$. ## 2. BOOLEAN MARKING AND FIRABILITY/FIRING OF TRANSITIONS Let P_1 be a place/transition net structure. The functor Bool_marks_of P_1 yielding a non empty set of functions from the places of P_1 to Boolean is defined by: (Def.1) Bool_marks_of $P_1 = Boolean^{\text{the places of } P_1}$. Let P_1 be a place/transition net structure. A Boolean marking of P_1 is an element of Bool_marks_of P_1 . Let P_1 be a place/transition net structure, let M_0 be a Boolean marking of P_1 , and let t be a transition of P_1 . We say that t is firable on M_0 if and only if: (Def.2) $M_0 \circ (*\{t\}) \subseteq \{true\}$. Let P_1 be a place/transition net structure, let M_0 be a Boolean marking of P_1 , and let t be a transition of P_1 . The functor Firing (t, M_0) yields a Boolean marking of P_1 and is defined by: (Def.3) Firing $(t, M_0) = M_0 + (*\{t\} \longmapsto false) + (\{t\}^* \longmapsto true)$. Let P_1 be a place/transition net structure, let M_0 be a Boolean marking of P_1 , and let Q be a finite sequence of elements of the transitions of P_1 . We say that Q is firable on M_0 if and only if the conditions (Def.4) are satisfied. (Def.4) (i) $Q = \varepsilon$, or (ii) there exists a finite sequence M of elements of Bool_marks_of P_1 such that len Q = len M and $\pi_1 Q$ is firable on M_0 and $\pi_1 M = \text{Firing}(\pi_1 Q, M_0)$ and for every natural number i such that i < len Q and i > 0 holds $\pi_{i+1} Q$ is firable on $\pi_i M$ and $\pi_{i+1} M = \text{Firing}(\pi_{i+1} Q, \pi_i M)$. Let P_1 be a place/transition net structure, let M_0 be a Boolean marking of P_1 , and let Q be a finite sequence of elements of the transitions of P_1 . The functor Firing (Q, M_0) yielding a Boolean marking of P_1 is defined as follows: (Def.5) (i) Firing $(Q, M_0) = M_0$ if $Q = \varepsilon$, (ii) there exists a finite sequence M of elements of Bool_marks_of P_1 such that len Q = len M and Firing $(Q, M_0) = \pi_{\text{len } M} M$ and $\pi_1 M = \text{Firing}(\pi_1 Q, M_0)$ and for every natural number i such that i < len Q and i > 0 holds $\pi_{i+1} M = \text{Firing}(\pi_{i+1} Q, \pi_i M)$, otherwise. One can prove the following propositions: - (5) For every non empty set A and for arbitrary y and for every function f holds $(f + (A \mapsto y)) \circ A = \{y\}.$ - (6) Let P_1 be a place/transition net structure, and let M_0 be a Boolean marking of P_1 , and let t be a transition of P_1 , and let s be a place of P_1 . If $s \in \{t\}^*$, then $(\text{Firing}(t, M_0))(s) = true$. - (7) Let P_1 be a place/transition net structure and let S_1 be a non empty set of places of P_1 . Then S_1 is deadlock-like if and only if for every Boolean marking M_0 of P_1 such that $M_0 \circ S_1 = \{false\}$ and for every transition t of P_1 such that t is firable on M_0 holds (Firing (t, M_0)) $\circ S_1 = \{false\}$. - (8) Let D be a non empty set, and let Q_0 , Q_1 be finite sequences of elements of D, and let i be a natural number. If $1 \le i$ and $i \le \text{len } Q_0$, then $\pi_i(Q_0 \cap Q_1) = \pi_i Q_0$. - (9) Let D be a non empty set, and let Q_0 , Q_1 be finite sequences of elements of D, and let i be a natural number. If $1 \leq i$ and $i \leq \text{len } Q_1$, then $\pi_{\text{len }Q_0+i}(Q_0 \cap Q_1) = \pi_i Q_1$. - (10) Let P_1 be a place/transition net structure, and let M_0 be a Boolean marking of P_1 , and let Q_0 , Q_1 be finite sequences of elements of the transitions of P_1 . Then $\operatorname{Firing}(Q_0 \cap Q_1, M_0) = \operatorname{Firing}(Q_1, \operatorname{Firing}(Q_0, M_0))$. - (11) Let P_1 be a place/transition net structure, and let M_0 be a Boolean marking of P_1 , and let Q_0 , Q_1 be finite sequences of elements of the transitions of P_1 . If $Q_0 \cap Q_1$ is firable on M_0 , then Q_1 is firable on Firing (Q_0, M_0) and Q_0 is firable on M_0 . - (12) Let P_1 be a place/transition net structure, and let M_0 be a Boolean marking of P_1 , and let t be a transition of P_1 . Then t is firable on M_0 if and only if $\langle t \rangle$ is firable on M_0 . - (13) Let P_1 be a place/transition net structure, and let M_0 be a Boolean marking of P_1 , and let t be a transition of P_1 . Then Firing $(t, M_0) = \text{Firing}(t, M_0)$. - (14) Let P_1 be a place/transition net structure and let S_1 be a non empty set of places of P_1 . Then S_1 is deadlock-like if and only if for every Boolean marking M_0 of P_1 such that $M_0 \, {}^{\circ} S_1 = \{false\}$ and for every finite sequence Q of elements of the transitions of P_1 such that Q is firable on M_0 holds $(\operatorname{Firing}(Q, M_0)) \, {}^{\circ} S_1 = \{false\}.$ ### ACKNOWLEDGMENTS The authors would like to thank Dr. Andrzej Trybulec for his patience and guidance in the writing of this article. ### REFERENCES - [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. - [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. - [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. - [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. - [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. - [6] Czeslaw Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990. - [7] Pauline N. Kawamoto, Masayoshi Eguchi, Yasushi Fuwa, and Yatsuka Nakamura. The detection of deadlocks in petri nets with ordered evaluation sequences. In *Institute of Electronics, Information, and Communication Engineers (IEICE) Technical Report*, pages 45-52, Institute of Electronics, Information, and Communication Engineers (IEICE), January 1993. Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura. Basic Petri net concepts. Formalized Mathematics, 3(2):183–187, 1992. Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, [9] 1(2):329-334, 1990. Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, [10] 1(1):115-122, 1990. Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, [11] 1(3):495-500, 1990. - Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, [12] - Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, [13]1(1):97-105, 1990. - Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, [14]1990. - Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. [15] - Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-[16]737, 1990. - [17]Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(**1**):73–83, 1990. - Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, [18] 1990. Received October 8, 1993