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Summary. Contains basic concepts for Petri nets with Boolean
markings and the firability /firing of single transitions as well as sequences
of transitions [7]. The concept of a Boolean marking is introduced as a
mapping of a Boolean TRUE/FALSE to each of the places in a place/
transition net. This simplifies the conventional definitions of the firabil-
ity and firing of a transition. One note of caution in this article - the -
definition of firing a transition does mnot require that the transition be

- firable. Therefore, it is advisable to check that transitions ARE firable
before firing them.

MML Identifier: BOOLMARK.

The papers [12], [1], [15], [17], [18], [4], [5], [13], [10], [11], [9], [2], [3], [14], [6],
[16], and [8] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following four propositions are true:

(1) Let A, B be non empty set, and let f be a function from A into B, and
let C be a subset of A, and let v be an element of B. Then f+(Cr— v)
is a function from A into B.

(2) Let X, Y be non empty set, and let A, B be subsets of X, and let f be
a function from X into Y. If f° AN f°B =, then ANB = 0.

(3)  For all sets A, B and for every function f and for arbitrary z such that
ANB={holds (f+ (A~ z))°B = f°B.

(4) Let n be a natural number, and let D be a non empty set, and let d -

be an element of D, and let z be a finite sequence of elements of D. If
len z = n, then m11(2~ (d)) = d.
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9. BOOLEAN MARKING AND FIRABILITY/FIRING OF TRANSITIONS

Let P, be a place/transition net structure. The functor Bool.marks_of Py
yielding a non empty set of functions from the places of P; to Boolean is defined
by:

! “}»": '(Def.1) Bool.marks.of Py = Booleanthe vlaces of P |
i w~ . Let Py be a place/transition net structure. A Boolean marking of P; is an
. element of Bool-marks_of P;.
' Let P; be a place/transition net structure, let Mp be a Boolean marking of
-~ Pp,andlet ¢t bea transition of P;. We say that t is firable on Mj if and only if:
_(Def.2)  Mp° (*{t}) C {true}.
Let P; be a place/transition net structure, let Mo be a Boolean marking of
. Py, and let  be a transition of P;. The functor Firing(¢, Mo) yields a Boolean
. marking of P and is defined by:
. (Def.3)  Firing(¢, Mo) = Mo + (*{t} — false) +- ({t}* — true).

: Let P; be a place/transition net structure, let Mo be a Boolean marking of ‘
Py, and let @ be a finite sequence of elements of the transitions of P;. We say
that @ is firable on My if and only if the conditions (Def.4) are satisfied.

(Defd) (i) @Q=c¢,or

(ii)  there exists a finite sequence M of elements of Bool_marks_of P; such
that len Q = len M and 7@ is firable on Mp and mM = Firing(m @, Mo)
and for every natural number i such that ¢ < len @ and : > 0 holds Tip1Q
is firable on ;M and w41 M = Firing(m;41Q, ™M ).

Let P; be a place/transition net structure, let My be a Boolean marking of

Py, and let @ be a finite sequence of elements of the transitions of P;. The
functor Firing(Q, Mo) yielding a Boolean marking of P is defined as follows:
(Def.5) (i) Firing(Q, Mo) = Mo if @ = ¢,

(ii)  there exists a finite sequence M of elements of Bool.marks_of P;
such that lenQ = len M and Firing(Q,Mo) = MenmM and mM =
Firing(m1Q, Mo) and for every natural number ¢ such that ¢ < len @ and
i > 0 holds 7j41 M = Firing(m;41Q, m:M), otherwise.

One can prove the following propositions:

(5) For every non empty set A and for arbitrary y and for every function

fholds (f +-(Ar—g)°A={y}. S

" (6) Let Py be a place/transition net structure, and let My be a Boolean
marking of P, and let ¢ be a transition of P;, and let s be a place of P;.
If s € {t}*, then (Firing(t, Mo))(s) = true.

(7) Let Py be a place/transition net structure and let S; be a non empty set
of places of P;. Then S is deadlock-like if and only if for every Boolean
marking My of P; such that Mg ° 51 = {false} and for every transition ¢ .
of P, such that t is firable on My holds (Firing(t, Mo)) ° §1 = {false}.
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(8) Let D be anon empty set, and let Qo, Q1 be finite sequences of elements
of D, and let 7 be a natural number. If 1 < 7 and ¢ < len @q, then
mi(Qo ™~ Q1) = mQo.

(9) Let D be anon empty set, and let Qo, @1 be finite sequences of elements
of D, and let 7 be a natural number. If 1 < 7 and ¢ < len )y, then
TenQo+i(@o ™ @1) = mQ1.

(10) Let P; be a place/transition net structure, and let My be a Boolean
marking of P;, and let Qq, @1 be finite sequences of elements of the
transitions of P;. Then Firing(Qo~ @1, Mo) = Firing(Q1, Firing(Qo, Mo)).

(11) Let P, be a place/transition net structure, and let My be a Boolean
marking of Py, and let @y, ¢J1 be finite sequences of elements of the
transitions of P;. If Q¢ ~ @1 is firable on My, then ¢y is firable on
Firing(Qo, Mo) and Qg is firable on M.

(12) Let Py be a place/transition net structure, and let My be a Boolean
marking of Py, and let ¢ be a transition of P;. Then t is firable on My if
and only if (t) is firable on Mj.

(13) Let Py be a place/transition net structure, and let My be a Boolean
marking of Py, and let ¢ be a transition of Py, Then Firing(t, Mo) =
Firing((t), Mo).

(14) Let Py be a place/transition net structure and let S be a non empty set
of places of P,. Then 5y is deadlock-like if and only if for every Boolean
marking Mo of Py such that My°S; = {false} and for every finite sequence
@) of elements of the transitions of P; such that @ is firable on My holds

(Firing(Q, Mo)) ° 51 = {false}.
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