Irreducible and Prime Elements¹

Beata Madras

Summary. In the paper open and order generating subsets are defined. Irreducible and prime elements are also defined. The article includes definitions and facts presented in [16, pp. 68–72].

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{WAYBEL_6}.$

The articles [29], [25], [1], [15], [28], [30], [31], [9], [23], [2], [24], [4], [11], [12], [10], [13], [3], [27], [21], [22], [5], [18], [6], [14], [33], [19], [20], [8], [17], [32], [26], and [7] provide the notation and terminology for this paper.

1. Preliminaries

In this paper L denotes a lattice and l denotes an element of L.

The scheme *NonUniqExD1* concerns a non empty relational structure \mathcal{A} , a subset \mathcal{B} of \mathcal{A} , a non empty subset \mathcal{C} of \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

There exists a function f from \mathcal{B} into \mathcal{C} such that for every element

 $e \text{ of } \mathcal{A} \text{ if } e \in \mathcal{B}$, then there exists an element $u \text{ of } \mathcal{A}$ such that $u \in \mathcal{C}$ and u = f(e) and $\mathcal{P}[e, u]$

provided the following requirement is met:

• For every element e of \mathcal{A} such that $e \in \mathcal{B}$ there exists an element u of \mathcal{A} such that $u \in \mathcal{C}$ and $\mathcal{P}[e, u]$.

Let L be a lattice, let A be a non empty subset of the carrier of L, let f be a function from A into A, and let n be an element of N. Then f^n is a function from A into A.

C 1997 University of Białystok ISSN 1426-2630

 $^{^1{\}rm This}$ work has been partially supported by the Office of Naval Research Grant N00014-95-1-1336.

BEATA MADRAS

Let L be a lattice, let C, D be non empty subsets of the carrier of L, let f be a function from C into D, and let c be an element of C. Then f(c) is an element of L.

Let L be a non empty poset. One can check that every chain of L is filtered and directed.

Let us observe that there exists a lattice which is strict, continuous, distributive, and lower-bounded.

Next we state three propositions:

- (1) Let S, T be semilattices and f be a map from S into T. Then f is meet-preserving if and only if for all elements x, y of S holds $f(x \sqcap y) = f(x) \sqcap f(y)$.
- (2) Let S, T be sup-semilattices and f be a map from S into T. Then f is join-preserving if and only if for all elements x, y of S holds $f(x \sqcup y) = f(x) \sqcup f(y)$.
- (3) Let S, T be lattices and f be a map from S into T. Suppose T is distributive and f is meet-preserving, join-preserving, and one-to-one. Then S is distributive.

Let S, T be complete lattices. Observe that there exists a map from S into T which is sups-preserving.

The following proposition is true

(4) Let S, T be complete lattices and f be a sups-preserving map from S into T. Suppose T is meet-continuous and f is meet-preserving and one-to-one. Then S is meet-continuous.

2. Open sets

Let L be a non empty reflexive relational structure and let X be a subset of L. We say that X is open if and only if:

(Def. 1) For every element x of L such that $x \in X$ there exists an element y of L such that $y \in X$ and $y \ll x$.

The following two propositions are true:

- (5) Let L be an up-complete lattice and X be an upper subset of L. Then X is open if and only if for every element x of L such that $x \in X$ holds $\downarrow x \cap X \neq \emptyset$.
- (6) Let L be an up-complete lattice and X be an upper subset of L. Then X is open if and only if $X = \bigcup\{\uparrow x, x \text{ ranges over elements of } L: x \in X\}.$

Let L be an up-complete lower-bounded lattice. Note that there exists a filter of L which is open.

The following three propositions are true:

(7) For every lower-bounded continuous lattice L and for every element x of L holds $\uparrow x$ is open.

- (8) Let L be a lower-bounded continuous lattice and x, y be elements of L. If $x \ll y$, then there exists an open filter F of L such that $y \in F$ and $F \subseteq \uparrow x$.
- (9) Let L be a complete lattice, X be an open upper subset of L, and x be an element of L. If $x \in -X$, then there exists an element m of L such that $x \leq m$ and m is maximal in -X.

3. IRREDUCIBLE ELEMENTS

Let G be a non empty relational structure and let g be an element of G. We say that g is meet-irreducible if and only if:

(Def. 2) For all elements x, y of G such that $g = x \sqcap y$ holds x = g or y = g. We introduce g is irreducible as a synonym of g is meet-irreducible.

Let G be a non empty relational structure and let g be an element of G. We say that g is join-irreducible if and only if:

- (Def. 3) For all elements x, y of G such that $g = x \sqcup y$ holds x = g or y = g. Let L be a non empty relational structure. The functor IRR(L) yielding a subset of L is defined as follows:
- (Def. 4) For every element x of L holds $x \in IRR(L)$ iff x is irreducible.

The following proposition is true

(10) For every upper-bounded antisymmetric non empty relational structure L with g.l.b.'s holds \top_L is irreducible.

Let L be an upper-bounded antisymmetric non empty relational structure with g.l.b.'s. Observe that there exists an element of L which is irreducible.

We now state four propositions:

- (11) Let L be a semilattice and x be an element of L. Then x is irreducible if and only if for every finite non empty subset A of L such that $x = \inf A$ holds $x \in A$.
- (12) For every lattice L and for every element l of L such that $\uparrow l \setminus \{l\}$ is a filter of L holds l is irreducible.
- (13) Let L be a lattice, p be an element of L, and F be a filter of L. If p is maximal in -F, then p is irreducible.
- (14) Let L be a lower-bounded continuous lattice and x, y be elements of L. Suppose $y \leq x$. Then there exists an element p of L such that p is irreducible and $x \leq p$ and $y \leq p$.

4. Order generating sets

Let L be a non empty relational structure and let X be a subset of L. We say that X is order-generating if and only if:

BEATA MADRAS

- (Def. 5) For every element x of L holds $\inf \uparrow x \cap X$ exists in L and $x = \inf(\uparrow x \cap X)$. The following propositions are true:
 - (15) Let L be an up-complete lower-bounded lattice and X be a subset of L. Then X is order-generating if and only if for every element l of L there exists a subset Y of X such that $l = \prod_{L} Y$.
 - (16) Let L be an up-complete lower-bounded lattice and X be a subset of L. Then X is order-generating if and only if for every subset Y of L such that $X \subseteq Y$ and for every subset Z of Y holds $\bigcap_L Z \in Y$ holds the carrier of L = Y.
 - (17) Let L be an up-complete lower-bounded lattice and X be a subset of L. Then X is order-generating if and only if for all elements l_1 , l_2 of L such that $l_2 \leq l_1$ there exists an element p of L such that $p \in X$ and $l_1 \leq p$ and $l_2 \leq p$.
 - (18) Let L be a lower-bounded continuous lattice and X be a subset of L. If $X = \text{IRR}(L) \setminus \{\top_L\}$, then X is order-generating.
 - (19) Let L be a lower-bounded continuous lattice and X, Y be subsets of L. If X is order-generating and $X \subseteq Y$, then Y is order-generating.

5. PRIME ELEMENTS

Let L be a non empty relational structure and let l be an element of L. We say that l is prime if and only if:

(Def. 6) For all elements x, y of L such that $x \sqcap y \leq l$ holds $x \leq l$ or $y \leq l$.

Let L be a non empty relational structure. The functor PRIME(L) yielding a subset of L is defined by:

(Def. 7) For every element x of L holds $x \in \text{PRIME}(L)$ iff x is prime.

Let L be a non empty relational structure and let l be an element of L. We say that l is co-prime if and only if:

(Def. 8) l^{\sim} is prime.

We now state two propositions:

- (20) For every upper-bounded antisymmetric non empty relational structure L holds \top_L is prime.
- (21) For every lower-bounded antisymmetric non empty relational structure L holds \perp_L is co-prime.

Let L be an upper-bounded antisymmetric non empty relational structure. Note that there exists an element of L which is prime.

The following propositions are true:

(22) Let L be a semilattice and l be an element of L. Then l is prime if and only if for every finite non empty subset A of L such that $l \ge \inf A$ there exists an element a of L such that $a \in A$ and $l \ge a$.

236

- (23) Let L be a sup-semilattice and x be an element of L. Then x is co-prime if and only if for every finite non empty subset A of L such that $x \leq \sup A$ there exists an element a of L such that $a \in A$ and $x \leq a$.
- (24) For every lattice L and for every element l of L such that l is prime holds l is irreducible.
- (25) Let given l. Then l is prime if and only if for arbitrary x and for every map f from L into $2_{\subseteq}^{\{x\}}$ such that for every element p of L holds $f(p) = \emptyset$ iff $p \leq l$ holds f is meet-preserving and join-preserving.
- (26) Let L be an upper-bounded lattice and l be an element of L. If $l \neq \top_L$, then l is prime iff $-\downarrow l$ is a filter of L.
- (27) For every distributive lattice L and for every element l of L holds l is prime iff l is irreducible.
- (28) For every distributive lattice L holds PRIME(L) = IRR(L).
- (29) Let L be a Boolean lattice and l be an element of L. Suppose $l \neq \top_L$. Then l is prime if and only if for every element x of L such that x > l holds $x = \top_L$.
- (30) Let L be a continuous distributive lower-bounded lattice and l be an element of L. Suppose $l \neq \top_L$. Then l is prime if and only if there exists an open filter F of L such that l is maximal in -F.
- (31) Let *L* be a relational structure and *X* be a subset of the carrier of *L*. Then $\chi_{X,\text{the carrier of }L}$ is a map from *L* into $2_{\subseteq}^{\{\emptyset\}}$.
- (32) Let *L* be a non empty relational structure and *p*, *x* be elements of *L*. Then $\chi_{-\downarrow p, \text{the carrier of } L}(x) = \emptyset$ if and only if $x \leq p$.
- (33) Let *L* be an upper-bounded lattice, *f* be a map from *L* into $2_{\subseteq}^{\{\emptyset\}}$, and *p* be a prime element of *L*. Suppose $\chi_{-\downarrow p,\text{the carrier of }L} = f$. Then *f* is meet-preserving and join-preserving.
- (34) For every complete lattice L such that PRIME(L) is order-generating holds L is distributive and meet-continuous.
- (35) For every lower-bounded continuous lattice L holds L is distributive iff PRIME(L) is order-generating.
- (36) For every lower-bounded continuous lattice L holds L is distributive iff L is Heyting.
- (37) Let L be a continuous complete lattice. Suppose that for every element l of L there exists a subset X of L such that $l = \sup X$ and for every element x of L such that $x \in X$ holds x is co-prime. Let l be an element of L. Then $l = \bigsqcup_{L} (\downarrow l \cap \text{PRIME}(L^{\text{op}})).$
- (38) Let L be a complete lattice. Then L is completely-distributive if and only if the following conditions are satisfied:
 - (i) L is continuous, and
- (ii) for every element l of L there exists a subset X of L such that $l = \sup X$ and for every element x of L such that $x \in X$ holds x is co-prime.

BEATA MADRAS

(39) Let L be a complete lattice. Then L is completely-distributive if and only if L is distributive and continuous and L^{op} is continuous.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. Cartesian product of functions. *Formalized Mathematics*, 2(4):547–552, 1991.
- [4] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [5] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.
- [6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
- [7] Grzegorz Bancerek. Duality in relation structures. Formalized Mathematics, 6(2):227-232, 1997.
 [9] Grzegorz Bancerek. The "mathematics" of the structure of the str
- [8] Grzegorz Bancerek. The "way-below" relation. *Formalized Mathematics*, 6(1):169–176, 1997.
- [9] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [10] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [14] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
- [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [16] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [17] Adam Grabowski. Auxiliary and approximating relations. Formalized Mathematics, 6(2):179–188, 1997.
- [18] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Formalized Mathematics*, 6(1):117–121, 1997.
- [19] Artur Korniłowicz. Definitions and properties of the join and meet of subsets. Formalized Mathematics, 6(1):153–158, 1997.
- [20] Artur Korniłowicz. Meet continuous lattices. Formalized Mathematics, 6(1):159–167, 1997.
- [21] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103– 108, 1993.
- [22] Beata Madras. Products of many sorted algebras. *Formalized Mathematics*, 5(1):55–60, 1996.
- [23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [24] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [26] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [27] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [29] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. *Formalized Mathematics*, 1(1):17–23, 1990.
- [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

- [31] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.
- [32] Mariusz Żynel. The equational characterization of continuous lattices. Formalized Mathematics, 6(2):199–205, 1997.
- [33] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received December 1, 1996