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The articles [26], [30], [2], [21], [10], [3], [11], [29], [9], [31], [6], [7], [23], [8], [4],

[13], [1], [20], [19], [24], [18], [17], [14], [16], [5], [12], [22], [28], [15], [27], and [25]

provide the notation and terminology for this paper.

1. The Properties of Sequences and Subsequences

Let T be a non empty 1-sorted structure, let f be a function from N into N,

and let S be a sequence of T . Then S · f is a sequence of T .

One can prove the following two propositions:

(1) Let T be a non empty 1-sorted structure, S be a sequence of T , and N1

be an increasing sequence of naturals. Then S ·N1 is a sequence of T .

(2) For every sequence R1 of real numbers such that R1 = idN holds R1 is

an increasing sequence of naturals.

Let T be a non empty 1-sorted structure and let S be a sequence of T . A

sequence of T is called a subsequence of S if:

(Def. 1) There exists an increasing sequence N1 of naturals such that it = S ·N1.

The following two propositions are true:

(3) For every non empty 1-sorted structure T holds every sequence S of T

is a subsequence of S.

(4) For every non empty 1-sorted structure T and for every sequence S of T

and for every subsequence S1 of S holds rngS1 ⊆ rngS.
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Let T be a non empty 1-sorted structure, let N1 be an increasing sequence

of naturals, and let S be a sequence of T . Then S ·N1 is a subsequence of S.

One can prove the following proposition

(5) Let T be a non empty 1-sorted structure, S1 be a sequence of T , and S2

be a subsequence of S1. Then every subsequence of S2 is a subsequence of

S1.

In this article we present several logical schemes. The scheme SubSeqChoice

deals with a non empty 1-sorted structure A, a sequence B of A, and and states

that:

There exists a subsequence S1 of B such that for every natural

number n holds P[S1(n)]

provided the following requirement is met:

• For every natural number n there exists a natural number m and

there exists a point x of A such that n ¬ m and x = B(m) and

P[x].

The scheme SubSeqChoice1 deals with a non empty topological structure A,

a sequence B of A, and and states that:

There exists a subsequence S1 of B such that for every natural

number n holds P[S1(n)]

provided the parameters have the following property:

• For every natural number n there exists a natural number m and

there exists a point x of A such that n ¬ m and x = B(m) and

P[x].

One can prove the following propositions:

(6) Let T be a non empty 1-sorted structure, S be a sequence of T , and A

be a subset of the carrier of T . Suppose that for every subsequence S1 of

S holds rngS1 6⊆ A. Then there exists a natural number n such that for

every natural number m such that n ¬ m holds S(m) /∈ A.

(7) Let T be a non empty 1-sorted structure, S be a sequence of T , and A,

B be subsets of the carrier of T . If rngS ⊆ A ∪ B, then there exists a

subsequence S1 of S such that rngS1 ⊆ A or rngS1 ⊆ B.

(8) Let T be a non empty topological space. Suppose that for every sequence

S of T and for all points x1, x2 of T such that x1 ∈ LimS and x2 ∈ LimS

holds x1 = x2. Then T is a T1 space.

(9) Let T be a non empty topological space. Suppose T is a T2 space. Let S

be a sequence of T and x1, x2 be points of T . If x1 ∈ LimS and x2 ∈ LimS,

then x1 = x2.

(10) Let T be a non empty topological space. Suppose T is first-countable.

Then T is a T2 space if and only if for every sequence S of T and for all

points x1, x2 of T such that x1 ∈ LimS and x2 ∈ LimS holds x1 = x2.
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(11) For every non empty topological structure T and for every sequence S

of T such that S is not convergent holds LimS = ∅.

(12) Let T be a non empty topological space and A be a subset of T . If

A is closed, then for every sequence S of T such that rngS ⊆ A holds

LimS ⊆ A.

(13) Let T be a non empty topological structure, S be a sequence of T , and

x be a point of T . Suppose S is not convergent to x. Then there exists a

subsequence S1 of S such that every subsequence of S1 is not convergent

to x.

2. The Continuous Maps

One can prove the following two propositions:

(14) Let T1, T2 be non empty topological spaces and f be a map from T1

into T2. Suppose f is continuous. Let S1 be a sequence of T1 and S2 be a

sequence of T2. If S2 = f · S1, then f◦ LimS1 ⊆ LimS2.

(15) Let T1, T2 be non empty topological spaces and f be a map from T1 into

T2. Suppose T1 is sequential. Then f is continuous if and only if for every

sequence S1 of T1 and for every sequence S2 of T2 such that S2 = f · S1

holds f◦ LimS1 ⊆ LimS2.

3. The Sequential Closure Operator

Let T be a non empty topological structure and let A be a subset of the

carrier of T . The functor ClSeqA yielding a subset of T is defined by:

(Def. 2) For every point x of T holds x ∈ ClSeqA iff there exists a sequence S of

T such that rngS ⊆ A and x ∈ LimS.

The following propositions are true:

(16) Let T be a non empty topological structure, A be a subset of T , S be a

sequence of T , and x be a point of T . If rngS ⊆ A and x ∈ LimS, then

x ∈ A.

(17) For every non empty topological structure T and for every subset A of

T holds ClSeqA ⊆ A.

(18) Let T be a non empty topological structure, S be a sequence of T , S1 be

a subsequence of S, and x be a point of T . If S is convergent to x, then

S1 is convergent to x.

(19) Let T be a non empty topological structure, S be a sequence of T , and

S1 be a subsequence of S. Then LimS ⊆ LimS1.
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(20) For every non empty topological structure T holds ClSeq(∅T ) = ∅.

(21) For every non empty topological structure T and for every subset A of

T holds A ⊆ ClSeqA.

(22) For every non empty topological structure T and for all subsets A, B of

T holds ClSeqA ∪ ClSeqB = ClSeq(A ∪B).

(23) Let T be a non empty topological structure. Then T is Frechet if and

only if for every subset A of the carrier of T holds A = ClSeqA.

(24) Let T be a non empty topological space. Suppose T is Frechet. Let A, B

be subsets of T . Then ClSeq(∅T ) = ∅ and A ⊆ ClSeqA and ClSeq(A∪B) =

ClSeqA ∪ ClSeqB and ClSeqClSeqA = ClSeqA.

(25) Let T be a non empty topological space. Suppose T is sequential. If for

every subset A of T holds ClSeqClSeqA = ClSeqA, then T is Frechet.

(26) Let T be a non empty topological space. Suppose T is sequential. Then

T is Frechet if and only if for all subsets A, B of T holds ClSeq(∅T ) = ∅

and A ⊆ ClSeqA and ClSeq(A∪B) = ClSeqA∪ClSeqB and ClSeqClSeqA =

ClSeqA.

4. The Limit

Let T be a non empty topological space and let S be a sequence of T . Let

us assume that there exists a point x of T such that LimS = {x}. The functor

limS yields a point of T and is defined as follows:

(Def. 3) S is convergent to limS.

The following propositions are true:

(27) Let T be a non empty topological space. Suppose T is a T2 space. Let

S be a sequence of T . If S is convergent, then there exists a point x of T

such that LimS = {x}.

(28) Let T be a non empty topological space. Suppose T is a T2 space. Let

S be a sequence of T and x be a point of T . Then S is convergent to x if

and only if S is convergent and x = limS.

(29) For every metric structure M holds every sequence of M is a sequence

of Mtop.

(30) For every non empty metric structure M holds every sequence of Mtop
is a sequence of M .

(31) LetM be a non empty metric space, S be a sequence ofM , x be a point

ofM , S′ be a sequence ofMtop, and x′ be a point ofMtop. Suppose S = S′

and x = x′. Then S is convergent to x if and only if S′ is convergent to x′.

(32) Let M be a non empty metric space, S3 be a sequence of M , and S4 be

a sequence of Mtop. If S3 = S4, then S3 is convergent iff S4 is convergent.
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(33) Let M be a non empty metric space, S3 be a sequence of M , and S4 be

a sequence of Mtop. If S3 = S4 and S3 is convergent, then limS3 = limS4.

5. The Cluster Points

Let T be a topological structure, let S be a sequence of T , and let x be a

point of T . We say that x is a cluster point of S if and only if the condition

(Def. 4) is satisfied.

(Def. 4) Let O be a subset of T and n be a natural number. Suppose O is open

and x ∈ O. Then there exists a natural number m such that n ¬ m and

S(m) ∈ O.

Next we state several propositions:

(34) Let T be a non empty topological structure, S be a sequence of T , and

x be a point of T . If there exists a subsequence of S which is convergent

to x, then x is a cluster point of S.

(35) Let T be a non empty topological structure, S be a sequence of T , and

x be a point of T . If S is convergent to x, then x is a cluster point of S.

(36) Let T be a non empty topological structure, S be a sequence of T , x be

a point of T , and Y be a subset of the carrier of T . If Y = {y; y ranges

over points of T : x ∈ {y}} and rngS ⊆ Y, then S is convergent to x.

(37) Let T be a non empty topological structure, S be a sequence of T , and x,

y be points of T . Suppose that for every natural number n holds S(n) = y

and S is convergent to x. Then x ∈ {y}.

(38) Let T be a non empty topological structure, x be a point of T , Y be a

subset of the carrier of T , and S be a sequence of T . Suppose Y = {y; y

ranges over points of T : x ∈ {y}} and rngS ∩ Y = ∅ and S is convergent

to x. Then there exists a subsequence of S which is one-to-one.

(39) Let T be a non empty topological structure and S1, S2 be sequences

of T . Suppose rngS2 ⊆ rngS1 and S2 is one-to-one. Then there exists a

permutation P of N such that S2 · P is a subsequence of S1.

Now we present two schemes. The scheme PermSeq deals with a non empty

1-sorted structure A, a sequence B of A, a permutation C of N, and and states

that:

There exists a natural number n such that for every natural num-

ber m such that n ¬ m holds P[(B · C)(m)]

provided the following condition is satisfied:

• There exists a natural number n such that for every natural num-

ber m and for every point x of A if n ¬ m and x = B(m), then

P[x].
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The scheme PermSeq2 deals with a non empty topological structure A, a

sequence B of A, a permutation C of N, and and states that:

There exists a natural number n such that for every natural num-

ber m such that n ¬ m holds P[(B · C)(m)]

provided the parameters meet the following condition:

• There exists a natural number n such that for every natural num-

ber m and for every point x of A if n ¬ m and x = B(m), then

P[x].

We now state several propositions:

(40) Let T be a non empty topological structure, S be a sequence of T , P be

a permutation of N, and x be a point of T . If S is convergent to x, then

S · P is convergent to x.

(41) Let n0 be a natural number. Then there exists an increasing sequence

N1 of naturals such that for every natural number n holds N1(n) = n+n0.

(42) Let T be a non empty 1-sorted structure, S be a sequence of T , and n0

be a natural number. Then there exists a subsequence S1 of S such that

for every natural number n holds S1(n) = S(n + n0).

(43) Let T be a non empty topological structure, S be a sequence of T , x be a

point of T , and S1 be a subsequence of S. Suppose x is a cluster point of S

and there exists a natural number n0 such that for every natural number

n holds S1(n) = S(n + n0). Then x is a cluster point of S1.

(44) Let T be a non empty topological structure, S be a sequence of T , and

x be a point of T . If x is a cluster point of S, then x ∈ rngS.

(45) Let T be a non empty topological structure. Suppose T is Frechet. Let

S be a sequence of T and x be a point of T . If x is a cluster point of S,

then there exists a subsequence of S which is convergent to x.

6. Auxiliary Theorems

We now state several propositions:

(46) Let T be a non empty topological space. Suppose T is first-countable.

Let x be a point of T . Then there exists a basis B of x and there exists

a function S such that domS = N and rngS = B and for all natural

numbers n, m such that m ­ n holds S(m) ⊆ S(n).

(47) For every non empty topological space T holds T is a T1 space iff for

every point p of T holds {p} = {p}.

(48) For every non empty topological space T such that T is a T2 space holds

T is a T1 space.
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(49) Let T be a non empty topological space. Suppose T is not a T1 space.

Then there exist points x1, x2 of T and there exists a sequence S of T

such that S = N 7−→ x1 and x1 6= x2 and S is convergent to x2.

(50) For every function f such that dom f is infinite and f is one-to-one holds

rng f is infinite.

(51) For every non empty finite subset X of N and for every natural number

x such that x ∈ X holds x ¬ maxX.
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