The Differentiable Functions on Normed Linear Spaces

Hiroshi Imura Morishige Kimura Yasunari Shidama
Shinshu University Shinshu University Shinshu University
Nagano Nagano Nagano

Summary. In this article, the basic properties of the differentiable functions on normed linear spaces are described.

MML Identifier: NDIFF_1.

The notation and terminology used in this paper are introduced in the following papers: [20], [23], [4], [24], [6], [5], [19], [3], [10], [1], [18], [7], [21], [22], [11], [8], [9], [25], [13], [15], [16], [17], [12], [14], and [2].

For simplicity, we adopt the following rules: n, k denote natural numbers, x, X, Z denote sets, g, r denote real numbers, S denotes a real normed space, r_1 denotes a sequence of real numbers, s_1, s_2 denote sequences of S, x_0 denotes a point of S, and Y denotes a subset of S.

Next we state several propositions:

1. For every point x_0 of S and for all neighbourhoods N_1, N_2 of x_0 there exists a neighbourhood N of x_0 such that $N \subseteq N_1$ and $N \subseteq N_2$.

2. Let X be a subset of S. Suppose X is open. Let r be a point of S. If $r \in X$, then there exists a neighbourhood N of r such that $N \subseteq X$.

3. Let X be a subset of S. Suppose X is open. Let r be a point of S. If $r \in X$, then there exists g such that $0 < g$ and $\{y; y \text{ ranges over points of } S: \|y - r\| < g\} \subseteq X$.

4. Let X be a subset of S. Suppose that for every point r of S such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$. Then X is open.

5. Let X be a subset of S. Then for every point r of S such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$ if and only if X is open.
Let S be a zero structure and let f be a sequence of S. We say that f is non-zero if and only if:

(Def. 1) $\text{rng} \ f \subseteq (\text{the carrier of } S) \setminus \{0_S\}$.

We introduce f is non-zero as a synonym of f is non-zero.

We now state two propositions:

(6) s_1 is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_1(x) \neq 0_S$.
(7) s_1 is non-zero iff for every n holds $s_1(n) \neq 0_S$.

Let R_1 be a real linear space, let S be a sequence of R_1, and let a be a sequence of real numbers. The functor $a \cdot S$ yields a sequence of R_1 and is defined as follows:

(Def. 2) For every n holds $(a \cdot S)(n) = a(n) \cdot S(n)$.

Let R_1 be a real linear space, let z be a point of R_1, and let a be a sequence of real numbers. The functor $a \cdot z$ yields a sequence of R_1 and is defined by:

(Def. 3) For every n holds $(a \cdot z)(n) = a(n) \cdot z$.

Next we state a number of propositions:

(8) For all sequences r_2, r_3 of real numbers holds $(r_2 + r_3) \cdot s_1 = r_2 \cdot s_1 + r_3 \cdot s_1$.
(9) For every sequence r_1 of real numbers and for all sequences s_2, s_3 of S holds $r_1 \cdot (s_2 + s_3) = r_1 \cdot s_2 + r_1 \cdot s_3$.
(10) For every sequence r_1 of real numbers holds $r \cdot (r_1 \cdot s_1) = r_1 \cdot (r \cdot s_1)$.
(11) For all sequences r_2, r_3 of real numbers holds $(r_2 - r_3) \cdot s_1 = r_2 \cdot s_1 - r_3 \cdot s_1$.
(12) For every sequence r_1 of real numbers and for all sequences s_2, s_3 of S holds $r_1 \cdot (s_2 - s_3) = r_1 \cdot s_2 - r_1 \cdot s_3$.
(13) If r_1 is convergent and s_1 is convergent, then $r_1 \cdot s_1$ is convergent.
(14) If r_1 is convergent and s_1 is convergent, then $\lim(r_1 \cdot s_1) = \lim r_1 \cdot \lim s_1$.
(15) $(s_1 + s_2) \uparrow k = s_1 \uparrow k + s_2 \uparrow k$.
(16) $(s_1 - s_2) \uparrow k = s_1 \uparrow k - s_2 \uparrow k$.
(17) If s_1 is non-zero, then $s_1 \uparrow k$ is non-zero.
(18) $s_1 \uparrow k$ is a subsequence of s_1.
(19) If s_1 is constant and s_2 is a subsequence of s_1, then s_2 is constant.
(20) If s_1 is constant and s_2 is a subsequence of s_1, then $s_1 = s_2$.

Let us consider S and let I_1 be a sequence of S. We say that I_1 is convergent to 0 if and only if:

(Def. 4) I_1 is non-zero and convergent and $\lim I_1 = 0_S$.

The following propositions are true:

(21) Let X be a real normed space and s_1 be a sequence of X. Suppose s_1 is constant. Then s_1 is convergent and for every natural number k holds $\lim s_1 = s_1(k)$.

For every real number \(r \) such that \(0 < r \) and for every \(n \) holds \(s_1(n) = \frac{1}{n+r} \cdot x_0 \) holds \(s_1 \) is convergent.

For every real number \(r \) such that \(0 < r \) and for every \(n \) holds \(s_1(n) = \frac{1}{n+r} \cdot x_0 \) holds \(\lim s_1 = 0_S \).

Let \(a \) be a convergent to 0 sequence of real numbers and \(z \) be a point of \(S \). If \(z \neq 0_S \), then \(a \cdot z \) is convergent to 0.

For every point \(r \) of \(S \) holds \(r \in Y \) iff \(r \in \text{carrier of } S \) iff \(Y = \text{carrier of } S \).

For simplicity, we adopt the following rules: \(S, T \) denote non trivial real normed spaces, \(f, f_1, f_2 \) denote partial functions from \(S \) to \(T \), \(s_4, s_1 \) denote sequences of \(S \), and \(x_0 \) denotes a point of \(S \).

Let \(S \) be a non trivial real normed space. Note that there exists a sequence of \(S \) which is convergent to 0.

Let us consider \(S \). Note that there exists a sequence of \(S \) which is constant.

In the sequel \(h \) is a convergent to 0 sequence of \(S \) and \(c \) is a constant sequence of \(S \).

Let us consider \(S, T \) and let \(I_1 \) be a partial function from \(S \) to \(T \). We say that \(I_1 \) is rest-like if and only if:

(Def. 5) \(I_1 \) is total and for every \(h \) holds \(\|h\|^{-1} (I_1 \cdot h) \) is convergent and \(\lim(\|h\|^{-1} (I_1 \cdot h)) = 0_T \).

Let us consider \(S, T \). Observe that there exists a partial function from \(S \) to \(T \) which is rest-like.

Let us consider \(S, T \). A rest of \(S, T \) is a rest-like partial function from \(S \) to \(T \).

We now state two propositions:

(26) Let \(R \) be a partial function from \(S \) to \(T \). Suppose \(R \) is total. Then \(R \) is rest-like if and only if for every real number \(r \) such that \(r > 0 \) there exists a real number \(d \) such that \(d > 0 \) and for every point \(z \) of \(S \) such that \(z \neq 0_S \) and \(\|z\| < d \) holds \(\|z\|^{-1} \cdot \|Rz\| < r \).

(27) For every rest \(R \) of \(S, T \) and for every convergent to 0 sequence \(s \) of \(S \) holds \(R \cdot s \) is convergent and \(\lim(R \cdot s) = 0_T \).

In the sequel \(R, R_2, R_3 \) are rests of \(S, T \) and \(L \) is a point of \(R\text{NormSpaceOfBoundedLinearOperators}(S,T) \).

Next we state several propositions:

(28) \(\text{rng}(s_1 \uparrow n) \subseteq \text{rng } s_1 \).

(29) For every partial function \(h \) from \(S \) to \(T \) and for every sequence \(s_1 \) of \(S \) such that \(\text{rng } s_1 \subseteq \text{dom } h \) holds \((h \cdot s_1) \uparrow n = h \cdot (s_1 \uparrow n) \).

(30) Let \(h_1, h_2 \) be partial functions from \(S \) to \(T \) and \(s_1 \) be a sequence of \(S \). If \(h_1 \) is total and \(h_2 \) is total, then \((h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1 \) and \((h_1 - h_2) \cdot s_1 = h_1 \cdot s_1 - h_2 \cdot s_1 \).
(31) Let h be a partial function from S to T, s_1 be a sequence of S, and r be a real number. If h is total, then $(r \cdot h) \cdot s_1 = r \cdot (h \cdot s_1)$.

(32) f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } f$, and

(ii) for every sequence s_4 of S such that $\text{rng } s_4 \subseteq \text{dom } f$ and s_4 is convergent and $\lim s_4 = x_0$ and for every n holds $s_4(n) \neq x_0$ holds $f \cdot s_4$ is convergent and $f_{x_0} = \lim(f \cdot s_4)$.

(33) For all R_2, R_3 holds $R_2 + R_3$ is a rest of S, T and $R_2 - R_3$ is a rest of S, T.

(34) For all r, R holds $r R$ is a rest of S, T.

Let us consider S, T, let f be a partial function from S to T, and let x_0 be a point of S. We say that f is differentiable in x_0 if and only if the condition (Def. 6) is satisfied.

(Def. 6) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that for every point x of S such that $x \in N$ holds $f_x - f_{x_0} = L(x - x_0) + R_{x-x_0}$.

Let us consider S, T, let f be a partial function from S to T, and let x_0 be a point of S. Let us assume that f is differentiable in x_0. The functor $f'(x_0)$ yielding a point of $\text{RNNormSpaceOfBoundedLinearOperators}(S, T)$ is defined by the condition (Def. 7).

(Def. 7) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exists R such that for every point x of S such that $x \in N$ holds $f_x - f_{x_0} = f'(x_0)(x - x_0) + R_{x-x_0}$.

Let us consider X, let us consider S, T, and let f be a partial function from S to T. We say that f is differentiable on X if and only if:

(Def. 8) $X \subseteq \text{dom } f$ and for every point x of S such that $x \in X$ holds $f | X$ is differentiable in x.

Next we state three propositions:

(35) Let f be a partial function from S to T. If f is differentiable on X, then X is a subset of the carrier of S.

(36) Let f be a partial function from S to T and Z be a subset of S. Suppose Z is open. Then f is differentiable on Z if and only if the following conditions are satisfied:

(i) $Z \subseteq \text{dom } f$, and

(ii) for every point x of S such that $x \in Z$ holds f is differentiable in x.

(37) Let f be a partial function from S to T and Y be a subset of S. If f is differentiable on Y, then Y is open.

Let us consider S, T, let f be a partial function from S to T, and let X be a set. Let us assume that f is differentiable on X. The functor f'_{X} yielding
a partial function from S to $\text{RNormSpaceOfBoundedLinearOperators}(S,T)$ is defined by:

(Def. 9) $\text{dom}(f'_x) = X$ and for every point x of S such that $x \in X$ holds $(f'_x)_x = f'(x)$.

One can prove the following proposition

(38) Let f be a partial function from S to T and Z be a subset of S. Suppose Z is open and $Z \subseteq \text{dom } f$ and there exists a point r of T such that $\text{rng } f = \{r\}$. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $(f'_x)_x = 0_{\text{RNormSpaceOfBoundedLinearOperators}(S,T)}$.

Let us consider S and let us consider h, n. Observe that $h \uparrow n$ is convergent to 0.

Let us consider S and let us consider c, n. Observe that $c \uparrow n$ is constant.

The following propositions are true:

(39) Let x_0 be a point of S and N be a neighbourhood of x_0. Suppose f is differentiable in x_0 and $N \subseteq \text{dom } f$. Let h be a convergent to 0 sequence of S and given c. If $\text{rng } c = \{x_0\}$ and $\text{rng}(h + c) \subseteq N$, then $f \cdot (h + c) - f \cdot c$ is convergent and $\text{lim}(f \cdot (h + c) - f \cdot c) = 0_T$.

(40) Let given f_1, f_2, x_0. Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0. Then $f_1 + f_2$ is differentiable in x_0 and $(f_1 + f_2)'(x_0) = f_1'(x_0) + f_2'(x_0)$.

(41) Let given f_1, f_2, x_0. Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0. Then $f_1 - f_2$ is differentiable in x_0 and $(f_1 - f_2)'(x_0) = f_1'(x_0) - f_2'(x_0)$.

(42) For all r, f, x_0 such that f is differentiable in x_0 holds rf is differentiable in x_0 and $(rf)'(x_0) = r \cdot f'(x_0)$.

(43) Let f be a partial function from S to S and Z be a subset of S. Suppose Z is open and $Z \subseteq \text{dom } f$ and $f\mid Z = \text{id}_Z$. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $(f\mid Z)_x = \text{id}_{\text{the carrier of } S}$.

(44) Let Z be a subset of S. Suppose Z is open. Let given f_1, f_2. Suppose $Z \subseteq \text{dom}(f_1 + f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 + f_2$ is differentiable on Z and for every point x of S such that $x \in Z$ holds $((f_1 + f_2)'_Z)_x = f_1'(x) + f_2'(x)$.

(45) Let Z be a subset of S. Suppose Z is open. Let given f_1, f_2. Suppose $Z \subseteq \text{dom}(f_1 - f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 - f_2$ is differentiable on Z and for every point x of S such that $x \in Z$ holds $((f_1 - f_2)'_Z)_x = f_1'(x) - f_2'(x)$.

(46) Let Z be a subset of S. Suppose Z is open. Let given r, f. Suppose $Z \subseteq \text{dom}(rf)$ and f is differentiable on Z. Then rf is differentiable on Z and for every point x of S such that $x \in Z$ holds $((rf)'_Z)_x = r \cdot f'(x)$.

(47) Let Z be a subset of S. Suppose Z is open. Suppose $Z \subseteq \text{dom } f$ and f
is a constant on Z. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $(f|_Z)_x = 0_{\text{RNormSpaceOfBoundedLinearOperators}(S,T)}$.

Let f be a partial function from S to S, r be a real number, p be a point of S, and Z be a subset of S. Suppose Z is open. Suppose $Z \subseteq \text{dom } f$ and for every point x of S such that $x \in Z$ holds $f_x = r \cdot x + p$. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $(f|_Z)_x = r \cdot \text{FuncUnit}(S)$.

For every point x_0 of S such that f is differentiable in x_0 holds f is continuous in x_0.

If f is differentiable on X, then f is continuous on X.

For every subset Z of S such that Z is open holds if f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.

Suppose f is differentiable in x_0. Then there exists a neighbourhood N of x_0 such that

(i) $N \subseteq \text{dom } f$, and

(ii) there exists R such that $R_{0_S} = 0_T$ and R is continuous in 0_S and for every point x of S such that $x \in N$ holds $f_x - f_{x_0} = f'(x_0)(x - x_0) + R_{x - x_0}$.

References

Received May 24, 2004