The Continuous Functions on Normed Linear Spaces

Takaya Nishiyama
Shinshu University Nagano

Keiji Ohkubo
Shinshu University Nagano

Yasunari Shidama
Shinshu University Nagano

Summary. In this article, the basic properties of the continuous function on normed linear spaces are described.

MML Identifier: NFCONT.1.

The articles [16], [19], [20], [2], [21], [4], [9], [3], [1], [11], [15], [5], [17], [18], [10], [7], [8], [6], [13], [22], [12], and [14] provide the notation and terminology for this paper.

We use the following convention: \(n \) is a natural number, \(x, X, X_1 \) are sets, and \(s, r, p \) are real numbers.

Let \(S, T \) be 1-sorted structures. A partial function from \(S \) to \(T \) is a partial function from the carrier of \(S \) to the carrier of \(T \).

For simplicity, we adopt the following rules: \(S, T \) denote real normed spaces, \(f, f_1, f_2 \) denote partial functions from \(S \) to \(T \), \(s_1 \) denotes a sequence of \(S \), \(x_0, x_1, x_2 \) denote points of \(S \), and \(Y \) denotes a subset of \(S \).

Let \(R_1 \) be a real linear space and let \(S_1 \) be a sequence of \(R_1 \). The functor \(-S_1\) yields a sequence of \(R_1 \) and is defined as follows:

(Def. 1) For every \(n \) holds \((-S_1)(n) = -S_1(n)\).

Next we state two propositions:

(1) For all sequences \(s_2, s_3 \) of \(S \) holds \(s_2 - s_3 = s_2 + (-s_3) \).

(2) For every sequence \(s_4 \) of \(S \) holds \(-s_4 = (-1) \cdot s_4 \).

Let us consider \(S, T \) and let \(f \) be a partial function from \(S \) to \(T \). The functor \(\|f\| \) yielding a partial function from the carrier of \(S \) to \(\mathbb{R} \) is defined as follows:

(Def. 2) \(\text{dom} \|f\| = \text{dom} f \) and for every point \(c \) of \(S \) such that \(c \in \text{dom} \|f\| \) holds \(\|f\|(c) = \|f_c\| \).
Let us consider S, x_0. A subset of S is called a neighbourhood of x_0 if:

(Def. 3) There exists a real number g such that $0 < g$ and \{ y; y ranges over points of S: $\|y - x_0\| < g$ $\}$ \subseteq it.

The following two propositions are true:

(3) For every real number g such that $0 < g$ holds \{ y; y ranges over points of S: $\|y - x_0\| < g$ $\}$ is a neighbourhood of x_0.

(4) For every neighbourhood N of x_0 holds $x_0 \in N$.

Let us consider S and let X be a subset of S. We say that X is compact if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let s_1 be a sequence of S. Suppose $\text{rng} s_1 \subseteq X$. Then there exists a sequence s_5 of S such that s_5 is a subsequence of s_1 and convergent and $\lim s_5 \in X$.

Let us consider S and let X be a subset of S. We say that X is closed if and only if:

(Def. 5) For every sequence s_1 of S such that $\text{rng} s_1 \subseteq X$ and s_1 is convergent holds $\lim s_1 \in X$.

Let us consider S and let X be a subset of S. We say that X is open if and only if:

(Def. 6) X^c is closed.

Let us consider S, T, let us consider f, and let s_4 be a sequence of S. Let us assume that $\text{rng} s_4 \subseteq \text{dom} f$. The functor $f \cdot s_4$ yields a sequence of T and is defined as follows:

(Def. 7) $f \cdot s_4 = (f \text{ qua function}) \cdot (s_4)$.

Let us consider S, let f be a partial function from the carrier of S to \mathbb{R}, and let s_4 be a sequence of S. Let us assume that $\text{rng} s_4 \subseteq \text{dom} f$. The functor $f \cdot s_4$ yields a sequence of real numbers and is defined as follows:

(Def. 8) $f \cdot s_4 = (f \text{ qua function}) \cdot (s_4)$.

Let us consider S, T and let us consider f, x_0. We say that f is continuous in x_0 if and only if:

(Def. 9) $x_0 \in \text{dom} f$ and for every s_1 such that $\text{rng} s_1 \subseteq \text{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim (f \cdot s_1)$.

Let us consider S, let f be a partial function from the carrier of S to \mathbb{R}, and let us consider x_0. We say that f is continuous in x_0 if and only if:

(Def. 10) $x_0 \in \text{dom} f$ and for every s_1 such that $\text{rng} s_1 \subseteq \text{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim (f \cdot s_1)$.

The scheme $\text{SeqPointNormSpChoice}$ deals with a non empty normed structure \mathcal{A} and a binary predicate \mathcal{P}, and states that:

There exists a sequence s_1 of \mathcal{A} such that for every natural number n holds $\mathcal{P}[n, s_1(n)]$
provided the following condition is met:

- For every natural number \(n \) there exists a point \(r \) of \(A \) such that \(P[n, r] \).

The following propositions are true:

1. For every sequence \(s_4 \) of \(S \) and for every partial function \(h \) from \(S \) to \(T \) such that \(\operatorname{rng} s_4 \subseteq \text{dom} \ h \), \(s_4(n) \in \text{dom} \ h. \)
2. For every sequence \(s_4 \) of \(S \) and for every set \(x \) holds \(x \in \operatorname{rng} s_4 \) iff there exists \(n \) such that \(x = s_4(n) \).
3. For all sequences \(s_4, s_2 \) of \(S \) such that \(s_2 \) is a subsequence of \(s_4 \) holds \(\operatorname{rng} s_2 \subseteq \operatorname{rng} s_4 \).
4. For all \(f, s_1 \) such that \(\operatorname{rng} s_1 \subseteq \text{dom} \ f \) and for every \(n \) holds \((f \cdot s_1)(n) = f_{s_1(n)} \).
5. Let \(f \) be a partial function from the carrier of \(S \) to \(\mathbb{R} \) and given \(s_1 \). If \(\operatorname{rng} s_1 \subseteq \text{dom} \ f \), then for every \(n \) holds \((f \cdot s_1)(n) = f_{s_1(n)} \).
6. Let \(h \) be a partial function from \(S \) to \(T \), \(s_4 \) be a sequence of \(S \), and \(N_1 \) be an increasing sequence of naturals. If \(\operatorname{rng} s_4 \subseteq \text{dom} \ h \), then \((h \cdot s_4) \cdot N_1 = h \cdot (s_4 \cdot N_1) \).
7. Let \(h \) be a partial function from the carrier of \(S \) to \(\mathbb{R} \), \(s_4 \) be a sequence of \(S \), and \(N_1 \) be an increasing sequence of naturals. If \(\operatorname{rng} s_4 \subseteq \text{dom} \ h \), then \((h \cdot s_4) \cdot N_1 = h \cdot (s_4 \cdot N_1) \).
8. Let \(h \) be a partial function from the carrier of \(S \) to \(\mathbb{R} \) and \(s_2, s_3 \) be sequences of \(S \). If \(\operatorname{rng} s_2 \subseteq \text{dom} \ h \) and \(s_3 \) is a subsequence of \(s_2 \), then \(h \cdot s_3 \) is a subsequence of \(h \cdot s_2 \).
9. Let \(h \) be a partial function from the carrier of \(S \) to \(\mathbb{R} \) and \(s_2, s_3 \) be sequences of \(S \). If \(\operatorname{rng} s_2 \subseteq \text{dom} \ h \) and \(s_3 \) is a subsequence of \(s_2 \), then \(h \cdot s_3 \) is a subsequence of \(h \cdot s_2 \).
10. \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:
 - (i) \(x_0 \in \text{dom} \ f \), and
 - (ii) for every \(r \) such that \(0 < r \) there exists \(s \) such that \(0 < s \) and for every \(x_1 \) such that \(x_1 \in \text{dom} \ f \) and \(\|x_1 - x_0\| < s \) holds \(\|f_{x_1} - f_{x_0}\| < r \).
11. Let \(f \) be a partial function from the carrier of \(S \) to \(\mathbb{R} \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:
 - (i) \(x_0 \in \text{dom} \ f \), and
 - (ii) for every \(r \) such that \(0 < r \) there exists \(s \) such that \(0 < s \) and for every \(x_1 \) such that \(x_1 \in \text{dom} \ f \) and \(\|x_1 - x_0\| < s \) holds \(|f_{x_1} - f_{x_0}| < r \).
12. Let given \(f, x_0 \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:
 - (i) \(x_0 \in \text{dom} \ f \), and
 - (ii) for every neighbourhood \(N_2 \) of \(f_{x_0} \) there exists a neighbourhood \(N \) of \(x_0 \) such that for every \(x_1 \) such that \(x_1 \in \text{dom} \ f \) and \(x_1 \in N \) holds \(f_{x_1} \in N_2 \).
(17) Let given f, x_0. Then f is continuous in x_0 if and only if the following conditions are satisfied:
(i) $x_0 \in \text{dom } f$, and
(ii) for every neighbourhood N_2 of $f(x_0)$ there exists a neighbourhood N of x_0 such that $f \circ N \subseteq N_2$.
(18) If $x_0 \in \text{dom } f$ and there exists a neighbourhood N of x_0 such that $\text{dom } f \cap N = \{x_0\}$, then f is continuous in x_0.
(19) Let h_1, h_2 be partial functions from S to T and s_4 be a sequence of S. If $\text{rng } s_4 \subseteq \text{dom } h_1 \cap \text{dom } h_2$, then $(h_1 + h_2) \cdot s_4 = h_1 \cdot s_4 + h_2 \cdot s_4$ and $(h_1 - h_2) \cdot s_4 = h_1 \cdot s_4 - h_2 \cdot s_4$.
(20) Let h be a partial function from S to T, s_4 be a sequence of S, and r be a real number. If $\text{rng } s_4 \subseteq \text{dom } h$, then $(r \cdot h) \cdot s_4 = r \cdot (h \cdot s_4)$.
(21) Let h be a partial function from S to T and s_4 be a sequence of S. If $\text{rng } s_4 \subseteq \text{dom } h$, then $\|h \cdot s_4\| = \|h\| \cdot \|s_4\|$ and $-h \cdot s_4 = (-h) \cdot s_4$.
(22) If f_1 is continuous in x_0 and f_2 is continuous in x_0, then $f_1 + f_2$ is continuous in x_0 and $f_1 - f_2$ is continuous in x_0.
(23) If f is continuous in x_0, then $r \cdot f$ is continuous in x_0.
(24) If f is continuous in x_0, then $\|f\|$ is continuous in x_0 and $-f$ is continuous in x_0.

Let us consider S, T and let us consider f, X. We say that f is continuous on X if and only if:

(Def. 11) $X \subseteq \text{dom } f$ and for every $x_0 \in X$ holds $f \mid X$ is continuous in x_0.

Let us consider S, let f be a partial function from the carrier of S to \mathbb{R}, and let us consider X. We say that f is continuous on X if and only if:

(Def. 12) $X \subseteq \text{dom } f$ and for every $x_0 \in X$ holds $f \mid X$ is continuous in x_0.

One can prove the following propositions:
(25) Let given X, f. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \text{dom } f$, and
(ii) for every s_1 such that $\text{rng } s_1 \subseteq X$ and s_1 is convergent and $\lim s_1 \in X$ holds $f \cdot s_1$ is convergent and $\lim s_1 = \lim (f \cdot s_1)$.
(26) f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \text{dom } f$, and
(ii) for all x_0, r such that $x_0 \in X$ and $0 < r$ there exists s such that $0 < s$ and for every x_1 such that $x_1 \in X$ and $\|x_1 - x_0\| < s$ holds $\|f_{x_1} - f_{x_0}\| < r$.
(27) Let f be a partial function from the carrier of S to \mathbb{R}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \text{dom } f$, and
(ii) for all x_0, r such that $x_0 \in X$ and $0 < r$ there exists s such that $0 < s$ and for every x_1 such that $x_1 \in X$ and $\|x_1 - x_0\| < s$ holds $|f(x_1) - f(x_0)| < r$.

(28) f is continuous on X if and only if $f|X$ is continuous on X.

(29) Let f be a partial function from the carrier of S to \mathbb{R}. Then f is continuous on X if and only if $f|X$ is continuous on X.

(30) If f is continuous on X and $X_1 \subseteq X$, then f is continuous on X_1.

(31) If $x_0 \in \text{dom } f$, then f is continuous on $\{x_0\}$.

(32) For all X, f_1, f_2 such that f_1 is continuous on X and f_2 is continuous on X holds $f_1 + f_2$ is continuous on X and $f_1 - f_2$ is continuous on X.

(33) Let given X, X_1, f_1, f_2. Suppose f_1 is continuous on X and f_2 is continuous on X_1. Then $f_1 + f_2$ is continuous on $X \cap X_1$ and $f_1 - f_2$ is continuous on $X \cap X_1$.

(34) For all r, X, f such that f is continuous on X holds rf is continuous on X.

(35) If f is continuous on X, then $\|f\|$ is continuous on X and $-f$ is continuous on X.

(36) Suppose f is total and for all x_1, x_2 holds $f_{x_1 + x_2} = f_{x_1} + f_{x_2}$ and there exists x_0 such that f is continuous in x_0. Then f is continuous on the carrier of S.

(37) For every f such that $\text{dom } f$ is compact and f is continuous on $\text{dom } f$ holds $\text{rng } f$ is compact.

(38) Let f be a partial function from the carrier of S to \mathbb{R}. If $\text{dom } f$ is compact and f is continuous on $\text{dom } f$, then $\text{rng } f$ is compact.

(39) If $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y, then $f^\circ Y$ is compact.

(40) Let f be a partial function from the carrier of S to \mathbb{R}. Suppose $\text{dom } f \neq \emptyset$ and $\text{dom } f$ is compact and f is continuous on $\text{dom } f$. Then there exist x_1, x_2 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $f_{x_1} = \text{sup } \text{rng } f$ and $f_{x_2} = \text{inf } \text{rng } f$.

(41) Let given f. Suppose $\text{dom } f \neq \emptyset$ and $\text{dom } f$ is compact and f is continuous on $\text{dom } f$. Then there exist x_1, x_2 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $\|f\|_{x_1} = \text{sup } \text{rng } f$ and $\|f\|_{x_2} = \text{inf } \text{rng } f$.

(42) $\|f\|_{\text{X}} = \|f|_{\text{X}}\$.

(43) Let given f, Y. Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist x_1, x_2 such that $x_1 \in Y$ and $x_2 \in Y$ and $\|f\|_{x_1} = \text{sup } (\|f\|_{\text{Y}})$ and $\|f\|_{x_2} = \text{inf } (\|f\|_{\text{Y}})$.

(44) Let f be a partial function from the carrier of S to \mathbb{R} and given Y. Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist x_1, x_2 such that $x_1 \in Y$ and $x_2 \in Y$ and $f_{x_1} = \text{sup } (f^\circ Y)$.
and $f_{x_2} = \inf(f \circ Y)$.

Let us consider S, T and let us consider X, f. We say that f is Lipschitzian on X if and only if:

(Def. 13) $X \subseteq \text{dom } f$ and there exists r such that $0 < r$ and for all x_1, x_2 such that $x_1 \in X$ and $x_2 \in X$ holds $\|f_{x_1} - f_{x_2}\| \leq r \cdot \|x_1 - x_2\|$.

Let us consider S, let us consider X, and let f be a partial function from the carrier of S to \mathbb{R}. We say that f is Lipschitzian on X if and only if:

(Def. 14) $X \subseteq \text{dom } f$ and there exists r such that $0 < r$ and for all x_1, x_2 such that $x_1 \in X$ and $x_2 \in X$ holds $|f_{x_1} - f_{x_2}| \leq r \cdot \|x_1 - x_2\|$.

The following propositions are true:

(45) If f is Lipschitzian on X and $X_1 \subseteq X$, then f is Lipschitzian on X_1.

(46) If f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1, then $f_1 + f_2$ is Lipschitzian on $X \cap X_1$.

(47) If f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1, then $f_1 - f_2$ is Lipschitzian on $X \cap X_1$.

(48) If f is Lipschitzian on X, then pf is Lipschitzian on X.

(49) If f is Lipschitzian on X, then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.

(50) If $X \subseteq \text{dom } f$ and f is a constant on X, then f is Lipschitzian on X.

(51) id_Y is Lipschitzian on Y.

(52) If f is Lipschitzian on X, then f is continuous on X.

(53) Let f be a partial function from the carrier of S to \mathbb{R}. If f is Lipschitzian on X, then f is continuous on X.

(54) For every f such that there exists a point r of T such that $\text{rng } f = \{r\}$ holds f is continuous on $\text{dom } f$.

(55) If $X \subseteq \text{dom } f$ and f is a constant on X, then f is continuous on X.

(56) For every partial function f from S to T such that for every x_0 such that $x_0 \in \text{dom } f$ holds $f_{x_0} = x_0$ holds f is continuous on $\text{dom } f$.

(57) For every partial function f from S to T such that $f = \text{id}_{\text{dom } f}$ holds f is continuous on $\text{dom } f$.

(58) For every partial function f from S to T such that $Y \subseteq \text{dom } f$ and $f|Y = \text{id}_Y$ holds f is continuous on Y.

(59) Let f be a partial function from S to T, r be a real number, and p be a point of S. Suppose $X \subseteq \text{dom } f$ and for every x_0 such that $x_0 \in X$ holds $f_{x_0} = r \cdot x_0 + p$. Then f is continuous on X.

(60) Let f be a partial function from the carrier of S to \mathbb{R}. If for every x_0 such that $x_0 \in \text{dom } f$ holds $f_{x_0} = \|x_0\|$, then f is continuous on $\text{dom } f$.

(61) Let f be a partial function from the carrier of S to \mathbb{R}. If $X \subseteq \text{dom } f$ and for every x_0 such that $x_0 \in X$ holds $f_{x_0} = \|x_0\|$, then f is continuous on X.
REFERENCES

Received April 6, 2004