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Summary. Solving the partial sum of some often used series.

MML Identifier: SERIES 2.

The articles [2], [1], [4], [3], [5], [7], and [6] provide the notation and terminology

for this paper.

In this paper n is a natural number and s is a sequence of real numbers.

Next we state a number of propositions:

(1) |(−1)n| = 1.

(2) (n+1)3 = n
3 +3 ·n2 +3 ·n+1 and (n+1)4 = n

4 +4 ·n3 +6 ·n2 +4 ·n+1

and (n + 1)5 = n
5 + 5 · n4 + 10 · n3 + 10 · n2 + 5 · n + 1.

(3) If for every n holds s(n) = n, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)
2 .

(4) If for every n holds s(n) = 2 · n, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n · (n + 1).

(5) If for every n holds s(n) = 2 · n + 1, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = (n + 1)2.

(6) If for every n holds s(n) = n · (n + 1), then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)·(n+2)
3 .

(7) If for every n holds s(n) = n · (n + 1) · (n + 2), then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)·(n+2)·(n+3)
4 .

(8) If for every n holds s(n) = n · (n + 1) · (n + 2) · (n + 3), then for every n

holds (
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)·(n+2)·(n+3)·(n+4)
5 .

(9) If for every n holds s(n) = 1
n·(n+1) , then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = 1 − 1
n+1 .
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(10) If for every n holds s(n) = 1
n·(n+1)·(n+2) , then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = 1
4 − 1

2·(n+1)·(n+2) .

(11) If for every n holds s(n) = 1
n·(n+1)·(n+2)·(n+3) , then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = 1
18 − 1

3·(n+1)·(n+2)·(n+3) .

(12) If for every n holds s(n) = n
2
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)·(2·n+1)
6 .

(13) If for every n holds s(n) = (−1)n+1 · n
2
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = (−1)n+1
·n·(n+1)
2 .

(14) If for every n such that n ≥ 1 holds s(n) = (2 · n − 1)2 and s(0) = 0,

then for every n such that n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = n·(4·n2
−1)

3 .

(15) If for every n holds s(n) = n
3
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n
2
·(n+1)2

4 .

(16) If for every n such that n ≥ 1 holds s(n) = (2 ·n−1)3 and s(0) = 0, then

for every n such that n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = n
2 · (2 · n2 − 1).

(17) If for every n holds s(n) = n
4
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)·(2·n+1)·((3·n2+3·n)−1)
30 .

(18) If for every n holds s(n) = (−1)n+1 · n
4
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = (−1)n+1
·n·(n+1)·((n2+n)−1)

2 .

(19) If for every n holds s(n) = n
5
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n
2
·(n+1)2·((2·n2+2·n)−1)

12 .

(20) If for every n holds s(n) = n
6
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)·(2·n+1)·(((3·n4+6·n3)−3·n)+1)
42 .

(21) If for every n holds s(n) = n
7
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n
2
·(n+1)2·(((3·n4+6·n3)−n

2
−4·n)+2)

24 .

(22) If for every n holds s(n) = n · (n + 1)2, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)·(n+2)·(3·n+5)
12 .

(23) If for every n holds s(n) = n · (n + 1)2 · (n + 2), then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n·(n+1)·(n+2)·(n+3)·(2·n+3)
10 .

(24) If for every n holds s(n) = n · (n + 1) · 2n
, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = 2n+1 · ((n2 − n) + 2) − 4.

(25) Suppose that for every n such that n ≥ 2 holds s(n) = 1
(n−1)·(n+1) and

s(0) = 0 and s(1) = 0. Let given n. If n ≥ 2, then (
∑

κ

α=0 s(α))κ∈N(n) =
3
4 − 1

2·n − 1
2·(n+1) .

(26) If for every n such that n ≥ 1 holds s(n) = 1
(2·n−1)·(2·n+1) and s(0) = 0,

then for every n such that n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = n

2·n+1 .

(27) If for every n such that n ≥ 1 holds s(n) = 1
(3·n−2)·(3·n+1) and s(0) = 0,

then for every n such that n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = n

3·n+1 .
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(28) Suppose that for every n such that n ≥ 1 holds s(n) =
1

(2·n−1)·(2·n+1)·(2·n+3) and s(0) = 0. Let given n. If n ≥ 1, then

(
∑

κ

α=0 s(α))κ∈N(n) = 1
12 − 1

4·(2·n+1)·(2·n+3) .

(29) Suppose that for every n such that n ≥ 1 holds s(n) =
1

(3·n−2)·(3·n+1)·(3·n+4) and s(0) = 0. Let given n. If n ≥ 1, then

(
∑

κ

α=0 s(α))κ∈N(n) = 1
24 − 1

6·(3·n+1)·(3·n+4) .

(30) Suppose that for every n such that n ≥ 1 holds s(n) = 2·n−1
n·(n+1)·(n+2) and

s(0) = 0. Let given n. If n ≥ 1, then (
∑

κ

α=0 s(α))κ∈N(n) = (3
4 − 2

n+2) +
1

2·(n+1)·(n+2) .

(31) Suppose that for every n such that n ≥ 1 holds s(n) = n+2
n·(n+1)·(n+3) and

s(0) = 0. Let given n. If n ≥ 1, then (
∑

κ

α=0 s(α))κ∈N(n) = 29
36 − 1

n+3 −
3

2·(n+2)·(n+3) −
4

3·(n+1)·(n+2)·(n+3) .

(32) If for every n holds s(n) = (n+1)·2n

(n+2)·(n+3) , then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = 2n+1

n+3 − 1
2 .

(33) Suppose that for every n such that n ≥ 1 holds s(n) = n
2
·4n

(n+1)·(n+2) and

s(0) = 0. Let given n. If n ≥ 1, then (
∑

κ

α=0 s(α))κ∈N(n) = 2
3 + (n−1)·4n+1

3·(n+2) .

(34) If for every n such that n ≥ 1 holds s(n) = n+2
n·(n+1)·2n

and s(0) = 0, then

for every n such that n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = 1 − 1
(n+1)·2n

.

(35) Suppose that for every n such that n ≥ 1 holds s(n) = 2·n+3
n·(n+1)·3n

and

s(0) = 0. Let given n. If n ≥ 1, then (
∑

κ

α=0 s(α))κ∈N(n) = 1 − 1
(n+1)·3n

.

(36) If for every n holds s(n) = (−1)n
·2n+1

(2n+1+(−1)n+1)·(2n+2+(−1)n+2)
, then for every

n holds (
∑

κ

α=0 s(α))κ∈N(n) = 1
3 + (−1)n+2

3·(2n+2+(−1)n+2)
.

(37) If for every n holds s(n) = n! · n, then for every n such that n ≥ 1 holds

(
∑

κ

α=0 s(α))κ∈N(n) = (n + 1)! − 1.

(38) If for every n holds s(n) = n

(n+1)! , then for every n such that n ≥ 1 holds

(
∑

κ

α=0 s(α))κ∈N(n) = 1 − 1
(n+1)! .

(39) If for every n such that n ≥ 1 holds s(n) = (n2+n)−1
(n+2)! and s(0) = 0, then

for every n such that n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = 1
2 − n+1

(n+2)! .

(40) If for every n such that n ≥ 1 holds s(n) = n·2n

(n+2)! and s(0) = 0, then for

every n such that n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = 1 − 2n+1

(n+2)! .
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