Brouwer Fixed Point Theorem in the General Case

Karol Pąk
Institute of Informatics
University of Białystok
Poland

Summary. In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of \mathbb{E}^n with a non empty interior. This article is based on [15].

MML identifier: BROUWER2, version: 7.11.07 4.160.1126

The notation and terminology used here have been introduced in the following papers: [17], [12], [1], [4], [7], [16], [6], [13], [10], [2], [3], [14], [9], [20], [18], [8], [19], [11], [21], and [5].

1. Preliminaries

For simplicity, we adopt the following convention: n is a natural number, p, q, u, w are points of \mathbb{E}^n_T, S is a subset of \mathbb{E}^n_T, A, B are convex subsets of \mathbb{E}^n_T, and r is a real number.

Next we state several propositions:

1. $(1-r) \cdot p + r \cdot q = p + r \cdot (q - p)$.
2. If $u, w \in \text{halfline}(p, q)$ and $|u - p| = |w - p|$, then $u = w$.
3. Let given S. Suppose $p \in S$ and $p \neq q$ and $S \cap \text{halfline}(p, q)$ is Bounded. Then there exists w such that
 (i) $w \in \text{Fr} S \cap \text{halfline}(p, q)$,
 (ii) for every u such that $u \in S \cap \text{halfline}(p, q)$ holds $|p - u| \leq |p - w|$, and
 (iii) for every r such that $r > 0$ there exists u such that $u \in S \cap \text{halfline}(p, q)$ and $|w - u| < r$.

© 2011 University of Białystok
ISSN 1426-2630(p), 1898-9934(e)
(4) For every A such that A is closed and $p \in \text{Int} A$ and $p \neq q$ and $A \cap \text{halfline}(p, q)$ is Bounded there exists u such that $\text{Fr} A \cap \text{halfline}(p, q) = \{u\}$.

(5) If $r > 0$, then $\text{Fr Ball}(p, r) = \text{Sphere}(p, r)$.

Let n be an element of \mathbb{N}, let A be a Bounded subset of E^n_T, and let p be a point of E^n_T. One can verify that $p + A$ is Bounded.

2. Main Theorems

Next we state four propositions:

(6) Let n be an element of \mathbb{N} and A be a convex subset of E^n_T. Suppose A is compact and non boundary. Then there exists a function h from $E^n_T \setminus A$ into $\text{Tdisk}(0_{E^n_T}, 1)$ such that h is homeomorphism and $h \circ \text{Fr} A = \text{Sphere}(0_{E^n_T}, 1)$.

(7) Let given A, B. Suppose A is compact and non boundary and B is compact and non boundary. Then there exists a function h from $E^n_T \setminus A$ into $E^n_T \setminus B$ such that h is homeomorphism and $h \circ \text{Fr} A = \text{Fr} B$.

(8)1 For every A such that A is compact and non boundary holds every continuous function from $E^n_T \setminus A$ into $E^n_T \setminus A$ has a fixpoint.

(9) Let A be a non empty convex subset of E^n_T. Suppose A is compact and non boundary. Let F_1 be a non empty subspace of $E^n_T \setminus A$. If $\Omega(F_1) = \text{Fr} A$, then F_1 is not a retract of $E^n_T \setminus A$.

References

1Brouwer Fixed Point Theorem

Received December 21, 2010