Representation Theorem for Stacks

Grzegorz Bancerek
Białystop Technical University
Poland

Summary. In the paper the concept of stacks is formalized. As the main result the Theorem of Representation for Stacks is given. Formalization is done according to [13].

MML identifier: STACKS_1, version: 7.11.07 4.160.1126

The papers [6], [15], [14], [2], [4], [7], [16], [8], [9], [10], [5], [1], [17], [11], [19], [21], [20], [3], [18], and [12] provide the terminology and notation for this paper.

1. INTRODUCTIONS

In this paper \(i \) is a natural number and \(x \) is a set.

Let \(A \) be a set and let \(s_1, s_2 \) be finite sequences of elements of \(A \). Then \(s_1 \circ s_2 \) is an element of \(A^* \).

Let \(A \) be a set, let \(i \) be a natural number, and let \(s \) be a finite sequence of elements of \(A \). Then \(s|_i \) is an element of \(A^* \).

The following two propositions are true:

1. \(\emptyset|_i = \emptyset \).
2. Let \(D \) be a non empty set and \(s \) be a finite sequence of elements of \(D \). Suppose \(s \neq \emptyset \). Then there exists a finite sequence \(w \) of elements of \(D \) and there exists an element \(n \) of \(D \) such that \(s = \langle n \rangle \circ w \).

The scheme \(\text{IndSeqD} \) deals with a non empty set \(A \) and a unary predicate \(P \), and states that:

For every finite sequence \(p \) of elements of \(A \) holds \(P[p] \) provided the following conditions are met:

- \(P[\varepsilon_A] \), and
• For every finite sequence \(p \) of elements of \(\mathcal{A} \) and for every element
\(x \) of \(\mathcal{A} \) such that \(\mathcal{P}[p] \) holds \(\mathcal{P}[\langle x \rangle] \).

Let \(C, D \) be non empty sets and let \(R \) be a binary relation. A function from
\(C \times D \) into \(D \) is said to be a binary operation of \(C \) and \(D \) being congruence
w.r.t. \(R \) if:

(Def. 1) For every element \(x \) of \(C \) and for all elements \(y_1, y_2 \) of \(D \) such that
\(\langle \langle y_1, y_2 \rangle \rangle \in R \) holds
\(\langle \langle \text{it}(x, y_1), \text{it}(x, y_2) \rangle \rangle \in R \).

The scheme LambdaD2 deals with non empty sets \(\mathcal{A}, \mathcal{B}, \mathcal{C} \) and a binary
functor \(\mathcal{F} \) yielding an element of \(\mathcal{C} \), and states that:

There exists a function \(M \) from \(\mathcal{A} \times \mathcal{B} \) into \(\mathcal{C} \) such that for every
element \(i \) of \(\mathcal{A} \) and for every element \(j \) of \(\mathcal{B} \) holds
\(M(i, j) = \mathcal{F}(i, j) \) for all values of the parameters.

Let \(C, D \) be non empty sets, let \(R \) be an equivalence relation of \(D \), and let
\(b \) be a function from \(C \times D \) into \(D \). Let us assume that \(b \) is a binary operation of
\(C \) and \(D \) being congruence w.r.t. \(R \). The functor \(b/_{\mathcal{R}} \) yielding a function from
\(C \times \text{Classes } \mathcal{R} \) into \(\text{Classes } \mathcal{R} \) is defined as follows:

(Def. 2) For all sets \(x, y, y_1 \) such that \(x \in C \) and \(y \in \text{Classes } \mathcal{R} \) and \(y_1 \in y \) holds
\(b/_{\mathcal{R}}(x, y) = [b(x, y_1)]_{\mathcal{R}} \).

Let \(A, B \) be non empty sets, let \(C \) be a subset of \(A \), let \(D \) be a subset of \(B \),
let \(f \) be a function from \(A \) into \(B \), and let \(g \) be a function from \(C \) into \(D \). Then
\(f + g \) is a function from \(A \) into \(B \).

2. Stack Algebra

We introduce stack systems which are extensions of 2-sorted and are systems
\(\langle \text{a carrier, a carrier'}, empty stacks, a push function, a pop function, a top function } \rangle \),
where the carrier is a set, the carrier’ is a set, the empty stacks constitute
subsets of the carrier’, the push function is a function from the carrier\(\times \)the
carrier’ into the carrier’, the pop function is a function from the carrier’ into the
carrier’, and the top function is a function from the carrier’ into the carrier.

Let \(a_1 \) be a non empty set, let \(a_2 \) be a set, let \(a_3 \) be a subset of \(a_2 \), let \(a_4 \) be
a function from \(a_1 \times a_2 \) into \(a_2 \), let \(a_5 \) be a function from \(a_2 \) into \(a_2 \), and let \(a_6 \)
be a function from \(a_2 \) into \(a_1 \). Observe that stack system\(\langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \) is
non empty.

Let \(a_1 \) be a set, let \(a_2 \) be a non empty set, let \(a_3 \) be a subset of \(a_2 \), let \(a_4 \) be
a function from \(a_1 \times a_2 \) into \(a_2 \), let \(a_5 \) be a function from \(a_2 \) into \(a_2 \), and let \(a_6 \) be a
function from \(a_2 \) into \(a_1 \). One can verify that stack system\(\langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \)
is non void.

Let us note that there exists a stack system which is non empty, non void,
and strict.
Let X be a stack system. A stack of X is an element of the carrier’ of X.

Let X be a non empty non void stack system and let s be a stack of X. The predicate $\text{empty}(s)$ is defined by:

(Def. 3) $s \in \text{the empty stacks of } X$.

The functor $\text{pop } s$ yields a stack of X and is defined by:

(Def. 4) $\text{pop } s = (\text{the pop function of } X)(s)$.

The functor $\text{top } s$ yields an element of X and is defined by:

(Def. 5) $\text{top } s = (\text{the top function of } X)(s)$.

Let e be an element of X. The functor $\text{push}(e, s)$ yields a stack of X and is defined by:

(Def. 6) $\text{push}(e, s) = (\text{the push function of } X)(e, s)$.

Let A be a non empty set. Standard stack system over A yielding a non empty non void strict stack system is defined by the conditions (Def. 7).

(Def. 7)(i) The carrier of standard stack system over $A = A$,

(ii) the carrier’ of standard stack system over $A = A^*$, and

(iii) for every stack s of standard stack system over A holds $\text{empty}(s)$

if s is empty and for every finite sequence g such that $g = s$ holds if
not $\text{empty}(s)$, then $\text{top } s = g(1)$ and $\text{pop } s = g\mid_{1}$ and if $\text{empty}(s)$, then
$\text{top } s = \text{the element of standard stack system over } A$ and $\text{pop } s = \emptyset$ and for
every element e of standard stack system over A holds $\text{push}(e, s) = \langle e \rangle \upharpoonright g$.

In the sequel A denotes a non empty set, c denotes an element of standard stack system over A, and m denotes a stack of standard stack system over A.

Let us consider A. Note that every stack of standard stack system over A is relation-like and function-like.

Let us consider A. Observe that every stack of standard stack system over A is finite sequence-like.

We adopt the following convention: X denotes a non empty non void stack system, s, s_1 denote stacks of X, and e, e_1, e_2 denote elements of X.

Let us consider X. We say that X is pop-finite if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let f be a function from \mathbb{N} into the carrier’ of X. Then there exists a
natural number i and there exists s such that $f(i) = s$ and if not $\text{empty}(s)$,
then $f(i + 1) \neq \text{pop } s$.

We say that X is push-pop if and only if:

(Def. 9) If not $\text{empty}(s)$, then $s = \text{push}(\text{top } s, \text{pop } s)$.

We say that X is top-push if and only if:

(Def. 10) $e = \text{top } \text{push}(e, s)$.

We say that X is pop-push if and only if:

(Def. 11) $s = \text{pop } \text{push}(e, s)$.
We say that X is push-non-empty if and only if:

(Def. 12) not empty(push(e, s)).

Let A be a non empty set. One can verify the following observations:

* standard stack system over A is pop-finite,
* standard stack system over A is push-pop,
* standard stack system over A is top-push,
* standard stack system over A is pop-push, and
* standard stack system over A is push-non-empty.

Let us observe that there exists a non empty non void stack system which is pop-finite, push-pop, top-push, pop-push, push-non-empty, and strict.

A stack algebra is a pop-finite push-pop top-push pop-push push-non-empty non empty non void stack system.

Next we state the proposition

(3) For every non empty non void stack system X such that X is pop-finite there exists a stack s of X such that empty(s).

Let X be a pop-finite non empty non void stack system. Note that the empty stacks of X is non empty.

We now state two propositions:

(4) If X is top-push and pop-push and push(e_1, s_1) = push(e_2, s_2), then $e_1 = e_2$ and $s_1 = s_2$.

(5) If X is push-pop and not empty(s_1) and not empty(s_2) and pop $s_1 = pop s_2$ and top $s_1 = top s_2$, then $s_1 = s_2$.

3. SCHEMES OF INDUCTION

Now we present three schemes. The scheme $INDsch$ deals with a stack algebra A, a stack B of A, and a unary predicate P, and states that:

$P[B]$

provided the following conditions are satisfied:

- For every stack s of A such that empty(s) holds $P[s]$, and
- For every stack s of A and for every element e of A such that $P[s]$ holds $P[push(e, s)]$.

The scheme $EXsch$ deals with a stack algebra A, a stack B of A, a non empty set C, an element D of C, and a binary functor F yielding an element of C, and states that:

There exists an element a of C and there exists a function F from the carrier’ of A into C such that

(i) $a = F(B)$,
(ii) for every stack s_1 of A such that empty(s_1) holds $F(s_1) = D$, and
(iii) for every stack s_1 of A and for every element e of A holds
$F(push(e, s_1)) = F(e, F(s_1))$
for all values of the parameters.

The scheme UNIQsch deals with a stack algebra A, a stack B of A, a non
empty set C, an element D of C, and a binary functor F yielding an element of
C, and states that:

Let a_1, a_2 be elements of C. Suppose that

(i) there exists a function F from the carrier' of A into C such that
$F(s_1) = D$ and for every stack s_1 of A and for every element e of A holds
$F(push(e, s_1)) = F(e, F(s_1))$, and

(ii) there exists a function F from the carrier' of A into C such that
$F(s_1) = D$ and for every stack s_1 of A and for every element e of A holds
$F(push(e, s_1)) = F(e, F(s_1))$.

Then $a_1 = a_2$
for all values of the parameters.

4. Stack Congruence

We adopt the following rules: X is a stack algebra, s, s_1, s_2, s_3 are stacks of
X, and e, e_1, e_2, e_3 are elements of X.

Let us consider X, s. The functor $|s|$ yielding an element of
(the carrier of X)* is defined by the condition (Def. 13).

(Def. 13) There exists a function F from the carrier' of X into (the carrier of X)*
such that $|s| = F(s)$ and for every s_1 such that empty(s_1) holds $F(s_1) = \emptyset$
and for all s_1, e holds $F(push(e, s_1)) = \langle e \rangle \triangleleft F(s_1)$.

Next we state several propositions:

(6) If empty(s), then $|s| = \emptyset$.
(7) If not empty(s), then $|s| = (top s) \triangleleft |pop s|$.
(8) If not empty(s), then $|pop s| = |s|_{11}$.
(9) $|push(e, s)| = \langle e \rangle \triangleleft |s|$.
(10) If not empty(s), then top $s = |s|(1)$.
(11) If $|s| = \emptyset$, then empty(s).
(12) For every stack s of standard stack system over A holds $|s| = s$.
(13) For every element x of (the carrier of X)* there exists s such that $|s| = x$.

Let us consider X, s_1, s_2. The predicate $s_1 =_G s_2$ is defined as follows:

(Def. 14) $|s_1| = |s_2|$.

Let us notice that the predicate $s_1 =_G s_2$ is reflexive and symmetric.

The following propositions are true:
(14) If $s_1 = G s_2$ and $s_2 = G s_3$, then $s_1 = G s_3$.
(15) If $s_1 = G s_2$ and empty(s_1), then empty(s_2).
(16) If empty(s_1) and empty(s_2), then $s_1 = G s_2$.
(17) If $s_1 = G s_2$, then push(e, s_1) = G push(e, s_2).
(18) If $s_1 = G s_2$ and not empty(s_1), then pop $s_1 = G$ pop s_2.
(19) If $s_1 = G s_2$ and not empty(s_1), then top $s_1 = $ top s_2.

Let us consider X. We say that X is proper for identity if and only if:

(Def. 15) For all s_1, s_2 such that $s_1 = G s_2$ holds $s_1 = s_2$.

Let us consider A. Observe that standard stack system over A is proper for identity.

Let us consider X. The functor $==_X$ yields a binary relation on the carrier’ of X and is defined as follows:

(Def. 16) $\langle s_1, s_2 \rangle \in ==_X$ iff $s_1 = G s_2$.

Let us consider X. Observe that $==_X$ is total, symmetric, and transitive.

One can prove the following proposition

(20) If empty(s), then $[s] ==_X = $ the empty stacks of X.

Let us consider X, s. The functor coset s yielding a subset of the carrier’ of X is defined by the conditions (Def. 17).

(Def. 17)(i) $s \in$ coset s,
(ii) for all e, s_1 such that $s_1 \in$ coset s holds push(e, s_1) \in coset s and if not empty(s_1), then pop $s_1 \in$ coset s, and
(iii) for every subset A of the carrier’ of X such that $s \in A$ and for all e, s_1 such that $s_1 \in A$ holds push(e, s_1) $\in A$ and if not empty(s_1), then pop $s_1 \in A$ holds coset $s \subseteq A$.

Next we state three propositions:

(21) If push(e, s) \in coset s_1, then $s \in$ coset s_1 and if not empty(s) and pop $s \in$ coset s_1, then $s \in$ coset s_1.
(22) $s \in$ coset push(e, s) and if not empty(s), then $s \in$ coset pop s.
(23) There exists s_1 such that empty(s_1) and $s_1 \in$ coset s.

Let us consider A and let R be a binary relation on A. Note that there exists a reduction sequence w.r.t. R which is A-valued.

Let us consider X. The construction reduction X yielding a binary relation on the carrier’ of X is defined as follows:

(Def. 18) $\langle s_1, s_2 \rangle \in$ the construction reduction X iff not empty(s_1) and $s_2 = \ $ pop s_1 or there exists e such that $s_2 = $ push(e, s_1).

Next we state the proposition

(24) Let R be a binary relation on A and t be a reduction sequence w.r.t. R. Then $t(1) \in A$ if and only if t is A-valued.
The scheme *PathIND* deals with a non-empty set A, elements B, C of A, a binary relation D on A, and a unary predicate P, and states that:

$$P[C]$$

provided the parameters meet the following conditions:

- $P[B]$,
- D reduces B to C, and
- For all elements x, y of A such that D reduces B to x and $(x, y) \in D$ and $P[x]$ holds $P[y]$.

One can prove the following propositions:

(25) For every reduction sequence t w.r.t. the construction reduction X such that $s = t(1)$ holds $\text{rng } t \subseteq \text{coset } s$.

(26) $\text{coset } s = \{s_1 : \text{the construction reduction } X \text{ reduces } s \text{ to } s_1\}$.

Let us consider X, s. The functor core s yields a stack of X and is defined by the conditions (Def. 19).

(Def. 19)(i) empty(core s), and

(ii) there exists a the carrier’ of X-valued reduction sequence t w.r.t. the construction reduction X such that $t(1) = s$ and $t(\text{len } t) = \text{core } s$ and for every i such that $1 \leq i < \text{len } t$ holds not empty(t_i) and $t_i+1 = \text{pop}(t_i)$.

The following propositions are true:

(27) If empty(s), then core $s = s$.

(28) core push(e, s) = core s.

(29) If not empty(s), then core pop $s = \text{core } s$.

(30) core $s \in \text{coset } s$.

(31) For every element x of (the carrier of X)* there exists s_1 such that $|s_1| = x$ and $s_1 \in \text{coset } s$.

(32) If $s_1 \in \text{coset } s$, then core $s_1 = \text{core } s$.

(33) If $s_1, s_2 \in \text{coset } s$ and $|s_1| = |s_2|$, then $s_1 = s_2$.

(34) There exists s such that coset $s_1 \cap [s_2]_{== X} = \{s\}$.

5. Quotient Stack System

Let us consider X. The functor $X_{/=}$ yields a strict stack system and is defined by the conditions (Def. 20).

(Def. 20)(i) The carrier of $X_{/=}$ = the carrier of X,

(ii) the carrier’ of $X_{/=}$ = Classes $== X$,

(iii) the empty stacks of $X_{/=}$ = \{the empty stacks of X\},

(iv) the push function of $X_{/=}$ = (the push function of X)$_{/= X}$,

(v) the pop function of $X_{/=}$ =

\[((\text{the pop function of } X) + \text{id}_{\text{the empty stacks of } X})_{/= X}, \] and
(vi) for every choice function f of Classes $==X$ holds the top function of $X/==$ = (the top function of X) $\cdot f + \cdot (the$ empty stacks of X, the element of the carrier of X).

Let us consider X. One can verify that $X/==$ is non empty and non void.

The following propositions are true:

(35) For every stack S of $X/==$ there exists s such that $S = [s]=_{==X}$.
(36) $[s]=_{==X}$ is a stack of $X/==$.
(37) For every stack S of $X/==$ such that $S = [s]=_{==X}$ holds empty(s) iff empty(S).
(38) For every stack S of $X/==$ holds empty(S) iff S = the empty stacks of X.
(39) For every stack S of $X/==$ and for every element E of $X/==$ such that $S = [s]=_{==X}$ and $E = e$ holds push(e,s) \in push(E,S) and $[\text{push}(e,s)]=_{==X} = \text{push}(E,S)$.
(40) For every stack S of $X/==$ such that $S = [s]=_{==X}$ and not empty(s) holds pop $s \in$ pop S and $[\text{pop}(s)]=_{==X} = \text{pop}(S)$.
(41) For every stack S of $X/==$ such that $S = [s]=_{==X}$ and not empty(s) holds top $S = \text{top}(s)$.

Let us consider X. One can verify the following observations:

- $X/==$ is pop-finite,
- $X/==$ is push-pop,
- $X/==$ is top-push,
- $X/==$ is pop-push, and
- $X/==$ is push-non-empty.

Next we state the proposition

(42) For every stack S of $X/==$ such that $S = [s]=_{==X}$ holds $|S| = |s|.$

Let us consider X. Note that $X/==$ is proper for identity.

Let us note that there exists a stack algebra which is proper for identity.

6. REPRESENTATION THEOREM FOR STACKS

Let X_1, X_2 be stack algebras and let F, G be functions. We say that F and G form isomorphism between X_1 and X_2 if and only if the conditions (Def. 21) are satisfied.

(Def. 21) $\text{dom } F = \text{the carrier of } X_1$ and $\text{rng } F = \text{the carrier of } X_2$ and F is one-to-one and $\text{dom } G = \text{the carrier’ of } X_1$ and $\text{rng } G = \text{the carrier’ of } X_2$ and G is one-to-one and for every stack s_1 of X_1 and for every stack s_2 of X_2 such that $s_2 = G(s_1)$ holds empty(s_1) iff empty(s_2) and if not empty(s_1), then $\text{pop } s_2 = G(\text{pop } s_1)$ and $\text{top } s_2 = F(\text{top } s_1)$ and for every element
\(e_1 \) of \(X_1 \) and for every element \(e_2 \) of \(X_2 \) such that \(e_2 = F(e_1) \) holds \(\text{push}(e_2, s_2) = G(\text{push}(e_1, s_1)) \).

We use the following convention: \(X_1, X_2, X_3 \) are stack algebras and \(F, F_1, F_2, G, G_1, G_2 \) are functions.

The following propositions are true:

(43) \(\text{id} \) the carrier of \(X \) and \(\text{id} \) the carrier' of \(X \) form isomorphism between \(X \) and \(X \).

(44) If \(F \) and \(G \) form isomorphism between \(X_1 \) and \(X_2 \), then \(F^{-1} \) and \(G^{-1} \) form isomorphism between \(X_2 \) and \(X_1 \).

(45) Suppose \(F_1 \) and \(G_1 \) form isomorphism between \(X_1 \) and \(X_2 \) and \(F_2 \) and \(G_2 \) form isomorphism between \(X_2 \) and \(X_3 \). Then \(F_2 \cdot F_1 \) and \(G_2 \cdot G_1 \) form isomorphism between \(X_1 \) and \(X_3 \).

(46) Suppose \(F \) and \(G \) form isomorphism between \(X_1 \) and \(X_2 \). Let \(s_1 \) be a stack of \(X_1 \) and \(s_2 \) be a stack of \(X_2 \). If \(s_2 = G(s_1) \), then \(|s_2| = F \cdot |s_1| \).

Let \(X_1, X_2 \) be stack algebras. We say that \(X_1 \) and \(X_2 \) are isomorphic if and only if:

(Def. 22) There exist functions \(F, G \) such that \(F \) and \(G \) form isomorphism between \(X_1 \) and \(X_2 \).

Let us notice that the predicate \(X_1 \) and \(X_2 \) are isomorphic is reflexive and symmetric.

We now state four propositions:

(47) If \(X_1 \) and \(X_2 \) are isomorphic and \(X_2 \) and \(X_3 \) are isomorphic, then \(X_1 \) and \(X_3 \) are isomorphic.

(48) If \(X_1 \) and \(X_2 \) are isomorphic and \(X_1 \) is proper for identity, then \(X_2 \) is proper for identity.

(49) Let \(X \) be a proper for identity stack algebra. Then there exists \(G \) such that

(i) for every stack \(s \) of \(X \) holds \(G(s) = |s| \), and

(ii) \(\text{id} \) the carrier of \(X \) and \(G \) form isomorphism between \(X \) and standard stack system over the carrier of \(X \).

(50) Let \(X \) be a proper for identity stack algebra. Then \(X \) and standard stack system over the carrier of \(X \) are isomorphic.

REFERENCES

Received February 22, 2011