The Gödel Completeness Theorem for Uncountable Languages\footnote{This article is part of the first author’s Bachelor thesis under the supervision of the second author.}

Julian J. Schlöder
Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Endenicher Allee 60
D-53113 Bonn, Germany

Peter Koepke
Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Endenicher Allee 60
D-53113 Bonn, Germany

Summary. This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.

MML identifier: GOEDCPUC, version: 7.14.01 4.183.1153

The notation and terminology used here have been introduced in the following papers: [8], [1], [3], [10], [19], [5], [14], [11], [12], [7], [6], [22], [2], [4], [17], [18], [23], [20], [9], [21], and [13].
1. Formula-Constant Extension

For simplicity, we use the following convention: A_1 denotes an alphabet, P_1 denotes a consistent subset of CQC-WFF A_1, P_2 denotes a subset of CQC-WFF A_1, p, q, r, s denote elements of CQC-WFF A_1, A denotes a nonempty set, J denotes an interpretation of A_1 and A, v denotes an element of the valuations in A_1 and A, n, k denote elements of \mathbb{N}, x denotes a bound variable of A_1, and A_2 denotes an A_1-expanding alphabet.

Let us consider A_1 and let P_1 be a subset of CQC-WFF A_1. We say that P_1 is satisfiable if and only if:

(Def. 1) There exist A, J, v such that $J \models v P_1$.

In the sequel J_2 is an interpretation of A_2 and A and J_1 is an interpretation of A_1 and A.

One can prove the following proposition

(1) There exists a set s such that for all p, x holds $\langle s, \langle x, p \rangle \rangle \notin \text{Symb} A_1$.

Let us consider A_1. A set is called a free symbol of A_1 if:

(Def. 2) For all p, x holds $\langle s, \langle x, p \rangle \rangle \notin \text{Symb} A_1$.

Let us consider A_1. The functor $\text{FCEx} A_1$ yielding an A_1-expanding alphabet is defined as follows:

(Def. 3) $\text{FCEx} A_1 = \mathbb{N} \times (\text{Symb} A_1 \cup \{ \text{the free symbol of } A_1, \langle x, p \rangle \})$.

Let us consider A_1, p, x. The example of p and x yielding a bound variable of $\text{FCEx} A_1$ is defined as follows:

(Def. 4) The example of p and $x = \langle 4, \{ \text{the free symbol of } A_1, \langle x, p \rangle \} \rangle$.

Let us consider A_1, p, x. The example formula of p and x yielding an element of CQC-WFF $\text{FCEx} A_1$ is defined by:

(Def. 5) The example formula of p and $x = \neg F(\text{FCEx} A_1 - \text{Cast} x) (\text{FCEx} A_1 - \text{Cast} p) \lor (\text{FCEx} A_1 - \text{Cast} p) (\text{FCEx} A_1 - \text{Cast} x, \text{the example of } p \text{ and } x)$.

Let us consider A_1. The example formulae of A_1 yields a subset of CQC-WFF $\text{FCEx} A_1$ and is defined as follows:

(Def. 6) The example formulae of $A_1 = \{ \text{the example formula of } p \text{ and } x \}$.

One can prove the following proposition

(2) Let k be an element of \mathbb{N}. Suppose $k > 0$. Then there exists a k-element finite sequence F such that

(i) for every natural number n such that $n \leq k$ and $1 \leq n$ holds $F(n)$ is an alphabet,

(ii) $F(1) = A_1$, and

(iii) for every natural number n such that $n < k$ and $1 \leq n$ there exists an alphabet A_2 such that $F(n) = A_2$ and $F(n + 1) = \text{FCEx} A_2$.
Let us consider A_1 and let k be a natural number. A $k + 1$-element finite sequence is said to be a FCEx-sequence of A_1 and k if it satisfies the conditions (Def. 7).

(Def. 7)(i) For every natural number n such that $n \leq k + 1$ and $1 \leq n$ holds $it(n)$ is an alphabet,

(ii) $it(1) = A_1$, and

(iii) for every natural number n such that $n < k + 1$ and $1 \leq n$ there exists an alphabet A_2 such that $it(n) = A_2$ and $it(n + 1) = \text{FCEx } A_2$.

The following propositions are true:

(3) For every natural number k and for every FCEx-sequence S of A_1 and k holds $S(k + 1)$ is an alphabet.

(4) For every natural number k and for every FCEx-sequence S of A_1 and k holds $S(k + 1)$ is an A_1-expanding alphabet.

Let us consider A_1 and let k be a natural number. The k-th FCEx of A_1 yielding an A_1-expanding alphabet is defined as follows:

(Def. 8) The k-th FCEx of $A_1 = \text{the FCEx-sequence of } A_1 \text{ and } k(k + 1)$.

Let us consider A_1, P_1. A function is called an EF-sequence of A_1 and P_1 if it satisfies the conditions (Def. 9).

(Def. 9)(i) $\text{dom } it = \mathbb{N}$,

(ii) $it(0) = P_1$, and

(iii) for every natural number n holds $it(n + 1) = it(n) \cup \text{the example formulae of the } n\text{-th FCEx of } A_1$.

Next we state two propositions:

(5) For every natural number k holds $\text{FCEx(} \text{the } k\text{-th FCEx of } A_1) = \text{the } (k + 1)\text{-th FCEx of } A_1$.

(6) For all k, n such that $n \leq k$ holds the n-th FCEx of $A_1 \subseteq \text{the } k\text{-th FCEx of } A_1$.

Let us consider A_1, P_1 and let k be a natural number. The k-th EF of A_1 and P_1 yields a subset of CQC-WFF (the k-th FCEx of A_1) and is defined as follows:

(Def. 10) The k-th EF of A_1 and $P_1 = \text{the EF-sequence of } A_1 \text{ and } P_1(k)$.

One can prove the following propositions:

(7) For all r, s, x holds $A_2\text{-Cast}(r \lor s) = A_2\text{-Cast } r \lor A_2\text{-Cast } s$ and $A_2\text{-Cast } \exists x r = \exists A_2\text{-Cast } x (A_2\text{-Cast } r)$.

(8) For all p, q, A, J, v holds $J \models_v p \text{ or } J \models_v q$ iff $J \models_v p \lor q$.

(9) $P_1 \cup \text{the example formulae of } A_1$ is a consistent subset of CQC-WFF FCEx A_1.
2. The Completeness Theorem

We now state four propositions:

(10) There exists an A_1-expanding alphabet A_2 and there exists a consistent subset P_2 of CQC-WFF A_2 such that $P_1 \subseteq P_2$ and P_2 has examples.

(11) $P_1 \cup \{p\}$ is consistent or $P_1 \cup \{\neg p\}$ is consistent.

(12) Let P_2 be a consistent subset of CQC-WFF A_1. Then there exists a consistent subset T_1 of CQC-WFF A_1 such that T_1 is negation faithful and $P_2 \subseteq T_1$.

(13) For every consistent subset T_1 of CQC-WFF A_1 such that $P_1 \subseteq T_1$ and P_1 has examples holds T_1 has examples.

Let us consider A_1. One can check that every subset of CQC-WFF A_1 which is consistent is also satisfiable.

We now state the proposition

(14)² If $P_2 \models p$, then $P_2 \vdash p$.

REFERENCES

²Completeness Theorem.

Received May 7, 2012