Basic Properties of Primitive Root and Order Function

Na Ma
Qingdao University of Science and Technology
China

Xiquan Liang
Qingdao University of Science and Technology
China

Summary. In this paper we defined the reduced residue system and proved its fundamental properties. Then we proved the basic properties of the order function. Finally, we defined the primitive root and proved its fundamental properties. Our work is based on [12], [8], and [11].

MML identifier: INT_8, version: 8.0.01 5.3.1162

The notation and terminology used here have been introduced in the following papers: [1], [18], [9], [4], [7], [5], [20], [16], [17], [19], [14], [2], [15], [3], [10], [13], [22], [23], [21], and [6].

For simplicity, we adopt the following convention: i, s, t, m, n, k are natural numbers, d, e are elements of \mathbb{N}, f_1 is a finite sequence of elements of \mathbb{N}, and x is an integer.

Let m be a natural number. The functor RelPrimes_m yields a set and is defined by:

(Def. 1) $\text{RelPrimes}_m = \{k \in \mathbb{N} : m \text{ and } k \text{ are relative prime } \land 1 \leq k \land k \leq m\}$.

We now state the proposition

(1) $\text{RelPrimes}_m \subseteq \text{Seg}_m$.

Let m be a natural number. Then RelPrimes_m is a subset of \mathbb{N}.

Let m be a natural number. Observe that RelPrimes_m is finite.

Next we state several propositions:

(2) If $1 \leq m$, then $\text{RelPrimes}_m \neq \emptyset$.

1Authors thank Andrzej Trybulec and Yatsuka Nakamura for the help during writing this article.
(3) For every subset X of \mathbb{Z} and for every integer a holds $x \in a \circ X$ iff there exists an integer y such that $y \in X$ and $x = a \cdot y$.

(4) There exists a natural number r such that $(1 + s)^t = 1 + t \cdot s + \left(\frac{t}{2}\right) \cdot s^2 + r \cdot s^3$.

(5) If $n > 1$ and i and n are relative prime, then $i \neq 0$.

(6) For all integers a, b and for every natural number m such that $a \cdot b \mod m = 1$ and $a \mod m = 1$ holds $b \mod m = 1$.

(7) For every odd integer x and for every natural number k such that $k \geq 3$ holds $x^{2k-2} \mod 2^k = 1$.

In the sequel p is a prime number.

We now state a number of propositions:

(8) If $m \geq 1$, then $\text{Euler } p^m = p^m - p^{m-1}$.

(9) If $n > 1$ and i and n are relative prime, then $\text{order}(i, n) | \text{Euler } n$.

(10) For all i, n such that $n > 1$ and i and n are relative prime holds $i^* \equiv i^t \pmod{n}$ iff $s \equiv t \pmod{\text{order}(i, n)}$.

(11) For all i, n such that $n > 1$ and i and n are relative prime holds $i^* \equiv 1 \pmod{\text{order}(i, n)} | s$.

(12) Suppose $n > 1$ and i and n are relative prime and $\text{len } f_1 = \text{order}(i, n)$ and for every d such that $d \in \text{dom } f_1$ holds $f_1(d) = i^{d-1}$. Let given d, e. If d, $e \in \text{dom } f_1$ and $d \neq e$, then $f_1(d) \neq f_1(e) \pmod{\text{order}(i, n)}$.

(13) Suppose $n > 1$ and i and n are relative prime and $\text{len } f_1 = \text{order}(i, n)$ and for every d such that $d \in \text{dom } f_1$ holds $f_1(d) = i^{d-1}$. Let given d. If $d \in \text{dom } f_1$, then $f_1(d)^{\text{order}(i, n)} \mod n = 1$.

(14) If $n > 1$ and i and n are relative prime, then $\text{order}(i^*, n) = \text{order}(i, n) \text{ div } (\text{order}(i, n) \text{ gcd } s)$.

(15) Let given i, n. Suppose $n > 1$ and i and n are relative prime. Then $\text{order}(i, n)$ and s are relative prime if and only if $\text{order}(i^*, n) = \text{order}(i, n)$.

(16) If $n > 1$ and i and n are relative prime and $\text{order}(i, n) = s \cdot t$, then $\text{order}(i^*, n) = t$.

(17) Suppose that

(i) $n > 1$,

(ii) s and n are relative prime,

(iii) t and n are relative prime, and

(iv) $\text{order}(s, n)$ and $\text{order}(t, n)$ are relative prime.

Then $\text{order}(s \cdot t, n) = \text{order}(s, n) \cdot \text{order}(t, n)$.

In the sequel f_2, f_3 are finite sequences of elements of \mathbb{N}.

We now state four propositions:

(18) Suppose $n > 1$ and s and n are relative prime and t and n are relative prime and $\text{order}(s \cdot t, n) = \text{order}(s, n) \cdot \text{order}(t, n)$. Then $\text{order}(s, n)$ and $\text{order}(t, n)$ are relative prime.
(19) If \(n > 1 \) and \(s \) and \(n \) are relative prime and \(s \cdot t \mod n = 1 \), then \(\text{order}(s, n) = \text{order}(t, n) \).

(20) If \(n > 1 \) and \(m > 1 \) and \(i \) and \(n \) are relative prime and \(m \mid n \), then \(\text{order}(i, m) \mid \text{order}(i, n) \).

(21) If \(n > 1 \) and \(m > 1 \) and \(i \) and \(m \cdot n \) are relative prime, then \(\text{order}(i, m) \cdot \text{order}(i, n) = \text{lcm}(\text{order}(i, m), \text{order}(i, n)) \).

Let \(X \) be a set and let \(m \) be a natural number. We say that \(X \) is primitive root of \(m \) if and only if the condition (Def. 2) is satisfied.

(Def. 2) There exists a finite sequence \(f_2 \) of elements of \(\mathbb{Z} \) such that \(\text{len } f_2 = \text{len } Sgm \text{ RelPrimes } m \) and for every \(d \) such that \(d \in \text{dom } f_2 \) holds \(f_2(d) \in [(Sgm \text{ RelPrimes } m)(d)]_{\text{Cong } m} \) and \(X = \text{rng } f_2 \).

We now state several propositions:

(22) \(\text{RelPrimes } m \) is primitive root of \(m \).

(23) If \(d, e \in \text{dom } Sgm \text{ RelPrimes } m \) and \(d \neq e \), then \((Sgm \text{ RelPrimes } m)(d) \neq (Sgm \text{ RelPrimes } m)(e) \mod m \).

(24) Let \(X \) be a finite set. Suppose \(X \) is primitive root of \(m \). Then

(i) \(\overline{X} = \text{Euler } m \),

(ii) for all integers \(x, y \) such that \(x, y \in X \) and \(x \neq y \) holds \(x \neq y \mod m \), and

(iii) for every integer \(x \) such that \(x \in X \) holds \(x \) and \(m \) are relative prime.

(25) \(\emptyset \) is primitive root of \(m \) if and only if \(m = 0 \).

(26) Let \(X \) be a finite subset of \(\mathbb{Z} \). Suppose that

(i) \(1 < m \),

(ii) \(\overline{X} = \text{Euler } m \),

(iii) for all integers \(x, y \) such that \(x, y \in X \) and \(x \neq y \) holds \(x \neq y \mod m \), and

(iv) for every integer \(x \) such that \(x \in X \) holds \(x \) and \(m \) are relative prime.

Then \(X \) is primitive root of \(m \).

(27) Let \(X \) be a finite subset of \(\mathbb{Z} \) and \(a \) be an integer. Suppose \(m > 1 \) and \(a \) and \(m \) are relative prime and \(X \) is primitive root of \(m \). Then \(a \circ X \) is primitive root of \(m \).

Let us consider \(i, n \). We say that \(i \) is RRS of \(n \) if and only if:

(Def. 3) \(\text{order}(i, n) = \text{Euler } n \).

Next we state several propositions:

(28) Suppose \(n > 1 \) and \(i \) and \(n \) are relative prime. Then \(i \) is RRS of \(n \) if and only if for every \(f_1 \) such that \(\text{len } f_1 = \text{Euler } n \) and for every natural number \(d \) such that \(d \in \text{dom } f_1 \) holds \(f_1(d) = i^d \) holds \(\text{rng } f_1 \) is primitive root of \(n \).
(29) Suppose \(p > 2 \) and \(i \) and \(p \) are relative prime and \(i \) is RRS of \(p \). Let \(k \) be a natural number. Then \(i^{2k+1} \) is not quadratic residue mod \(p \).

(30) Let \(k \) be a natural number. Suppose \(k \geq 3 \). Let given \(m \). If \(m \) and \(2^k \) are relative prime, then \(m \) is not RRS of \(2^k \).

(31) If \(p > 2 \) and \(k \geq 2 \) and \(i \) and \(p \) are relative prime and \(i \) is RRS of \(p \) and \(i^{p-1} \mod p^2 \neq 1 \), then \(i^{\text{Euler}(p^{k-1})} \mod p^k \neq 1 \).

(32) Suppose \(n > 1 \) and len \(f_2 \geq 2 \) and for every \(d \) such that \(d \in \text{dom} f_2 \) holds \(f_2(d) \) and \(n \) are relative prime. Let given \(f_3 \). Suppose that

(i) \(\text{len} f_3 = \text{len} f_2 \),

(ii) for every \(d \) such that \(d \in \text{dom} f_3 \) holds \(f_3(d) = \text{order}(f_2(d), n) \), and

(iii) for all \(d, e \) such that \(d, e \in \text{dom} f_3 \) and \(d \neq e \) holds \(f_3(d) \) and \(f_3(e) \) are relative prime.

Then \(\text{order}(\prod f_2, n) = \prod f_3 \).

References

Received August 6, 2012