Difference of Function
on Vector Space over \mathbb{F}^1

Kenichi Arai
Tokyo University of Science
Chiba, Japan

Ken Wakabayashi
Shinshu University
Nagano, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Summary. In [11], the definitions of forward difference, backward difference, and central difference as difference operations for functions on \mathbb{R} were formalized. However, the definitions of forward difference, backward difference, and central difference for functions on vector spaces over \mathbb{F} have not been formalized. In cryptology, these definitions are very important in evaluating the security of cryptographic systems [3],[10]. Differential cryptanalysis [4] that undertakes a general purpose attack against block ciphers [13] can be formalized using these definitions. In this article, we formalize the definitions of forward difference, backward difference, and central difference for functions on vector spaces over \mathbb{F}. Moreover, we formalize some facts about these definitions.

MSC: 39A70 15A03 03B35

Keywords: Mizar formalization; difference of function on vector space over \mathbb{F}

MML identifier: VSDIFF_1 version: 8.1.03 5.25.1220

The notation and terminology used in this paper have been introduced in the following articles: [12], [15], [5], [6], [16], [1], [2], [7], [19], [20], [17], [14], [18], [9], [21], and [8].

From now on C denotes a non empty set, G_1 denotes a field, V denotes a vector space over G_1, v, u denote elements of V, W denotes a subset of V, and f, f_1, f_2, f_3 denote partial functions from C to V.

\footnote{1This work was supported by JSPS KAKENHI 26730067.}
Let us consider C, G_1, and V. Let f be a partial function from C to V and r be an element of G_1. The functor $r \cdot f$ yielding a partial function from C to V is defined by

(Def. 1) \[\text{dom } it = \text{dom } f \text{ and for every element } c \text{ of } C \text{ such that } c \in \text{dom } it \text{ holds } it_c = r \cdot f_c. \]

Let f be a function from C into V. One can check that $r \cdot f$ is total.

Let us consider v and W. The functor $v \oplus W$ yielding a subset of V is defined by the term

(Def. 2) \[\{ v + u : u \in W \}. \]

Let F, G be fields, V be a vector space over F, W be a vector space over G, f be a partial function from V to W, and h be an element of V. The functor $\operatorname{Shift}(f, h)$ yielding a partial function from V to W is defined by

(Def. 3) \[\text{dom } it = -h \oplus \text{dom } f \text{ and for every element } x \text{ of } V \text{ such that } x \in -h \oplus \text{dom } f \text{ holds } it(x) = f(x + h). \]

Now we state the proposition:

(1) Let us consider an element x of V and a subset A of V. If $A = \text{the carrier of } V$, then $x \oplus A = A$.

Proof: For every object y, $y \in x \oplus A$ iff $y \in A$ by [17] (29), (15), (13)]. □

Let F, G be fields, V be a vector space over F, W be a vector space over G, f be a function from V into W, and h be an element of V. One can verify that the functor $\operatorname{Shift}(f, h)$ yields a function from V into W and is defined by

(Def. 4) For every element x of V, $it(x) = f(x + h)$.

Let f be a partial function from V to W. The functor $\Delta_h[f]$ yielding a partial function from V to W is defined by the term

(Def. 5) $\operatorname{Shift}(f, h) - f$.

Let f be a function from V into W. Observe that $\Delta_h[f]$ is quasi total.

Let f be a partial function from V to W. The functor $\nabla_h[f]$ yielding a partial function from V to W is defined by the term

(Def. 6) $f - \operatorname{Shift}(f, -h)$.

Let f be a function from V into W. Let us note that $\nabla_h[f]$ is quasi total.

Let f be a partial function from V to W. The functor $\delta_h[f]$ yielding a partial function from V to W is defined by the term

(Def. 7) $\operatorname{Shift}(f, (2 \cdot 1_F)^{-1} \cdot h) - \operatorname{Shift}(f, -(2 \cdot 1_F)^{-1} \cdot h)$.

Let f be a function from V into W. One can check that $\delta_h[f]$ is quasi total.

The forward difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by

(Def. 8) $it(0) = f$ and for every natural number n, $it(n + 1) = \Delta_h[it(n)]$.

We introduce $\Delta_h[f]$ as a synonym of the forward difference of f and h.

From now on F, G denote fields, V denotes a vector space over F, W denotes a vector space over G, f, f_1, f_2 denote functions from V into W, x, h denote elements of V, and r, r_1, r_2 denote elements of G.

Now we state the propositions:

(2) Let us consider a partial function f from V to W. If $x, x+h \in \text{dom } f$, then $(\Delta_h[f])_x = f_{x+h} - f_x$.

(3) Let us consider a natural number n. Then $(\Delta_h[f])(n)$ is a function from V into W.

\textbf{Proof:} Define $X[\text{natural number}] \equiv (\Delta_h[f])_{(1)}$ is a function from V into W. For every natural number k such that $X[k]$ holds $X[k+1]$ for every natural number n, $X[n]$ from [1 Sch. 2]. □

(4) $(\Delta_h[f])_x = f_{x+h} - f_x$. The theorem is a consequence of (2).

(5) $(\nabla_h[f])_x = f_x - f_{x-h}$.

(6) $(\delta_h[f])_x = f_{x+(2.1f)^{-1}h} - f_{x-(2.1f)^{-1}h}$.

From now on n, m, k denote natural numbers.

Now we state the propositions:

(7) If f is constant, then for every x, $(\Delta_h[f])(n+1)_x = 0_W$.

\textbf{Proof:} For every $x, f_{x+h} - f_x = 0_W$ by [17] (15). For every x, $(\Delta_h[f])(n+1)_x = 0_W$ by (3), (4), [17] (15). □

(8) $(\Delta_h[r \cdot f])(n+1)_x = r \cdot (\Delta_h[f])(n+1)_x$.

\textbf{Proof:} Define $X[\text{natural number}] \equiv$ for every x, $(\Delta_h[r \cdot f])_{(1)} = r \cdot (\Delta_h[f])_{(1)}$. For every k such that $X[k]$ holds $X[k+1]$ by (3), (4), [9] (23). $X[0]$ by (4), [9] (23). For every $n, X[n]$ from [11 Sch. 2]. □

(9) $(\Delta_h[f_1 + f_2])(n+1)_x = (\Delta_h[f_1])(n+1)_x + (\Delta_h[f_2])(n+1)_x$.

\textbf{Proof:} Define $X[\text{natural number}] \equiv$ for every x, $(\Delta_h[f_1 + f_2])_{(1)} = (\Delta_h[f_1])_{(1)} + (\Delta_h[f_2])_{(1)}$. For every k such that $X[k]$ holds $X[k+1]$ by (3), (4), [17] (27), (28). $X[0]$ by (4), [17] (27), (28). For every $n, X[n]$ from [11 Sch. 2]. □

(10) $(\Delta_h[f_1 - f_2])(n+1)_x = (\Delta_h[f_1])(n+1)_x - (\Delta_h[f_2])(n+1)_x$.

\textbf{Proof:} Define $X[\text{natural number}] \equiv$ for every x, $(\Delta_h[f_1 - f_2])_{(1)} = (\Delta_h[f_1])_{(1)} - (\Delta_h[f_2])_{(1)}$. $X[0]$ by (4), [17] (29), (27). For every k such that $X[k]$ holds $X[k+1]$ by (3), (4), [17] (29). For every $n, X[n]$ from [11 Sch. 2]. □

(11) $(\Delta_h[r_1 \cdot f_1 + r_2 \cdot f_2])(n+1)_x = r_1 \cdot (\Delta_h[f_1])(n+1)_x + r_2 \cdot (\Delta_h[f_2])(n+1)_x$.

The theorem is a consequence of (3), (9), and (8).

(12) $(\Delta_h[f])(1)_x = (\text{Shift}(f,h))_x - f_x$. The theorem is a consequence of (4).

Let F, G be fields, V be a vector space over F, h be an element of V, W be a vector space over G, and f be a function from V into W. The backward
difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by

(Def. 9) \[i_t(0) = f \text{ and for every natural number } n, \ i_t(n + 1) = \nabla_h[i_t(n)]. \]

The backward difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by

(Def. 10) \[i_t(0) = f \text{ and for every natural number } n, \ i_t(n + 1) = \nabla_h[i_t(n)]. \]

We introduce $\nabla_h[f]$ as a synonym of the backward difference of f and h.

Now we state the propositions:

(13) Let us consider a natural number n. Then $(\nabla_h[f])(n)$ is a function from V into W.

Proof: Define $x'[\text{natural number}] \equiv (\nabla_h[f])(n)$ is a function from V into W. For every natural number n, $x'[n]$ holds $x'[n + 1]$. For every natural number n, $x'[n]$ from [1] Sch. 2.

(14) If f is constant, then for every x, $(\nabla_h[f])(n + 1)_x = 0_w$.

Proof: For every x, $f_x - f_{x-h} = 0_w$ by [17] (15). For every x, $(\nabla_h[f])(n + 1)_x = 0_w$ by (13), (5), [17] (15).

(15) $(\nabla_h[r \cdot f])(n + 1)_x = r \cdot (\nabla_h[f])(n + 1)_x$.

Proof: Define $x'[\text{natural number}] \equiv$ for every x, $(\nabla_h[r \cdot f])(n + 1)_x = r \cdot (\nabla_h[f])(n + 1)_x$. For every k such that $x'[k]$ holds $x'[k + 1]$ by (13), (5), [9] (23). $x'[0]$ by (5), [9] (23). For every n, $x'[n]$ from [1] Sch. 2.

(16) $(\nabla_h[f_1 + f_2])(n + 1)_x = (\nabla_h[f_1])(n + 1)_x + (\nabla_h[f_2])(n + 1)_x$.

Proof: Define $x'[\text{natural number}] \equiv$ for every x, $(\nabla_h[f_1 + f_2])(n + 1)_x = (\nabla_h[f_1])(n + 1)_x + (\nabla_h[f_2])(n + 1)_x$. For every k such that $x'[k]$ holds $x'[k + 1]$ by (13), (5), [17] (27), (28). $x'[0]$ by (5), [17] (27), (28). For every n, $x'[n]$ from [1] Sch. 2.

(17) $(\nabla_h[f_1 - f_2])(n + 1)_x = (\nabla_h[f_1])(n + 1)_x - (\nabla_h[f_2])(n + 1)_x$.

Proof: Define $x'[\text{natural number}] \equiv$ for every x, $(\nabla_h[f_1 - f_2])(n + 1)_x = (\nabla_h[f_1])(n + 1)_x - (\nabla_h[f_2])(n + 1)_x$. $x'[0]$ by (5), [17] (29), (27). For every k such that $x'[k]$ holds $x'[k + 1]$ by (13), (5), [17] (29), (27). For every n, $x'[n]$ from [1] Sch. 2.

(18) $(\nabla_h[r_1 \cdot f_1 + r_2 \cdot f_2])(n + 1)_x = r_1 \cdot (\nabla_h[f_1])(n + 1)_x + r_2 \cdot (\nabla_h[f_2])(n + 1)_x$. The theorem is a consequence of (16) and (15).

(19) $(\nabla_h[f])(n + 1)_x = f_x - (\text{Shift}(f, -h))_x$. The theorem is a consequence of (5).

Let F, G be fields, V be a vector space over F, h be an element of V, W be a vector space over G, and f be a partial function from V to W. The central difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by

(Def. 11) \[i_t(0) = f \text{ and for every natural number } n, \ i_t(n + 1) = \delta_h[i_t(n)]. \]
We introduce $\vec{\delta}_h[f]$ as a synonym of the central difference of f and h.
Now we state the propositions:

(20) Let us consider a natural number n. Then $(\vec{\delta}_h[f])(n)$ is a function from V into W.

Proof: Define $X[$natural number$] \equiv (\vec{\delta}_h[f])(\$1)$ is a function from V into W. For every natural number k such that $X[k]$ holds $X[k+1]$. For every natural number n, $X[n]$ from \[1\] Sch. 2. □

(21) If f is constant, then for every x, $(\vec{\delta}_h[f])(n+1)x = 0_W$.

Proof: Define $X[$natural number$] \equiv$ for every x, $(\vec{\delta}_h[f])(\$1+1)x = 0_W$. For every x, $f_{x+(2\cdot1_F)^{-1}h} - f_{x-(2\cdot1_F)^{-1}h} = 0_W$ by \[17\] (15). $X[0]$. For every k such that $X[k]$ holds $X[k+1]$ by (20), (6), \[17\] (13). For every n, $X[n]$ from \[1\] Sch. 2. □

(22) $(\vec{\delta}_h[r \cdot f])(n+1)x = r \cdot (\vec{\delta}_h[f])(n+1)x$.

Proof: Define $X[$natural number$] \equiv$ for every x, $(\vec{\delta}_h[r \cdot f])(\$1+1)x = r \cdot (\vec{\delta}_h[f])(\$1+1)x$. For every k such that $X[k]$ holds $X[k+1]$ by (20), (6), \[9\] (23). $X[0]$ by (6), \[9\] (23). For every n, $X[n]$ from \[1\] Sch. 2. □

(23) $(\vec{\delta}_h[f_1 + f_2])(n+1)x = (\vec{\delta}_h[f_1])(n+1)x + (\vec{\delta}_h[f_2])(n+1)x$.

Proof: Define $X[$natural number$] \equiv$ for every x, $(\vec{\delta}_h[f_1 + f_2])(\$1+1)x = (\vec{\delta}_h[f_1])(\$1+1)x + (\vec{\delta}_h[f_2])(\$1+1)x$. For every k such that $X[k]$ holds $X[k+1]$ by (20), (6), \[17\] (27), (28), $X[0]$ by (6), \[17\] (27), (28). For every n, $X[n]$ from \[1\] Sch. 2. □

(24) $(\vec{\delta}_h[f_1 - f_2])(n+1)x = (\vec{\delta}_h[f_1])(n+1)x - (\vec{\delta}_h[f_2])(n+1)x$.

Proof: Define $X[$natural number$] \equiv$ for every x, $(\vec{\delta}_h[f_1 - f_2])(\$1+1)x = (\vec{\delta}_h[f_1])(\$1+1)x - (\vec{\delta}_h[f_2])(\$1+1)x$. For every k such that $X[k]$ holds $X[k+1]$ by (20), (6), \[17\] (29), (27), (28). For every n, $X[n]$ from \[1\] Sch. 2. □

(25) $(\vec{\delta}_h[r_1 \cdot f_1 + r_2 \cdot f_2])(n+1)x = r_1 \cdot (\vec{\delta}_h[f_1])(n+1)x + r_2 \cdot (\vec{\delta}_h[f_2])(n+1)x$.

The theorem is a consequence of (23) and (22).

(26) $(\vec{\delta}_h[f])(1)x = (\text{Shift}(f, (2 \cdot 1_F)^{-1} \cdot h))x - (\text{Shift}(f, -(2 \cdot 1_F)^{-1} \cdot h))x$. The theorem is a consequence of (6).

(27) $(\vec{\Delta}_h[f])(n)x = (\vec{\nabla}_h[f])(n)_{x+n \cdot h}$.

Proof: Define $X[$natural number$] \equiv$ for every x, $(\vec{\Delta}_h[f])(\$1)x = (\vec{\nabla}_h[f])(\$1)_{x+\$1 \cdot h}$. For every k such that $X[k]$ holds $X[k+1]$ by (3), \[15\] (13), (15), \[17\] (4), (15), (28), $X[0]$ by \[17\] (4), \[15\] (12). For every n, $X[n]$ from \[1\] Sch. 2. □

Let us assume that $1_F \neq -1_F$. Now we state the propositions:

(28) $(\vec{\Delta}_h[f])(2 \cdot n)x = (\vec{\delta}_h[f])(2 \cdot n)_{x+n \cdot h}$.

Proof: Define $X[$natural number$] \equiv$ for every x, $(\vec{\Delta}_h[f])(2 \cdot \$1)x = (\vec{\delta}_h[f])(2 \cdot \$1)_{x+\$1 \cdot h}$. For every k such that $X[k]$ holds $X[k+1]$ by \[15\] (13), (15),
For every n, $X[n]$ from [17, (27), (28), (15)]. For every n, $X[n]$ from [17, (4), (12)]. For every n, $X[n]$ from [1, Sch. 2]. □

\[(\Delta_h[f])(2 \cdot n + 1) = (\delta_h[f])(2 \cdot n + 1)_{x + n \cdot h + (2 \cdot 1_F)^{-1} \cdot h}.
\]

Proof: $2 \cdot 1_F \neq 0_F$ by [15, (13), (15)]. $(\delta_h[f])(2 \cdot n)$ is a function from V into W. $(\Delta_h[f])(2 \cdot n)$ is a function from V into W. □

ACKNOWLEDGEMENT: We sincerely thank Professor Yasunari Shidama for his helpful advices.

References

Received September 26, 2014
DIFFERENCE OF FUNCTION ...