Differentiability of Polynomials over Reals

Artur Korniłowicz
Institute of Informatics
University of Białystok
Poland

Summary. In this article, we formalize in the Mizar system \[3\] the notion of the derivative of polynomials over the field of real numbers \[4\]. To define it, we use the derivative of functions between reals and reals \[9\].

MSC: 26A24 03B35

Keywords: differentiation of real polynomials; derivative of real polynomials

MML identifier: POLYDIFF

1. Preliminaries

From now on \(c\) denotes a complex, \(r\) denotes a real number, \(m, n\) denote natural numbers, and \(f\) denotes a complex-valued function.

Now we state the propositions:

(1) \(0 + f = f\).

(2) \(f - 0 = f\).

Let \(f\) be a complex-valued function. Observe that \(0 + f\) reduces to \(f\) and \(f - 0\) reduces to \(f\).

Now we state the propositions:

(3) \(c + f = (\text{dom } f \mapsto c) + f\).

(4) \(f - c = f - (\text{dom } f \mapsto c)\).

(5) \(c \cdot f = (\text{dom } f \mapsto c) \cdot f\).

(6) \(f + (\text{dom } f \mapsto 0) = f\). The theorem is a consequence of (3).

(7) \(f - (\text{dom } f \mapsto 0) = f\). The theorem is a consequence of (4).
(8) □^0 = \mathbb{R} \mapsto 1.

Proof: Reconsider \(s = 1 \) as an element of \(\mathbb{R} \). □^0 = \mathbb{R} \mapsto s by [8, (34)], [10, (7)]. □

2. DIFFERENTIABILITY OF REAL FUNCTIONS

One can check that every function from \(\mathbb{R} \) into \(\mathbb{R} \) which is differentiable is also continuous.

Let \(f \) be a differentiable function from \(\mathbb{R} \) into \(\mathbb{R} \). The functor \(f' \), yielding a function from \(\mathbb{R} \) into \(\mathbb{R} \), is defined by the term

(Def. 1) \(f'|_{\mathbb{R}} \).

Now we state the propositions:

(9) Let us consider a function \(f \) from \(\mathbb{R} \) into \(\mathbb{R} \). Then \(f \) is differentiable if and only if for every \(r \), \(f \) is differentiable in \(r \).

(10) Let us consider a differentiable function \(f \) from \(\mathbb{R} \) into \(\mathbb{R} \). Then \(f'(r) = f'(r) \).

Let \(f \) be a function from \(\mathbb{R} \) into \(\mathbb{R} \). Observe that \(f \) is differentiable if and only if the condition (Def. 2) is satisfied.

(Def. 2) for every \(r \), \(f \) is differentiable in \(r \).

Let us note that every function from \(\mathbb{R} \) into \(\mathbb{R} \) which is constant is also differentiable.

Now we state the proposition:

(11) Let us consider a constant function \(f \) from \(\mathbb{R} \) into \(\mathbb{R} \). Then \(f' = \mathbb{R} \mapsto 0 \).

Proof: Reconsider \(z = 0 \) as an element of \(\mathbb{R} \). \(f' = \mathbb{R} \mapsto z \) by [9, (22)], [10, (7)]. □

One can verify that \(\text{id}_\mathbb{R} \) is differentiable as a function from \(\mathbb{R} \) into \(\mathbb{R} \).

Now we state the proposition:

(12) \(\text{id}'_\mathbb{R} = \mathbb{R} \mapsto 1 \).

Proof: Set \(f = \text{id}_\mathbb{R} \). Reconsider \(z = 1 \) as an element of \(\mathbb{R} \). \(f' = \mathbb{R} \mapsto z \) by [9, (17)], [10, (7)]. □

Let us consider \(n \). One can verify that \(\Box^n \) is differentiable.

Now we state the proposition:

(13) \(\Box^n)' = n \cdot (\Box^{n-1}) \).

From now on \(f, g \) denote differentiable functions from \(\mathbb{R} \) into \(\mathbb{R} \).

\(^1\)Left-side \(f'(r) \) is the value of the derivative defined in this article for differentiable functions \(f : \mathbb{R} \mapsto \mathbb{R} \), and right-side \(f'(r) \) is the value of the derivative defined for partial functions in [9].
Let us consider f and g. Let us observe that $f + g$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $f - g$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $f \cdot g$ is differentiable as a function from \mathbb{R} into \mathbb{R}.

Let us consider r. One can verify that $r + f$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $r \cdot f$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $f - r$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $-f$ is differentiable as a function from \mathbb{R} into \mathbb{R} and f^2 is differentiable as a function from \mathbb{R} into \mathbb{R}.

Now we state the propositions:

(14) $(f + g)' = f' + g'$. The theorem is a consequence of (9) and (10).

(15) $(f - g)' = f' - g'$. The theorem is a consequence of (9) and (10).

(16) $(f \cdot g)' = g \cdot f' + f \cdot g'$. The theorem is a consequence of (9) and (10).

(17) $(r + f)' = f'$. The theorem is a consequence of (11), (3), (14), and (6).

(18) $(f - r)' = f'$. The theorem is a consequence of (11), (4), (15), and (7).

(19) $(r \cdot f)' = r \cdot f'$. The theorem is a consequence of (9) and (10).

(20) $(-f)' = -f'$.

3. Polynomials

In the sequel L denotes a non empty zero structure and x denotes an element of L.

Now we state the proposition:

(21) Let us consider a (the carrier of L)-valued function f, and an object a. Then Support$(f + \cdot (a, x)) \subseteq$ Support $f \cup \{a\}$.

Proof: $a = z$ or $z \in$ Support f by [2, (32), (30)]. □

Let us consider L and x. Let f be a finite-Support sequence of L and a be an object. Observe that $f + \cdot (a, x)$ is finite-Support as a sequence of L.

Now we state the proposition:

(22) Let us consider a polynomial p over L. If $p \neq 0, L$, then $\text{len } p - ' 1 = \text{len } p - 1$.

Let L be a non empty zero structure and x be an element of L. Let us note that $\langle x \rangle$ is constant and $\langle x, 0_L \rangle$ is constant.

Now we state the proposition:

(23) Let us consider a non empty zero structure L, and a constant polynomial p over L. Then

(i) $p = 0, L$, or

(ii) $p = \langle p(0) \rangle$.
Let us consider L, x, and n. The functor $\text{seq}(n, x)$ yielding a sequence of L is defined by the term

\[(\text{Def. } 3) \quad 0. L + \cdot (n, x).\]

Observe that $\text{seq}(n, x)$ is finite-Support.

Now we state the propositions:

(24) $(\text{seq}(n, x))(n) = x$.

(25) If $m \neq n$, then $(\text{seq}(n, x))(m) = 0_L$.

(26) the length of $\text{seq}(n, x)$ is at most $n + 1$.

(27) If $x \neq 0_L$, then $\text{len seq}(n, x) = n + 1$.

\textbf{Proof:} Set $p = \text{seq}(n, x)$. For every m such that the length of p is at most m holds $n + 1 \leq m$ by (24), [13] (13)]. □

(28) $\text{seq}(n, 0_L) = 0. L$. The theorem is a consequence of (24).

(29) Let us consider a right zeroed, non empty additive loop structure L, and elements x, y of L. Then $\text{seq}(n, x) + \text{seq}(n, y) = \text{seq}(n, x + y)$. The theorem is a consequence of (24) and (25).

(30) Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure L, and an element x of L. Then $-\text{seq}(n, x) = \text{seq}(n, -x)$. The theorem is a consequence of (24) and (25).

(31) Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure L, and elements x, y of L. Then $\text{seq}(n, x) - \text{seq}(n, y) = \text{seq}(n, x - y)$. The theorem is a consequence of (30) and (29).

Let L be a non empty zero structure and p be a sequence of L. Let us consider n. The functor $p \upharpoonright n$ yielding a sequence of L is defined by the term

\[(\text{Def. } 4) \quad p + \cdot (n, 0_L).\]

Let p be a polynomial over L. Let us note that $p \upharpoonright n$ is finite-Support.

Let us consider a non empty zero structure L and a sequence p of L. Now we state the propositions:

(32) $(p \upharpoonright n)(n) = 0_L$.

(33) If $m \neq n$, then $(p \upharpoonright n)(m) = p(m)$.

Now we state the proposition:

(34) Let us consider a non empty zero structure L. Then $0. L \upharpoonright n = 0. L$. The theorem is a consequence of (32).

Let L be a non empty zero structure. Let us consider n. One can verify that $0. L \upharpoonright n$ reduces to $0. L$.

Let us consider a non empty zero structure L and a polynomial p over L. Now we state the propositions:
Differentiability of polynomials over reals

\[(35) \text{ If } n > \text{len } p' - 1, \text{ then } p \upharpoonright n = p. \text{ The theorem is a consequence of (32).} \]

\[(36) \text{ If } p \neq 0, L, \text{ then } \text{len}(p \upharpoonright (\text{len } p' - 1)) < \text{len } p. \]

Proof: Set \(m = \text{len } p' - 1. m = \text{len } p - 1. \) the length of \(p \upharpoonright m \) is at most \(\text{len } p \) by [2, (32)], [7, (8)]. \(\square \)

Now we state the proposition:

\[(37) \text{ Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure } L, \text{ and a polynomial } p \text{ over } L. \text{ Then } p \upharpoonright (\text{len } p' - 1) + \text{Leading-Monomial } p = p. \text{ The theorem is a consequence of (32).} \]

Let \(L \) be a non empty zero structure and \(p \) be a constant polynomial over \(L. \) Observe that \(\text{Leading-Monomial } p \) is constant.

Now we state the proposition:

\[(38) \text{ Let us consider an add-associative, right zeroed, right complementable, distributive, unital, non empty double loop structure } L, \text{ and elements } x, y \text{ of } L. \text{ Then eval(seq}(n, x), y) = (\text{seq}(n, x))(n) \cdot \text{power}(y, n). \text{ The theorem is a consequence of (28), (27), and (25).} \]

4. Differentiability of Polynomials over Reals

In the sequel \(p, q \) denote polynomials over \(\mathbb{R}_F. \)

Now we state the propositions:

\[(39) \text{ Let us consider an element } r \text{ of } \mathbb{R}_F. \text{ Then } \text{power}(r, n) = r^n. \]

Proof: Define \(P[\text{natural number}] \equiv \text{power}(r, 1) = r^1. \) For every natural number \(n, P[n] \) from [1, Sch. 2]. \(\square \)

\[(40) \Box^n = \text{FPower}(1_{\mathbb{R}_F}, n). \]

Proof: Reconsider \(f = \text{FPower}(1_{\mathbb{R}_F}, n) \) as a function from \(\mathbb{R} \) into \(\mathbb{R}. \)

\(\square^n = f \) by [5, (36)], (39). \(\square \)

Let us consider an element \(r \text{ of } \mathbb{R}_F. \) Now we state the propositions:

\[(41) \text{FPower}(r, n + 1) = \text{FPower}(r, n) \cdot \text{id}_\mathbb{R}. \]

\[(42) \text{FPower}(r, n) \text{ is a differentiable function from } \mathbb{R} \text{ into } \mathbb{R}. \]

Proof: Define \(P[\text{natural number}] \equiv \text{FPower}(r, 1) \) is a differentiable function from \(\mathbb{R} \) into \(\mathbb{R}. P[0] \) by [6, (66)]. For every natural number \(n \text{ such that } P[n] \text{ holds } P[n + 1]. \) For every natural number \(n, P[n] \) from [1, Sch. 2]. \(\square \)

\[(43) \text{power}(r, n) = (\Box^n)(r). \text{ The theorem is a consequence of (40).} \]

Let us consider \(p. \) The functor \(\mathbb{R}_F \) yielding a sequence of \(\mathbb{R}_F \) is defined by

(Def. 5) for every natural number \(n, it(n) = p(n + 1) \cdot (n + 1). \)

Note that \(p' \) is finite-Support.

Now we state the propositions:
If \(p \neq 0 \in \mathbb{R}_F \), then \(\text{len } p' = \text{len } p - 1 \).

Proof: Set \(x = \text{len } p - 1 \). Set \(d = p' \). the length of \(d \) is at most \(x \) by [7, (8)]. For every \(n \) such that the length of \(d \) is at most \(n \) holds \(x \leq n \) by [11, (7)], [2, (10)], [10, (21)]. \(\square \)

If \(p \neq 0 \in \mathbb{R}_F \), then \(\text{len } p = \text{len } p' + 1 \). The theorem is a consequence of (44).

Let us consider a constant polynomial \(p \) over \(\mathbb{R}_F \). Then \(p' = 0 \in \mathbb{R}_F \). The theorem is a consequence of (45).

(47) \((p + q)' = p' + q' \).

(48) \((-p)' = -p' \).

(49) \((p - q)' = p' - q' \). The theorem is a consequence of (47) and (48).

(50) \(\text{Leading-Monomial } p' = 0 \in \mathbb{R}_F + \cdot (\text{len } p - ' 2, p(\text{len } p - ' 1) \cdot (\text{len } p - ' 1)) \).

Proof: Set \(t = \text{Leading-Monomial } p \). Set \(m = \text{len } p - ' 1 \). Set \(k = \text{len } p - ' 2 \).
Reconsider \(a = p(m) \cdot m \) as an element of \(\mathbb{R}_F \). Set \(f = z + \cdot (k, a) \cdot l' = f \) by [11, (53)], [2, (31), (32)], [10, (7)]]. \(\square \)

Let us consider elements \(r, s \) of \(\mathbb{R}_F \). Then \(\langle r, s \rangle' = \langle s \rangle \).

Let us consider \(p \). The functor \(\text{Eval}(p) \) yielding a function from \(\mathbb{R} \) into \(\mathbb{R} \) is defined by the term

(Def. 6) \(\text{Polynomial-Function}(\mathbb{R}_F, p) \).

Let us note that \(\text{Eval}(p) \) is differentiable.

Now we state the propositions:

(52) \(\text{Eval}(0, \mathbb{R}_F) = \mathbb{R} \mapsto 0 \in \mathbb{R} \) by [5, (17)], [10, (7)]. \(\square \)

(53) Let us consider an element \(r \) of \(\mathbb{R}_F \). Then \(\text{Eval}(\langle r \rangle) = \mathbb{R} \mapsto r \).

Proof: \(\text{Eval}(\langle r \rangle) = \mathbb{R} \mapsto r(\in \mathbb{R}) \) by [6, (37)], [10, (7)]. \(\square \)

(54) If \(p \) is constant, then \(\text{Eval}(p)' = \mathbb{R} \mapsto 0 \). The theorem is a consequence of (23), (52), and (11).

(55) \(\text{Eval}(p + q) = \text{Eval}(p) + \text{Eval}(q) \).

(56) \(\text{Eval}(-p) = -\text{Eval}(p) \).

(57) \(\text{Eval}(p - q) = \text{Eval}(p) - \text{Eval}(q) \). The theorem is a consequence of (55) and (56).

(58) \(\text{Eval}(\text{Leading-Monomial } p) = \text{FPower}(p(\text{len } p - ' 1), \text{len } p - ' 1) \).

Proof: Set \(l = \text{Leading-Monomial } p \). Set \(m = \text{len } p - ' 1 \). Reconsider \(f = \text{FPower}(p(m), m) \) as a function from \(\mathbb{R} \) into \(\mathbb{R} \). \(\text{Eval}(l) = f \) by [5, (22)]. \(\square \)

(59) \(\text{Eval}(\text{Leading-Monomial } p) = p(\text{len } p - ' 1) \cdot (\square^{\text{len } p - ' 1}) \).

Proof: Set \(l = \text{Leading-Monomial } p \). Set \(m = \text{len } p - ' 1 \). Set \(f = p(m) \cdot (\square^m) \). \(\text{Eval}(l) = f \) by (39), [8, (36)], [5, (22)]. \(\square \)
Let us consider an element r of \mathbb{R}_F. Then $\text{Eval}(\text{seq}(n, r)) = r \cdot (\square^n)$. The theorem is a consequence of (24), (43), and (38).

$\text{Eval}(p)' = \text{Eval}(p')$.

Proof: Define $P[n\text{ natural number}] \equiv \text{ for every } p \text{ such that } \text{len } p \leq 1 \text{ holds } \text{Eval}(p)' = \text{Eval}(p')$. $P[0]$ by [5 (5)], (46), (52), (54). If $P[n]$, then $P[n + 1]$ by (36), [5 (3)], [1 (13)], (37). $P[n]$ from [1, Sch. 2]. □

Let us consider p. Let us observe that $\text{Eval}(p)'$ is differentiable.

References

Received February 23, 2017