:: Integrability Formulas -- Part {III} :: by Bo Li and Na Ma :: :: Received February 4, 2010 :: Copyright (c) 2010 Association of Mizar Users environ vocabularies RELAT_1, FUNCT_1, ARYTM_1, SIN_COS, VALUED_1, NAT_1, INTEGRA1, FDIFF_1, SQUARE_1, ARYTM_3, ORDINAL2, PREPOWER, REAL_1, PARTFUN1, TAYLOR_1, CARD_1, ORDINAL4, RCOMP_1, INTEGRA5, XXREAL_0, SIN_COS4, SUBSET_1, XBOOLE_0, TARSKI, NUMBERS, XXREAL_2, SEQ_4; notations TARSKI, XBOOLE_0, SEQ_1, SIN_COS, SUBSET_1, NUMBERS, VALUED_1, NAT_1, XXREAL_0, REAL_1, RELAT_1, RELSET_1, PARTFUN1, PARTFUN2, RCOMP_1, RFUNCT_1, MEASURE6, INTEGRA1, FCONT_1, SQUARE_1, INTEGRA5, PREPOWER, TAYLOR_1, FDIFF_1, SEQ_2, FDIFF_9, BINOP_2, LIMFUNC1, XREAL_0, INT_1, SIN_COS4, SEQ_4; constructors SIN_COS, TAYLOR_1, SEQ_1, REAL_1, FDIFF_1, FCONT_1, MEASURE6, BINOP_2, SQUARE_1, PREPOWER, INTEGRA5, JORDAN16, SIN_COS2, SEQ_4, SEQ_2, SIN_COS9, PARTFUN1, PARTFUN2, FUNCT_1, RCOMP_1, RELAT_1, SIN_COS6, RFUNCT_1, VALUED_1, FDIFF_9, SIN_COS4, LIMFUNC1, NAT_1, POWER, RELSET_1; registrations VALUED_1, NAT_1, XBOOLE_0, NUMBERS, MEMBERED, VALUED_0, INTEGRA1, INT_1, RELAT_1, ORDINAL1, FUNCT_2, RCOMP_1, FCONT_1, TOPREALB, RELSET_1, RFUNCT_1, XREAL_0, NEWTON, SQUARE_1, FUNCT_1, XXREAL_0, SEQM_3, SIN_COS9, FINSET_1, TAYLOR_1, FCONT_3; requirements NUMERALS, BOOLE, SUBSET, ARITHM, REAL; definitions SIN_COS, VALUED_1, SUBSET_1, SQUARE_1, SIN_COS4, SIN_COS6, TARSKI, FCONT_1, FDIFF_9, XBOOLE_0, SIN_COS9, RCOMP_1, LIMFUNC1, NAT_1, XCMPLX_0, FDIFF_1; theorems PARTFUN1, RFUNCT_1, FUNCT_1, FDIFF_1, TARSKI, XBOOLE_0, INTEGRA5, SIN_COS, VALUED_1, XBOOLE_1, FDIFF_7, FDIFF_8, FDIFF_9, FDIFF_10, SIN_COS9, XREAL_0, RELAT_1, FDIFF_2; begin :: Differentiation Formulas reserve a,x for Real; reserve n for Nat; reserve A for closed-interval Subset of REAL; reserve f,f1 for PartFunc of REAL,REAL; reserve Z for open Subset of REAL; Lm1: 0 in Z implies (id Z)"{0} = {0} proof assume A1: 0 in Z; thus (id Z)"{0} c= {0} proof let x be set; assume A2: x in (id Z)"{0}; then x in dom id Z by FUNCT_1:def 13; then A3: x in Z by FUNCT_1:34; (id Z).x in {0} by A2,FUNCT_1:def 13; hence thesis by A3,FUNCT_1:35; end; let x be set; assume x in {0}; then A4: x = 0 by TARSKI:def 1; then (id Z).x = 0 by A1,FUNCT_1:35; then A5: (id Z).x in {0} by TARSKI:def 1; x in dom id Z by A1,A4,FUNCT_1:34; hence thesis by A5,FUNCT_1:def 13; end; :: f.x = -sec.(1/x) Lm2: -1 is Real by XREAL_0:def 1; theorem Th1: Z c= dom (sec*((id Z)^)) implies (-sec*((id Z)^)) is_differentiable_on Z & for x st x in Z holds ((-sec*((id Z)^))`|Z).x = sin.(1/x)/(x^2*(cos.(1/x))^2) proof assume A1:Z c= dom (sec*((id Z)^)); then A2:Z c= dom (-sec*((id Z)^)) by VALUED_1:def 5; A3:Z c= dom ((id Z)^) by A1,FUNCT_1:171; A4:not 0 in Z proof assume A5: 0 in Z; dom ((id Z)^) = dom id Z \ (id Z)"{0} by RFUNCT_1:def 8 .= dom id Z \ {0} by Lm1,A5; then not 0 in {0} by XBOOLE_0:def 5,A5,A3; hence thesis by TARSKI:def 1; end; then A6:(sec*((id Z)^)) is_differentiable_on Z by A1,FDIFF_9:8; then A7:(-1)(#)(sec*((id Z)^)) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-sec*((id Z)^))`|Z).x = sin.(1/x)/(x^2*(cos.(1/x))^2) proof let x; assume A8:x in Z; ((-sec*((id Z)^))`|Z).x=((-1)(#)((sec*((id Z)^))`|Z)).x by A6,FDIFF_2:19,Lm2 .=(-1)*(((sec*((id Z)^))`|Z).x) by VALUED_1:6 .=(-1)*(-sin.(1/x)/(x^2*(cos.(1/x))^2)) by A1,A4,A8,FDIFF_9:8 .=sin.(1/x)/(x^2*(cos.(1/x))^2); hence thesis; end; hence thesis by A7; end; ::f.x=-cosec.(exp_R.x) theorem Th2: Z c= dom (cosec*exp_R) implies -cosec*exp_R is_differentiable_on Z & for x st x in Z holds ((-cosec*exp_R)`|Z).x = exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2 proof assume A1:Z c= dom (cosec*exp_R); then A2:Z c= dom (-cosec*exp_R) by VALUED_1:8; A3:cosec*exp_R is_differentiable_on Z by A1,FDIFF_9:13; then A4:(-1)(#)(cosec*exp_R) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-cosec*exp_R)`|Z).x = exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2 proof let x; assume A5:x in Z; ((-cosec*exp_R)`|Z).x=((-1)(#)((cosec*exp_R)`|Z)).x by A3,FDIFF_2:19,Lm2 .=(-1)*(((cosec*exp_R)`|Z).x) by VALUED_1:6 .=(-1)*(-exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2) by A1,A5,FDIFF_9:13 .=exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2; hence thesis; end; hence thesis by A4; end; :: f.x = -cosec.(ln.x) theorem Th3: Z c= dom (cosec*ln) implies -cosec*ln is_differentiable_on Z & for x st x in Z holds ((-cosec*ln)`|Z).x = cos.(ln.x)/(x*(sin.(ln.x))^2) proof assume A1:Z c= dom (cosec*ln); then A2:Z c= dom (-cosec*ln) by VALUED_1:8; A3:cosec*ln is_differentiable_on Z by A1,FDIFF_9:15; then A4:(-1)(#)(cosec*ln) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-cosec*ln)`|Z).x = cos.(ln.x)/(x*(sin.(ln.x))^2) proof let x; assume A5: x in Z; ((-cosec*ln)`|Z).x=((-1)(#)((cosec*ln)`|Z)).x by A3,FDIFF_2:19,Lm2 .=(-1)*(((cosec*ln)`|Z).x) by VALUED_1:6 .=(-1)*(-cos.(ln.x)/(x*(sin.(ln.x))^2)) by A1,A5,FDIFF_9:15 .=cos.(ln.x)/(x*(sin.(ln.x))^2); hence thesis; end; hence thesis by A4; end; :: f.x = -exp_R.(cosec.x) theorem Th4: Z c= dom (exp_R*cosec) implies -exp_R*cosec is_differentiable_on Z & for x st x in Z holds ((-exp_R*cosec)`|Z).x = exp_R.(cosec.x)*cos.x/(sin.x)^2 proof assume A1:Z c= dom (exp_R*cosec); then A2:Z c= dom (-exp_R*cosec) by VALUED_1:8; A3:exp_R*cosec is_differentiable_on Z by A1,FDIFF_9:17; then A4:(-1)(#)(exp_R*cosec) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-exp_R*cosec)`|Z).x = exp_R.(cosec.x)*cos.x/(sin.x)^2 proof let x; assume A5:x in Z; ((-exp_R*cosec)`|Z).x=((-1)(#)((exp_R*cosec)`|Z)).x by A3,FDIFF_2:19,Lm2 .=(-1)*(((exp_R*cosec)`|Z).x) by VALUED_1:6 .=(-1)*(-exp_R.(cosec.x)*cos.x/(sin.x)^2) by A1,A5,FDIFF_9:17 .=exp_R.(cosec.x)*cos.x/(sin.x)^2; hence thesis; end; hence thesis by A4; end; :: f.x = -ln.(cosec.x) theorem Th5: Z c= dom (ln*cosec) implies -ln*cosec is_differentiable_on Z & for x st x in Z holds ((-ln*cosec)`|Z).x = cot.x proof assume A1:Z c= dom (ln*cosec); then A2:Z c= dom (-ln*cosec) by VALUED_1:8; A3:ln*cosec is_differentiable_on Z by A1,FDIFF_9:19; then A4:(-1)(#)(ln*cosec) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; A5:for x st x in Z holds sin.x<>0 proof let x; assume x in Z; then x in dom cosec by A1,FUNCT_1:21; hence thesis by RFUNCT_1:13; end; for x st x in Z holds ((-ln*cosec)`|Z).x = cot.x proof let x; assume A6: x in Z; ((-ln*cosec)`|Z).x =((-1)(#)((ln*cosec)`|Z)).x by A3,FDIFF_2:19,Lm2 .=(-1)*(((ln*cosec)`|Z).x) by VALUED_1:6 .=(-1)*(-cos.x/sin.x) by A1,A6,FDIFF_9:19 .=cot(x) .=cot.x by A5,A6,SIN_COS9:16; hence thesis; end; hence thesis by A4; end; ::f.x=-(cosec.x) #Z n theorem Th6: Z c= dom (( #Z n)*cosec) & 1<=n implies -( #Z n)*cosec is_differentiable_on Z & for x st x in Z holds ((-( #Z n)*cosec)`|Z).x = n*cos.x/(sin.x) #Z (n+1) proof assume A1:Z c= dom (( #Z n)*cosec) & 1<=n; then A2:Z c= dom (-( #Z n)*cosec) & 1<=n by VALUED_1:8; A3:( #Z n)*cosec is_differentiable_on Z by A1,FDIFF_9:21; then A4:(-1)(#)(( #Z n)*cosec) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-( #Z n)*cosec)`|Z).x = n*cos.x/(sin.x) #Z (n+1) proof let x; assume A5:x in Z; ((-( #Z n)*cosec)`|Z).x=((-1)(#)((( #Z n)*cosec)`|Z)).x by A3,FDIFF_2:19,Lm2 .=(-1)*(((( #Z n)*cosec)`|Z).x) by VALUED_1:6 .=(-1)*(-n*cos.x/(sin.x) #Z (n+1)) by A1,A5,FDIFF_9:21 .=n*cos.x/(sin.x) #Z (n+1); hence thesis; end; hence thesis by A4; end; ::f.x= -1/x*sec.x theorem Th7: Z c= dom ((id Z)^(#)sec) implies (-(id Z)^(#)sec) is_differentiable_on Z & for x st x in Z holds ((-(id Z)^(#)sec)`|Z).x = 1/cos.x/x^2-sin.x/x/(cos.x)^2 proof assume A1:Z c= dom ((id Z)^(#)sec); then A2:Z c= dom (-(id Z)^(#)sec) by VALUED_1:8; Z c= dom ((id Z)^) /\ dom sec by A1,VALUED_1:def 4;then A3:Z c= dom ((id Z)^) by XBOOLE_1:18; A4:not 0 in Z proof assume A5: 0 in Z; dom ((id Z)^) = dom id Z \ (id Z)"{0} by RFUNCT_1:def 8 .= dom id Z \ {0} by Lm1,A5; then not 0 in {0} by XBOOLE_0:def 5,A5,A3; hence thesis by TARSKI:def 1; end; then A6:((id Z)^(#)sec) is_differentiable_on Z by A1,FDIFF_9:32; then A7:(-1)(#)((id Z)^(#)sec) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-(id Z)^(#)sec)`|Z).x = 1/cos.x/x^2-sin.x/x/(cos.x)^2 proof let x; assume A8: x in Z; ((-(id Z)^(#)sec)`|Z).x = ((-1)(#)(((id Z)^(#)sec)`|Z)).x by A6,FDIFF_2:19,Lm2 .= (-1)*((((id Z)^(#)sec)`|Z).x) by VALUED_1:6 .= (-1)*(-1/cos.x/x^2+sin.x/x/(cos.x)^2) by A1,A4,A8,FDIFF_9:32 .= 1/cos.x/x^2-sin.x/x/(cos.x)^2; hence thesis; end; hence thesis by A7; end; ::f.x=-1/x*cosec.x theorem Th8: Z c= dom ((id Z)^(#)cosec) implies (-(id Z)^(#)cosec) is_differentiable_on Z & for x st x in Z holds ((-(id Z)^(#)cosec)`|Z).x = 1/sin.x/x^2+cos.x/x/(sin.x)^2 proof assume A1:Z c= dom ((id Z)^(#)cosec); then A2:Z c= dom (-(id Z)^(#)cosec) by VALUED_1:8; Z c= dom ((id Z)^) /\ dom cosec by A1,VALUED_1:def 4;then A3:Z c= dom ((id Z)^) by XBOOLE_1:18; A4:not 0 in Z proof assume A5: 0 in Z; dom ((id Z)^) = dom id Z \ (id Z)"{0} by RFUNCT_1:def 8 .= dom id Z \ {0} by Lm1,A5; then not 0 in {0} by XBOOLE_0:def 5,A5,A3; hence thesis by TARSKI:def 1; end; then A6:((id Z)^(#)cosec) is_differentiable_on Z by A1,FDIFF_9:33; then A7:(-1)(#)((id Z)^(#)cosec) is_differentiable_on Z by Lm2,A2,FDIFF_1:28; for x st x in Z holds ((-(id Z)^(#)cosec)`|Z).x = 1/sin.x/x^2+cos.x/x/(sin.x)^2 proof let x; assume A8:x in Z; ((-(id Z)^(#)cosec)`|Z).x = ((-1)(#)(((id Z)^(#)cosec)`|Z)).x by A6,FDIFF_2:19,Lm2 .= (-1)*((((id Z)^(#)cosec)`|Z).x) by VALUED_1:6 .= (-1)*(-1/sin.x/x^2-cos.x/x/(sin.x)^2) by A1,A4,A8,FDIFF_9:33 .= 1/sin.x/x^2+cos.x/x/(sin.x)^2; hence thesis; end; hence thesis by A7; end; ::f.x = -cosec.(sin.x) theorem Th9: Z c= dom (cosec*sin) implies -cosec*sin is_differentiable_on Z & for x st x in Z holds ((-cosec*sin)`|Z).x = cos.x*cos.(sin.x)/(sin.(sin.x))^2 proof assume A1:Z c= dom (cosec*sin); then A2:Z c= dom (-cosec*sin) by VALUED_1:8; A3:cosec*sin is_differentiable_on Z by A1,FDIFF_9:36; then A4:(-1)(#)(cosec*sin) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-cosec*sin)`|Z).x = cos.x*cos.(sin.x)/(sin.(sin.x))^2 proof let x; assume A5:x in Z; ((-cosec*sin)`|Z).x=((-1)(#)((cosec*sin)`|Z)).x by A3,FDIFF_2:19,Lm2 .=(-1)*(((cosec*sin)`|Z).x) by VALUED_1:6 .=(-1)*(-cos.x*cos.(sin.x)/(sin.(sin.x))^2) by A1,A5,FDIFF_9:36 .=cos.x*cos.(sin.x)/(sin.(sin.x))^2; hence thesis; end; hence thesis by A4; end; ::f.x=-sec.(cot.x) theorem Th10: Z c= dom (sec*cot) implies -sec*cot is_differentiable_on Z & for x st x in Z holds ((-sec*cot)`|Z).x = sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2 proof assume A1:Z c= dom (sec*cot); then A2:Z c= dom (-sec*cot) by VALUED_1:8; A3:sec*cot is_differentiable_on Z by A1,FDIFF_9:39; then A4:(-1)(#)(sec*cot) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-sec*cot)`|Z).x = sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2 proof let x; assume A5: x in Z; ((-sec*cot)`|Z).x=((-1)(#)((sec*cot)`|Z)).x by A3,FDIFF_2:19,Lm2 .=(-1)*(((sec*cot)`|Z).x) by VALUED_1:6 .=(-1)*(-sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2) by A1,A5,FDIFF_9:39 .=sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2; hence thesis; end; hence thesis by A4; end; ::f.x=-cosec.(tan.x) theorem Th11: Z c= dom (cosec*tan) implies -cosec*tan is_differentiable_on Z & for x st x in Z holds ((-cosec*tan)`|Z).x = cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2 proof assume A1:Z c= dom (cosec*tan); then A2:Z c= dom (-cosec*tan) by VALUED_1:8; A3:cosec*tan is_differentiable_on Z by A1,FDIFF_9:40; dom (cosec*tan) c= dom tan by RELAT_1:44; then A4: Z c= dom tan by A1,XBOOLE_1:1; A5:(-1)(#)(cosec*tan) is_differentiable_on Z by A2,A3,FDIFF_1:28,Lm2; A6:for x st x in Z holds sin.(tan.x)<>0 proof let x; assume x in Z; then tan.x in dom cosec by A1,FUNCT_1:21; hence thesis by RFUNCT_1:13; end; for x st x in Z holds ((-cosec*tan)`|Z).x = cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2 proof let x; assume A7: x in Z; then A8: cos.x<>0 by A4,FDIFF_8:1; then A9: tan is_differentiable_in x by FDIFF_7:46; A10: sin.(tan.x)<>0 by A6,A7;then A11: cosec is_differentiable_in tan.x by FDIFF_9:2; A12: cosec*tan is_differentiable_in x by A3,A7,FDIFF_1:16; ((-cosec*tan)`|Z).x=diff(-cosec*tan,x) by A5,A7,FDIFF_1:def 8 .=(-1)*(diff(cosec*tan,x)) by A12,FDIFF_1:23,Lm2 .=(-1)*(diff(cosec, tan.x)*diff(tan,x)) by A9,A11,FDIFF_2:13 .=(-1)*((-cos.(tan.x)/(sin.(tan.x))^2) * diff(tan,x)) by A10,FDIFF_9:2 .=(-1)*((1/(cos.x)^2)*(-cos.(tan.x)/(sin.(tan.x))^2)) by A8,FDIFF_7:46 .=cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2; hence thesis; end; hence thesis by A5; end; ::f.x=-cot.x*sec.x theorem Th12: Z c= dom (cot(#)sec) implies (-cot(#)sec) is_differentiable_on Z & for x st x in Z holds ((-cot(#)sec)`|Z).x = 1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2 proof assume A1:Z c= dom (cot(#)sec); then A2:Z c= dom (-cot(#)sec) by VALUED_1:8; A3:cot(#)sec is_differentiable_on Z by A1,FDIFF_9:43; then A4:(-1)(#)(cot(#)sec) is_differentiable_on Z by Lm2,A2,FDIFF_1:28; for x st x in Z holds ((-cot(#)sec)`|Z).x = 1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2 proof let x; assume A5: x in Z; ((-cot(#)sec)`|Z).x = ((-1)(#)((cot(#)sec)`|Z)).x by Lm2,A3,FDIFF_2:19 .=(-1)*(((cot(#)sec)`|Z).x) by VALUED_1:6 .=(-1)*(-1/(sin.x)^2/cos.x+cot.x*sin.x/(cos.x)^2) by A1,A5,FDIFF_9:43 .=1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2; hence thesis; end; hence thesis by A4; end; ::f.x=-cot.x*cosec.x theorem Th13: Z c= dom (cot(#)cosec) implies (-cot(#)cosec) is_differentiable_on Z & for x st x in Z holds ((-cot(#)cosec)`|Z).x = 1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2 proof assume A1:Z c= dom (cot(#)cosec); then A2:Z c= dom (-cot(#)cosec) by VALUED_1:8; A3:(cot(#)cosec) is_differentiable_on Z by A1,FDIFF_9:45; then A4:(-1)(#)(cot(#)cosec) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-cot(#)cosec)`|Z).x = 1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2 proof let x; assume A5:x in Z; ((-cot(#)cosec)`|Z).x = ((-1)(#)((cot(#)cosec)`|Z)).x by Lm2,A3,FDIFF_2:19 .=(-1)*(((cot(#)cosec)`|Z).x) by VALUED_1:6 .=(-1)*(-1/(sin.x)^2/sin.x-cot.x*cos.x/(sin.x)^2) by A1,A5,FDIFF_9:45 .=1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2; hence thesis; end; hence thesis by A4; end; ::f.x=-cos.x * cot.x theorem Th14: Z c= dom (cos (#) cot) implies (-cos (#) cot) is_differentiable_on Z & for x st x in Z holds((-cos (#) cot)`|Z).x = cos.x+cos.x/(sin.x)^2 proof assume A1:Z c= dom (cos (#) cot); then A2:Z c= dom (-cos (#) cot) by VALUED_1:8; A3:(cos (#) cot) is_differentiable_on Z by A1,FDIFF_10:11; then A4:(-1)(#)(cos (#) cot) is_differentiable_on Z by A2,FDIFF_1:28,Lm2; for x st x in Z holds ((-cos (#) cot)`|Z).x = cos.x+cos.x/(sin.x)^2 proof let x; assume A5: x in Z; ((-cos (#) cot)`|Z).x = ((-1)(#)((cos (#) cot)`|Z)).x by A3,FDIFF_2:19,Lm2 .=(-1)*(((cos (#) cot)`|Z).x) by VALUED_1:6 .=(-1)*(-cos.x-cos.x/(sin.x)^2) by A1,A5,FDIFF_10:11 .=cos.x+cos.x/(sin.x)^2; hence thesis; end; hence thesis by A4; end; begin :: Integrability Formulas ::f.x=sin.(1/x)/(x^2*(cos.(1/x))^2) theorem A c= Z & (for x st x in Z holds f.x=sin.(1/x)/(x^2*(cos.(1/x))^2)) & Z c= dom (sec*((id Z)^)) & Z = dom f & f|A is continuous implies integral(f,A)=(-sec*((id Z)^)).(upper_bound A)- (-sec*((id Z)^)).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.(1/x)/(x^2*(cos.(1/x))^2)) & Z c= dom (sec*((id Z)^)) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:(-sec*((id Z)^)) is_differentiable_on Z by A1,Th1; A4:for x st x in dom ((-sec*((id Z)^))`|Z) holds ((-sec*((id Z)^))`|Z).x=f.x proof let x; assume x in dom ((-sec*((id Z)^))`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-sec*((id Z)^))`|Z).x = sin.(1/x)/(x^2*(cos.(1/x))^2) by A1,Th1 .=f.x by A1,A5; hence thesis; end; dom ((-sec*((id Z)^))`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-sec*((id Z)^))`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=cos.(1/x)/(x^2*(sin.(1/x))^2) theorem A c= Z & (for x st x in Z holds f.x=cos.(1/x)/(x^2*(sin.(1/x))^2)) & Z c= dom (cosec*((id Z)^)) & Z = dom f & f|A is continuous implies integral(f,A)=(cosec*((id Z)^)).(upper_bound A)- (cosec*((id Z)^)).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.(1/x)/(x^2*(sin.(1/x))^2)) & Z c= dom (cosec*((id Z)^)) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:Z c= dom ((id Z)^) by A1,FUNCT_1:171; A4:not 0 in Z proof assume A5: 0 in Z; dom ((id Z)^) = dom id Z \ (id Z)"{0} by RFUNCT_1:def 8 .= dom id Z \ {0} by Lm1,A5; then not 0 in {0} by XBOOLE_0:def 5,A5,A3; hence thesis by TARSKI:def 1; end; then A6:(cosec*((id Z)^)) is_differentiable_on Z by A1,FDIFF_9:9; A7:for x st x in dom ((cosec*((id Z)^))`|Z) holds ((cosec*((id Z)^))`|Z).x=f.x proof let x; assume x in dom ((cosec*((id Z)^))`|Z);then A8:x in Z by A6,FDIFF_1:def 8;then ((cosec*((id Z)^))`|Z).x = cos.(1/x)/(x^2*(sin.(1/x))^2) by A1,A4,FDIFF_9:9 .=f.x by A1,A8; hence thesis; end; dom ((cosec*((id Z)^))`|Z)=dom f by A1,A6,FDIFF_1:def 8; then ((cosec*((id Z)^))`|Z)= f by A7,PARTFUN1:34; hence thesis by A1,A2,A6,INTEGRA5:13; end; ::f.x=exp_R.x*sin.(exp_R.x)/(cos.(exp_R.x))^2 theorem A c= Z & (for x st x in Z holds f.x=exp_R.x*sin.(exp_R.x)/(cos.(exp_R.x))^2) & Z c= dom (sec*exp_R) & Z = dom f & f|A is continuous implies integral(f,A)=(sec*exp_R).(upper_bound A)-(sec*exp_R).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=exp_R.x*sin.(exp_R.x)/(cos.(exp_R.x))^2) & Z c= dom (sec*exp_R) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:sec*exp_R is_differentiable_on Z by A1,FDIFF_9:12; A4:for x st x in dom ((sec*exp_R)`|Z) holds ((sec*exp_R)`|Z).x=f.x proof let x; assume x in dom ((sec*exp_R)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((sec*exp_R)`|Z).x=exp_R.x*sin.(exp_R.x)/(cos.(exp_R.x))^2 by A1,FDIFF_9:12 .=f.x by A1,A5; hence thesis; end; dom ((sec*exp_R)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((sec*exp_R)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2 theorem A c= Z & (for x st x in Z holds f.x=exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2) & Z c= dom (cosec*exp_R) & Z = dom f & f|A is continuous implies integral(f,A)=(-cosec*exp_R).(upper_bound A)-(-cosec*exp_R).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2) & Z c= dom (cosec*exp_R) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-cosec*exp_R is_differentiable_on Z by A1,Th2; A4:for x st x in dom ((-cosec*exp_R)`|Z) holds ((-cosec*exp_R)`|Z).x=f.x proof let x; assume x in dom ((-cosec*exp_R)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-cosec*exp_R)`|Z).x=exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2 by A1,Th2 .=f.x by A1,A5; hence thesis; end; dom ((-cosec*exp_R)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-cosec*exp_R)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=sin.(ln.x)/(x*(cos.(ln.x))^2) theorem A c= Z & (for x st x in Z holds f.x=sin.(ln.x)/(x*(cos.(ln.x))^2)) & Z c= dom (sec*ln) & Z = dom f & f|A is continuous implies integral(f,A)=(sec*ln).(upper_bound A)-(sec*ln).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.(ln.x)/(x*(cos.(ln.x))^2)) & Z c= dom (sec*ln) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:sec*ln is_differentiable_on Z by A1,FDIFF_9:14; A4:for x st x in dom ((sec*ln)`|Z) holds ((sec*ln)`|Z).x=f.x proof let x; assume x in dom ((sec*ln)`|Z);then A5: x in Z by A3,FDIFF_1:def 8;then ((sec*ln)`|Z).x=sin.(ln.x)/(x*(cos.(ln.x))^2) by A1,FDIFF_9:14 .=f.x by A1,A5; hence thesis; end; dom((sec*ln)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((sec*ln)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=cos.(ln.x)/(x*(sin.(ln.x))^2) theorem A c= Z & (for x st x in Z holds f.x=cos.(ln.x)/(x*(sin.(ln.x))^2)) & Z c= dom (cosec*ln) & Z = dom f & f|A is continuous implies integral(f,A)=(-cosec*ln).(upper_bound A)-(-cosec*ln).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.(ln.x)/(x*(sin.(ln.x))^2)) & Z c= dom (cosec*ln) & Z = dom f & f|A is continuous;then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-cosec*ln is_differentiable_on Z by A1,Th3; A4:for x st x in dom ((-cosec*ln)`|Z) holds ((-cosec*ln)`|Z).x=f.x proof let x; assume x in dom ((-cosec*ln)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-cosec*ln)`|Z).x=cos.(ln.x)/(x*(sin.(ln.x))^2) by A1,Th3 .=f.x by A1,A5; hence thesis; end; dom ((-cosec*ln)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-cosec*ln)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=exp_R.(sec.x)*sin.x/(cos.x)^2 theorem A c= Z & f=(exp_R*sec)(#)(sin/cos^2) & Z = dom f & f|A is continuous implies integral(f,A)=(exp_R*sec).(upper_bound A)-(exp_R*sec).(lower_bound A) proof assume A1:A c= Z & f=(exp_R*sec)(#)(sin/cos^2) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; Z = dom (exp_R*sec) /\ dom (sin/cos^2) by A1,VALUED_1:def 4;then A3:Z c= dom (exp_R*sec) & Z c= dom (sin/cos^2) by XBOOLE_1:18; then A4:exp_R*sec is_differentiable_on Z by FDIFF_9:16; A5:for x st x in Z holds f.x=exp_R.(sec.x)*sin.x/(cos.x)^2 proof let x; assume A6:x in Z; ((exp_R*sec)(#)(sin/cos^2)).x =(exp_R*sec).x*(sin/cos^2).x by VALUED_1:5 .=exp_R.(sec.x)*(sin/cos^2).x by A6,FUNCT_1:22,A3 .=exp_R.(sec.x)*(sin.x/(cos^2).x) by RFUNCT_1:def 4,A3,A6 .=exp_R.(sec.x)*(sin.x/(cos.x)^2) by VALUED_1:11 .=exp_R.(sec.x)*sin.x/(cos.x)^2 ; hence thesis by A1; end; A7:for x st x in dom ((exp_R*sec)`|Z) holds ((exp_R*sec)`|Z).x=f.x proof let x; assume x in dom ((exp_R*sec)`|Z);then A8:x in Z by A4,FDIFF_1:def 8;then ((exp_R*sec)`|Z).x=exp_R.(sec.x)*sin.x/(cos.x)^2 by A3,FDIFF_9:16 .=f.x by A5,A8; hence thesis; end; dom ((exp_R*sec)`|Z)=dom f by A1,A4,FDIFF_1:def 8; then ((exp_R*sec)`|Z)= f by A7,PARTFUN1:34; hence thesis by A1,A2,A4,INTEGRA5:13; end; ::f.x=exp_R.(cosec.x)*cos.x/(sin.x)^2 theorem A c= Z & f=(exp_R*cosec)(#)(cos/sin^2) & Z = dom f & f|A is continuous implies integral(f,A)=(-exp_R*cosec).(upper_bound A)- (-exp_R*cosec).(lower_bound A) proof assume A1:A c= Z & f=(exp_R*cosec)(#)(cos/sin^2) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; Z = dom (exp_R*cosec) /\ dom (cos/sin^2) by A1,VALUED_1:def 4;then A3:Z c= dom (exp_R*cosec) & Z c= dom (cos/sin^2) by XBOOLE_1:18; then A4:-exp_R*cosec is_differentiable_on Z by Th4; A5:for x st x in Z holds f.x=exp_R.(cosec.x)*cos.x/(sin.x)^2 proof let x; assume A6:x in Z; ((exp_R*cosec)(#)(cos/sin^2)).x =(exp_R*cosec).x*(cos/sin^2).x by VALUED_1:5 .=exp_R.(cosec.x)*(cos/sin^2).x by A6,FUNCT_1:22,A3 .=exp_R.(cosec.x)*(cos.x/(sin^2).x) by RFUNCT_1:def 4,A3,A6 .=exp_R.(cosec.x)*(cos.x/(sin.x)^2) by VALUED_1:11 .=exp_R.(cosec.x)*cos.x/(sin.x)^2 ; hence thesis by A1; end; A7:for x st x in dom ((-exp_R*cosec)`|Z) holds ((-exp_R*cosec)`|Z).x=f.x proof let x; assume x in dom ((-exp_R*cosec)`|Z);then A8:x in Z by A4,FDIFF_1:def 8;then ((-exp_R*cosec)`|Z).x=exp_R.(cosec.x)*cos.x/(sin.x)^2 by A3,Th4 .=f.x by A5,A8; hence thesis; end; dom ((-exp_R*cosec)`|Z)=dom f by A1,A4,FDIFF_1:def 8; then ((-exp_R*cosec)`|Z)= f by A7,PARTFUN1:34; hence thesis by A1,A2,A4,INTEGRA5:13; end; ::f.x=tan.x theorem A c= Z & Z c= dom (ln*sec) & Z = dom tan & tan|A is continuous implies integral(tan,A)=(ln*sec).(upper_bound A)-(ln*sec).(lower_bound A) proof assume A1:A c= Z & Z c= dom (ln*sec) & Z = dom tan & tan|A is continuous; then A2:tan is_integrable_on A & tan|A is bounded by INTEGRA5:10,11; A3:ln*sec is_differentiable_on Z by A1,FDIFF_9:18; A4:for x st x in Z holds cos.x<>0 proof let x; assume x in Z; then x in dom sec by A1,FUNCT_1:21; hence thesis by RFUNCT_1:13; end; A5:for x st x in dom ((ln*sec)`|Z) holds ((ln*sec)`|Z).x = tan.x proof let x; assume x in dom ((ln*sec)`|Z);then A6: x in Z by A3,FDIFF_1:def 8;then A7: cos.x<>0 by A4; ((ln*sec)`|Z).x = tan x by A1,A6,FDIFF_9:18 .=tan.x by A7,SIN_COS9:15; hence thesis; end; dom ((ln*sec)`|Z)=dom tan by A1,A3,FDIFF_1:def 8; then ((ln*sec)`|Z)= tan by A5,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=-cot.x theorem A c= Z & Z c= dom (ln*cosec) & Z = dom cot & (-cot)|A is continuous implies integral((-cot),A)=(ln*cosec).(upper_bound A)- (ln*cosec).(lower_bound A) proof assume A1:A c= Z & Z c= dom (ln*cosec) & Z = dom cot & (-cot)|A is continuous; then A2:Z = dom (-cot) by VALUED_1:8; then A3:(-cot) is_integrable_on A & (-cot)|A is bounded by A1,INTEGRA5:10,11; A4:ln*cosec is_differentiable_on Z by A1,FDIFF_9:19; A5:for x st x in Z holds sin.x<>0 proof let x; assume x in Z; then x in dom cosec by A1,FUNCT_1:21; hence thesis by RFUNCT_1:13; end; A6:for x st x in dom ((ln*cosec)`|Z) holds ((ln*cosec)`|Z).x = (-cot).x proof let x; assume x in dom ((ln*cosec)`|Z);then A7: x in Z by A4,FDIFF_1:def 8;then A8: sin.x<>0 by A5; ((ln*cosec)`|Z).x = -cot(x) by A1,A7,FDIFF_9:19 .=-cot.x by A8,SIN_COS9:16 .=(-cot).x by VALUED_1:8; hence thesis; end; dom ((ln*cosec)`|Z)=dom (-cot) by A2,A4,FDIFF_1:def 8; then ((ln*cosec)`|Z)= -cot by A6,PARTFUN1:34; hence thesis by A1,A3,A4,INTEGRA5:13; end; ::f.x=cot.x theorem A c= Z & Z c= dom (ln*cosec) & Z = dom cot & cot|A is continuous implies integral(cot,A)=(-ln*cosec).(upper_bound A)-(-ln*cosec).(lower_bound A) proof assume A1:A c= Z & Z c= dom (ln*cosec) & Z = dom cot & cot|A is continuous; then A2:cot is_integrable_on A & cot|A is bounded by INTEGRA5:10,11; A3:-ln*cosec is_differentiable_on Z by A1,Th5; A4:for x st x in dom ((-ln*cosec)`|Z) holds ((-ln*cosec)`|Z).x = cot.x proof let x; assume x in dom ((-ln*cosec)`|Z);then x in Z by A3,FDIFF_1:def 8; then ((-ln*cosec)`|Z).x=cot.x by A1,Th5; hence thesis; end; dom ((-ln*cosec)`|Z)=dom cot by A1,A3,FDIFF_1:def 8; then ((-ln*cosec)`|Z)= cot by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=n*sin.x/(cos.x) #Z (n+1) theorem A c= Z & (for x st x in Z holds f.x=n*sin.x/(cos.x) #Z (n+1)) & Z c= dom (( #Z n)*sec) & 1<=n & Z = dom f & f|A is continuous implies integral(f,A)=(( #Z n)*sec).(upper_bound A)- (( #Z n)*sec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=n*sin.x/(cos.x) #Z (n+1)) & Z c= dom (( #Z n)*sec) & 1<=n & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:( #Z n)*sec is_differentiable_on Z by A1,FDIFF_9:20; A4:for x st x in dom ((( #Z n)*sec)`|Z) holds ((( #Z n)*sec)`|Z).x = f.x proof let x; assume x in dom ((( #Z n)*sec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((( #Z n)*sec)`|Z).x=n*sin.x/(cos.x) #Z (n+1) by A1,FDIFF_9:20 .=f.x by A1,A5; hence thesis; end; dom ((( #Z n)*sec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((( #Z n)*sec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=n*cos.x/(sin.x) #Z (n+1) theorem A c= Z & (for x st x in Z holds f.x=n*cos.x/(sin.x) #Z (n+1)) & Z c= dom (( #Z n)*cosec) & 1<=n & Z = dom f & f|A is continuous implies integral(f,A)=(-( #Z n)*cosec).(upper_bound A)- (-( #Z n)*cosec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=n*cos.x/(sin.x) #Z (n+1)) & Z c= dom (( #Z n)*cosec) & 1<=n & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-( #Z n)*cosec is_differentiable_on Z by A1,Th6; A4:for x st x in dom ((-( #Z n)*cosec)`|Z) holds ((-( #Z n)*cosec)`|Z).x = f.x proof let x; assume x in dom ((-( #Z n)*cosec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-( #Z n)*cosec)`|Z).x=n*cos.x/(sin.x) #Z (n+1) by A1,Th6 .=f.x by A1,A5; hence thesis; end; dom ((-( #Z n)*cosec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-( #Z n)*cosec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=exp_R.x/cos.x+exp_R.x*sin.x/(cos.x)^2 theorem A c= Z & (for x st x in Z holds f.x=exp_R.x/cos.x+exp_R.x*sin.x/(cos.x)^2) & Z c= dom (exp_R(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(exp_R(#)sec).(upper_bound A)- (exp_R(#)sec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=exp_R.x/cos.x+exp_R.x*sin.x/(cos.x)^2) & Z c= dom (exp_R(#)sec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:exp_R(#)sec is_differentiable_on Z by A1,FDIFF_9:24; A4:for x st x in dom ((exp_R(#)sec)`|Z) holds ((exp_R(#)sec)`|Z).x = f.x proof let x; assume x in dom ((exp_R(#)sec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((exp_R(#)sec)`|Z).x = exp_R.x/cos.x+exp_R.x*sin.x/(cos.x)^2 by A1,FDIFF_9:24 .=f.x by A1,A5; hence thesis; end; dom ((exp_R(#)sec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((exp_R(#)sec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=exp_R.x/sin.x-exp_R.x*cos.x/(sin.x)^2 theorem A c= Z & (for x st x in Z holds f.x=exp_R.x/sin.x-exp_R.x*cos.x/(sin.x)^2) & Z c= dom (exp_R(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(exp_R(#)cosec).(upper_bound A)- (exp_R(#)cosec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=exp_R.x/sin.x-exp_R.x*cos.x/(sin.x)^2) & Z c= dom (exp_R(#)cosec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:exp_R(#)cosec is_differentiable_on Z by A1,FDIFF_9:25; A4:for x st x in dom ((exp_R(#)cosec)`|Z) holds ((exp_R(#)cosec)`|Z).x = f.x proof let x; assume x in dom ((exp_R(#)cosec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((exp_R(#)cosec)`|Z).x = exp_R.x/sin.x-exp_R.x*cos.x/(sin.x)^2 by A1,FDIFF_9:25 .=f.x by A1,A5; hence thesis; end; dom ((exp_R(#)cosec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((exp_R(#)cosec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=(sin.(a*x)-(cos.(a*x))^2)/(cos.(a*x))^2 theorem A c= Z & (for x st x in Z holds f.x=(sin.(a*x)-(cos.(a*x))^2)/(cos.(a*x))^2) & (Z c= dom ((1/a)(#)(sec*f1)-id Z) & for x st x in Z holds f1.x=a*x & a<>0) & Z = dom f & f|A is continuous implies integral(f,A)=((1/a)(#)(sec*f1)-id Z).(upper_bound A)- ((1/a)(#)(sec*f1)-id Z).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=(sin.(a*x)-(cos.(a*x))^2)/(cos.(a*x))^2) & (Z c= dom ((1/a)(#)(sec*f1)-id Z) & for x st x in Z holds f1.x=a*x & a<>0) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:(1/a)(#)(sec*f1)-id Z is_differentiable_on Z by A1,FDIFF_9:26; A4:for x st x in dom (((1/a)(#)(sec*f1)-id Z)`|Z) holds (((1/a)(#)(sec*f1)-id Z)`|Z).x=f.x proof let x; assume x in dom (((1/a)(#)(sec*f1)-id Z)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then (((1/a)(#)(sec*f1)-id Z)`|Z).x = (sin.(a*x)-(cos.(a*x))^2)/(cos.(a*x))^2 by A1,FDIFF_9:26 .= f.x by A1,A5; hence thesis; end; dom (((1/a)(#)(sec*f1)-id Z)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then (((1/a)(#)(sec*f1)-id Z)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=(cos.(a*x)-(sin.(a*x))^2)/(sin.(a*x))^2 theorem A c= Z & (for x st x in Z holds f.x=(cos.(a*x)-(sin.(a*x))^2)/(sin.(a*x))^2) & (Z c= dom ((-1/a)(#)(cosec*f1)-id Z) & for x st x in Z holds f1.x=a*x & a<>0) & Z = dom f & f|A is continuous implies integral(f,A)=((-1/a)(#)(cosec*f1)-id Z).(upper_bound A) -((-1/a)(#)(cosec*f1)-id Z).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=(cos.(a*x)-(sin.(a*x))^2)/(sin.(a*x))^2) & (Z c= dom ((-1/a)(#)(cosec*f1)-id Z) & for x st x in Z holds f1.x=a*x & a<>0) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:(-1/a)(#)(cosec*f1)-id Z is_differentiable_on Z by A1,FDIFF_9:27; A4:for x st x in dom (((-1/a)(#)(cosec*f1)-id Z)`|Z) holds (((-1/a)(#)(cosec*f1)-id Z)`|Z).x=f.x proof let x; assume x in dom (((-1/a)(#)(cosec*f1)-id Z)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then (((-1/a)(#)(cosec*f1)-id Z)`|Z).x = (cos.(a*x)-(sin.(a*x))^2)/(sin.(a*x))^2 by A1,FDIFF_9:27 .= f.x by A1,A5; hence thesis; end; dom (((-1/a)(#)(cosec*f1)-id Z)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then (((-1/a)(#)(cosec*f1)-id Z)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/cos.x/x+ln.x*sin.x/(cos.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/cos.x/x+ln.x*sin.x/(cos.x)^2) & Z c= dom (ln(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(ln(#)sec).(upper_bound A)-(ln(#)sec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/cos.x/x+ln.x*sin.x/(cos.x)^2) & Z c= dom (ln(#)sec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:ln(#)sec is_differentiable_on Z by A1,FDIFF_9:30; A4:for x st x in dom ((ln(#)sec)`|Z) holds ((ln(#)sec)`|Z).x=f.x proof let x; assume x in dom ((ln(#)sec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((ln(#)sec)`|Z).x = 1/cos.x/x+ln.x*sin.x/(cos.x)^2 by A1,FDIFF_9:30 .= f.x by A1,A5; hence thesis; end; dom ((ln(#)sec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((ln(#)sec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/sin.x/x-ln.x*cos.x/(sin.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/sin.x/x-ln.x*cos.x/(sin.x)^2) & Z c= dom (ln(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(ln(#)cosec).(upper_bound A)-(ln(#)cosec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/sin.x/x-ln.x*cos.x/(sin.x)^2) & Z c= dom (ln(#)cosec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:ln(#)cosec is_differentiable_on Z by A1,FDIFF_9:31; A4:for x st x in dom ((ln(#)cosec)`|Z) holds ((ln(#)cosec)`|Z).x=f.x proof let x; assume x in dom ((ln(#)cosec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((ln(#)cosec)`|Z).x = 1/sin.x/x-ln.x*cos.x/(sin.x)^2 by A1,FDIFF_9:31 .= f.x by A1,A5; hence thesis; end; dom ((ln(#)cosec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((ln(#)cosec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/cos.x/x^2-sin.x/x/(cos.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/cos.x/x^2-sin.x/x/(cos.x)^2) & Z c= dom ((id Z)^(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(-(id Z)^(#)sec).(upper_bound A)-(-(id Z)^(#)sec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/cos.x/x^2-sin.x/x/(cos.x)^2) & Z c= dom ((id Z)^(#)sec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-(id Z)^(#)sec is_differentiable_on Z by A1,Th7; A4:for x st x in dom ((-(id Z)^(#)sec)`|Z) holds ((-(id Z)^(#)sec)`|Z).x=f.x proof let x; assume x in dom ((-(id Z)^(#)sec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-(id Z)^(#)sec)`|Z).x = 1/cos.x/x^2-sin.x/x/(cos.x)^2 by A1,Th7 .= f.x by A1,A5; hence thesis; end; dom ((-(id Z)^(#)sec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-(id Z)^(#)sec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/sin.x/x^2+cos.x/x/(sin.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/sin.x/x^2+cos.x/x/(sin.x)^2) & Z c= dom ((id Z)^(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(-(id Z)^(#)cosec).(upper_bound A)- (-(id Z)^(#)cosec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/sin.x/x^2+cos.x/x/(sin.x)^2) & Z c= dom ((id Z)^(#)cosec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-(id Z)^(#)cosec is_differentiable_on Z by A1,Th8; A4:for x st x in dom ((-(id Z)^(#)cosec)`|Z) holds ((-(id Z)^(#)cosec)`|Z).x=f.x proof let x; assume x in dom ((-(id Z)^(#)cosec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-(id Z)^(#)cosec)`|Z).x = 1/sin.x/x^2+cos.x/x/(sin.x)^2 by A1,Th8 .= f.x by A1,A5; hence thesis; end; dom ((-(id Z)^(#)cosec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-(id Z)^(#)cosec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=cos.x*sin.(sin.x)/(cos.(sin.x))^2 theorem A c= Z & (for x st x in Z holds f.x=cos.x*sin.(sin.x)/(cos.(sin.x))^2) & Z c= dom (sec*sin) & Z = dom f & f|A is continuous implies integral(f,A)=(sec*sin).(upper_bound A)-(sec*sin).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.x*sin.(sin.x)/(cos.(sin.x))^2) & Z c= dom (sec*sin) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:sec*sin is_differentiable_on Z by A1,FDIFF_9:34; A4:for x st x in dom ((sec*sin)`|Z) holds ((sec*sin)`|Z).x=f.x proof let x; assume x in dom ((sec*sin)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((sec*sin)`|Z).x = cos.x*sin.(sin.x)/(cos.(sin.x))^2 by A1,FDIFF_9:34 .= f.x by A1,A5; hence thesis; end; dom ((sec*sin)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((sec*sin)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=sin.x*sin.(cos.x)/(cos.(cos.x))^2 theorem A c= Z & (for x st x in Z holds f.x=sin.x*sin.(cos.x)/(cos.(cos.x))^2) & Z c= dom (sec*cos) & Z = dom f & f|A is continuous implies integral(f,A)=(-sec*cos).(upper_bound A)-(-sec*cos).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.x*sin.(cos.x)/(cos.(cos.x))^2) & Z c= dom (sec*cos) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:Z c= dom (-sec*cos) by A1,VALUED_1:8; A4:sec*cos is_differentiable_on Z by A1,FDIFF_9:35; then A5:(-1)(#)(sec*cos) is_differentiable_on Z by A3,FDIFF_1:28,Lm2; A6:for x st x in Z holds ((-sec*cos)`|Z).x = sin.x*sin.(cos.x)/(cos.(cos.x))^2 proof let x; assume A7:x in Z; ((-sec*cos)`|Z).x=((-1)(#)((sec*cos)`|Z)).x by A4,FDIFF_2:19,Lm2 .=(-1)*(((sec*cos)`|Z).x) by VALUED_1:6 .=(-1)*(-sin.x*sin.(cos.x)/(cos.(cos.x))^2) by A1,A7,FDIFF_9:35 .=sin.x*sin.(cos.x)/(cos.(cos.x))^2; hence thesis; end; A8:for x st x in dom ((-sec*cos)`|Z) holds ((-sec*cos)`|Z).x=f.x proof let x; assume x in dom ((-sec*cos)`|Z);then A9:x in Z by A5,FDIFF_1:def 8;then ((-sec*cos)`|Z).x = sin.x*sin.(cos.x)/(cos.(cos.x))^2 by A6 .= f.x by A1,A9; hence thesis; end; dom ((-sec*cos)`|Z)=dom f by A1,A5,FDIFF_1:def 8; then ((-sec*cos)`|Z)= f by A8,PARTFUN1:34; hence thesis by A1,A2,A5,INTEGRA5:13; end; ::f.x=cos.x*cos.(sin.x)/(sin.(sin.x))^2 theorem A c= Z & (for x st x in Z holds f.x=cos.x*cos.(sin.x)/(sin.(sin.x))^2) & Z c= dom (cosec*sin) & Z = dom f & f|A is continuous implies integral(f,A)=(-cosec*sin).(upper_bound A)-(-cosec*sin).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.x*cos.(sin.x)/(sin.(sin.x))^2) & Z c= dom (cosec*sin) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-cosec*sin is_differentiable_on Z by A1,Th9; A4:for x st x in dom ((-cosec*sin)`|Z) holds ((-cosec*sin)`|Z).x=f.x proof let x; assume x in dom ((-cosec*sin)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-cosec*sin)`|Z).x = cos.x*cos.(sin.x)/(sin.(sin.x))^2 by A1,Th9 .= f.x by A1,A5; hence thesis; end; dom ((-cosec*sin)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-cosec*sin)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=sin.x*cos.(cos.x)/(sin.(cos.x))^2 theorem A c= Z & (for x st x in Z holds f.x=sin.x*cos.(cos.x)/(sin.(cos.x))^2) & Z c= dom (cosec*cos) & Z = dom f & f|A is continuous implies integral(f,A)=(cosec*cos).(upper_bound A)-(cosec*cos).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.x*cos.(cos.x)/(sin.(cos.x))^2) & Z c= dom (cosec*cos) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:cosec*cos is_differentiable_on Z by A1,FDIFF_9:37; A4:for x st x in dom ((cosec*cos)`|Z) holds ((cosec*cos)`|Z).x=f.x proof let x; assume x in dom ((cosec*cos)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((cosec*cos)`|Z).x = sin.x*cos.(cos.x)/(sin.(cos.x))^2 by A1,FDIFF_9:37 .= f.x by A1,A5; hence thesis; end; dom ((cosec*cos)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((cosec*cos)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=sin.(tan.x)/(cos.x)^2/(cos.(tan.x))^2 theorem A c= Z & (for x st x in Z holds f.x=sin.(tan.x)/(cos.x)^2/(cos.(tan.x))^2) & Z c= dom (sec*tan) & Z = dom f & f|A is continuous implies integral(f,A)=(sec*tan).(upper_bound A)-(sec*tan).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.(tan.x)/(cos.x)^2/(cos.(tan.x))^2) & Z c= dom (sec*tan) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:sec*tan is_differentiable_on Z by A1,FDIFF_9:38; A4:for x st x in dom ((sec*tan)`|Z) holds ((sec*tan)`|Z).x=f.x proof let x; assume x in dom ((sec*tan)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((sec*tan)`|Z).x = sin.(tan.x)/(cos.x)^2/(cos.(tan.x))^2 by A1,FDIFF_9:38 .= f.x by A1,A5; hence thesis; end; dom ((sec*tan)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((sec*tan)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2 theorem A c= Z & (for x st x in Z holds f.x=sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2) & Z c= dom (sec*cot) & Z = dom f & f|A is continuous implies integral(f,A)=(-sec*cot).(upper_bound A)-(-sec*cot).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2) & Z c= dom (sec*cot) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-sec*cot is_differentiable_on Z by A1,Th10; A4:for x st x in dom ((-sec*cot)`|Z) holds ((-sec*cot)`|Z).x=f.x proof let x; assume x in dom ((-sec*cot)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-sec*cot)`|Z).x = sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2 by A1,Th10 .= f.x by A1,A5; hence thesis; end; dom ((-sec*cot)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-sec*cot)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x= cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2 theorem A c= Z & (for x st x in Z holds f.x=cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2) & Z c= dom (cosec*tan) & Z = dom f & f|A is continuous implies integral(f,A)=(-cosec*tan).(upper_bound A)-(-cosec*tan).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2) & Z c= dom (cosec*tan) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-cosec*tan is_differentiable_on Z by A1,Th11; A4:for x st x in dom ((-cosec*tan)`|Z) holds ((-cosec*tan)`|Z).x=f.x proof let x; assume x in dom ((-cosec*tan)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-cosec*tan)`|Z).x = cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2 by A1,Th11 .= f.x by A1,A5; hence thesis; end; dom ((-cosec*tan)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-cosec*tan)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=cos.(cot.x)/(sin.x)^2/(sin.(cot.x))^2 theorem A c= Z & (for x st x in Z holds f.x=cos.(cot.x)/(sin.x)^2/(sin.(cot.x))^2) & Z c= dom (cosec*cot) & Z = dom f & f|A is continuous implies integral(f,A)=(cosec*cot).(upper_bound A)-(cosec*cot).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.(cot.x)/(sin.x)^2/(sin.(cot.x))^2) & Z c= dom (cosec*cot) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:cosec*cot is_differentiable_on Z by A1,FDIFF_9:41; A4:for x st x in dom ((cosec*cot)`|Z) holds ((cosec*cot)`|Z).x=f.x proof let x; assume x in dom ((cosec*cot)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((cosec*cot)`|Z).x = cos.(cot.x)/(sin.x)^2/(sin.(cot.x))^2 by A1,FDIFF_9:41 .= f.x by A1,A5; hence thesis; end; dom ((cosec*cot)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((cosec*cot)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/(cos.x)^2/cos.x+tan.x*sin.x/(cos.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2/cos.x+tan.x*sin.x/(cos.x)^2) & Z c= dom (tan(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(tan(#)sec).(upper_bound A)-(tan(#)sec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2/cos.x+tan.x*sin.x/(cos.x)^2) & Z c= dom (tan(#)sec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:tan(#)sec is_differentiable_on Z by A1,FDIFF_9:42; A4:for x st x in dom ((tan(#)sec)`|Z) holds ((tan(#)sec)`|Z).x=f.x proof let x; assume x in dom ((tan(#)sec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((tan(#)sec)`|Z).x = 1/(cos.x)^2/cos.x+tan.x*sin.x/(cos.x)^2 by A1,FDIFF_9:42 .= f.x by A1,A5; hence thesis; end; dom ((tan(#)sec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((tan(#)sec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2) & Z c= dom (cot(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(-cot(#)sec).(upper_bound A)-(-cot(#)sec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2) & Z c= dom (cot(#)sec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-cot(#)sec is_differentiable_on Z by A1,Th12; A4:for x st x in dom ((-cot(#)sec)`|Z) holds ((-cot(#)sec)`|Z).x=f.x proof let x; assume x in dom ((-cot(#)sec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-cot(#)sec)`|Z).x = 1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2 by A1,Th12 .= f.x by A1,A5; hence thesis; end; dom ((-cot(#)sec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-cot(#)sec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/(cos.x)^2/sin.x-tan.x*cos.x/(sin.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2/sin.x-tan.x*cos.x/(sin.x)^2) & Z c= dom (tan(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(tan(#)cosec).(upper_bound A)- (tan(#)cosec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2/sin.x-tan.x*cos.x/(sin.x)^2) & Z c= dom (tan(#)cosec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:tan(#)cosec is_differentiable_on Z by A1,FDIFF_9:44; A4:for x st x in dom ((tan(#)cosec)`|Z) holds ((tan(#)cosec)`|Z).x=f.x proof let x; assume x in dom ((tan(#)cosec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((tan(#)cosec)`|Z).x = 1/(cos.x)^2/sin.x-tan.x*cos.x/(sin.x)^2 by A1,FDIFF_9:44 .= f.x by A1,A5; hence thesis; end; dom ((tan(#)cosec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((tan(#)cosec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2) & Z c= dom (cot(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(-cot(#)cosec).(upper_bound A)- (-cot(#)cosec).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2) & Z c= dom (cot(#)cosec) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-cot(#)cosec is_differentiable_on Z by A1,Th13; A4:for x st x in dom ((-cot(#)cosec)`|Z) holds ((-cot(#)cosec)`|Z).x=f.x proof let x; assume x in dom ((-cot(#)cosec)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((-cot(#)cosec)`|Z).x = 1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2 by A1,Th13 .= f.x by A1,A5; hence thesis; end; dom ((-cot(#)cosec)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-cot(#)cosec)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/(cos.(cot.x))^2*(1/(sin.x)^2) theorem A c= Z & (for x st x in Z holds f.x=1/(cos.(cot.x))^2*(1/(sin.x)^2)) & Z c= dom (tan*cot) & Z = dom f & f|A is continuous implies integral(f,A)=(-tan*cot).(upper_bound A)-(-tan*cot).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/(cos.(cot.x))^2*(1/(sin.x)^2)) & Z c= dom (tan*cot) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:Z c= dom (-tan*cot) by A1,VALUED_1:8; A4:tan*cot is_differentiable_on Z by A1,FDIFF_10:1; then A5:(-1)(#)(tan*cot) is_differentiable_on Z by A3,FDIFF_1:28,Lm2; A6:for x st x in Z holds ((-tan*cot)`|Z).x = 1/(cos.(cot.x))^2*(1/(sin.x)^2) proof let x; assume A7:x in Z; ((-tan*cot)`|Z).x=((-1)(#)((tan*cot)`|Z)).x by A4,FDIFF_2:19,Lm2 .=(-1)*(((tan*cot)`|Z).x) by VALUED_1:6 .=(-1)*(1/(cos.(cot.x))^2*(-1/(sin.x)^2)) by A1,A7,FDIFF_10:1 .=1/(cos.(cot.x))^2*(1/(sin.x)^2); hence thesis; end; A8:for x st x in dom ((-tan*cot)`|Z) holds ((-tan*cot)`|Z).x=f.x proof let x; assume x in dom ((-tan*cot)`|Z);then A9:x in Z by A5,FDIFF_1:def 8;then ((-tan*cot)`|Z).x = 1/(cos.(cot.x))^2*(1/(sin.x)^2) by A6 .= f.x by A1,A9; hence thesis; end; dom ((-tan*cot)`|Z)=dom f by A1,A5,FDIFF_1:def 8; then ((-tan*cot)`|Z)= f by A8,PARTFUN1:34; hence thesis by A1,A2,A5,INTEGRA5:13; end; ::f.x=1/(cos.(tan.x))^2 *(1/(cos.x)^2) theorem A c= Z & (for x st x in Z holds f.x=1/(cos.(tan.x))^2 *(1/(cos.x)^2)) & Z c= dom (tan*tan) & Z = dom f & f|A is continuous implies integral(f,A)=(tan*tan).(upper_bound A)-(tan*tan).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/(cos.(tan.x))^2 *(1/(cos.x)^2)) & Z c= dom (tan*tan) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:tan*tan is_differentiable_on Z by A1,FDIFF_10:2; A4:for x st x in dom ((tan*tan)`|Z) holds ((tan*tan)`|Z).x=f.x proof let x; assume x in dom ((tan*tan)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((tan*tan)`|Z).x = 1/(cos.(tan.x))^2 *(1/(cos.x)^2) by A1,FDIFF_10:2 .= f.x by A1,A5; hence thesis; end; dom ((tan*tan)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((tan*tan)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=(1/(sin.(cot.x))^2) *(1/(sin.x)^2) theorem A c= Z & (for x st x in Z holds f.x=(1/(sin.(cot.x))^2) *(1/(sin.x)^2)) & Z c= dom (cot*cot) & Z = dom f & f|A is continuous implies integral(f,A)=(cot*cot).(upper_bound A)-(cot*cot).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=(1/(sin.(cot.x))^2) *(1/(sin.x)^2)) & Z c= dom (cot*cot) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:cot*cot is_differentiable_on Z by A1,FDIFF_10:3; A4:for x st x in dom ((cot*cot)`|Z) holds ((cot*cot)`|Z).x=f.x proof let x; assume x in dom ((cot*cot)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((cot*cot)`|Z).x = (1/(sin.(cot.x))^2) *(1/(sin.x)^2) by A1,FDIFF_10:3 .= f.x by A1,A5; hence thesis; end; dom ((cot*cot)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((cot*cot)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=(1/(sin.(tan.x))^2)*(1/(cos.x)^2) theorem A c= Z & (for x st x in Z holds f.x=(1/(sin.(tan.x))^2)*(1/(cos.x)^2)) & Z c= dom (cot*tan) & Z = dom f & f|A is continuous implies integral(f,A)=(-cot*tan).(upper_bound A)-(-cot*tan).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=(1/(sin.(tan.x))^2)*(1/(cos.x)^2)) & Z c= dom (cot*tan) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:Z c= dom (-cot*tan) by A1,VALUED_1:8; A4:cot*tan is_differentiable_on Z by A1,FDIFF_10:4; then A5:(-1)(#)(cot*tan) is_differentiable_on Z by A3,FDIFF_1:28,Lm2; A6:for x st x in Z holds ((-cot*tan)`|Z).x = (1/(sin.(tan.x))^2)*(1/(cos.x)^2) proof let x; assume A7:x in Z; ((-cot*tan)`|Z).x=((-1)(#)((cot*tan)`|Z)).x by A4,FDIFF_2:19,Lm2 .=(-1)*(((cot*tan)`|Z).x) by VALUED_1:6 .=(-1)*((-1/(sin.(tan.x))^2)*(1/(cos.x)^2)) by A1,A7,FDIFF_10:4 .=(1/(sin.(tan.x))^2)*(1/(cos.x)^2); hence thesis; end; A8:for x st x in dom ((-cot*tan)`|Z) holds ((-cot*tan)`|Z).x=f.x proof let x; assume x in dom ((-cot*tan)`|Z);then A9:x in Z by A5,FDIFF_1:def 8;then ((-cot*tan)`|Z).x =(1/(sin.(tan.x))^2)*(1/(cos.x)^2) by A6 .= f.x by A1,A9; hence thesis; end; dom ((-cot*tan)`|Z)=dom f by A1,A5,FDIFF_1:def 8; then ((-cot*tan)`|Z)= f by A8,PARTFUN1:34; hence thesis by A1,A2,A5,INTEGRA5:13; end; ::f.x=1/(cos.x)^2+1/(sin.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2+1/(sin.x)^2) & Z c= dom (tan-cot) & Z = dom f & f|A is continuous implies integral(f,A)=(tan-cot).(upper_bound A)-(tan-cot).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2+1/(sin.x)^2) & Z c= dom (tan-cot) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:tan-cot is_differentiable_on Z by A1,FDIFF_10:5; A4:for x st x in dom ((tan-cot)`|Z) holds ((tan-cot)`|Z).x=f.x proof let x; assume x in dom ((tan-cot)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((tan-cot)`|Z).x = 1/(cos.x)^2+1/(sin.x)^2 by A1,FDIFF_10:5 .= f.x by A1,A5; hence thesis; end; dom ((tan-cot)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((tan-cot)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=1/(cos.x)^2-1/(sin.x)^2 theorem A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2-1/(sin.x)^2) & Z c= dom (tan+cot) & Z = dom f & f|A is continuous implies integral(f,A)=(tan+cot).(upper_bound A)-(tan+cot).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2-1/(sin.x)^2) & Z c= dom (tan+cot) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:tan+cot is_differentiable_on Z by A1,FDIFF_10:6; A4:for x st x in dom ((tan+cot)`|Z) holds ((tan+cot)`|Z).x=f.x proof let x; assume x in dom ((tan+cot)`|Z);then A5:x in Z by A3,FDIFF_1:def 8;then ((tan+cot)`|Z).x = 1/(cos.x)^2-1/(sin.x)^2 by A1,FDIFF_10:6 .= f.x by A1,A5; hence thesis; end; dom ((tan+cot)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((tan+cot)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=cos.(sin.x)*cos.x theorem A c= Z & (for x st x in Z holds f.x=cos.(sin.x)*cos.x) & Z = dom f & f|A is continuous implies integral(f,A)=(sin*sin).(upper_bound A)-(sin*sin).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.(sin.x)*cos.x) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:sin*sin is_differentiable_on Z by FDIFF_10:7; A4:for x st x in dom ((sin*sin)`|Z) holds ((sin*sin)`|Z).x=f.x proof let x; assume x in dom ((sin*sin)`|Z);then A5: x in Z by A3,FDIFF_1:def 8;then ((sin*sin)`|Z).x = cos.(sin.x)*cos.x by FDIFF_10:7 .= f.x by A1,A5; hence thesis; end; dom ((sin*sin)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((sin*sin)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=cos.(cos.x)*sin.x theorem A c= Z & (for x st x in Z holds f.x=cos.(cos.x)*sin.x) & Z = dom f & f|A is continuous implies integral(f,A)=(-sin*cos).(upper_bound A)-(-sin*cos).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.(cos.x)*sin.x) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; dom cos = REAL & rng cos c= dom cos & dom sin = dom cos by SIN_COS:27; then dom (sin*cos) = REAL by RELAT_1:46; then A3: dom (-sin*cos) = REAL by VALUED_1:8; A4:sin*cos is_differentiable_on Z by FDIFF_10:8; then A5:(-1)(#)(sin*cos) is_differentiable_on Z by A3,FDIFF_1:28,Lm2; A6:for x st x in Z holds ((-sin*cos)`|Z).x = cos.(cos.x)*sin.x proof let x; assume A7:x in Z; ((-sin*cos)`|Z).x=((-1)(#)((sin*cos)`|Z)).x by A4,FDIFF_2:19,Lm2 .=(-1)*(((sin*cos)`|Z).x) by VALUED_1:6 .=(-1)*((-cos.(cos.x)*sin.x)) by A7,FDIFF_10:8 .=cos.(cos.x)*sin.x; hence thesis; end; A8:for x st x in dom ((-sin*cos)`|Z) holds ((-sin*cos)`|Z).x=f.x proof let x; assume x in dom ((-sin*cos)`|Z);then A9:x in Z by A5,FDIFF_1:def 8;then ((-sin*cos)`|Z).x = cos.(cos.x)*sin.x by A6 .= f.x by A1,A9; hence thesis; end; dom ((-sin*cos)`|Z)=dom f by A1,A5,FDIFF_1:def 8; then ((-sin*cos)`|Z)= f by A8,PARTFUN1:34; hence thesis by A1,A2,A5,INTEGRA5:13; end; ::f.x=sin.(sin.x)*cos.x theorem A c= Z & (for x st x in Z holds f.x=sin.(sin.x)*cos.x) & Z = dom f & f|A is continuous implies integral(f,A)=(-cos*sin).(upper_bound A)-(-cos*sin).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.(sin.x)*cos.x) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3: dom sin = REAL by SIN_COS:27; rng sin c= dom sin & dom sin = dom cos by SIN_COS:27; then dom (cos*sin) = REAL by A3,RELAT_1:46; then A4:dom (-cos*sin) = REAL by VALUED_1:8; A5:cos*sin is_differentiable_on Z by FDIFF_10:9; then A6:(-1)(#)(cos*sin) is_differentiable_on Z by A4,FDIFF_1:28,Lm2; A7:for x st x in Z holds ((-cos*sin)`|Z).x = sin.(sin.x)*cos.x proof let x; assume A8:x in Z; ((-cos*sin)`|Z).x=((-1)(#)((cos*sin)`|Z)).x by A5,FDIFF_2:19,Lm2 .=(-1)*(((cos*sin)`|Z).x) by VALUED_1:6 .=(-1)*((-sin.(sin.x)*cos.x)) by A8,FDIFF_10:9 .=sin.(sin.x)*cos.x; hence thesis; end; A9:for x st x in dom ((-cos*sin)`|Z) holds ((-cos*sin)`|Z).x=f.x proof let x; assume x in dom ((-cos*sin)`|Z);then A10: x in Z by A6,FDIFF_1:def 8;then ((-cos*sin)`|Z).x =sin.(sin.x)*cos.x by A7 .= f.x by A1,A10; hence thesis; end; dom ((-cos*sin)`|Z)=dom f by A1,A6,FDIFF_1:def 8; then ((-cos*sin)`|Z)= f by A9,PARTFUN1:34; hence thesis by A1,A2,A6,INTEGRA5:13; end; ::f.x=sin.(cos.x)*sin.x theorem A c= Z & (for x st x in Z holds f.x=sin.(cos.x)*sin.x) & Z = dom f & f|A is continuous implies integral(f,A)=(cos*cos).(upper_bound A)-(cos*cos).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.(cos.x)*sin.x) & Z = dom f & f|A is continuous;then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:cos*cos is_differentiable_on Z by FDIFF_10:10; A4:for x st x in dom ((cos*cos)`|Z) holds ((cos*cos)`|Z).x=f.x proof let x; assume x in dom ((cos*cos)`|Z);then A5: x in Z by A3,FDIFF_1:def 8;then ((cos*cos)`|Z).x = sin.(cos.x)*sin.x by FDIFF_10:10 .= f.x by A1,A5; hence thesis; end; dom ((cos*cos)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((cos*cos)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=cos.x+cos.x/(sin.x)^2 theorem A c= Z & (for x st x in Z holds f.x=cos.x+cos.x/(sin.x)^2) & Z c= dom (cos (#) cot) & Z = dom f & f|A is continuous implies integral(f,A)=(-cos (#) cot).(upper_bound A)- (-cos (#) cot).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=cos.x+cos.x/(sin.x)^2) & Z c= dom (cos (#) cot) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:-cos (#) cot is_differentiable_on Z by A1,Th14; A4:for x st x in dom ((-cos (#) cot)`|Z) holds ((-cos (#) cot)`|Z).x=f.x proof let x; assume x in dom ((-cos (#) cot)`|Z);then A5: x in Z by A3,FDIFF_1:def 8;then ((-cos (#) cot)`|Z).x =cos.x+cos.x/(sin.x)^2 by A1,Th14 .= f.x by A1,A5; hence thesis; end; dom ((-cos (#) cot)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((-cos (#) cot)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end; ::f.x=sin.x + sin.x/(cos.x)^2 theorem A c= Z & (for x st x in Z holds f.x=sin.x + sin.x/(cos.x)^2) & Z c= dom (sin (#) tan) & Z = dom f & f|A is continuous implies integral(f,A)=(sin (#) tan).(upper_bound A)- (sin (#) tan).(lower_bound A) proof assume A1:A c= Z & (for x st x in Z holds f.x=sin.x + sin.x/(cos.x)^2) & Z c= dom (sin (#) tan) & Z = dom f & f|A is continuous; then A2:f is_integrable_on A & f|A is bounded by INTEGRA5:10,11; A3:sin (#) tan is_differentiable_on Z by A1,FDIFF_10:12; A4:for x st x in dom ((sin (#) tan)`|Z) holds ((sin (#) tan)`|Z).x=f.x proof let x; assume x in dom ((sin (#) tan)`|Z);then A5: x in Z by A3,FDIFF_1:def 8;then ((sin (#) tan)`|Z).x =sin.x + sin.x/(cos.x)^2 by A1,FDIFF_10:12 .= f.x by A1,A5; hence thesis; end; dom ((sin (#) tan)`|Z)=dom f by A1,A3,FDIFF_1:def 8; then ((sin (#) tan)`|Z)= f by A4,PARTFUN1:34; hence thesis by A1,A2,A3,INTEGRA5:13; end;