:: Complex Integral :: by Masahiko Yamazaki , Hiroshi Yamazaki , Katsumi Wasaki and Yasunari Shidama :: :: Received October 10, 2009 :: Copyright (c) 2009 Association of Mizar Users environ vocabularies NUMBERS, SUBSET_1, FDIFF_1, SEQ_1, FUNCT_1, XREAL_0, ORDINAL1, ZFMISC_1, MCART_1, ARYTM_3, RELAT_1, XCMPLX_0, REAL_1, PARTFUN1, INTEGRA1, CFUNCT_1, COMPLEX1, VALUED_1, ARYTM_1, XBOOLE_0, TARSKI, XXREAL_0, XXREAL_1, RCOMP_1, ORDINAL2, SIN_COS, CARD_1, FDIFF_3, FUNCT_2, SEQ_2, TOPMETR, INTEGRA5, VFUNCT_1, XXREAL_2, INTEGR1C; notations TARSKI, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, XXREAL_0, COMPLEX1, REAL_1, BINOP_1, RCOMP_1, FUNCT_3, SEQ_1, SEQ_2, FCONT_1, FDIFF_1, TOPMETR, MCART_1, INTEGRA1, INTEGRA5, SIN_COS, CFUNCT_1, VALUED_1, MESFUN6C, PRE_TOPC, FDIFF_3, STRUCT_0, XXREAL_2; constructors REAL_1, FDIFF_1, RFUNCT_3, FCONT_1, BINOP_2, INTEGRA5, RSSPACE, SIN_COS, TOPMETR, FDIFF_3, SEQ_1, MESFUN6C, SEQ_2; registrations XREAL_0, INTEGRA1, FUNCT_2, NUMBERS, ORDINAL1, MEMBERED, SIN_COS, FDIFF_1, SUBSET_1, XCMPLX_0, RELAT_1, XXREAL_0, XBOOLE_0, VALUED_0, VALUED_1; requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM; definitions INTEGRA5, VALUED_1; theorems ZFMISC_1, XCMPLX_0, TOPMETR, SEQ_4, INTEGRA1, RFUNCT_1, FUNCT_1, SEQ_1, SEQ_2, FDIFF_1, ABSVALUE, COMPLEX1, FUNCT_3, TARSKI, RCOMP_1, FCONT_1, RFUNCT_2, FDIFF_2, RELAT_1, XXREAL_1, FUNCT_2, NUMBERS, XBOOLE_0, XBOOLE_1, XREAL_1, INTEGRA5, SIN_COS, INTEGRA6, CFUNCT_1, VALUED_1, MESFUN6C, TOPS_1, FDIFF_3, RELSET_1, XXREAL_2, MCART_1, BORSUK_5; schemes FUNCT_2, FUNCT_7; begin :: The Definition of Complex Curve and Complex Integral reserve n,n1,m for Element of NAT; reserve r,t,x1 for Element of REAL; reserve h for convergent_to_0 Real_Sequence; reserve c1 for constant Real_Sequence; reserve p1 for real number; definition func R2-to-C -> Function of [:REAL,REAL:],COMPLEX means :Def1: for p be Element of [:REAL,REAL:], a,b be Element of REAL st a = p`1 & b = p`2 holds it.([a,b]) = a+b*; existence proof deffunc F(Element of REAL,Element of REAL) = $1+$2*; A1: for x being Element of REAL, y being Element of REAL holds F(x,y) in COMPLEX by XCMPLX_0:def 2; consider f being Function of [:REAL,REAL:],COMPLEX such that A2: for x,y being Element of REAL holds f.(x,y) = F(x,y) from FUNCT_7:sch 1(A1); deffunc G(Element of [:REAL,REAL:]) = f.($1`1,$1`2); A3: now let p being Element of [:REAL,REAL:]; p`1 is Element of REAL & p`2 is Element of REAL by MCART_1:10;then consider a,b be Element of REAL such that A4: a = p`1 & b = p`2; G(p) = a + b* by A2,A4; hence G(p) in COMPLEX by XCMPLX_0:def 2; end; consider g being Function of [:REAL,REAL:], COMPLEX such that A5: for p being Element of [:REAL,REAL:] holds g.p = G(p) from FUNCT_2:sch 8(A3); take g; for p be Element of [:REAL,REAL:], a,b be Element of REAL st a = p`1 & b = p`2 holds g.([a,b]) =a+b* proof let p be Element of [:REAL,REAL:], a,b be Element of REAL such that A6: a = p`1 & b = p`2; A7: [a,b]`1 is Element of REAL by MCART_1:7; [a,b]`2 is Element of REAL by MCART_1:7; then A8: [a,b] is Element of [:REAL,REAL:] by A7,MCART_1:11; A9: [a,b]`1 = p`1 by A6,MCART_1:7; [a,b]`2 = p`2 by A6,MCART_1:7;then g.([a,b]) = f.(a,b) by A6,A5,A8,A9 .= a+b* by A2; hence thesis; end; hence thesis; end; uniqueness proof let f,g be Function of [:REAL,REAL:],COMPLEX; assume A10: for p be Element of [:REAL,REAL:], a,b be Element of REAL st a = p`1 & b = p`2 holds f.([a,b]) = a+b*; assume A11: for p be Element of [:REAL,REAL:], a,b be Element of REAL st a = p`1 & b = p`2 holds g.([a,b]) = a+b*; for p0 be set st p0 in [:REAL,REAL:] holds f.p0 = g.p0 proof let p0 be set; assume A12: p0 in [:REAL,REAL:];then consider x0,y0 be set such that A13: x0 in REAL & y0 in REAL & p0 = [x0,y0] by ZFMISC_1:def 2; reconsider a = x0,b = y0 as Element of REAL by A13; A14: p0`1 = a by A13,MCART_1:7; A15: p0`2 = b by A13,MCART_1:7; f.p0 = a+b* by A12,A10,A14,A15,A13 .= g.p0 by A13,A12,A11,A14,A15; hence thesis; end; hence f = g by FUNCT_2:18; end; end; definition let a,b be Real; let x,y be PartFunc of REAL,REAL, Z be Subset of REAL; let f be PartFunc of COMPLEX, COMPLEX; func integral(f,x,y,a,b,Z) -> Complex means :Def2: ex u0, v0 be PartFunc of REAL,REAL st u0 = (Re f)* (R2-to-C) *<:x,y:> & v0 = (Im f)* (R2-to-C) *<:x,y:> & it = integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,b ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,b )*; existence proof A1: dom <:x,y:> = dom x /\ dom y by FUNCT_3:def 8; rng <:x,y:> c= [:rng x,rng y:] by FUNCT_3:71;then rng <:x,y:> c= [:REAL,REAL:] by XBOOLE_1:1;then reconsider xy=<:x,y:> as PartFunc of REAL,[:REAL,REAL:] by A1,RELSET_1:11; (Re f)* (R2-to-C) *xy is PartFunc of REAL,REAL;then reconsider u0=(Re f)* (R2-to-C) *<:x,y:> as PartFunc of REAL,REAL; (Im f)* (R2-to-C) *xy is PartFunc of REAL,REAL; then reconsider v0=(Im f)* (R2-to-C) *<:x,y:> as PartFunc of REAL,REAL; integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,b ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,b )* is Complex by XCMPLX_0:def 2; hence thesis; end; uniqueness; end; definition let C be PartFunc of REAL,COMPLEX; attr C is C1-curve-like means :Def3: ex a,b be Real, x,y be PartFunc of REAL,REAL, Z be Subset of REAL st a <= b & [.a,b.]=dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.]; end; registration cluster C1-curve-like PartFunc of REAL,COMPLEX; existence proof set a = 1, b = 2; set x = cos, y = sin; set Z = ].-5,5.[; consider C be PartFunc of REAL,COMPLEX such that A4: C = (x+(#)y) | [.a,b.]; take C; A5: dom (x+(#)y) = REAL by FUNCT_2:def 1; dom C = dom (x+(#)y) /\ [.a,b.] by A4,RELAT_1:90;then A6: [.a,b.] = dom C by A5,XBOOLE_1:28; A7: Z is open by RCOMP_1:25; A8: [.a,b.] c= Z by XXREAL_1:47; A9: x is_differentiable_on Z by A7,FDIFF_1:34,SIN_COS:72; A10: y is_differentiable_on Z by A7,FDIFF_1:34,SIN_COS:73; A11: sin = sin|(REAL) proof A12: dom (sin|(REAL)) = dom (sin) /\ (REAL) by RELAT_1:90 .= REAL by SIN_COS:27; for x0 be set st x0 in dom sin holds sin.x0 = sin|(REAL).x0 by FUNCT_1:72; hence thesis by A12,SIN_COS:27,FUNCT_1:9; end; sin|Z is continuous by A11,FCONT_1:17;then (-sin)|Z is continuous by SIN_COS:27,FCONT_1:22;then A13: -sin|Z is continuous by RFUNCT_1:62; A14: dom(-sin|Z) = dom((-sin)|Z) by RFUNCT_1:62 .= dom(-sin) /\ Z by RELAT_1:90 .= REAL /\ Z by SIN_COS:27,VALUED_1:8 .= Z by XBOOLE_1:28; for x1 st x1 in Z holds (-sin|Z).x1 = diff(x,x1) proof let x1 such that A15: x1 in Z; A16: (-sin|Z).x1 = ((-sin)|Z).x1 by RFUNCT_1:62 .= (-sin).x1 by A15,FUNCT_1:72 .= -(sin.x1) by RFUNCT_1:74 .= -sin|Z.x1 by A15,FUNCT_1:72; diff(x,x1) = -sin.x1 by SIN_COS:72 .= (-sin|Z).x1 by A16,A15,FUNCT_1:72; hence thesis; end; then A17: x`|Z is continuous by A9,A13,A14,FDIFF_1:def 8; A18: cos = cos|(REAL) proof A19: dom (cos|(REAL)) = dom (cos) /\ (REAL) by RELAT_1:90 .= REAL by SIN_COS:27; for x0 be set st x0 in dom cos holds cos.x0 = cos|(REAL).x0 by FUNCT_1:72; hence thesis by A19,SIN_COS:27,FUNCT_1:9; end; A20: cos|Z is continuous by A18,FCONT_1:17; A21: dom(cos|Z) = dom(cos) /\ Z by RELAT_1:90 .= Z by XBOOLE_1:28,SIN_COS:27; for x1 st x1 in Z holds (cos|Z).x1 = diff(y,x1) proof let x1 such that A22: x1 in Z; diff(y,x1) = cos.x1 by SIN_COS:73 .= (cos|Z).x1 by A22,FUNCT_1:72; hence thesis; end; then y`|Z is continuous by A10,A20,A21,FDIFF_1:def 8; hence thesis by A4,A6,A7,A8,A9,A10,A17,Def3,SIN_COS:27; end; end; definition mode C1-curve is C1-curve-like PartFunc of REAL,COMPLEX; end; Lm1: for a,b be Real, x,y be PartFunc of REAL,REAL, Z1,Z2 be Subset of REAL, f be PartFunc of COMPLEX, COMPLEX st a <= b & [.a,b.] c= dom x & [.a,b.] c= dom y & Z1 is open & Z2 is open & [.a,b.] c= Z1 & Z1 c= Z2 & x is_differentiable_on Z2 & y is_differentiable_on Z2 & rng ( (x + (#)y) | [.a,b.] ) c= dom f holds integral(f,x,y,a,b,Z1) = integral(f,x,y,a,b,Z2) proof let a,b be Real, x,y be PartFunc of REAL,REAL, Z1,Z2 be Subset of REAL, f be PartFunc of COMPLEX, COMPLEX; assume A1: a <= b & [.a,b.] c= dom x & [.a,b.] c= dom y & Z1 is open & Z2 is open & [.a,b.] c= Z1 & Z1 c= Z2 & x is_differentiable_on Z2 & y is_differentiable_on Z2 & rng ( (x + (#)y) | [.a,b.] ) c=dom f; A2: x is_differentiable_on Z1 & y is_differentiable_on Z1 by A1,FDIFF_1:34; consider u01,v01 be PartFunc of REAL,REAL such that A3: u01=(Re f)* (R2-to-C) *<:x,y:> & v01=(Im f)* (R2-to-C) *<:x,y:> & integral(f,x,y,a,b,Z1)= integral( u01(#)(x`|Z1) - v01(#)(y`|Z1) ,a,b ) + integral( v01(#)(x`|Z1) + u01(#)(y`|Z1),a,b )* by Def2; consider u02,v02 be PartFunc of REAL,REAL such that A4: u02=(Re f)* (R2-to-C) *<:x,y:> & v02=(Im f)* (R2-to-C) *<:x,y:> & integral(f,x,y,a,b,Z2)= integral( u02(#)(x`|Z2) - v02(#)(y`|Z2) ,a,b ) + integral( v02(#)(x`|Z2) + u02(#)(y`|Z2) ,a,b )* by Def2; reconsider AB=[.a,b.] as closed-interval Subset of REAL by A1,INTEGRA1:def 1; A5: (u01(#)(x`|Z1) - v01(#)(y`|Z1)) | AB = (u02(#)(x`|Z2) - v02(#)(y`|Z2)) | AB proof dom(u01(#)(x`|Z1) - v01(#)(y`|Z1)) = dom(u01(#)(x`|Z1)) /\ dom(v01(#)(y`|Z1)) by VALUED_1:12 .= (dom u01 /\ dom(x`|Z1)) /\ dom(v01(#)(y`|Z1)) by VALUED_1:def 4 .= (dom u01 /\ dom(x`|Z1)) /\ (dom v01 /\ dom (y`|Z1)) by VALUED_1:def 4;then A6: dom(u01(#)(x`|Z1) - v01(#)(y`|Z1)) = (dom u01 /\ Z1) /\ ( dom v01 /\ dom(y`|Z1)) by A2,FDIFF_1:def 8 .= (dom u01 /\ Z1) /\ ( dom v01 /\ Z1) by A2,FDIFF_1:def 8 .= dom u01 /\ (Z1 /\ ( dom v01 /\ Z1)) by XBOOLE_1:16 .= dom u01 /\ ((Z1 /\ Z1 ) /\ dom v01) by XBOOLE_1:16 .= (dom u01 /\ dom v01) /\ Z1 by XBOOLE_1:16; dom(u02(#)(x`|Z2) - v02(#)(y`|Z2)) = dom(u02(#)(x`|Z2)) /\ dom(v02(#)(y`|Z2)) by VALUED_1:12 .= (dom u02 /\ dom(x`|Z2)) /\ dom(v02(#)(y`|Z2)) by VALUED_1:def 4 .= (dom u02 /\ dom(x`|Z2)) /\ (dom v02 /\ dom (y`|Z2)) by VALUED_1:def 4;then A7: dom(u02(#)(x`|Z2) - v02(#)(y`|Z2)) = (dom u02 /\ Z2) /\ ( dom v02 /\ dom(y`|Z2)) by A1,FDIFF_1:def 8 .= (dom u02 /\ Z2) /\ ( dom v02 /\ Z2) by A1,FDIFF_1:def 8 .= dom u02 /\ (Z2 /\ ( dom v02 /\ Z2)) by XBOOLE_1:16 .= dom u02 /\ ((Z2 /\ Z2 ) /\ dom v02) by XBOOLE_1:16 .= (dom u01 /\ dom v01) /\ Z2 by A3,A4,XBOOLE_1:16; A8: dom((u01(#)(x`|Z1) - v01(#)(y`|Z1)) | AB) = dom (u01(#)(x`|Z1) - v01(#)(y`|Z1)) /\ AB by RELAT_1:90 .= (dom u01 /\ dom v01) /\ (Z1 /\ AB) by XBOOLE_1:16,A6 .= (dom u01 /\ dom v01) /\ AB by A1,XBOOLE_1:28; A9: dom((u02(#)(x`|Z2) - v02(#)(y`|Z2)) | AB) = dom (u02(#)(x`|Z2) - v02(#)(y`|Z2)) /\ AB by RELAT_1:90 .= (dom u01 /\ dom v01) /\ (Z2 /\ AB) by XBOOLE_1:16,A7 .= (dom u01 /\ dom v01) /\ AB by A1,XBOOLE_1:28,XBOOLE_1:1; for x0 being set st x0 in dom((u01(#)(x`|Z1) - v01(#)(y`|Z1)) | AB ) holds ((u01(#)(x`|Z1) - v01(#)(y`|Z1)) | AB).x0 = ((u02(#)(x`|Z2) - v02(#)(y`|Z2)) | AB ).x0 proof let x0 being set such that A10: x0 in dom((u01(#)(x`|Z1) - v01(#)(y`|Z1)) | AB ); x0 in dom(u01(#)(x`|Z1) - v01(#)(y`|Z1)) /\ AB by A10,RELAT_1:90; then A11: x0 in dom(u01(#)(x`|Z1) - v01(#)(y`|Z1)) by XBOOLE_0:def 4; then x0 in dom(u01(#)(x`|Z1)) /\ dom(v01(#)(y`|Z1)) by VALUED_1:12; then A12: x0 in dom(u01(#)(x`|Z1)) & x0 in dom(v01(#)(y`|Z1)) by XBOOLE_0:def 4;then x0 in dom u01 /\ dom(x`|Z1) & x0 in dom v01 /\ dom(y`|Z1) by VALUED_1:def 4; then x0 in dom u01 & x0 in dom(x`|Z1) & x0 in dom v01 & x0 in dom(y`|Z1) by XBOOLE_0:def 4; then A13: x0 in Z1 by A2,FDIFF_1:def 8; reconsider x0 as Real by A10; A14: ((u01(#)(x`|Z1) - v01(#)(y`|Z1)) | AB).x0 = (u01(#)(x`|Z1) - v01(#)(y`|Z1)).x0 by A10,FUNCT_1:70 .= (u01(#)(x`|Z1)).x0 - (v01(#)(y`|Z1)).x0 by A11,VALUED_1:13 .= u01.x0*(x`|Z1).x0 - (v01(#)(y`|Z1)).x0 by A12,VALUED_1:def 4 .= u01.x0*(x`|Z1).x0 - v01.x0*(y`|Z1).x0 by A12,VALUED_1:def 4 .= u01.x0*diff(x,x0) - v01.x0*(y`|Z1).x0 by A2,A13,FDIFF_1:def 8; x0 in dom(u02(#)(x`|Z2) - v02(#)(y`|Z2)) /\ AB by A8,A9,A10,RELAT_1:90; then A15: x0 in dom(u02(#)(x`|Z2) - v02(#)(y`|Z2)) by XBOOLE_0:def 4; then x0 in dom(u02(#)(x`|Z2)) /\ dom(v02(#)(y`|Z2)) by VALUED_1:12; then A16: x0 in dom(u02(#)(x`|Z2)) & x0 in dom(v02(#)(y`|Z2)) by XBOOLE_0:def 4;then x0 in dom u02 /\ dom(x`|Z2) & x0 in dom v02 /\ dom(y`|Z2) by VALUED_1:def 4;then x0 in dom u02 & x0 in dom(x`|Z2) & x0 in dom v02 & x0 in dom(y`|Z2) by XBOOLE_0:def 4;then A17: x0 in Z2 by A1,FDIFF_1:def 8; ((u02(#)(x`|Z2) - v02(#)(y`|Z2)) | AB ).x0 = (u02(#)(x`|Z2) - v02(#)(y`|Z2)).x0 by A8,A9,A10,FUNCT_1:70 .= (u02(#)(x`|Z2)).x0 - (v02(#)(y`|Z2)).x0 by A15,VALUED_1:13 .= u02.x0*(x`|Z2).x0 - (v02(#)(y`|Z2)).x0 by A16,VALUED_1:def 4 .= u02.x0*(x`|Z2).x0 - v02.x0*(y`|Z2).x0 by A16,VALUED_1:def 4 .= u02.x0*diff(x,x0) - v02.x0*(y`|Z2).x0 by A1,A17,FDIFF_1:def 8; then ((u02(#)(x`|Z2) - v02(#)(y`|Z2)) | AB).x0 = u01.x0*diff(x,x0) - v01.x0*diff(y,x0) by A1,A3,A4,A17,FDIFF_1:def 8; hence thesis by A2,A13,A14,FDIFF_1:def 8; end; hence thesis by A8,A9,FUNCT_1:def 17; end; A19: integral( u01(#)(x`|Z1) - v01(#)(y`|Z1) ,a,b ) = integral( (u01(#)(x`|Z1) - v01(#)(y`|Z1)), AB ) by INTEGRA5:19 .= integral( u02(#)(x`|Z2) - v02(#)(y`|Z2) ,AB) by A5 .= integral( u02(#)(x`|Z2) - v02(#)(y`|Z2) ,a,b ) by INTEGRA5:19; A20: (v01(#)(x`|Z1) + u01(#)(y`|Z1)) | AB = (v02(#)(x`|Z2) + u02(#)(y`|Z2)) | AB proof dom(v01(#)(x`|Z1) + u01(#)(y`|Z1)) = dom(v01(#)(x`|Z1)) /\ dom(u01(#)(y`|Z1)) by VALUED_1:def 1 .= (dom v01 /\ dom(x`|Z1)) /\ dom(u01(#)(y`|Z1)) by VALUED_1:def 4 .= (dom v01 /\ dom(x`|Z1)) /\ (dom u01 /\ dom (y`|Z1)) by VALUED_1:def 4;then A21: dom(v01(#)(x`|Z1) + u01(#)(y`|Z1)) = (dom v01 /\ Z1) /\ ( dom u01 /\ dom(y`|Z1)) by A2,FDIFF_1:def 8 .= (dom v01 /\ Z1) /\ ( dom u01 /\ Z1) by A2,FDIFF_1:def 8 .= dom v01 /\ (Z1 /\ ( dom u01 /\ Z1)) by XBOOLE_1:16 .= dom v01 /\ ((Z1 /\ Z1 ) /\ dom u01) by XBOOLE_1:16 .= (dom v01 /\ dom u01) /\ Z1 by XBOOLE_1:16; dom(v02(#)(x`|Z2) + u02(#)(y`|Z2)) = dom(v02(#)(x`|Z2)) /\ dom(u02(#)(y`|Z2)) by VALUED_1:def 1 .= (dom v02 /\ dom(x`|Z2)) /\ dom(u02(#)(y`|Z2)) by VALUED_1:def 4 .= (dom v02 /\ dom(x`|Z2)) /\ (dom u02 /\ dom (y`|Z2)) by VALUED_1:def 4;then A22: dom(v02(#)(x`|Z2) + u02(#)(y`|Z2)) = (dom v02 /\ Z2) /\ ( dom u02 /\ dom(y`|Z2)) by A1,FDIFF_1:def 8 .= (dom v02 /\ Z2) /\ ( dom u02 /\ Z2) by A1,FDIFF_1:def 8 .= dom v02 /\ (Z2 /\ ( dom u02 /\ Z2)) by XBOOLE_1:16 .= dom v02 /\ ((Z2 /\ Z2 ) /\ dom u02) by XBOOLE_1:16 .= (dom v01 /\ dom u01) /\ Z2 by A3,A4,XBOOLE_1:16; A23: dom((v01(#)(x`|Z1) + u01(#)(y`|Z1)) | AB) = dom (v01(#)(x`|Z1) + u01(#)(y`|Z1)) /\ AB by RELAT_1:90 .= (dom v01 /\ dom u01) /\ (Z1 /\ AB) by XBOOLE_1:16,A21 .= (dom v01 /\ dom u01) /\ AB by A1,XBOOLE_1:28; A24: dom((v02(#)(x`|Z2) + u02(#)(y`|Z2)) | AB) = dom (v02(#)(x`|Z2) + u02(#)(y`|Z2)) /\ AB by RELAT_1:90 .= (dom v01 /\ dom u01) /\ (Z2 /\ AB) by XBOOLE_1:16,A22 .= (dom v01 /\ dom u01) /\ AB by A1,XBOOLE_1:1,XBOOLE_1:28; for x0 being set st x0 in dom((v01(#)(x`|Z1) + u01(#)(y`|Z1)) | AB ) holds ((v01(#)(x`|Z1) + u01(#)(y`|Z1)) | AB).x0 = ((v02(#)(x`|Z2) + u02(#)(y`|Z2)) | AB).x0 proof let x0 being set such that A25: x0 in dom((v01(#)(x`|Z1) + u01(#)(y`|Z1)) | AB ); x0 in dom(v01(#)(x`|Z1) + u01(#)(y`|Z1)) /\ AB by A25,RELAT_1:90; then A26: x0 in dom(v01(#)(x`|Z1) + u01(#)(y`|Z1)) by XBOOLE_0:def 4; then x0 in dom(v01(#)(x`|Z1)) /\ dom(u01(#)(y`|Z1)) by VALUED_1:def 1; then A27: x0 in dom(v01(#)(x`|Z1)) & x0 in dom(u01(#)(y`|Z1)) by XBOOLE_0:def 4;then x0 in dom v01 /\ dom(x`|Z1) & x0 in dom u01 /\ dom(y`|Z1) by VALUED_1:def 4;then x0 in dom v01 & x0 in dom(x`|Z1) & x0 in dom u01 & x0 in dom(y`|Z1) by XBOOLE_0:def 4; then A28: x0 in Z1 by A2,FDIFF_1:def 8; reconsider x0 as Real by A25; ((v01(#)(x`|Z1) + u01(#)(y`|Z1)) | AB).x0 = (v01(#)(x`|Z1) + u01(#)(y`|Z1)).x0 by A25,FUNCT_1:70 .= (v01(#)(x`|Z1)).x0 + (u01(#)(y`|Z1)).x0 by A26,VALUED_1:def 1 .= v01.x0*(x`|Z1).x0 + (u01(#)(y`|Z1)).x0 by A27,VALUED_1:def 4 .= v01.x0*(x`|Z1).x0 + u01.x0*(y`|Z1).x0 by A27,VALUED_1:def 4 .= v01.x0*diff(x,x0) + u01.x0*(y`|Z1).x0 by A2,A28,FDIFF_1:def 8; then A29: ((v01(#)(x`|Z1) + u01(#)(y`|Z1)) | AB).x0 = v01.x0*diff(x,x0) + u01.x0*diff(y,x0) by A2,A28,FDIFF_1:def 8; x0 in dom(v02(#)(x`|Z2) + u02(#)(y`|Z2)) /\ AB by A23,A24,A25,RELAT_1:90; then A30: x0 in dom(v02(#)(x`|Z2) + u02(#)(y`|Z2)) by XBOOLE_0:def 4; then x0 in dom(v02(#)(x`|Z2)) /\ dom(u02(#)(y`|Z2)) by VALUED_1:def 1; then A31: x0 in dom(v02(#)(x`|Z2)) & x0 in dom(u02(#)(y`|Z2)) by XBOOLE_0:def 4;then x0 in dom v02 /\ dom(x`|Z2) & x0 in dom u02 /\ dom(y`|Z2) by VALUED_1:def 4;then x0 in dom v02 & x0 in dom(x`|Z2) & x0 in dom u02 & x0 in dom(y`|Z2) by XBOOLE_0:def 4;then A32: x0 in Z2 by A1,FDIFF_1:def 8; ((v02(#)(x`|Z2) + u02(#)(y`|Z2)) | AB ).x0 = (v02(#)(x`|Z2) + u02(#)(y`|Z2)).x0 by A23,A24,A25,FUNCT_1:70 .= (v02(#)(x`|Z2)).x0 + (u02(#)(y`|Z2)).x0 by A30,VALUED_1:def 1 .= v02.x0*(x`|Z2).x0 + (u02(#)(y`|Z2)).x0 by A31,VALUED_1:def 4 .= v02.x0*(x`|Z2).x0 + u02.x0*(y`|Z2).x0 by A31,VALUED_1:def 4 .= v02.x0*diff(x,x0) + u02.x0*(y`|Z2).x0 by A1,A32,FDIFF_1:def 8; hence thesis by A1,A3,A4,A29,A32,FDIFF_1:def 8; end; hence thesis by A23,A24,FUNCT_1:def 17; end; integral( v01(#)(x`|Z1) + u01(#)(y`|Z1),a,b) = integral( v01(#)(x`|Z1) + u01(#)(y`|Z1),AB) by INTEGRA5:19 .= integral( (v02(#)(x`|Z2) + u02(#)(y`|Z2)),AB) by A20 .=integral( v02(#)(x`|Z2) + u02(#)(y`|Z2) ,a,b) by INTEGRA5:19; hence thesis by A3,A4,A19; end; Lm2: for a,b be Real, x1,y1,x2,y2 be PartFunc of REAL,REAL, Z be Subset of REAL, f be PartFunc of COMPLEX,COMPLEX st a <= b & [.a,b.] c= dom x1 & [.a,b.] c= dom y1 & [.a,b.] c= dom x2 & [.a,b.] c= dom y2 & x1| [.a,b.] = x2| [.a,b.] & y1| [.a,b.] = y2| [.a,b.] & Z is open & [.a,b.] c= Z & x1 is_differentiable_on Z & y1 is_differentiable_on Z & rng ( (x1 + (#)y1) | [.a,b.] ) c=dom f & x2 is_differentiable_on Z & y2 is_differentiable_on Z & rng ( (x2 + (#)y2) | [.a,b.] ) c=dom f holds integral(f,x1,y1,a,b,Z) = integral(f,x2,y2,a,b,Z) proof let a,b be Real, x1,y1,x2,y2 be PartFunc of REAL,REAL, Z be Subset of REAL, f be PartFunc of COMPLEX, COMPLEX; assume A1: a <= b & [.a,b.] c= dom x1 & [.a,b.] c= dom y1 & [.a,b.] c= dom x2 & [.a,b.] c= dom y2 & x1| [.a,b.] = x2| [.a,b.] & y1| [.a,b.] = y2| [.a,b.] & Z is open & [.a,b.] c= Z & x1 is_differentiable_on Z & y1 is_differentiable_on Z & rng ( (x1 + (#)y1) | [.a,b.] ) c= dom f & x2 is_differentiable_on Z & y2 is_differentiable_on Z & rng ( (x2 + (#)y2) | [.a,b.] ) c=dom f; consider u01, v01 be PartFunc of REAL,REAL such that A2: u01=(Re f)* (R2-to-C) *<:x1,y1:> & v01=(Im f)* (R2-to-C) *<:x1,y1:> & integral(f,x1,y1,a,b,Z)= integral( u01(#)(x1`|Z) - v01(#)(y1`|Z) ,a,b ) + integral( v01(#)(x1`|Z) + u01(#)(y1`|Z) ,a,b )* by Def2; consider u02,v02 be PartFunc of REAL,REAL such that A3: u02=(Re f)* (R2-to-C) *<:x2,y2:> & v02=(Im f)* (R2-to-C) *<:x2,y2:> & integral(f,x2,y2,a,b,Z)= integral( u02(#)(x2`|Z) - v02(#)(y2`|Z) ,a,b ) + integral( v02(#)(x2`|Z) + u02(#)(y2`|Z) ,a,b )* by Def2; reconsider AB=[.a,b.] as closed-interval Subset of REAL by A1,INTEGRA1:def 1; A4: now assume A5: not (a = b or a < b);then 0 < b - a or 0 < a - b by XREAL_1:57;then a < a + (b -a) or 0 < a - b by XREAL_1:31;then a < b or b < b + (a - b) by XREAL_1:31; hence contradiction by A5,A1; end; per cases by A4; suppose A6: a < b; A7: u01 | AB = u02 | AB proof A8: dom(u01 | AB) = dom(u02 | AB) proof A9: for x0 be set st x0 in dom(u01 | AB) holds x0 in dom(u02 | AB) proof let x0 be set such that A10: x0 in dom(u01 | AB); x0 in dom u01 /\ AB by A10,RELAT_1:90;then A11: x0 in dom u01 & x0 in AB by XBOOLE_0:def 4;then x0 in dom <:x1,y1:> & <:x1,y1:>.x0 in dom((Re f)* (R2-to-C)) & x0 in AB by A2,FUNCT_1:21;then x0 in AB & [x1.x0,y1.x0] in dom((Re f)* (R2-to-C)) by FUNCT_3:def 8; then x0 in AB & [(x1 | AB).x0,y1.x0] in dom((Re f)* (R2-to-C)) by FUNCT_1:72; then x0 in AB & [(x2 | AB).x0,(y2 | AB).x0] in dom((Re f)* (R2-to-C)) by A1,FUNCT_1:72;then x0 in AB & [(x2 | AB).x0,y2.x0] in dom((Re f)* (R2-to-C)) by FUNCT_1:72; then A12: x0 in AB & [x2.x0,y2.x0] in dom((Re f)* (R2-to-C)) by FUNCT_1:72; x0 in dom x2 /\ dom y2 by A1,A11,XBOOLE_0:def 4;then x0 in dom <:x2,y2:> by FUNCT_3:def 8;then x0 in AB & x0 in dom <:x2,y2:> & <:x2,y2:>.x0 in dom((Re f)* (R2-to-C)) by A12,FUNCT_3:def 8;then x0 in AB & x0 in dom u02 by A3,FUNCT_1:21;then x0 in dom u02 /\ AB by XBOOLE_0:def 4; hence thesis by RELAT_1:90; end; for x0 be set st x0 in dom(u02 | AB) holds x0 in dom(u01 | AB) proof let x0 be set such that A13: x0 in dom(u02 | AB); x0 in dom u02 /\ AB by A13,RELAT_1:90;then A14: x0 in dom u02 & x0 in AB by XBOOLE_0:def 4;then x0 in dom <:x2,y2:> & <:x2,y2:>.x0 in dom((Re f)* (R2-to-C)) & x0 in AB by A3,FUNCT_1:21;then x0 in AB & [x2.x0,y2.x0] in dom((Re f)* (R2-to-C)) by FUNCT_3:def 8; then x0 in AB & [(x2 | AB).x0,y2.x0] in dom((Re f)* (R2-to-C)) by FUNCT_1:72; then x0 in AB & [(x1 | AB).x0,(y1 | AB).x0] in dom((Re f)* (R2-to-C)) by A1,FUNCT_1:72;then x0 in AB & [(x1 | AB).x0,y1.x0] in dom((Re f)* (R2-to-C)) by FUNCT_1:72;then A15: x0 in AB & [x1.x0,y1.x0] in dom((Re f)* (R2-to-C)) by FUNCT_1:72; x0 in dom x1 /\ dom y1 by A1,A14,XBOOLE_0:def 4;then x0 in dom <:x1,y1:> by FUNCT_3:def 8;then x0 in AB & x0 in dom <:x1,y1:> & <:x1,y1:>.x0 in dom((Re f)* (R2-to-C)) by A15,FUNCT_3:def 8;then x0 in AB & x0 in dom u01 by A2,FUNCT_1:21;then x0 in dom u01 /\ AB by XBOOLE_0:def 4; hence thesis by RELAT_1:90; end; hence thesis by A9,TARSKI:2; end; for x0 be set st x0 in dom(u01 | AB) holds (u01 | AB).x0 = (u02 | AB).x0 proof let x0 be set such that A16: x0 in dom(u01 | AB); x0 in dom u01 /\ AB by A16,RELAT_1:90;then A17: x0 in AB by XBOOLE_0:def 4; reconsider x0 as Real by A16; A18: AB c= dom x1 /\ dom y1 by A1,XBOOLE_1:19;then x0 in dom x1 /\ dom y1 by A17;then x0 in dom (<:x1,y1:>) by FUNCT_3:def 8;then A19: u01.x0 = ((Re f)*(R2-to-C)).(<:x1,y1:>.x0) by A2,FUNCT_1:23; A20: AB c= dom x2 /\ dom y2 by A1,XBOOLE_1:19;then x0 in dom x2 /\ dom y2 by A17;then x0 in dom (<:x2,y2:>) by FUNCT_3:def 8;then u02.x0 = ((Re f)*(R2-to-C)).(<:x2,y2:>.x0) by A3,FUNCT_1:23; then A21: u02.x0 = ((Re f)*(R2-to-C)).([x2.x0,y2.x0]) by A17,A20,FUNCT_3:68; A22: x1.x0 = (x1| [.a,b.]).x0 by A17,FUNCT_1:72 .= x2.x0 by A17,FUNCT_1:72,A1; A23: y1.x0 = (y1| [.a,b.]).x0 by A17,FUNCT_1:72 .= y2.x0 by A17,FUNCT_1:72,A1; u01.x0 = (u01 | AB).x0 & u02.x0 = (u02 | AB).x0 by A17,FUNCT_1:72; hence thesis by A17,A18,A19,A21,A22,A23,FUNCT_3:68; end; hence thesis by A8,FUNCT_1:def 17; end; A24: (x1`|Z)| AB = (x2`|Z)| AB proof A25: dom ((x1`|Z)| AB) = dom (x1`|Z) /\ AB by RELAT_1:90 .= Z /\ AB by A1,FDIFF_1:def 8 .= AB by A1,XBOOLE_1:28; A26: dom ((x2`|Z)| AB) = dom (x2`|Z) /\ AB by RELAT_1:90 .= Z /\ AB by A1,FDIFF_1:def 8 .= AB by A1, XBOOLE_1:28; for x0 be set st x0 in dom((x1`|Z)| AB) holds ((x1`|Z)| AB).x0 = ((x2`|Z)| AB).x0 proof let x0 be set such that A27: x0 in dom((x1`|Z)| AB); reconsider x0 as Real by A27; A28: ((x2`|Z)| AB).x0 = (x2`|Z).x0 by A25,A27,FUNCT_1:72; A29: (x1`|Z).x0 = diff(x1,x0) by A1,A25,A27,FDIFF_1:def 8; A30: (x2`|Z).x0 = diff(x2,x0) by A1,A25,A27,FDIFF_1:def 8; A31: now assume A32: not (x0 in ].a,b.[ or x0 = a or x0 = b); x0 in {r where r is Real: a <= r & r <= b} by A25,A27,RCOMP_1:def 1;then A33: ex r be Real st r = x0 & a <= r & r <= b; A34: now assume A35: not (a = x0 or a < x0);then 0 < x0 - a or 0 < a - x0 by XREAL_1:57;then a < a + (x0 -a) or 0 < a - x0 by XREAL_1:31;then a < x0 or x0 < x0 + (a - x0) by XREAL_1:31; hence contradiction by A33,A35; end; A36: now assume A37: not (x0 = b or x0 < b);then 0 < x0 - b or 0 < b - x0 by XREAL_1:57;then b < b + (x0 -b) or 0 < b - x0 by XREAL_1:31;then b < x0 or x0 < x0 + (b - x0) by XREAL_1:31; hence contradiction by A33,A37; end; not (x0 in {q where q is Real: a 0) holds lim (h"(#)((x1-x2)/*(h+c1) - (x1-x2)/*c1)) = 0 proof let h,c1 such that A46: rng c1 = {x0} & rng (h+c1) c= dom (x1-x2) & (for n holds h.n > 0); A47: h is convergent & lim h = 0 by FDIFF_1:def 1; A48: 0 < b - x0 by A6,A39,XREAL_1:52; consider n such that A49: for m st n<=m holds abs(h.m - 0) < (b - x0)/2 by A47,A48,SEQ_2:def 7; A50: for p1 st 0 & <:x1,y1:>.x0 in dom((Im f)* (R2-to-C)) & x0 in AB by A2,FUNCT_1:21;then x0 in AB & [x1.x0,y1.x0] in dom((Im f)* (R2-to-C)) by FUNCT_3:def 8;then x0 in AB & [(x1 | AB).x0,y1.x0] in dom((Im f)* (R2-to-C)) by FUNCT_1:72; then x0 in AB & [(x2 | AB).x0,(y2 | AB).x0] in dom((Im f)* (R2-to-C)) by A1,FUNCT_1:72;then x0 in AB & [(x2 | AB).x0,y2.x0] in dom((Im f)* (R2-to-C)) by FUNCT_1:72; then A115: x0 in AB & [x2.x0,y2.x0] in dom((Im f)* (R2-to-C)) by FUNCT_1:72; x0 in dom x2 /\ dom y2 by A1,A114,XBOOLE_0:def 4;then x0 in dom <:x2,y2:> by FUNCT_3:def 8;then x0 in AB & x0 in dom <:x2,y2:> & <:x2,y2:>.x0 in dom((Im f)* (R2-to-C)) by A115,FUNCT_3:def 8;then x0 in AB & x0 in dom v02 by A3,FUNCT_1:21;then x0 in dom v02 /\ AB by XBOOLE_0:def 4; hence thesis by RELAT_1:90; end; for x0 be set st x0 in dom(v02 | AB) holds x0 in dom(v01 | AB) proof let x0 be set such that A116: x0 in dom(v02 | AB); x0 in dom v02 /\ AB by A116,RELAT_1:90;then A117: x0 in dom v02 & x0 in AB by XBOOLE_0:def 4;then x0 in dom <:x2,y2:> & <:x2,y2:>.x0 in dom((Im f)* (R2-to-C)) & x0 in AB by A3,FUNCT_1:21;then x0 in AB & [x2.x0,y2.x0] in dom((Im f)* (R2-to-C)) by FUNCT_3:def 8;then x0 in AB & [(x2 | AB).x0,y2.x0] in dom((Im f)* (R2-to-C)) by FUNCT_1:72; then x0 in AB & [(x1 | AB).x0,(y1 | AB).x0] in dom((Im f)* (R2-to-C)) by A1,FUNCT_1:72;then x0 in AB & [(x1 | AB).x0,y1.x0] in dom((Im f)* (R2-to-C)) by FUNCT_1:72; then A118: x0 in AB & [x1.x0,y1.x0] in dom((Im f)* (R2-to-C)) by FUNCT_1:72; x0 in dom x1 /\ dom y1 by A1,A117,XBOOLE_0:def 4;then x0 in dom <:x1,y1:> by FUNCT_3:def 8;then x0 in AB & x0 in dom <:x1,y1:> & <:x1,y1:>.x0 in dom((Im f)* (R2-to-C)) by A118,FUNCT_3:def 8;then x0 in AB & x0 in dom v01 by A2,FUNCT_1:21;then x0 in dom v01 /\ AB by XBOOLE_0:def 4; hence thesis by RELAT_1:90; end; hence thesis by A112,TARSKI:2; end; for x0 be set st x0 in dom(v01 | AB) holds (v01 | AB).x0 = (v02 | AB).x0 proof let x0 be set such that A119: x0 in dom(v01 | AB); x0 in dom v01 /\ AB by A119,RELAT_1:90;then A120: x0 in AB by XBOOLE_0:def 4; reconsider x0 as Real by A119; A121: AB c= dom x1 /\ dom y1 by A1,XBOOLE_1:19;then x0 in dom x1 /\ dom y1 by A120;then x0 in dom (<:x1,y1:>) by FUNCT_3:def 8;then A122: v01.x0 = ((Im f)*(R2-to-C)).(<:x1,y1:>.x0) by A2,FUNCT_1:23; A123: AB c= dom x2 /\ dom y2 by A1,XBOOLE_1:19;then x0 in dom x2 /\ dom y2 by A120;then x0 in dom (<:x2,y2:>) by FUNCT_3:def 8;then v02.x0 = ((Im f)*(R2-to-C)).(<:x2,y2:>.x0) by A3,FUNCT_1:23;then A124: v02.x0 = ((Im f)*(R2-to-C)).([x2.x0,y2.x0]) by A120,A123,FUNCT_3:68; A125: x1.x0 = (x1| [.a,b.]).x0 by A120,FUNCT_1:72 .= x2.x0 by A120, FUNCT_1:72,A1; A126: y1.x0 = (y1| [.a,b.]).x0 by A120,FUNCT_1:72 .= y2.x0 by A120, FUNCT_1:72,A1; v01.x0 = (v01 | AB).x0 & v02.x0 = (v02 | AB).x0 by A120,FUNCT_1:72; hence thesis by A125,A126,A122,A120,A121,FUNCT_3:68,A124; end; hence thesis by A111,FUNCT_1:def 17; end; A127: (y1`|Z)| AB = (y2`|Z)| AB proof A128: dom ((y1`|Z)| AB) = dom (y1`|Z) /\ AB by RELAT_1:90 .= Z /\ AB by A1,FDIFF_1:def 8 .= AB by A1,XBOOLE_1:28; A129: dom ((y2`|Z)| AB) = dom (y2`|Z) /\ AB by RELAT_1:90 .= Z /\ AB by A1,FDIFF_1:def 8 .= AB by A1,XBOOLE_1:28; for x0 be set st x0 in dom((y1`|Z)| AB) holds ((y1`|Z)| AB).x0 = ((y2`|Z)| AB).x0 proof let x0 be set such that A130: x0 in dom((y1`|Z)| AB); reconsider x0 as Real by A130; A131: ((y2`|Z)| AB).x0 = (y2`|Z).x0 by A128,A130,FUNCT_1:72; A132: (y1`|Z).x0 = diff(y1,x0) by A1,A130,A128,FDIFF_1:def 8; A133: (y2`|Z).x0 = diff(y2,x0) by A1,A130,A128,FDIFF_1:def 8; A134: now assume A135: not (x0 in ].a,b.[ or x0 = a or x0 = b); x0 in {r where r is Real: a <= r & r <= b} by A128,A130,RCOMP_1:def 1;then A136: ex r be Real st r=x0 & a<=r & r<=b; A137: now assume A138: not (a = x0 or a < x0);then 0 < x0 - a or 0 < a - x0 by XREAL_1:57;then a < a + (x0 -a) or 0 < a - x0 by XREAL_1:31;then a < x0 or x0 < x0 + (a - x0) by XREAL_1:31; hence contradiction by A136,A138; end; A139: now assume A140: not (x0 = b or x0 < b);then 0 < x0 - b or 0 < b - x0 by XREAL_1:57;then b < b + (x0 -b) or 0 < b - x0 by XREAL_1:31;then b < x0 or x0 < x0 + (b - x0) by XREAL_1:31; hence contradiction by A136,A140; end; not (x0 in {q where q is Real: a 0) holds lim (h"(#)((y1-y2)/*(h+c1) - (y1-y2)/*c1)) = 0 proof let h,c1 such that A149: rng c1 = {x0} & rng (h+c1) c= dom (y1-y2) & (for n holds h.n > 0); A150: h is convergent & lim h = 0 by FDIFF_1:def 1; A151: 0 < b - x0 by A6,A142,XREAL_1:52; consider n such that A152: for m st n<=m holds abs(h.m - 0) < (b - x0)/2 by A150,A151,SEQ_2:def 7; A153: for p1 st 0 < p1 ex n1 st for m st n1 <= m holds abs((h"(#)((y1-y2)/*(h+c1) - (y1-y2)/*c1)).m-0) Complex means :Def4: ex a,b be Real,x,y be PartFunc of REAL,REAL, Z be Subset of REAL st a <= b & [.a,b.]=dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.] & it = integral(f,x,y,a,b,Z); existence proof consider a,b be Real,x,y be PartFunc of REAL,REAL, Z be Subset of REAL such that A2: a <= b & [.a,b.] = dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.] by Def3; take IT = integral(f,x,y,a,b,Z); thus thesis by A2; end; uniqueness proof let s1,s2 be Complex; assume A3: ex a,b be Real,x,y be PartFunc of REAL,REAL, Z be Subset of REAL st a <= b & [.a,b.]=dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.] & s1 = integral(f,x,y,a,b,Z); assume A4: ex a,b be Real,x,y be PartFunc of REAL,REAL, Z be Subset of REAL st a <= b & [.a,b.]=dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.] & s2 = integral(f,x,y,a,b,Z); consider a1,b1 be Real,x1,y1 be PartFunc of REAL,REAL, Z1 be Subset of REAL such that A5: a1 <= b1 & [.a1,b1.]=dom C & [.a1,b1.] c= dom x1 & [.a1,b1.] c= dom y1 & Z1 is open & [.a1,b1.] c= Z1 & x1 is_differentiable_on Z1 & y1 is_differentiable_on Z1 & x1`|Z1 is continuous & y1`|Z1 is continuous & C = (x1+(#)y1) | [.a1,b1.] & s1 = integral(f,x1,y1,a1,b1,Z1) by A3; consider a2,b2 be Real,x2,y2 be PartFunc of REAL,REAL, Z2 be Subset of REAL such that A6: a2 <= b2 & [.a2,b2.] = dom C & [.a2,b2.] c= dom x2 & [.a2,b2.] c= dom y2 & Z2 is open & [.a2,b2.] c= Z2 & x2 is_differentiable_on Z2 & y2 is_differentiable_on Z2 & x2`|Z2 is continuous & y2`|Z2 is continuous & C = (x2+(#)y2) | [.a2,b2.] & s2 = integral(f,x2,y2,a2,b2,Z2) by A4; dom C is closed-interval Subset of REAL by A5,INTEGRA1:def 1; then A8: a1 = a2 & b1 = b2 by A6,A5,INTEGRA1:6; reconsider Z3 = Z1 /\ Z2 as Subset of REAL; reconsider ZZ1=Z1, ZZ2= Z2, ZZ3= Z3 as Subset of R^1 by TOPMETR:24; ZZ1 is open & ZZ2 is open by A5,A6,BORSUK_5:62;then ZZ1 /\ ZZ2 is open by TOPS_1:38; then A9: Z3 is open by BORSUK_5:62; A11: x1| [.a1,b1.] = x2| [.a2,b2.] proof for x0 be set st x0 in [.a1,b1.] holds x1.x0 = x2.x0 proof let x0 be set such that A12: x0 in [.a1,b1.]; A13: dom((#)y1) = dom y1 by VALUED_1:def 5; dom(x1+(#)y1) = dom x1 /\ dom((#)y1) by VALUED_1:def 1;then A14: [.a1,b1.] c= dom(x1+(#)y1) by A5,A13,XBOOLE_1:19; A15: ((x1+(#)y1) | [.a1,b1.]).x0 = (x1+(#)y1).x0 by A12,FUNCT_1:72 .= x1.x0 + ((#)y1).x0 by A12,A14,VALUED_1:def 1 .= x1.x0 + *y1.x0 by VALUED_1:6; A16: dom((#)y2) = dom y2 by VALUED_1:def 5; A17: dom(x2+(#)y2) = dom x2 /\ dom((#)y2) by VALUED_1:def 1; A18: [.a2,b2.] c= dom(x2+(#)y2) by A6,A16,A17,XBOOLE_1:19; ((x2+(#)y2) | [.a2,b2.]).x0 = (x2+(#)y2).x0 by A6,A5,A12,FUNCT_1:72 .= x2.x0 + ((#)y2).x0 by A6,A5,A12,A18,VALUED_1:def 1 .= x2.x0 + *y2.x0 by VALUED_1:6; hence thesis by A6,A5,A15,COMPLEX1:163; end; hence thesis by A5,A6,FUNCT_1:165; end; A19: y1| [.a1,b1.] = y2| [.a2,b2.] proof for x0 be set st x0 in [.a1,b1.] holds y1.x0 = y2.x0 proof let x0 be set such that A20: x0 in [.a1,b1.]; A21: dom((#)y1) = dom y1 by VALUED_1:def 5; dom(x1+(#)y1) = dom x1 /\ dom((#)y1) by VALUED_1:def 1;then A22: [.a1,b1.] c= dom(x1+(#)y1) by A5,A21,XBOOLE_1:19; A23: ((x1+(#)y1) | [.a1,b1.]).x0 = (x1+(#)y1).x0 by A20,FUNCT_1:72 .= x1.x0 + ((#)y1).x0 by A20,A22,VALUED_1:def 1 .= x1.x0 + *y1.x0 by VALUED_1:6; A24: dom((#)y2) = dom y2 by VALUED_1:def 5; A25: dom(x2+(#)y2) = dom x2 /\ dom((#)y2) by VALUED_1:def 1; A26: [.a2,b2.] c= dom(x2+(#)y2) by A6,A24,A25,XBOOLE_1:19; ((x2+(#)y2) | [.a2,b2.]).x0 = (x2+(#)y2).x0 by A5,A6,A20,FUNCT_1:72 .= x2.x0 + ((#)y2).x0 by A5,A6,A20,A26,VALUED_1:def 1 .= x2.x0 + *y2.x0 by VALUED_1:6; hence thesis by A6,A5,A23,COMPLEX1:163; end; hence thesis by A5,A6,FUNCT_1:165; end; A27: [.a1,b1.] c= Z3 by A5,A6,XBOOLE_1:19; A28: x1 is_differentiable_on Z3 & y1 is_differentiable_on Z3 by A5,A9,XBOOLE_1:17,FDIFF_1:34; A29: x2 is_differentiable_on Z3 & y2 is_differentiable_on Z3 by A6,A9,XBOOLE_1:17,FDIFF_1:34; thus s1 = integral(f,x1,y1,a1,b1,Z3) by A1,A5,A9,A27,Lm1,XBOOLE_1:17 .= integral(f,x2,y2,a2,b2,Z3) by A1,A5,A6,A8,A9,A11,A19,A28,A29,Lm2,XBOOLE_1:19 .= s2 by A1,A6,A5,A9,A27,Lm1,XBOOLE_1:17; end; end; definition let f be PartFunc of COMPLEX,COMPLEX; let C be C1-curve; pred f is_integrable_on C means :Def5: for a,b be Real, x,y be PartFunc of REAL,REAL, Z be Subset of REAL, u0,v0 be PartFunc of REAL,REAL st (a <= b & [.a,b.]=dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.] ) holds (u0(#)(x`|Z) - v0(#)(y`|Z)) is_integrable_on [' a,b '] & (v0(#)(x`|Z) + u0(#)(y`|Z)) is_integrable_on [' a,b ']; end; definition let f be PartFunc of COMPLEX, COMPLEX; let C be C1-curve; pred f is_bounded_on C means :Def6: for a,b be Real, x,y be PartFunc of REAL,REAL, Z be Subset of REAL, u0, v0 be PartFunc of REAL,REAL st (a <= b & [.a,b.]=dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.] ) holds (u0(#)(x`|Z) - v0(#)(y`|Z))|[' a,b '] is bounded & (v0(#)(x`|Z) + u0(#)(y`|Z))|[' a,b '] is bounded; end; begin :: Linearity of Complex Intergal theorem for f,g be PartFunc of COMPLEX,COMPLEX, C be C1-curve st rng C c= dom f & rng C c= dom g & f is_integrable_on C & g is_integrable_on C & f is_bounded_on C & g is_bounded_on C holds integral(f+g,C) = integral(f,C) + integral(g,C) proof let f,g be PartFunc of COMPLEX,COMPLEX, C be C1-curve such that A1: rng C c= dom f & rng C c= dom g & f is_integrable_on C & g is_integrable_on C & f is_bounded_on C & g is_bounded_on C; consider a,b be Real,x,y be PartFunc of REAL,REAL, Z be Subset of REAL such that A2: a <= b & [.a,b.]=dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.] by Def3; consider uf0,vf0 be PartFunc of REAL,REAL such that A3: uf0=(Re f)* (R2-to-C) *<:x,y:> & vf0=(Im f)* (R2-to-C) *<:x,y:> & integral(f,x,y,a,b,Z) = integral( uf0(#)(x`|Z) - vf0(#)(y`|Z) ,a,b ) + integral( vf0(#)(x`|Z) + uf0(#)(y`|Z) ,a,b )* by Def2; consider ug0,vg0 be PartFunc of REAL,REAL such that A4: ug0=(Re g)* (R2-to-C) *<:x,y:> & vg0=(Im g)* (R2-to-C) *<:x,y:> & integral(g,x,y,a,b,Z) = integral( ug0(#)(x`|Z) - vg0(#)(y`|Z) ,a,b ) + integral( vg0(#)(x`|Z) + ug0(#)(y`|Z) ,a,b )* by Def2; A5: integral(f,C) = integral(f,x,y,a,b,Z) & integral(g,C) = integral(g,x,y,a,b,Z) by A1,A2,Def4; A6: dom (f+g) = dom f /\ dom g by VALUED_1:def 1; A7: rng C c= dom f /\ dom g by A1, XBOOLE_1:19; consider u0,v0 be PartFunc of REAL,REAL such that A8: u0=(Re(f+g))* (R2-to-C) *<:x,y:> & v0=(Im(f+g))* (R2-to-C) *<:x,y:> & integral(f+g,x,y,a,b,Z) = integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,b ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,b )* by Def2; A9: u0(#)(x`|Z) = uf0(#)(x`|Z) + ug0(#)(x`|Z) proof A10: dom (uf0(#)(x`|Z) + ug0(#)(x`|Z)) = dom (uf0(#)(x`|Z)) /\ dom (ug0(#)(x`|Z)) by VALUED_1:def 1 .= (dom uf0 /\ dom (x`|Z)) /\ dom (ug0(#)(x`|Z)) by VALUED_1:def 4 .= (dom uf0 /\ dom (x`|Z)) /\ (dom ug0 /\ dom (x`|Z)) by VALUED_1:def 4 .= dom uf0 /\ (dom (x`|Z) /\ (dom ug0 /\ dom (x`|Z))) by XBOOLE_1:16 .= dom uf0 /\ ((dom (x`|Z) /\ dom (x`|Z)) /\ dom ug0) by XBOOLE_1:16 .= (dom uf0 /\ dom ug0) /\ dom (x`|Z) by XBOOLE_1:16; A11: dom (u0(#)(x`|Z)) = dom u0 /\ dom (x`|Z) by VALUED_1:def 4; A12: dom u0 = dom uf0 /\ dom ug0 proof A13: for x0 be set st x0 in dom u0 holds x0 in dom uf0 /\ dom ug0 proof let x0 be set such that A14: x0 in dom u0; A15: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re(f+g))*(R2-to-C)) by A14,A8,FUNCT_1:21; set R2 = <:x,y:>.x0; A16: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re(f+g)) by A15,FUNCT_1:21;then (R2-to-C).R2 in dom (Re f + Re g) by MESFUN6C:5;then (R2-to-C).R2 in (dom Re f /\ dom Re g) by VALUED_1:def 1; then (R2-to-C).R2 in dom Re f & (R2-to-C).R2 in dom Re g by XBOOLE_0:def 4;then R2 in dom ((Re f)*(R2-to-C)) & R2 in dom ((Re g)*(R2-to-C)) by A16,FUNCT_1:21;then x0 in dom uf0 & x0 in dom ug0 by A3,A4,A15,FUNCT_1:21; hence thesis by XBOOLE_0:def 4; end; for x0 be set st x0 in dom uf0 /\ dom ug0 holds x0 in dom u0 proof let x0 be set such that A17: x0 in dom uf0 /\ dom ug0; A18: x0 in dom uf0 & x0 in dom ug0 by A17,XBOOLE_0:def 4; A19: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re f)*(R2-to-C)) by A3,A18,FUNCT_1:21; A20: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re g)*(R2-to-C)) by A18,A4,FUNCT_1:21; set R2 = <:x,y:>.x0; A21: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re f) by A19,FUNCT_1:21; R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re g) by A20,FUNCT_1:21;then (R2-to-C).R2 in dom (Re f) /\ dom (Re g) by A21,XBOOLE_0:def 4; then (R2-to-C).R2 in dom (Re f + Re g) by VALUED_1:def 1;then (R2-to-C).R2 in dom (Re (f + g)) by MESFUN6C:5;then R2 in dom ((Re (f + g))*(R2-to-C)) by A21,FUNCT_1:21; hence thesis by A8,A19,FUNCT_1:21; end; hence thesis by A13, TARSKI:2; end; for x0 be set st x0 in dom (u0(#)(x`|Z)) holds (u0(#)(x`|Z)).x0 = (uf0(#)(x`|Z) + ug0(#)(x`|Z)).x0 proof let x0 be set such that A22: x0 in dom (u0(#)(x`|Z)); x0 in dom u0 /\ dom (x`|Z) by A22,VALUED_1:def 4;then A23: x0 in dom u0 & x0 in dom (x`|Z) by XBOOLE_0:def 4; A24: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re (f+g))*(R2-to-C)) by A8,A23,FUNCT_1:21; set R2 = <:x,y:>.x0; A25: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re (f+g)) by A24,FUNCT_1:21; set c0 = (R2-to-C).R2; A26: u0.x0 = ((Re (f+g))*(R2-to-C)).R2 by A8,A23,FUNCT_1:22 .= (Re (f+g)).c0 by A24,FUNCT_1:22 .= (Re f + Re g).c0 by MESFUN6C:5; A27: c0 in dom (Re f + Re g) by A25,MESFUN6C:5; A28: x0 in dom uf0 & x0 in dom ug0 by A12,A23,XBOOLE_0:def 4; A29: x0 in dom <:x,y:> & R2 in dom ((Re f)*(R2-to-C)) by A3,A28,FUNCT_1:21; A30: uf0.x0 = ((Re f)*(R2-to-C)).R2 by A3,A28,FUNCT_1:22 .= (Re f).c0 by A29,FUNCT_1:22; A31: x0 in dom <:x,y:> & R2 in dom ((Re g)*(R2-to-C)) by A4,A28,FUNCT_1:21; A32: ug0.x0 = ((Re g)*(R2-to-C)).R2 by A4,A28,FUNCT_1:22 .= (Re g).c0 by A31,FUNCT_1:22; x0 in dom (uf0(#)(x`|Z)) /\ dom (ug0(#)(x`|Z)) by A10,A11,A12,A22,VALUED_1:def 1; then A33: x0 in dom (uf0(#)(x`|Z)) & x0 in dom (ug0(#)(x`|Z)) by XBOOLE_0:def 4;then A34: (uf0(#)(x`|Z)).x0 = (Re f).c0*((x`|Z).x0) by A30,VALUED_1:def 4; A35: (ug0(#)(x`|Z)).x0 = (Re g).c0*(x`|Z).x0 by A32,A33,VALUED_1:def 4; (u0(#)(x`|Z)).x0 = (u0.x0)*((x`|Z).x0) by A22,VALUED_1:def 4 .= ((Re f).c0 + (Re g).c0)*((x`|Z).x0) by A26,A27,VALUED_1:def 1 .= (uf0(#)(x`|Z)).x0 + (ug0(#)(x`|Z)).x0 by A35,A34 .= (uf0(#)(x`|Z) + ug0(#)(x`|Z)).x0 by A10,A11,A12,A22,VALUED_1:def 1; hence thesis; end; hence thesis by A10,A11,A12,FUNCT_1:9; end; A36: v0(#)(x`|Z) = vf0(#)(x`|Z) + vg0(#)(x`|Z) proof A37: dom (vf0(#)(x`|Z) + vg0(#)(x`|Z)) = dom (vf0(#)(x`|Z)) /\ dom (vg0(#)(x`|Z)) by VALUED_1:def 1 .= (dom vf0 /\ dom (x`|Z)) /\ dom (vg0(#)(x`|Z)) by VALUED_1:def 4 .= (dom vf0 /\ dom (x`|Z)) /\ (dom vg0 /\ dom (x`|Z)) by VALUED_1:def 4 .= dom vf0 /\ (dom (x`|Z) /\ (dom vg0 /\ dom (x`|Z))) by XBOOLE_1:16 .= dom vf0 /\ ((dom (x`|Z) /\ dom (x`|Z)) /\ dom vg0) by XBOOLE_1:16 .= (dom vf0 /\ dom vg0) /\ dom (x`|Z) by XBOOLE_1:16; A38: dom (v0(#)(x`|Z)) = dom v0 /\ dom (x`|Z) by VALUED_1:def 4; A39: dom v0 = dom vf0 /\ dom vg0 proof A40: for x0 be set st x0 in dom v0 holds x0 in dom vf0 /\ dom vg0 proof let x0 be set such that A41: x0 in dom v0; A42: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im(f+g))*(R2-to-C)) by A41,A8,FUNCT_1:21; set R2 = <:x,y:>.x0; A43: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im(f+g)) by A42,FUNCT_1:21;then (R2-to-C).R2 in dom (Im f + Im g) by MESFUN6C:5;then (R2-to-C).R2 in (dom Im f /\ dom Im g) by VALUED_1:def 1; then (R2-to-C).R2 in dom Im f & (R2-to-C).R2 in dom Im g by XBOOLE_0:def 4;then R2 in dom ((Im f)*(R2-to-C)) & R2 in dom ((Im g)*(R2-to-C)) by A43,FUNCT_1:21;then x0 in dom vf0 & x0 in dom vg0 by A3,A4,A42,FUNCT_1:21; hence thesis by XBOOLE_0:def 4; end; for x0 be set st x0 in dom vf0 /\ dom vg0 holds x0 in dom v0 proof let x0 be set such that A44: x0 in dom vf0 /\ dom vg0; A45: x0 in dom vf0 & x0 in dom vg0 by A44,XBOOLE_0:def 4; A46: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im f)*(R2-to-C)) by A45,A3,FUNCT_1:21; A47: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im g)*(R2-to-C)) by A45,A4,FUNCT_1:21; set R2 = <:x,y:>.x0; A48: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im f) by A46,FUNCT_1:21; R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im g) by A47,FUNCT_1:21;then (R2-to-C).R2 in dom (Im f) /\ dom (Im g) by A48,XBOOLE_0:def 4; then (R2-to-C).R2 in dom (Im f + Im g) by VALUED_1:def 1;then (R2-to-C).R2 in dom (Im (f + g)) by MESFUN6C:5;then R2 in dom ((Im (f + g))*(R2-to-C)) by A48,FUNCT_1:21; hence thesis by A8,A46,FUNCT_1:21; end; hence thesis by A40,TARSKI:2; end; for x0 be set st x0 in dom (v0(#)(x`|Z)) holds (v0(#)(x`|Z)).x0 = (vf0(#)(x`|Z) + vg0(#)(x`|Z)).x0 proof let x0 be set such that A49: x0 in dom (v0(#)(x`|Z)); x0 in dom v0 /\ dom (x`|Z) by A49,VALUED_1:def 4;then A50: x0 in dom v0 & x0 in dom (x`|Z) by XBOOLE_0:def 4; A51: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im (f+g))*(R2-to-C)) by A8,A50,FUNCT_1:21; set R2 = <:x,y:>.x0; A52: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im (f+g)) by A51,FUNCT_1:21; set c0 = (R2-to-C).R2; A53: v0.x0 = ((Im (f+g))*(R2-to-C)).R2 by A8,A50,FUNCT_1:22 .= (Im (f+g)).c0 by A51,FUNCT_1:22 .= (Im f + Im g).c0 by MESFUN6C:5; A54: c0 in dom (Im f + Im g) by A52,MESFUN6C:5; A55: x0 in dom vf0 & x0 in dom vg0 by A39,A50,XBOOLE_0:def 4; A56: x0 in dom <:x,y:> & R2 in dom ((Im f)*(R2-to-C)) by A3,A55,FUNCT_1:21; A57: vf0.x0 = ((Im f)*(R2-to-C)).R2 by A3,A55,FUNCT_1:22 .= (Im f).c0 by A56,FUNCT_1:22; A58: x0 in dom <:x,y:> & R2 in dom ((Im g)*(R2-to-C)) by A4,A55,FUNCT_1:21; A59: vg0.x0 = ((Im g)*(R2-to-C)).R2 by A4,A55,FUNCT_1:22 .= (Im g).c0 by A58,FUNCT_1:22; x0 in dom (vf0(#)(x`|Z)) /\ dom (vg0(#)(x`|Z)) by A37,A38,A39,A49,VALUED_1:def 1; then A60: x0 in dom (vf0(#)(x`|Z)) & x0 in dom (vg0(#)(x`|Z)) by XBOOLE_0:def 4;then A61: (vf0(#)(x`|Z)).x0 = (Im f).c0*((x`|Z).x0) by A57,VALUED_1:def 4; A62: (vg0(#)(x`|Z)).x0 = (Im g).c0*(x`|Z).x0 by A59,A60,VALUED_1:def 4; (v0(#)(x`|Z)).x0 = (v0.x0)*((x`|Z).x0) by A49,VALUED_1:def 4 .= ((Im f).c0 + (Im g).c0)*((x`|Z).x0) by A53,A54,VALUED_1:def 1 .= (vf0(#)(x`|Z)).x0 + (vg0(#)(x`|Z)).x0 by A62,A61 .= (vf0(#)(x`|Z) + vg0(#)(x`|Z)).x0 by A37,A38,A39,A49,VALUED_1:def 1; hence thesis; end; hence thesis by A37,A38,A39,FUNCT_1:9; end; A63: u0(#)(y`|Z) = uf0(#)(y`|Z) + ug0(#)(y`|Z) proof A64: dom (uf0(#)(y`|Z) + ug0(#)(y`|Z)) = dom (uf0(#)(y`|Z)) /\ dom (ug0(#)(y`|Z)) by VALUED_1:def 1 .= (dom uf0 /\ dom (y`|Z)) /\ dom (ug0(#)(y`|Z)) by VALUED_1:def 4 .= (dom uf0 /\ dom (y`|Z)) /\ (dom ug0 /\ dom (y`|Z)) by VALUED_1:def 4 .= dom uf0 /\ (dom (y`|Z) /\ (dom ug0 /\ dom (y`|Z))) by XBOOLE_1:16 .= dom uf0 /\ ((dom (y`|Z) /\ dom (y`|Z)) /\ dom ug0) by XBOOLE_1:16 .= (dom uf0 /\ dom ug0) /\ dom (y`|Z) by XBOOLE_1:16; A65: dom (u0(#)(y`|Z)) = dom u0 /\ dom (y`|Z) by VALUED_1:def 4; A66: dom u0 = dom uf0 /\ dom ug0 proof A67: for x0 be set st x0 in dom u0 holds x0 in dom uf0 /\ dom ug0 proof let x0 be set such that A68: x0 in dom u0; A69: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re(f+g))*(R2-to-C)) by A68,A8,FUNCT_1:21; set R2 = <:x,y:>.x0; A70: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re(f+g)) by A69,FUNCT_1:21;then (R2-to-C).R2 in dom (Re f + Re g) by MESFUN6C:5;then (R2-to-C).R2 in (dom Re f /\ dom Re g) by VALUED_1:def 1; then (R2-to-C).R2 in dom Re f & (R2-to-C).R2 in dom Re g by XBOOLE_0:def 4;then R2 in dom ((Re f)*(R2-to-C)) & R2 in dom ((Re g)*(R2-to-C)) by A70,FUNCT_1:21;then x0 in dom uf0 & x0 in dom ug0 by A3,A4,A69,FUNCT_1:21; hence thesis by XBOOLE_0:def 4; end; for x0 be set st x0 in dom uf0 /\ dom ug0 holds x0 in dom u0 proof let x0 be set such that A71: x0 in dom uf0 /\ dom ug0; A72: x0 in dom uf0 & x0 in dom ug0 by A71,XBOOLE_0:def 4; A73: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re f)*(R2-to-C)) by A72,A3,FUNCT_1:21; A74: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re g)*(R2-to-C)) by A72,A4,FUNCT_1:21; set R2 = <:x,y:>.x0; A75: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re f) by A73,FUNCT_1:21; R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re g) by A74,FUNCT_1:21;then (R2-to-C).R2 in dom (Re f) /\ dom (Re g) by A75,XBOOLE_0:def 4; then (R2-to-C).R2 in dom (Re f + Re g) by VALUED_1:def 1;then (R2-to-C).R2 in dom (Re (f + g)) by MESFUN6C:5;then R2 in dom ((Re (f + g))*(R2-to-C)) by A75,FUNCT_1:21; hence thesis by A8,A73,FUNCT_1:21; end; hence thesis by A67,TARSKI:2; end; for x0 be set st x0 in dom (u0(#)(y`|Z)) holds (u0(#)(y`|Z)).x0 = (uf0(#)(y`|Z) + ug0(#)(y`|Z)).x0 proof let x0 be set such that A76: x0 in dom (u0(#)(y`|Z)); x0 in dom u0 /\ dom (y`|Z) by A76,VALUED_1:def 4;then A77: x0 in dom u0 & x0 in dom (y`|Z) by XBOOLE_0:def 4; A78: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re (f+g))*(R2-to-C)) by A8,A77,FUNCT_1:21; set R2 = <:x,y:>.x0; A79: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re (f+g)) by A78, FUNCT_1:21; set c0 = (R2-to-C).R2; A80: u0.x0 = ((Re (f+g))*(R2-to-C)).R2 by A8,A77,FUNCT_1:22 .= (Re (f+g)).c0 by A78,FUNCT_1:22 .= (Re f + Re g).c0 by MESFUN6C:5; A81: c0 in dom (Re f + Re g) by A79, MESFUN6C:5; A82: x0 in dom uf0 & x0 in dom ug0 by A66,A77,XBOOLE_0:def 4; A83: x0 in dom <:x,y:> & R2 in dom ((Re f)*(R2-to-C)) by A3,A82,FUNCT_1:21; A84: uf0.x0 = ((Re f)*(R2-to-C)).R2 by A3,A82,FUNCT_1:22 .= (Re f).c0 by A83,FUNCT_1:22; A85: x0 in dom <:x,y:> & R2 in dom ((Re g)*(R2-to-C)) by A4,A82,FUNCT_1:21; A86: ug0.x0 = ((Re g)*(R2-to-C)).R2 by A4,A82,FUNCT_1:22 .= (Re g).c0 by A85,FUNCT_1:22; x0 in dom (uf0(#)(y`|Z)) /\ dom (ug0(#)(y`|Z)) by A64,A65,A66,A76,VALUED_1:def 1; then A87: x0 in dom (uf0(#)(y`|Z)) & x0 in dom (ug0(#)(y`|Z)) by XBOOLE_0:def 4;then A88: (uf0(#)(y`|Z)).x0 = (Re f).c0*((y`|Z).x0) by A84,VALUED_1:def 4; A89: (ug0(#)(y`|Z)).x0 = (Re g).c0*(y`|Z).x0 by A86,A87,VALUED_1:def 4; (u0(#)(y`|Z)).x0 = (u0.x0)*((y`|Z).x0) by A76,VALUED_1:def 4 .= ((Re f).c0 + (Re g).c0)*((y`|Z).x0) by A80,A81,VALUED_1:def 1 .= (uf0(#)(y`|Z)).x0 + (ug0(#)(y`|Z)).x0 by A89,A88 .= (uf0(#)(y`|Z) + ug0(#)(y`|Z)).x0 by A64,A65,A66,A76,VALUED_1:def 1; hence thesis; end; hence thesis by A64,A65,A66,FUNCT_1:9; end; A90: v0(#)(y`|Z) = vf0(#)(y`|Z) + vg0(#)(y`|Z) proof A91: dom (vf0(#)(y`|Z) + vg0(#)(y`|Z)) = dom (vf0(#)(y`|Z)) /\ dom (vg0(#)(y`|Z)) by VALUED_1:def 1 .= (dom vf0 /\ dom (y`|Z)) /\ dom (vg0(#)(y`|Z)) by VALUED_1:def 4 .= (dom vf0 /\ dom (y`|Z)) /\ (dom vg0 /\ dom (y`|Z)) by VALUED_1:def 4 .= dom vf0 /\ (dom (y`|Z) /\ (dom vg0 /\ dom (y`|Z))) by XBOOLE_1:16 .= dom vf0 /\ ((dom (y`|Z) /\ dom (y`|Z)) /\ dom vg0) by XBOOLE_1:16 .= (dom vf0 /\ dom vg0) /\ dom (y`|Z) by XBOOLE_1:16; A92: dom (v0(#)(y`|Z)) = dom v0 /\ dom (y`|Z) by VALUED_1:def 4; A93: dom v0 = dom vf0 /\ dom vg0 proof A94: for x0 be set st x0 in dom v0 holds x0 in dom vf0 /\ dom vg0 proof let x0 be set such that A95: x0 in dom v0; A96: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im(f+g))*(R2-to-C)) by A8,A95,FUNCT_1:21; set R2 = <:x,y:>.x0; A97: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im(f+g)) by A96,FUNCT_1:21;then (R2-to-C).R2 in dom (Im f + Im g) by MESFUN6C:5;then (R2-to-C).R2 in (dom Im f /\ dom Im g) by VALUED_1:def 1; then (R2-to-C).R2 in dom Im f & (R2-to-C).R2 in dom Im g by XBOOLE_0:def 4;then R2 in dom ((Im f)*(R2-to-C)) & R2 in dom ((Im g)*(R2-to-C)) by A97,FUNCT_1:21;then x0 in dom vf0 & x0 in dom vg0 by A3,A4,A96,FUNCT_1:21; hence thesis by XBOOLE_0:def 4; end; for x0 be set st x0 in dom vf0 /\ dom vg0 holds x0 in dom v0 proof let x0 be set such that A98: x0 in dom vf0 /\ dom vg0; A99: x0 in dom vf0 & x0 in dom vg0 by A98,XBOOLE_0:def 4; A100: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im f)*(R2-to-C)) by A99,A3,FUNCT_1:21; A101: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im g)*(R2-to-C)) by A99,A4,FUNCT_1:21; set R2 = <:x,y:>.x0; A102: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im f) by A100,FUNCT_1:21; R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im g) by A101,FUNCT_1:21;then (R2-to-C).R2 in dom (Im f) /\ dom (Im g) by A102,XBOOLE_0:def 4; then (R2-to-C).R2 in dom (Im f + Im g) by VALUED_1:def 1;then (R2-to-C).R2 in dom (Im (f + g)) by MESFUN6C:5;then R2 in dom ((Im (f + g))*(R2-to-C)) by A102,FUNCT_1:21; hence thesis by A8,A100,FUNCT_1:21; end; hence thesis by A94,TARSKI:2; end; for x0 be set st x0 in dom (v0(#)(y`|Z)) holds (v0(#)(y`|Z)).x0 = (vf0(#)(y`|Z) + vg0(#)(y`|Z)).x0 proof let x0 be set such that A103: x0 in dom (v0(#)(y`|Z)); x0 in dom v0 /\ dom (y`|Z) by A103,VALUED_1:def 4;then A104: x0 in dom v0 & x0 in dom (y`|Z) by XBOOLE_0:def 4; A105: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im (f+g))*(R2-to-C)) by A8,A104,FUNCT_1:21; set R2 = <:x,y:>.x0; A106: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im (f+g)) by A105,FUNCT_1:21; set c0 = (R2-to-C).R2; A107: v0.x0 = ((Im (f+g))*(R2-to-C)).R2 by A8,A104,FUNCT_1:22 .= (Im (f+g)).c0 by A105,FUNCT_1:22 .= (Im f + Im g).c0 by MESFUN6C:5; A108: c0 in dom (Im f + Im g) by A106,MESFUN6C:5; A109: x0 in dom vf0 & x0 in dom vg0 by A93,A104,XBOOLE_0:def 4; A110: x0 in dom <:x,y:> & R2 in dom ((Im f)*(R2-to-C)) by A3,A109,FUNCT_1:21; A111: vf0.x0 = ((Im f)*(R2-to-C)).R2 by A3,A109,FUNCT_1:22 .= (Im f).c0 by A110,FUNCT_1:22; A112: x0 in dom <:x,y:> & R2 in dom ((Im g)*(R2-to-C)) by A4,A109,FUNCT_1:21; A113: vg0.x0 = ((Im g)*(R2-to-C)).R2 by A4,A109,FUNCT_1:22 .= (Im g).c0 by A112,FUNCT_1:22; x0 in dom (vf0(#)(y`|Z)) /\ dom (vg0(#)(y`|Z)) by A91,A92,A93,A103,VALUED_1:def 1; then A114: x0 in dom (vf0(#)(y`|Z)) & x0 in dom (vg0(#)(y`|Z)) by XBOOLE_0:def 4;then A115: (vf0(#)(y`|Z)).x0 = (Im f).c0*((y`|Z).x0) by A111,VALUED_1:def 4; A116: (vg0(#)(y`|Z)).x0 = (Im g).c0*(y`|Z).x0 by A113,A114,VALUED_1:def 4; (v0(#)(y`|Z)).x0 = (v0.x0)*((y`|Z).x0) by A103,VALUED_1:def 4 .= ((Im f).c0 + (Im g).c0)*((y`|Z).x0) by A107,A108,VALUED_1:def 1 .= (vf0(#)(y`|Z)).x0 + (vg0(#)(y`|Z)).x0 by A116,A115 .= (vf0(#)(y`|Z) + vg0(#)(y`|Z)).x0 by A91,A92,A93,A103,VALUED_1:def 1; hence thesis; end; hence thesis by A91,A92,A93,FUNCT_1:9; end; A117: [.a,b.] c= dom uf0 proof for x0 be set st x0 in [.a,b.] holds x0 in dom uf0 proof let x0 be set such that A118: x0 in [.a,b.]; A119: C.x0 in rng C by A2,A118,FUNCT_1:12; A120: x0 in dom x & x0 in dom y by A2,A118; A121: x0 in dom x /\ dom y by A118,A2,XBOOLE_0:def 4;then A122: x0 in dom <:x,y:> by FUNCT_3:def 8; set R2 = <:x,y:>.x0; R2 = [x.x0,y.x0] by A121,FUNCT_3:68;then R2 in [:REAL,REAL:] by ZFMISC_1:def 2;then A123: R2 in dom (R2-to-C) by FUNCT_2:def 1; x0 in dom ((#)y) by A120,VALUED_1:def 5;then x0 in dom x /\ dom ((#)y) by A2,A118,XBOOLE_0:def 4; then A124: x0 in dom (x+((#)y)) by VALUED_1:def 1; A125: [x.x0,y.x0] in [:REAL,REAL:] by ZFMISC_1:def 2; A126: x.x0 = [x.x0,y.x0]`1 & y.x0 = [x.x0,y.x0]`2 by MCART_1:7; C.x0 = (x+(#)y).x0 by A118,FUNCT_1:72,A2 .= x.x0+((#)y).x0 by A124,VALUED_1:def 1 .= x.x0+*y.x0 by VALUED_1:6 .= (R2-to-C).([x.x0,y.x0]) by A125,A126,Def1 .= (R2-to-C).R2 by A121,FUNCT_3:68;then (R2-to-C).R2 in dom f by A1,A119;then (R2-to-C).R2 in dom (Re f) by MESFUN6C:def 1;then R2 in dom ((Re f)* (R2-to-C)) by A123,FUNCT_1:21; hence thesis by A3,A122,FUNCT_1:21; end; hence thesis by TARSKI:def 3; end; A127: [.a,b.] c= dom vf0 proof for x0 be set st x0 in [.a,b.] holds x0 in dom vf0 proof let x0 be set such that A128: x0 in [.a,b.]; A129: C.x0 in rng C by A2,A128,FUNCT_1:12; A130: x0 in dom x & x0 in dom y by A2,A128; A131: x0 in dom x /\ dom y by A2,A128,XBOOLE_0:def 4;then A132: x0 in dom <:x,y:> by FUNCT_3:def 8; set R2 = <:x,y:>.x0; R2 = [x.x0,y.x0] by A131,FUNCT_3:68;then R2 in [:REAL,REAL:] by ZFMISC_1:def 2;then A133: R2 in dom (R2-to-C) by FUNCT_2:def 1; x0 in dom ((#)y) by A130,VALUED_1:def 5;then x0 in dom x /\ dom ((#)y) by A2,A128,XBOOLE_0:def 4; then A134: x0 in dom (x+((#)y)) by VALUED_1:def 1; A135: [x.x0,y.x0] in [:REAL,REAL:] by ZFMISC_1:def 2; A136: x.x0 = [x.x0,y.x0]`1 & y.x0 = [x.x0,y.x0]`2 by MCART_1:7; C.x0 = (x+(#)y).x0 by A128,FUNCT_1:72,A2 .= x.x0+((#)y).x0 by A134,VALUED_1:def 1 .= x.x0+*y.x0 by VALUED_1:6 .= (R2-to-C).([x.x0,y.x0]) by A135,A136,Def1 .= (R2-to-C).R2 by A131,FUNCT_3:68;then (R2-to-C).R2 in dom f by A1,A129;then (R2-to-C).R2 in dom (Im f) by MESFUN6C:def 2;then R2 in dom ((Im f)* (R2-to-C)) by A133,FUNCT_1:21; hence thesis by A3,A132,FUNCT_1:21; end; hence thesis by TARSKI:def 3; end; A137: [.a,b.] c= dom ug0 proof for x0 be set st x0 in [.a,b.] holds x0 in dom ug0 proof let x0 be set such that A138: x0 in [.a,b.]; A139: C.x0 in rng C by A138,A2,FUNCT_1:12; A140: x0 in dom x & x0 in dom y by A2,A138; A141: x0 in dom x /\ dom y by A2,A138,XBOOLE_0:def 4;then A142: x0 in dom <:x,y:> by FUNCT_3:def 8; set R2 = <:x,y:>.x0; R2 = [x.x0,y.x0] by A141,FUNCT_3:68;then R2 in [:REAL,REAL:] by ZFMISC_1:def 2;then A143: R2 in dom (R2-to-C) by FUNCT_2:def 1; x0 in dom ((#)y) by A140,VALUED_1:def 5;then x0 in dom x /\ dom ((#)y) by A2,A138,XBOOLE_0:def 4; then A144: x0 in dom (x+((#)y)) by VALUED_1:def 1; A145: [x.x0,y.x0] in [:REAL,REAL:] by ZFMISC_1:def 2; A146: x.x0 = [x.x0,y.x0]`1 & y.x0 = [x.x0,y.x0]`2 by MCART_1:7; C.x0 = (x+(#)y).x0 by A138,FUNCT_1:72,A2 .= x.x0+((#)y).x0 by A144,VALUED_1:def 1 .= x.x0+*y.x0 by VALUED_1:6 .= (R2-to-C).([x.x0,y.x0]) by A145,A146,Def1 .= (R2-to-C).R2 by A141,FUNCT_3:68;then (R2-to-C).R2 in dom g by A1,A139;then (R2-to-C).R2 in dom (Re g) by MESFUN6C:def 1;then R2 in dom ((Re g)* (R2-to-C)) by A143,FUNCT_1:21; hence thesis by A4,A142,FUNCT_1:21; end; hence thesis by TARSKI:def 3; end; A147: [.a,b.] c= dom vg0 proof for x0 be set st x0 in [.a,b.] holds x0 in dom vg0 proof let x0 be set such that A148: x0 in [.a,b.]; A149: C.x0 in rng C by A2,A148,FUNCT_1:12; A150: x0 in dom x & x0 in dom y by A2,A148; A151: x0 in dom x /\ dom y by A148,A2,XBOOLE_0:def 4;then A152: x0 in dom <:x,y:> by FUNCT_3:def 8; set R2 = <:x,y:>.x0; R2 = [x.x0,y.x0] by A151,FUNCT_3:68;then R2 in [:REAL,REAL:] by ZFMISC_1:def 2;then A153: R2 in dom (R2-to-C) by FUNCT_2:def 1; x0 in dom ((#)y) by A150,VALUED_1:def 5;then x0 in dom x /\ dom ((#)y) by A2,A148,XBOOLE_0:def 4; then A154: x0 in dom (x+((#)y)) by VALUED_1:def 1; A155: [x.x0,y.x0] in [:REAL,REAL:] by ZFMISC_1:def 2; A156: x.x0 = [x.x0,y.x0]`1 & y.x0 = [x.x0,y.x0]`2 by MCART_1:7; C.x0 = (x+(#)y).x0 by A148,FUNCT_1:72,A2 .= x.x0+((#)y).x0 by A154,VALUED_1:def 1 .= x.x0+*y.x0 by VALUED_1:6 .= (R2-to-C).([x.x0,y.x0]) by A155,A156,Def1 .= (R2-to-C).R2 by A151,FUNCT_3:68;then (R2-to-C).R2 in dom g by A1,A149;then (R2-to-C).R2 in dom (Im g) by MESFUN6C:def 2;then R2 in dom ((Im g)* (R2-to-C)) by A153,FUNCT_1:21; hence thesis by A4,A152,FUNCT_1:21; end; hence thesis by TARSKI:def 3; end; A157: [' a,b '] c= dom (uf0(#)(x`|Z) - vf0(#)(y`|Z)) proof A158: [' a,b '] = [.a,b.] by A2,INTEGRA5:def 4; A159: dom (uf0(#)(x`|Z) - vf0(#)(y`|Z)) = dom (uf0(#)(x`|Z)) /\ dom (vf0(#)(y`|Z)) by VALUED_1:12 .= (dom uf0 /\ dom (x`|Z)) /\ dom (vf0(#)(y`|Z)) by VALUED_1:def 4 .= (dom uf0 /\ dom (x`|Z)) /\ (dom vf0 /\ dom (y`|Z)) by VALUED_1:def 4 .= dom uf0 /\ ((dom (x`|Z)) /\ (dom vf0 /\ dom (y`|Z))) by XBOOLE_1:16 .= dom uf0 /\ ((Z) /\ ((dom (y`|Z)) /\ dom vf0)) by A2,FDIFF_1:def 8 .= dom uf0 /\ (Z /\ (Z /\ dom vf0)) by A2,FDIFF_1:def 8 .= dom uf0 /\ ((Z /\ Z) /\ dom vf0) by XBOOLE_1:16 .= (dom uf0 /\ dom vf0) /\ Z by XBOOLE_1:16; [.a,b.] c= dom uf0 /\ dom vf0 by A117,A127,XBOOLE_1:19; hence thesis by A2,A158,A159,XBOOLE_1:19; end; A160: [' a,b '] c= dom (ug0(#)(x`|Z) - vg0(#)(y`|Z)) proof A161: [' a,b '] = [.a,b.] by A2,INTEGRA5:def 4; A162: dom (ug0(#)(x`|Z) - vg0(#)(y`|Z)) = dom (ug0(#)(x`|Z)) /\ dom (vg0(#)(y`|Z)) by VALUED_1:12 .= (dom ug0 /\ dom (x`|Z)) /\ dom (vg0(#)(y`|Z)) by VALUED_1:def 4 .= (dom ug0 /\ dom (x`|Z)) /\ (dom vg0 /\ dom (y`|Z)) by VALUED_1:def 4 .= dom ug0 /\ ((dom (x`|Z)) /\ (dom vg0 /\ dom (y`|Z))) by XBOOLE_1:16 .= dom ug0 /\ ((Z) /\ ((dom (y`|Z)) /\ dom vg0)) by A2,FDIFF_1:def 8 .= dom ug0 /\ (Z /\ (Z /\ dom vg0)) by A2,FDIFF_1:def 8 .= dom ug0 /\ ((Z /\ Z) /\ dom vg0) by XBOOLE_1:16 .= (dom ug0 /\ dom vg0) /\ Z by XBOOLE_1:16; [.a,b.] c= dom ug0 /\ dom vg0 by A137,A147,XBOOLE_1:19; hence thesis by A2,A161,A162,XBOOLE_1:19; end; A163: [' a,b '] c= dom (vf0(#)(x`|Z) + uf0(#)(y`|Z)) proof A164: [' a,b '] = [.a,b.] by A2,INTEGRA5:def 4; A165: dom (vf0(#)(x`|Z) + uf0(#)(y`|Z)) = dom (vf0(#)(x`|Z)) /\ dom (uf0(#)(y`|Z)) by VALUED_1:def 1 .= (dom vf0 /\ dom (x`|Z)) /\ dom (uf0(#)(y`|Z)) by VALUED_1:def 4 .= (dom vf0 /\ dom (x`|Z)) /\ (dom uf0 /\ dom (y`|Z)) by VALUED_1:def 4 .= dom vf0 /\ ((dom (x`|Z)) /\ (dom uf0 /\ dom (y`|Z))) by XBOOLE_1:16 .= dom vf0 /\ ((Z) /\ ((dom (y`|Z)) /\ dom uf0)) by A2,FDIFF_1:def 8 .= dom vf0 /\ (Z /\ (Z /\ dom uf0)) by A2,FDIFF_1:def 8 .= dom vf0 /\ ((Z /\ Z) /\ dom uf0) by XBOOLE_1:16 .= (dom vf0 /\ dom uf0) /\ Z by XBOOLE_1:16; [.a,b.] c= dom vf0 /\ dom uf0 by A117,A127,XBOOLE_1:19; hence thesis by A2,A164,A165,XBOOLE_1:19; end; A166: [' a,b '] c= dom (vg0(#)(x`|Z) + ug0(#)(y`|Z)) proof A167: [' a,b '] = [.a,b.] by A2,INTEGRA5:def 4; A168: dom (vg0(#)(x`|Z) + ug0(#)(y`|Z)) = dom (vg0(#)(x`|Z)) /\ dom (ug0(#)(y`|Z)) by VALUED_1:def 1 .= (dom vg0 /\ dom (x`|Z)) /\ dom (ug0(#)(y`|Z)) by VALUED_1:def 4 .= (dom vg0 /\ dom (x`|Z)) /\ (dom ug0 /\ dom (y`|Z)) by VALUED_1:def 4 .= dom vg0 /\ ((dom (x`|Z)) /\ (dom ug0 /\ dom (y`|Z))) by XBOOLE_1:16 .= dom vg0 /\ ((Z) /\ ((dom (y`|Z)) /\ dom ug0)) by A2,FDIFF_1:def 8 .= dom vg0 /\ (Z /\ (Z /\ dom ug0)) by A2,FDIFF_1:def 8 .= dom vg0 /\ ((Z /\ Z) /\ dom ug0) by XBOOLE_1:16 .= (dom vg0 /\ dom ug0) /\ Z by XBOOLE_1:16; [.a,b.] c= dom ug0 /\ dom vg0 by A137,A147,XBOOLE_1:19; hence thesis by A2,A167,A168,XBOOLE_1:19; end; A169: (uf0(#)(x`|Z) - vf0(#)(y`|Z)) is_integrable_on [' a,b '] by A1,A2,Def5; A170: (ug0(#)(x`|Z) - vg0(#)(y`|Z)) is_integrable_on [' a,b '] by A1,A2,Def5; A171: (vf0(#)(x`|Z) + uf0(#)(y`|Z)) is_integrable_on [' a,b '] by A1,A2,Def5; A172: (vg0(#)(x`|Z) + ug0(#)(y`|Z)) is_integrable_on [' a,b '] by A1,A2,Def5; A173: (uf0(#)(x`|Z) - vf0(#)(y`|Z))|[' a,b '] is bounded by A1,A2,Def6; A174: (ug0(#)(x`|Z) - vg0(#)(y`|Z))|[' a,b '] is bounded by A1,A2,Def6; A175: (vf0(#)(x`|Z) + uf0(#)(y`|Z))|[' a,b '] is bounded by A1,A2,Def6; A176: (vg0(#)(x`|Z) + ug0(#)(y`|Z))|[' a,b '] is bounded by A1,A2,Def6; integral(f+g,C) = integral(uf0(#)(x`|Z)+ug0(#)(x`|Z)-(vf0(#)(y`|Z)+vg0(#)(y`|Z)),a,b ) + integral(vf0(#)(x`|Z)+vg0(#)(x`|Z)+(uf0(#)(y`|Z)+ug0(#)(y`|Z)),a,b )* by A36,A63,A9,A90,A8,A2,A6,A7,Def4 .= integral(uf0(#)(x`|Z)+ug0(#)(x`|Z)-vf0(#)(y`|Z)-vg0(#)(y`|Z),a,b ) + integral(vf0(#)(x`|Z)+vg0(#)(x`|Z)+(uf0(#)(y`|Z)+ug0(#)(y`|Z)),a,b )* by RFUNCT_1:32 .= integral(uf0(#)(x`|Z)+ug0(#)(x`|Z)-vf0(#)(y`|Z)-vg0(#)(y`|Z),a,b ) + integral(vf0(#)(x`|Z)+vg0(#)(x`|Z)+uf0(#)(y`|Z)+ug0(#)(y`|Z),a,b )* by RFUNCT_1:19 .= integral(uf0(#)(x`|Z)-vf0(#)(y`|Z)+ug0(#)(x`|Z)-vg0(#)(y`|Z),a,b ) + integral(vf0(#)(x`|Z)+vg0(#)(x`|Z)+uf0(#)(y`|Z)+ug0(#)(y`|Z),a,b )* by RFUNCT_1:19 .= integral(uf0(#)(x`|Z)-vf0(#)(y`|Z) + ug0(#)(x`|Z)-vg0(#)(y`|Z),a,b ) + integral(vf0(#)(x`|Z)+uf0(#)(y`|Z) + vg0(#)(x`|Z)+ug0(#)(y`|Z),a,b )* by RFUNCT_1:19 .= integral((uf0(#)(x`|Z)-vf0(#)(y`|Z)) + (ug0(#)(x`|Z)-vg0(#)(y`|Z)),a,b ) + integral(vf0(#)(x`|Z)+uf0(#)(y`|Z) + vg0(#)(x`|Z)+ug0(#)(y`|Z),a,b )* by RFUNCT_1:19 .= integral((uf0(#)(x`|Z)-vf0(#)(y`|Z)) + (ug0(#)(x`|Z)-vg0(#)(y`|Z)),a,b ) + integral((vf0(#)(x`|Z)+uf0(#)(y`|Z)) + (vg0(#)(x`|Z)+ug0(#)(y`|Z)),a,b )* by RFUNCT_1:19 .= integral(uf0(#)(x`|Z)-vf0(#)(y`|Z),a,b ) + integral(ug0(#)(x`|Z)-vg0(#)(y`|Z),a,b ) + integral((vf0(#)(x`|Z)+uf0(#)(y`|Z)) + (vg0(#)(x`|Z)+ug0(#)(y`|Z)),a,b )* by A2,A157,A160,A169,A170,A173,A174,INTEGRA6:12 .= integral(uf0(#)(x`|Z)-vf0(#)(y`|Z),a,b ) + integral(ug0(#)(x`|Z)-vg0(#)(y`|Z),a,b ) + (integral(vf0(#)(x`|Z)+uf0(#)(y`|Z),a,b ) + integral(vg0(#)(x`|Z)+ug0(#)(y`|Z),a,b ))* by A2,A163,A166,A171,A172,A175,A176,INTEGRA6:12 .= integral(f,C) + integral(g,C) by A4,A5,A3; hence thesis; end; theorem for f be PartFunc of COMPLEX,COMPLEX, C be C1-curve st rng C c= dom f & f is_integrable_on C & f is_bounded_on C holds for r be Real holds integral(r(#)f,C) = r*integral(f,C) proof let f be PartFunc of COMPLEX,COMPLEX, C be C1-curve such that A1: rng C c= dom f & f is_integrable_on C & f is_bounded_on C; let r be Real; consider a,b be Real,x,y be PartFunc of REAL,REAL, Z be Subset of REAL such that A2: a <= b & [.a,b.]=dom C & [.a,b.] c= dom x & [.a,b.] c= dom y & Z is open & [.a,b.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a,b.] by Def3; consider uf0,vf0 be PartFunc of REAL,REAL such that A3: uf0=(Re f)* (R2-to-C) *<:x,y:> & vf0=(Im f)* (R2-to-C) *<:x,y:> & integral(f,x,y,a,b,Z) = integral( uf0(#)(x`|Z) - vf0(#)(y`|Z) ,a,b ) + integral( vf0(#)(x`|Z) + uf0(#)(y`|Z) ,a,b )* by Def2; A4: dom (r(#)f) = dom f by VALUED_1:def 5; consider u0,v0 be PartFunc of REAL,REAL such that A5: u0=(Re(r(#)f))* (R2-to-C) *<:x,y:> & v0=(Im(r(#)f))* (R2-to-C) *<:x,y:> & integral(r(#)f,x,y,a,b,Z) = integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,b ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,b )* by Def2; A6: dom u0 = dom uf0 proof A7: for x0 be set st x0 in dom u0 holds x0 in dom uf0 proof let x0 be set such that A8: x0 in dom u0; A9: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re(r(#)f))*(R2-to-C)) by A5,A8, FUNCT_1:21; set R2 = <:x,y:>.x0; A10: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re(r(#)f)) by A9,FUNCT_1:21;then (R2-to-C).R2 in dom (r(#)Re f) by MESFUN6C:2;then (R2-to-C).R2 in (dom Re f) by VALUED_1:def 5;then R2 in dom ((Re f)*(R2-to-C)) by A10,FUNCT_1:21; hence thesis by A3,A9,FUNCT_1:21; end; for x0 be set st x0 in dom uf0 holds x0 in dom u0 proof let x0 be set such that A11: x0 in dom uf0; A12: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re f)*(R2-to-C)) by A3,A11,FUNCT_1:21; set R2 = <:x,y:>.x0; A13: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Re f) by A12,FUNCT_1:21;then (R2-to-C).R2 in dom (r(#)Re f) by VALUED_1:def 5;then (R2-to-C).R2 in dom (Re(r(#)f)) by MESFUN6C:2;then R2 in dom ((Re (r(#)f))*(R2-to-C)) by A13,FUNCT_1:21; hence thesis by A5,A12,FUNCT_1:21; end; hence thesis by A7,TARSKI:2; end; A14: dom v0 = dom vf0 proof A15: for x0 be set st x0 in dom v0 holds x0 in dom vf0 proof let x0 be set such that A16: x0 in dom v0; A17: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im(r(#)f))*(R2-to-C)) by A16,A5,FUNCT_1:21; set R2 = <:x,y:>.x0; A18: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im(r(#)f)) by A17,FUNCT_1:21;then (R2-to-C).R2 in dom (r(#)Im f) by MESFUN6C:2;then (R2-to-C).R2 in (dom Im f) by VALUED_1:def 5;then R2 in dom ((Im f)*(R2-to-C)) by A18,FUNCT_1:21; hence thesis by A3,A17,FUNCT_1:21; end; for x0 be set st x0 in dom vf0 holds x0 in dom v0 proof let x0 be set such that A19: x0 in dom vf0; A20: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im f)*(R2-to-C)) by A19, A3,FUNCT_1:21; set R2 = <:x,y:>.x0; A21: R2 in dom (R2-to-C) & (R2-to-C).R2 in dom (Im f) by A20,FUNCT_1:21;then (R2-to-C).R2 in dom (r(#)Im f) by VALUED_1:def 5;then (R2-to-C).R2 in dom (Im(r(#)f)) by MESFUN6C:2;then R2 in dom ((Im (r(#)f))*(R2-to-C)) by A21,FUNCT_1:21; hence thesis by A5,A20,FUNCT_1:21; end; hence thesis by A15,TARSKI:2; end; A22: u0(#)(x`|Z) = r(#)(uf0(#)(x`|Z)) proof A23: dom (r(#)(uf0(#)(x`|Z))) = dom (uf0(#)(r(#)(x`|Z))) by RFUNCT_1:25 .= dom(uf0) /\ dom (r(#)(x`|Z)) by VALUED_1:def 4 .= dom uf0 /\ dom (x`|Z) by VALUED_1:def 5; A24: dom (u0(#)(x`|Z)) = dom u0 /\ dom (x`|Z) by VALUED_1:def 4; A25: dom (u0(#)(x`|Z)) = dom (r(#)(uf0(#)(x`|Z))) by A6,A23,VALUED_1:def 4; for x0 be set st x0 in dom (u0(#)(x`|Z)) holds (u0(#)(x`|Z)).x0 = (r(#)(uf0(#)(x`|Z))).x0 proof let x0 be set such that A26: x0 in dom (u0(#)(x`|Z)); A27: x0 in dom u0 /\ dom (x`|Z) by A26,VALUED_1:def 4;then A28: x0 in dom u0 & x0 in dom (x`|Z) by XBOOLE_0:def 4; A29: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re (r(#)f))*(R2-to-C)) by A5,A28,FUNCT_1:21; set R2 = <:x,y:>.x0; set c0 = (R2-to-C).R2; A30: u0.x0 = ((Re (r(#)f))*(R2-to-C)).R2 by A5,A28,FUNCT_1:22 .= (Re (r(#)f)).c0 by A29,FUNCT_1:22 .= (r(#)Re f).c0 by MESFUN6C:2; A31: x0 in dom uf0 by A6,A27,XBOOLE_0:def 4; A32: x0 in dom <:x,y:> & R2 in dom ((Re f)*(R2-to-C)) by A3,A31,FUNCT_1:21; A33: uf0.x0 = ((Re f)*(R2-to-C)).R2 by A3,A6,A28,FUNCT_1:22 .= (Re f).c0 by A32,FUNCT_1:22; A34: x0 in dom (uf0(#)(r(#)(x`|Z))) by A26,A25,RFUNCT_1:25;then x0 in dom (uf0) /\ dom (r(#)(x`|Z)) by VALUED_1:def 4; then A35: x0 in dom (r(#)(x`|Z)) by XBOOLE_0:def 4; (u0(#)(x`|Z)).x0 = (u0.x0)*((x`|Z).x0) by A26,VALUED_1:def 4 .= (r*(Re f).c0)*((x`|Z).x0) by A30,VALUED_1:6 .= uf0.x0*(r*((x`|Z).x0)) by A33 .= uf0.x0*(r(#)(x`|Z)).x0 by A35,VALUED_1:def 5 .= (uf0(#)(r(#)(x`|Z))).x0 by A34,VALUED_1:def 4 .= (r(#)(uf0(#)(x`|Z))).x0 by RFUNCT_1:25; hence thesis; end; hence thesis by A6,A23,A24,FUNCT_1:9; end; A36: v0(#)(x`|Z) = r(#)(vf0(#)(x`|Z)) proof A37: dom (r(#)(vf0(#)(x`|Z))) = dom (vf0(#)(r(#)(x`|Z))) by RFUNCT_1:25 .= dom(vf0) /\ dom (r(#)(x`|Z)) by VALUED_1:def 4 .= dom vf0 /\ dom (x`|Z) by VALUED_1:def 5; A38: dom (v0(#)(x`|Z)) = dom v0 /\ dom (x`|Z) by VALUED_1:def 4; A39: dom (v0(#)(x`|Z)) = dom (r(#)(vf0(#)(x`|Z))) by A14,A37,VALUED_1:def 4; for x0 be set st x0 in dom (v0(#)(x`|Z)) holds (v0(#)(x`|Z)).x0 = (r(#)(vf0(#)(x`|Z))).x0 proof let x0 be set such that A40: x0 in dom (v0(#)(x`|Z)); A41: x0 in dom v0 /\ dom (x`|Z) by A40,VALUED_1:def 4;then A42: x0 in dom v0 & x0 in dom (x`|Z) by XBOOLE_0:def 4; A43: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im (r(#)f))*(R2-to-C)) by A5,A42,FUNCT_1:21; set R2 = <:x,y:>.x0; set c0 = (R2-to-C).R2; A44: v0.x0 = ((Im (r(#)f))*(R2-to-C)).R2 by A5,A42,FUNCT_1:22 .= (Im (r(#)f)).c0 by A43,FUNCT_1:22 .= (r(#)Im f).c0 by MESFUN6C:2; A45: x0 in dom vf0 by A14,A41,XBOOLE_0:def 4; A46: x0 in dom <:x,y:> & R2 in dom ((Im f)*(R2-to-C)) by A3,A45,FUNCT_1:21; A47: vf0.x0 = ((Im f)*(R2-to-C)).R2 by A3,A14,A42,FUNCT_1:22 .= (Im f).c0 by A46,FUNCT_1:22; A48: x0 in dom (vf0(#)(r(#)(x`|Z))) by A39,A40,RFUNCT_1:25;then x0 in dom (vf0) /\ dom (r(#)(x`|Z)) by VALUED_1:def 4; then A49: x0 in dom (r(#)(x`|Z)) by XBOOLE_0:def 4; (v0(#)(x`|Z)).x0 = (v0.x0)*((x`|Z).x0) by A40,VALUED_1:def 4 .= (r*(Im f).c0)*((x`|Z).x0) by A44,VALUED_1:6 .= vf0.x0*(r*((x`|Z).x0)) by A47 .= vf0.x0*(r(#)(x`|Z)).x0 by A49,VALUED_1:def 5 .= (vf0(#)(r(#)(x`|Z))).x0 by A48,VALUED_1:def 4 .= (r(#)(vf0(#)(x`|Z))).x0 by RFUNCT_1:25; hence thesis; end; hence thesis by A14,A37,A38,FUNCT_1:9; end; A50: u0(#)(y`|Z) = r(#)(uf0(#)(y`|Z)) proof A51: dom (r(#)(uf0(#)(y`|Z))) = dom (uf0(#)(r(#)(y`|Z))) by RFUNCT_1:25 .= dom(uf0) /\ dom (r(#)(y`|Z)) by VALUED_1:def 4 .= dom uf0 /\ dom (y`|Z) by VALUED_1:def 5; A52: dom (u0(#)(y`|Z)) = dom u0 /\ dom (y`|Z) by VALUED_1:def 4; A53: dom (u0(#)(y`|Z)) = dom (r(#)(uf0(#)(y`|Z))) by A6,A51,VALUED_1:def 4; for x0 be set st x0 in dom (u0(#)(y`|Z)) holds (u0(#)(y`|Z)).x0 = (r(#)(uf0(#)(y`|Z))).x0 proof let x0 be set such that A54: x0 in dom (u0(#)(y`|Z)); A55: x0 in dom u0 /\ dom (y`|Z) by A54,VALUED_1:def 4;then A56: x0 in dom u0 & x0 in dom (y`|Z) by XBOOLE_0:def 4; A57: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Re (r(#)f))*(R2-to-C)) by A5,A56,FUNCT_1:21; set R2 = <:x,y:>.x0; set c0 = (R2-to-C).R2; A58: u0.x0 = ((Re (r(#)f))*(R2-to-C)).R2 by A5,A56,FUNCT_1:22 .= (Re (r(#)f)).c0 by A57,FUNCT_1:22 .= (r(#)Re f).c0 by MESFUN6C:2; A59: x0 in dom uf0 by A6,A55,XBOOLE_0:def 4; A60: x0 in dom <:x,y:> & R2 in dom ((Re f)*(R2-to-C)) by A3,A59,FUNCT_1:21; A61: uf0.x0 = ((Re f)*(R2-to-C)).R2 by A3,A6,A56,FUNCT_1:22 .= (Re f).c0 by A60,FUNCT_1:22; A62: x0 in dom (uf0(#)(r(#)(y`|Z))) by A53,A54,RFUNCT_1:25;then x0 in dom (uf0) /\ dom (r(#)(y`|Z)) by VALUED_1:def 4; then A63: x0 in dom (r(#)(y`|Z)) by XBOOLE_0:def 4; (u0(#)(y`|Z)).x0 = (u0.x0)*((y`|Z).x0) by A54,VALUED_1:def 4 .= (r*(Re f).c0)*((y`|Z).x0) by A58,VALUED_1:6 .= uf0.x0*(r*((y`|Z).x0)) by A61 .= uf0.x0*(r(#)(y`|Z)).x0 by A63,VALUED_1:def 5 .= (uf0(#)(r(#)(y`|Z))).x0 by A62,VALUED_1:def 4 .= (r(#)(uf0(#)(y`|Z))).x0 by RFUNCT_1:25; hence thesis; end; hence thesis by A6,A51,A52,FUNCT_1:9; end; A64: v0(#)(y`|Z) = r(#)(vf0(#)(y`|Z)) proof A65: dom (r(#)(vf0(#)(y`|Z))) = dom (vf0(#)(r(#)(y`|Z))) by RFUNCT_1:25 .= dom(vf0) /\ dom (r(#)(y`|Z)) by VALUED_1:def 4 .= dom vf0 /\ dom (y`|Z) by VALUED_1:def 5; A66: dom (v0(#)(y`|Z)) = dom v0 /\ dom (y`|Z) by VALUED_1:def 4; A67: dom (v0(#)(y`|Z)) = dom (r(#)(vf0(#)(y`|Z))) by A14,A65,VALUED_1:def 4; for x0 be set st x0 in dom (v0(#)(y`|Z)) holds (v0(#)(y`|Z)).x0 = (r(#)(vf0(#)(y`|Z))).x0 proof let x0 be set such that A68: x0 in dom (v0(#)(y`|Z)); A69: x0 in dom v0 /\ dom (y`|Z) by A68,VALUED_1:def 4;then A70: x0 in dom v0 & x0 in dom (y`|Z) by XBOOLE_0:def 4; A71: x0 in dom <:x,y:> & <:x,y:>.x0 in dom ((Im (r(#)f))*(R2-to-C)) by A5,A70,FUNCT_1:21; set R2 = <:x,y:>.x0; set c0 = (R2-to-C).R2; A72: v0.x0 = ((Im (r(#)f))*(R2-to-C)).R2 by A5,A70,FUNCT_1:22 .= (Im (r(#)f)).c0 by A71,FUNCT_1:22 .= (r(#)Im f).c0 by MESFUN6C:2; A73: x0 in dom vf0 by A14,A69,XBOOLE_0:def 4; A74: x0 in dom <:x,y:> & R2 in dom ((Im f)*(R2-to-C)) by A3,A73,FUNCT_1:21; A75: vf0.x0 = ((Im f)*(R2-to-C)).R2 by A3,A14,A70,FUNCT_1:22 .= (Im f).c0 by A74,FUNCT_1:22; A76: x0 in dom (vf0(#)(r(#)(y`|Z))) by A67,A68,RFUNCT_1:25;then x0 in dom (vf0) /\ dom (r(#)(y`|Z)) by VALUED_1:def 4; then A77: x0 in dom (r(#)(y`|Z)) by XBOOLE_0:def 4; (v0(#)(y`|Z)).x0 = (v0.x0)*((y`|Z).x0) by A68,VALUED_1:def 4 .= (r*(Im f).c0)*((y`|Z).x0) by A72,VALUED_1:6 .= vf0.x0*(r*((y`|Z).x0)) by A75 .= vf0.x0*(r(#)(y`|Z)).x0 by A77,VALUED_1:def 5 .= (vf0(#)(r(#)(y`|Z))).x0 by A76,VALUED_1:def 4 .= (r(#)(vf0(#)(y`|Z))).x0 by RFUNCT_1:25; hence thesis; end; hence thesis by A14,A65,A66,FUNCT_1:9; end; A78: [.a,b.] c= dom uf0 proof for x0 be set st x0 in [.a,b.] holds x0 in dom uf0 proof let x0 be set such that A79: x0 in [.a,b.]; A80: C.x0 in rng C by A2,A79,FUNCT_1:12; A81: x0 in dom x & x0 in dom y by A2,A79; A82: x0 in dom x /\ dom y by A2,A79,XBOOLE_0:def 4;then A83: x0 in dom <:x,y:> by FUNCT_3:def 8; set R2 = <:x,y:>.x0; R2 = [x.x0,y.x0] by A82,FUNCT_3:68;then R2 in [:REAL,REAL:] by ZFMISC_1:def 2;then A84: R2 in dom (R2-to-C) by FUNCT_2:def 1; x0 in dom ((#)y) by A81,VALUED_1:def 5;then x0 in dom x /\ dom ((#)y) by A2,A79,XBOOLE_0:def 4; then A85: x0 in dom (x+((#)y)) by VALUED_1:def 1; A86: [x.x0,y.x0] in [:REAL,REAL:] by ZFMISC_1:def 2; A87: x.x0 = [x.x0,y.x0]`1 & y.x0 = [x.x0,y.x0]`2 by MCART_1:7; C.x0 = (x+(#)y).x0 by A79,FUNCT_1:72,A2 .= x.x0+((#)y).x0 by A85,VALUED_1:def 1 .= x.x0+*y.x0 by VALUED_1:6 .= (R2-to-C).([x.x0,y.x0]) by A86,A87,Def1 .= (R2-to-C).R2 by A82,FUNCT_3:68;then (R2-to-C).R2 in dom f by A1,A80;then (R2-to-C).R2 in dom (Re f) by MESFUN6C:def 1;then R2 in dom ((Re f)* (R2-to-C)) by A84,FUNCT_1:21; hence thesis by A3,A83,FUNCT_1:21; end; hence thesis by TARSKI:def 3; end; A88: [.a,b.] c= dom vf0 proof for x0 be set st x0 in [.a,b.] holds x0 in dom vf0 proof let x0 be set such that A89: x0 in [.a,b.]; A90: C.x0 in rng C by A2,A89,FUNCT_1:12; A91: x0 in dom x & x0 in dom y by A2,A89; A92: x0 in dom x /\ dom y by A2,A89,XBOOLE_0:def 4;then A93: x0 in dom <:x,y:> by FUNCT_3:def 8; set R2 = <:x,y:>.x0; R2 = [x.x0,y.x0] by A92,FUNCT_3:68;then R2 in [:REAL,REAL:] by ZFMISC_1:def 2;then A94: R2 in dom (R2-to-C) by FUNCT_2:def 1; x0 in dom ((#)y) by A91,VALUED_1:def 5;then x0 in dom x /\ dom ((#)y) by A2,A89,XBOOLE_0:def 4; then A95: x0 in dom (x+((#)y)) by VALUED_1:def 1; A96: [x.x0,y.x0] in [:REAL,REAL:] by ZFMISC_1:def 2; A97: x.x0 = [x.x0,y.x0]`1 & y.x0 = [x.x0,y.x0]`2 by MCART_1:7; C.x0 = (x+(#)y).x0 by A89,FUNCT_1:72,A2 .= x.x0+((#)y).x0 by A95,VALUED_1:def 1 .= x.x0+*y.x0 by VALUED_1:6 .= (R2-to-C).([x.x0,y.x0]) by A96,A97,Def1 .= (R2-to-C).R2 by A92,FUNCT_3:68; then (R2-to-C).R2 in dom f by A1,A90;then (R2-to-C).R2 in dom (Im f) by MESFUN6C:def 2;then R2 in dom ((Im f)* (R2-to-C)) by A94,FUNCT_1:21; hence thesis by A3,A93,FUNCT_1:21; end; hence thesis by TARSKI:def 3; end; A98: [' a,b '] c= dom (uf0(#)(x`|Z) - vf0(#)(y`|Z)) proof A99: [' a,b '] = [.a,b.] by A2,INTEGRA5:def 4; A100: dom (uf0(#)(x`|Z) - vf0(#)(y`|Z)) = dom (uf0(#)(x`|Z)) /\ dom (vf0(#)(y`|Z)) by VALUED_1:12 .= (dom uf0 /\ dom (x`|Z)) /\ dom (vf0(#)(y`|Z)) by VALUED_1:def 4 .= (dom uf0 /\ dom (x`|Z)) /\ (dom vf0 /\ dom (y`|Z)) by VALUED_1:def 4 .= dom uf0 /\ ((dom (x`|Z)) /\ (dom vf0 /\ dom (y`|Z))) by XBOOLE_1:16 .= dom uf0 /\ ((Z) /\ ((dom (y`|Z)) /\ dom vf0)) by A2,FDIFF_1:def 8 .= dom uf0 /\ (Z /\ (Z /\ dom vf0)) by A2,FDIFF_1:def 8 .= dom uf0 /\ ((Z /\ Z) /\ dom vf0) by XBOOLE_1:16 .= (dom uf0 /\ dom vf0) /\ Z by XBOOLE_1:16; [.a,b.] c= dom uf0 /\ dom vf0 by A78,A88,XBOOLE_1:19; hence thesis by A2,A99,A100,XBOOLE_1:19; end; A101: [' a,b '] c= dom (vf0(#)(x`|Z) + uf0(#)(y`|Z)) proof A102: [' a,b '] = [.a,b.] by A2,INTEGRA5:def 4; A103: dom (vf0(#)(x`|Z) + uf0(#)(y`|Z)) = dom (vf0(#)(x`|Z)) /\ dom (uf0(#)(y`|Z)) by VALUED_1:def 1 .= (dom vf0 /\ dom (x`|Z)) /\ dom (uf0(#)(y`|Z)) by VALUED_1:def 4 .= (dom vf0 /\ dom (x`|Z)) /\ (dom uf0 /\ dom (y`|Z)) by VALUED_1:def 4 .= dom vf0 /\ ((dom (x`|Z)) /\ (dom uf0 /\ dom (y`|Z))) by XBOOLE_1:16 .= dom vf0 /\ ((Z) /\ ((dom (y`|Z)) /\ dom uf0)) by A2,FDIFF_1:def 8 .= dom vf0 /\ (Z /\ (Z /\ dom uf0)) by A2,FDIFF_1:def 8 .= dom vf0 /\ ((Z /\ Z) /\ dom uf0) by XBOOLE_1:16 .= (dom vf0 /\ dom uf0) /\ Z by XBOOLE_1:16; [.a,b.] c= dom vf0 /\ dom uf0 by A78,A88,XBOOLE_1:19; hence thesis by A2,A102,A103,XBOOLE_1:19; end; A104: (uf0(#)(x`|Z) - vf0(#)(y`|Z)) is_integrable_on [' a,b '] by A1,A2,Def5; A105: (vf0(#)(x`|Z) + uf0(#)(y`|Z)) is_integrable_on [' a,b '] by A1,A2,Def5; A106: (uf0(#)(x`|Z) - vf0(#)(y`|Z))|[' a,b '] is bounded by A1,A2,Def6; A107: (vf0(#)(x`|Z) + uf0(#)(y`|Z))|[' a,b '] is bounded by A1,A2,Def6; integral(r(#)f,C) = integral( r(#)(uf0(#)(x`|Z)) - r(#)(vf0(#)(y`|Z)),a,b ) + integral( r(#)(vf0(#)(x`|Z)) + r(#)(uf0(#)(y`|Z)),a,b )* by A36,A64,A50,A22,A5,A1,A2,A4,Def4 .= integral(r(#)(uf0(#)(x`|Z) - vf0(#)(y`|Z)),a,b ) + integral(r(#)(vf0(#)(x`|Z)) + r(#)(uf0(#)(y`|Z)),a,b )* by RFUNCT_1:30 .= integral(r(#)(uf0(#)(x`|Z) - vf0(#)(y`|Z)),a,b ) + integral(r(#)(vf0(#)(x`|Z) + uf0(#)(y`|Z)),a,b )* by RFUNCT_1:28 .= r*integral(uf0(#)(x`|Z) - vf0(#)(y`|Z),a,b ) + integral(r(#)(vf0(#)(x`|Z) + uf0(#)(y`|Z)),a,b )* by A2,A98,A104,A106,INTEGRA6:10 .= r*integral(uf0(#)(x`|Z) - vf0(#)(y`|Z),a,b ) + r*integral(vf0(#)(x`|Z) + uf0(#)(y`|Z),a,b )* by A2,A101,A105,A107,INTEGRA6:10 .= r*(integral(uf0(#)(x`|Z) - vf0(#)(y`|Z),a,b ) + integral(vf0(#)(x`|Z) + uf0(#)(y`|Z),a,b )*) .= r*integral(f,C) by A1,A2,A3,Def4; hence thesis; end; begin :: Complex Integral of Complex Curve's Connection theorem for f be PartFunc of COMPLEX,COMPLEX, C,C1,C2 be C1-curve, a,b,d be Real st rng C c= dom f & f is_integrable_on C & f is_bounded_on C & a <= b & dom C = [.a,b.] & d in [.a,b.] & dom C1 = [.a,d.] & dom C2 = [.d,b.] & (for t st t in dom C1 holds C.t = C1.t) & (for t st t in dom C2 holds C.t = C2.t) holds integral(f,C) = integral(f,C1) + integral(f,C2) proof let f be PartFunc of COMPLEX,COMPLEX, C,C1,C2 be C1-curve, a,b,d be Real such that A1: rng C c= dom f & f is_integrable_on C & f is_bounded_on C & a <= b & dom C = [.a,b.] & d in [.a,b.] & dom C1 = [.a,d.] & dom C2 =[.d,b.] & (for t st t in dom C1 holds C.t = C1.t) & (for t st t in dom C2 holds C.t = C2.t); A2: a <= d & d <= b by A1,XXREAL_1:1; consider a0,b0 be Real, x,y be PartFunc of REAL,REAL, Z be Subset of REAL such that A3: a0 <= b0 & [.a0,b0.]=dom C & [.a0,b0.] c= dom x & [.a0,b0.] c= dom y & Z is open & [.a0,b0.] c= Z & x is_differentiable_on Z & y is_differentiable_on Z & x`|Z is continuous & y`|Z is continuous & C = (x+(#)y) | [.a0,b0.] by Def3; A4: a0 = a & b0 = b proof thus a0 = inf [.a0,b0.] by A3,XXREAL_2:25 .= a by A1,XXREAL_2:25,A3; thus b0 = sup [.a0,b0.] by A3,XXREAL_2:29 .= b by A1,XXREAL_2:29,A3; end; consider u0, v0 be PartFunc of REAL,REAL such that A5: u0=(Re f)* (R2-to-C) *<:x,y:> & v0=(Im f)* (R2-to-C) *<:x,y:> & integral(f,x,y,a,b,Z) = integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,b ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,b )* by Def2; consider a1,b1 be Real, x1,y1 be PartFunc of REAL,REAL, Z1 be Subset of REAL such that A6: a1 <= b1 & [.a1,b1.]=dom C1 & [.a1,b1.] c= dom x1 & [.a1,b1.] c= dom y1 & Z1 is open & [.a1,b1.] c= Z1 & x1 is_differentiable_on Z1 & y1 is_differentiable_on Z1 & x1`|Z1 is continuous & y1`|Z1 is continuous & C1 = (x1+(#)y1) | [.a1,b1.] by Def3; A7: a1 = a & b1 = d proof thus a1 = inf [.a1,b1.] by A6,XXREAL_2:25 .= a by A2,XXREAL_2:25,A1,A6; thus b1 = sup [.a1,b1.] by A6,XXREAL_2:29 .= d by A2,XXREAL_2:29,A1,A6; end; A8: rng C1 c= dom f proof A9: [.a,d.] c= [.a,b.] by A2,XXREAL_1:34; for y0 be set st y0 in rng C1 holds y0 in rng C proof let y0 be set such that A10: y0 in rng C1; consider x0 be set such that A11: x0 in dom C1 & y0 = C1.x0 by A10,FUNCT_1:def 5; C1.x0 = C.x0 by A1,A11; hence thesis by A1,A9,A11,FUNCT_1:12; end;then rng C1 c= rng C by TARSKI:def 3; hence thesis by A1,XBOOLE_1:1; end; consider a2,b2 be Real, x2,y2 be PartFunc of REAL,REAL, Z2 be Subset of REAL such that A12: a2 <= b2 & [.a2,b2.]=dom C2 & [.a2,b2.] c= dom x2 & [.a2,b2.] c= dom y2 & Z2 is open & [.a2,b2.] c= Z2 & x2 is_differentiable_on Z2 & y2 is_differentiable_on Z2 & x2`|Z2 is continuous & y2`|Z2 is continuous & C2 = (x2+(#)y2) | [.a2,b2.] by Def3; A13: a2 = d & b2 = b proof thus a2 = inf [.a2,b2.] by A12,XXREAL_2:25 .= d by A2,XXREAL_2:25,A1,A12; thus b2 = sup [.a2,b2.] by A12,XXREAL_2:29 .= b by A2,XXREAL_2:29,A1,A12; end; rng C2 c= dom f proof A14: [.d,b.] c= [.a,b.] by A2,XXREAL_1:34; for y0 be set st y0 in rng C2 holds y0 in rng C proof let y0 be set such that A15: y0 in rng C2; consider x0 be set such that A16: x0 in dom C2 & y0 = C2.x0 by A15,FUNCT_1:def 5; C2.x0 = C.x0 by A1,A16; hence thesis by A1,A14,A16,FUNCT_1:12; end;then rng C2 c= rng C by TARSKI:def 3; hence thesis by A1,XBOOLE_1:1; end;then A17: integral(f,C2) = integral(f,x2,y2,d,b,Z2) by A12,A13,Def4; A18: [' a,b '] = [.a,b.] by A1,INTEGRA5:def 4; A19: [' a,b '] c= dom u0 proof for x0 be set st x0 in [.a,b.] holds x0 in dom u0 proof let x0 be set such that A20: x0 in [.a,b.]; A21: C.x0 in rng C by A3,A4,A20,FUNCT_1:12; A22: x0 in dom x & x0 in dom y by A3,A4,A20; A23: x0 in dom x /\ dom y by A3,A4,A20,XBOOLE_0:def 4;then A24: x0 in dom <:x,y:> by FUNCT_3:def 8; set R2 = <:x,y:>.x0; R2 = [x.x0,y.x0] by A23,FUNCT_3:68;then R2 in [:REAL,REAL:] by ZFMISC_1:def 2;then A25: R2 in dom (R2-to-C) by FUNCT_2:def 1; x0 in dom ((#)y) by A22,VALUED_1:def 5;then x0 in dom x /\ dom ((#)y) by A3,A4,A20,XBOOLE_0:def 4; then A26: x0 in dom (x+((#)y)) by VALUED_1:def 1; A27: [x.x0,y.x0] in [:REAL,REAL:] by ZFMISC_1:def 2; A28: x.x0 = [x.x0,y.x0]`1 & y.x0 = [x.x0,y.x0]`2 by MCART_1:7; C.x0 = (x+(#)y).x0 by A20,FUNCT_1:72,A3,A4 .= x.x0+((#)y).x0 by A26,VALUED_1:def 1 .= x.x0+*y.x0 by VALUED_1:6 .= (R2-to-C).([x.x0,y.x0]) by A27,A28,Def1 .= (R2-to-C).R2 by A23,FUNCT_3:68; then (R2-to-C).R2 in dom f by A1,A21;then (R2-to-C).R2 in dom (Re f) by MESFUN6C:def 1;then R2 in dom ((Re f)* (R2-to-C)) by A25,FUNCT_1:21; hence thesis by A5,A24,FUNCT_1:21; end; hence thesis by A18,TARSKI:def 3; end; A29: [' a,b '] c= dom v0 proof for x0 be set st x0 in [.a,b.] holds x0 in dom v0 proof let x0 be set such that A30: x0 in [.a,b.]; A31: C.x0 in rng C by A3,A4,A30,FUNCT_1:12; A32: x0 in dom x & x0 in dom y by A3,A4,A30; A33: x0 in dom x /\ dom y by A3,A4,A30,XBOOLE_0:def 4;then A34: x0 in dom <:x,y:> by FUNCT_3:def 8; set R2 = <:x,y:>.x0; R2 = [x.x0,y.x0] by A33,FUNCT_3:68;then R2 in [:REAL,REAL:] by ZFMISC_1:def 2;then A35: R2 in dom (R2-to-C) by FUNCT_2:def 1; x0 in dom ((#)y) by A32,VALUED_1:def 5;then x0 in dom x /\ dom ((#)y) by A3,A4,A30,XBOOLE_0:def 4; then A36: x0 in dom (x+((#)y)) by VALUED_1:def 1; A37: [x.x0,y.x0] in [:REAL,REAL:] by ZFMISC_1:def 2; A38: x.x0 = [x.x0,y.x0]`1 & y.x0 = [x.x0,y.x0]`2 by MCART_1:7; C.x0 = (x+(#)y).x0 by A30,FUNCT_1:72,A3,A4 .= x.x0+((#)y).x0 by A36,VALUED_1:def 1 .= x.x0+*y.x0 by VALUED_1:6 .= (R2-to-C).([x.x0,y.x0]) by A37,A38,Def1 .= (R2-to-C).R2 by A33,FUNCT_3:68; then (R2-to-C).R2 in dom f by A1,A31;then (R2-to-C).R2 in dom (Im f) by MESFUN6C:def 2;then R2 in dom ((Im f)* (R2-to-C)) by A35,FUNCT_1:21; hence thesis by A5,A34,FUNCT_1:21; end; hence thesis by A18,TARSKI:def 3; end; A39: (u0(#)(x`|Z) - v0(#)(y`|Z)) is_integrable_on [' a,b '] & (v0(#)(x`|Z) + u0(#)(y`|Z)) is_integrable_on [' a,b '] by A1,A3,Def5; A40: (u0(#)(x`|Z) - v0(#)(y`|Z))|[' a,b '] is bounded & (v0(#)(x`|Z) + u0(#)(y`|Z))|[' a,b '] is bounded by A1,A3,Def6; A41: [' a,b '] c= dom (u0(#)(x`|Z) - v0(#)(y`|Z)) proof A42: dom (u0(#)(x`|Z) - v0(#)(y`|Z)) = dom (u0(#)(x`|Z)) /\ dom (v0(#)(y`|Z)) by VALUED_1:12 .= (dom u0 /\ dom(x`|Z)) /\ dom (v0(#)(y`|Z)) by VALUED_1:def 4 .= (dom u0 /\ dom(x`|Z)) /\ (dom v0 /\ dom(y`|Z)) by VALUED_1:def 4 .= (dom u0 /\ Z) /\ (dom v0 /\ dom(y`|Z)) by A3,FDIFF_1:def 8 .= (dom u0 /\ Z) /\ (dom v0 /\ Z) by A3,FDIFF_1:def 8 .= dom u0 /\ (Z /\ (dom v0 /\ Z)) by XBOOLE_1:16 .= dom u0 /\ ((Z /\ Z) /\ dom v0) by XBOOLE_1:16 .= (dom u0 /\ dom v0) /\ Z by XBOOLE_1:16; A43: [' a,b '] c= dom u0 /\ dom v0 by A19,A29,XBOOLE_1:19; [' a,b '] c= Z by A1,A3,INTEGRA5:def 4; hence thesis by A42,A43,XBOOLE_1:19; end; A44: [' a,b '] c= dom (v0(#)(x`|Z) + u0(#)(y`|Z)) proof A45: dom (v0(#)(x`|Z) + u0(#)(y`|Z)) = dom (v0(#)(x`|Z)) /\ dom (u0(#)(y`|Z)) by VALUED_1:def 1 .= (dom v0 /\ dom(x`|Z)) /\ dom (u0(#)(y`|Z)) by VALUED_1:def 4 .= (dom v0 /\ dom(x`|Z)) /\ (dom u0 /\ dom(y`|Z)) by VALUED_1:def 4 .= (dom v0 /\ Z) /\ (dom u0 /\ dom(y`|Z)) by A3,FDIFF_1:def 8 .= (dom v0 /\ Z) /\ (dom u0 /\ Z) by A3,FDIFF_1:def 8 .= dom v0 /\ (Z /\ (dom u0 /\ Z)) by XBOOLE_1:16 .= dom v0 /\ ((Z /\ Z) /\ dom u0) by XBOOLE_1:16 .= (dom v0 /\ dom u0) /\ Z by XBOOLE_1:16; A46: [' a,b '] c= dom v0 /\ dom u0 by A19,A29,XBOOLE_1:19; [' a,b '] c= Z by A1,A3,INTEGRA5:def 4; hence thesis by A45,A46,XBOOLE_1:19; end; reconsider AD=[.a,d.] as closed-interval Subset of REAL by A6,A7,INTEGRA1:def 1; reconsider DB=[.d,b.] as closed-interval Subset of REAL by A12,A13,INTEGRA1:def 1; A47: integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,d ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,d )* = integral( f,x,y,a,d,Z ) proof consider u1,v1 be PartFunc of REAL,REAL such that A48: u1=(Re f)* (R2-to-C) *<:x,y:> & v1=(Im f)* (R2-to-C) *<:x,y:> & integral(f,x,y,a,d,Z) = integral( u1(#)(x`|Z) - v1(#)(y`|Z) ,a,d ) + integral( v1(#)(x`|Z) + u1(#)(y`|Z) ,a,d )* by Def2; thus thesis by A5,A48; end; A49: integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,d,b ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,d,b )* = integral( f,x,y,d,b,Z ) proof consider u1,v1 be PartFunc of REAL,REAL such that A50: u1=(Re f)* (R2-to-C) *<:x,y:> & v1=(Im f)* (R2-to-C) *<:x,y:> & integral(f,x,y,d,b,Z) = integral( u1(#)(x`|Z) - v1(#)(y`|Z) ,d,b ) + integral( v1(#)(x`|Z) + u1(#)(y`|Z) ,d,b )* by Def2; thus thesis by A5,A50; end; A51: integral( f,x,y,a,d,Z ) = integral( f,x1,y1,a,d,Z1 ) proof reconsider Z3 = Z /\ Z1 as Subset of REAL; reconsider ZZ=Z, ZZ1= Z1, ZZ3= Z3 as Subset of R^1 by TOPMETR:24; ZZ is open & ZZ1 is open by A3,A6,BORSUK_5:62; then ZZ /\ ZZ1 is open by TOPS_1:38; then A52: Z3 is open by BORSUK_5:62; A53: [.a,d.] c= [.a,b.] by A2,XXREAL_1:34;then A54: [.a,d.] c= dom x & [.a,d.] c= dom y by A3,A4,XBOOLE_1:1; A55: x| [.a,d.] = x1| [.a,d.] proof A56: dom (x| [.a,d.]) = (dom x) /\ [.a,d.] by RELAT_1:90 .= [.a,d.] by A3,A4,A53,XBOOLE_1:1,XBOOLE_1:28 .= (dom x1) /\ [.a,d.] by A6,A7,XBOOLE_1:28 .= dom (x1| [.a,d.]) by RELAT_1:90; for x0 be set st x0 in dom (x| [.a,d.]) holds (x| [.a,d.]).x0 = (x1| [.a,d.]).x0 proof let x0 be set such that A57: x0 in dom (x| [.a,d.]); A58: dom (x| [.a,d.]) = (dom x) /\ [.a,d.] by RELAT_1:90 .= [.a,d.] by A53,A3,A4,XBOOLE_1:1,XBOOLE_1:28; [.a,d.] c= (dom x1) /\ dom y1 by A6,A7,XBOOLE_1:19;then x0 in (dom x1) /\ dom y1 by A57,A58; then x0 in (dom x1) /\ dom ((#)y1) by VALUED_1:def 5;then A59: x0 in dom (x1+(#)y1) by VALUED_1:def 1; [.a,d.] c= (dom x) /\ dom y by A54,XBOOLE_1:19;then x0 in (dom x) /\ dom y by A57,A58;then x0 in (dom x) /\ dom ((#)y) by VALUED_1:def 5;then A60: x0 in dom (x+(#)y) by VALUED_1:def 1; reconsider t = x0 as Element of REAL by A57; A61: C.t = C1.t by A1,A57,A58; A62: C.t = (x+(#)y).t by A3,A4,A53,A57,A58,FUNCT_1:72; A63: C1.t = (x1+(#)y1).t by A6,A7,A57,A58,FUNCT_1:72; A64: (x1+(#)y1).t = x1.t+((#)y1).t by A59,VALUED_1:def 1 .= x1.t+*y1.t by VALUED_1:6; A65: (x+(#)y).t = x.t+((#)y).t by A60,VALUED_1:def 1 .= x.t+*y.t by VALUED_1:6; thus (x| [.a,d.]).x0 = x.x0 by A57,FUNCT_1:70 .= x1.x0 by A61,A62,A63,A64,A65,COMPLEX1:163 .= (x1| [.a,d.]).x0 by A58,A57,FUNCT_1:72; end; hence thesis by A56,FUNCT_1:9; end; A66: y| [.a,d.] = y1| [.a,d.] proof A67: dom (y| [.a,d.]) = (dom y) /\ [.a,d.] by RELAT_1:90 .= [.a,d.] by A3,A4,A53,XBOOLE_1:1,XBOOLE_1:28 .= (dom y1) /\ [.a,d.] by A6,A7,XBOOLE_1:28 .= dom (y1| [.a,d.]) by RELAT_1:90; for x0 be set st x0 in dom (y| [.a,d.]) holds (y| [.a,d.]).x0 = (y1| [.a,d.]).x0 proof let x0 be set such that A68: x0 in dom (y| [.a,d.]); A69: dom (y| [.a,d.]) = (dom y) /\ [.a,d.] by RELAT_1:90 .= [.a,d.] by A3,A4,A53,XBOOLE_1:1,XBOOLE_1:28; [.a,d.] c= (dom x1) /\ dom y1 by A6,A7,XBOOLE_1:19;then x0 in (dom x1) /\ dom y1 by A68,A69;then x0 in (dom x1) /\ dom ((#)y1) by VALUED_1:def 5;then A70: x0 in dom (x1+(#)y1) by VALUED_1:def 1; [.a,d.] c= (dom x) /\ dom y by A54,XBOOLE_1:19;then x0 in (dom x) /\ dom y by A68,A69;then x0 in (dom x) /\ dom ((#)y) by VALUED_1:def 5;then A71: x0 in dom (x+(#)y) by VALUED_1:def 1; reconsider t = x0 as Element of REAL by A68; A72: C.t = C1.t by A1,A68,A69; A73: C.t = (x+(#)y).t by A3,A4,A53,A68,A69,FUNCT_1:72; A74: C1.t = (x1+(#)y1).t by A6,A7,A68,A69,FUNCT_1:72; A75: (x1+(#)y1).t = x1.t+((#)y1).t by A70,VALUED_1:def 1 .= x1.t+*y1.t by VALUED_1:6; A76: (x+(#)y).t = x.t+((#)y).t by A71,VALUED_1:def 1 .= x.t+*y.t by VALUED_1:6; thus (y| [.a,d.]).x0 = y.x0 by A68,FUNCT_1:70 .= y1.x0 by A72,A73,A74,A75,A76,COMPLEX1:163 .= (y1| [.a,d.]).x0 by A69,A68,FUNCT_1:72; end; hence thesis by A67,FUNCT_1:9; end; A77: [.a,d.] c= Z by A3,A4,A53,XBOOLE_1:1;then A78: [.a,d.] c= Z3 by A6,A7,XBOOLE_1:19; A79: rng ((x+(#)y) | [.a,d.]) c= dom f proof for y0 be set st y0 in rng ((x+(#)y) | [.a,d.]) holds y0 in dom f proof let y0 be set such that A80: y0 in rng ((x+(#)y) | [.a,d.]); consider x0 be set such that A81: x0 in dom ((x+(#)y) | [.a,d.]) & y0 = ((x+(#)y) | [.a,d.]).x0 by A80,FUNCT_1:def 5; A82: x0 in (dom (x+(#)y)) /\ [.a,d.] by A81,RELAT_1:90; (dom (x+(#)y)) /\ [.a,d.] c= (dom (x+(#)y)) /\ [.a,b.] by A2,XXREAL_1:34,XBOOLE_1:26;then x0 in (dom (x+(#)y)) /\ [.a,b.] by A82;then A83: x0 in dom ((x+(#)y) | [.a,b.]) by RELAT_1:90; then A84: ((x+(#)y) | [.a,b.]).x0 in rng ((x+(#)y) | [.a,b.]) by FUNCT_1:12; ((x+(#)y) | [.a,d.]).x0 = (x+(#)y).x0 by A81,FUNCT_1:70 .= ((x+(#)y) | [.a,b.]).x0 by A83,FUNCT_1:70; hence thesis by A1,A3,A81,A84; end; hence thesis by TARSKI:def 3; end; A85: rng ((x1+(#)y1) | [.a,d.]) c= dom f proof for y0 be set st y0 in rng ((x1+(#)y1) | [.a,d.]) holds y0 in dom f proof let y0 be set such that A86: y0 in rng ((x1+(#)y1) | [.a,d.]); consider x0 be set such that A87: x0 in dom ((x1+(#)y1) | [.a,d.]) & y0 = ((x1+(#)y1) | [.a,d.]).x0 by A86,FUNCT_1:def 5; x0 in (dom (x1+(#)y1)) /\ [.a,d.] by A87,RELAT_1:90; then A88: x0 in [.a,d.] by XBOOLE_0:def 4;then A89: x0 in [.a,b.] by A53; x0 in (dom x) /\ (dom y) by A3,A4,A89,XBOOLE_0:def 4;then x0 in ((dom x) /\ (dom y)) /\ [.a,b.] by A53,A88,XBOOLE_0:def 4; then x0 in ((dom x) /\ dom ((#)y)) /\ [.a,b.] by VALUED_1:def 5; then x0 in (dom (x+(#)y)) /\ [.a,b.] by VALUED_1:def 1;then x0 in dom ((x+(#)y) | [.a,b.]) by RELAT_1:90; then A90: ((x+(#)y) | [.a,b.]).x0 in rng ((x+(#)y) | [.a,b.]) by FUNCT_1:12; reconsider t = x0 as Element of REAL by A87; A91: C.t = (x+(#)y).t by A3,A4,A53,A88,FUNCT_1:72; A92: C1.t = (x1+(#)y1).t by A6,A7,A88,FUNCT_1:72; ((x1+(#)y1) | [.a,d.]).x0 = (x1+(#)y1).x0 by A87,FUNCT_1:70 .= (x+(#)y).x0 by A1,A88,A91,A92 .= ((x+(#)y) | [.a,b.]).x0 by A53,A88,FUNCT_1:72; hence thesis by A1,A3,A87,A90; end; hence thesis by TARSKI:def 3; end; A93: x is_differentiable_on Z3 & y is_differentiable_on Z3 by A3,A52,XBOOLE_1:17,FDIFF_1:34; A94: x1 is_differentiable_on Z3 & y1 is_differentiable_on Z3 by A6,A52,XBOOLE_1:17,FDIFF_1:34; A95: [.a,d.] c= dom x & [.a,d.] c= dom y by A3,A4,A53,XBOOLE_1:1; hence integral(f,x,y,a,d,Z) = integral(f,x,y,a,d,Z3) by A3,A6,A7,A52,A79,A78,Lm1,XBOOLE_1:17 .= integral(f,x1,y1,a,d,Z3) by A6,A7,A52,A55,A66,A77,A79,A85,A93,A94,A95,Lm2,XBOOLE_1:19 .= integral(f,x1,y1,a,d,Z1) by A6,A7,A52,A78,A85,Lm1,XBOOLE_1:17; end; A96: integral( f,x,y,d,b,Z ) = integral( f,x2,y2,d,b,Z2 ) proof reconsider Z3 = Z /\ Z2 as Subset of REAL; reconsider ZZ=Z, ZZ1= Z2, ZZ3= Z3 as Subset of R^1 by TOPMETR:24; ZZ is open & ZZ1 is open by A3,A12,BORSUK_5:62; then ZZ /\ ZZ1 is open by TOPS_1:38; then A97: Z3 is open by BORSUK_5:62; A98: [.d,b.] c= [.a,b.] by A2,XXREAL_1:34;then A99: [.d,b.] c= dom x & [.d,b.] c= dom y by A3,A4,XBOOLE_1:1; A100: x| [.d,b.] = x2| [.d,b.] proof A101: dom (x| [.d,b.]) = (dom x) /\ [.d,b.] by RELAT_1:90 .= [.d,b.] by A3,A4,A98,XBOOLE_1:1,XBOOLE_1:28 .= (dom x2) /\ [.d,b.] by A12,A13,XBOOLE_1:28 .= dom (x2| [.d,b.]) by RELAT_1:90; for x0 be set st x0 in dom (x| [.d,b.]) holds (x| [.d,b.]).x0 = (x2| [.d,b.]).x0 proof let x0 be set such that A102: x0 in dom (x| [.d,b.]); A103: dom (x| [.d,b.]) = (dom x) /\ [.d,b.] by RELAT_1:90 .= [.d,b.] by A3,A4,A98,XBOOLE_1:1,XBOOLE_1:28; [.d,b.] c= (dom x2) /\ dom y2 by A12,A13,XBOOLE_1:19;then x0 in (dom x2) /\ dom y2 by A102,A103; then x0 in (dom x2) /\ dom ((#)y2) by VALUED_1:def 5;then A104: x0 in dom (x2+(#)y2) by VALUED_1:def 1; [.d,b.] c= (dom x) /\ dom y by A99,XBOOLE_1:19;then x0 in (dom x) /\ dom y by A102,A103; then x0 in (dom x) /\ dom ((#)y) by VALUED_1:def 5;then A105: x0 in dom (x+(#)y) by VALUED_1:def 1; reconsider t = x0 as Element of REAL by A102; A106: C.t = C2.t by A1,A102,A103; A107: C.t = (x+(#)y).t by A3,A4,A98,A102,A103,FUNCT_1:72; A108: C2.t = (x2+(#)y2).t by A12,A13,A102,A103,FUNCT_1:72; A109: (x2+(#)y2).t = x2.t+((#)y2).t by A104,VALUED_1:def 1 .= x2.t+*y2.t by VALUED_1:6; A110: (x+(#)y).t = x.t+((#)y).t by A105,VALUED_1:def 1 .= x.t+*y.t by VALUED_1:6; thus (x| [.d,b.]).x0 = x.x0 by A102,FUNCT_1:70 .= x2.x0 by A106,A107,A108,A109,A110,COMPLEX1:163 .= (x2| [.d,b.]).x0 by A102,A103,FUNCT_1:72; end; hence thesis by A101,FUNCT_1:9; end; A111: y| [.d,b.] = y2| [.d,b.] proof A112: dom (y| [.d,b.]) = (dom y) /\ [.d,b.] by RELAT_1:90 .= [.d,b.] by A3,A4,A98,XBOOLE_1:1,XBOOLE_1:28 .= (dom y2) /\ [.d,b.] by A12,A13,XBOOLE_1:28 .= dom (y2| [.d,b.]) by RELAT_1:90; for x0 be set st x0 in dom (y| [.d,b.]) holds (y| [.d,b.]).x0 = (y2| [.d,b.]).x0 proof let x0 be set such that A113: x0 in dom (y| [.d,b.]); A114: dom (y| [.d,b.]) = (dom y) /\ [.d,b.] by RELAT_1:90 .= [.d,b.] by A3,A4,A98,XBOOLE_1:1,XBOOLE_1:28; [.d,b.] c= (dom x2) /\ dom y2 by A12,A13,XBOOLE_1:19;then x0 in (dom x2) /\ dom y2 by A113,A114;then x0 in (dom x2) /\ dom ((#)y2) by VALUED_1:def 5;then A115: x0 in dom (x2+(#)y2) by VALUED_1:def 1; [.d,b.] c= (dom x) /\ dom y by A99,XBOOLE_1:19;then x0 in (dom x) /\ dom y by A113,A114;then x0 in (dom x) /\ dom ((#)y) by VALUED_1:def 5;then A116: x0 in dom (x+(#)y) by VALUED_1:def 1; reconsider t = x0 as Element of REAL by A113; A117: C.t = C2.t by A1,A113,A114; A118: C.t = (x+(#)y).t by A3,A4,A98,A113,A114,FUNCT_1:72; A119: C2.t = (x2+(#)y2).t by A12,A13,A113,A114,FUNCT_1:72; A120: (x2+(#)y2).t = x2.t+((#)y2).t by A115,VALUED_1:def 1 .= x2.t+*y2.t by VALUED_1:6; A121: (x+(#)y).t = x.t+((#)y).t by A116,VALUED_1:def 1 .= x.t+*y.t by VALUED_1:6; thus (y| [.d,b.]).x0 = y.x0 by A113,FUNCT_1:70 .= y2.x0 by A117,A118,A119,A120,A121,COMPLEX1:163 .= (y2| [.d,b.]).x0 by A114,A113,FUNCT_1:72; end; hence thesis by A112,FUNCT_1:9; end; A122: [.d,b.] c= Z by A3,A4,A98,XBOOLE_1:1;then A123: [.d,b.] c= Z3 by A12,A13,XBOOLE_1:19; A124: rng ((x+(#)y) | [.d,b.]) c= dom f proof for y0 be set st y0 in rng ((x+(#)y) | [.d,b.]) holds y0 in dom f proof let y0 be set such that A125: y0 in rng ((x+(#)y) | [.d,b.]); consider x0 be set such that A126: x0 in dom ((x+(#)y) | [.d,b.]) & y0 = ((x+(#)y) | [.d,b.]).x0 by A125,FUNCT_1:def 5; A127: x0 in (dom (x+(#)y)) /\ [.d,b.] by A126,RELAT_1:90; (dom (x+(#)y)) /\ [.d,b.] c= (dom (x+(#)y)) /\ [.a,b.] by A2,XXREAL_1:34,XBOOLE_1:26;then x0 in (dom (x+(#)y)) /\ [.a,b.] by A127;then A128: x0 in dom ((x+(#)y) | [.a,b.]) by RELAT_1:90;then A129: ((x+(#)y) | [.a,b.]).x0 in rng ((x+(#)y) | [.a,b.]) by FUNCT_1:12; ((x+(#)y) | [.d,b.]).x0 = (x+(#)y).x0 by A126,FUNCT_1:70 .= ((x+(#)y) | [.a,b.]).x0 by A128,FUNCT_1:70; hence thesis by A1,A3,A126,A129; end; hence thesis by TARSKI:def 3; end; A130: rng ((x2+(#)y2) | [.d,b.]) c= dom f proof for y0 be set st y0 in rng ((x2+(#)y2) | [.d,b.]) holds y0 in dom f proof let y0 be set such that A131: y0 in rng ((x2+(#)y2) | [.d,b.]); consider x0 be set such that A132: x0 in dom ((x2+(#)y2) | [.d,b.]) & y0 = ((x2+(#)y2) | [.d,b.]).x0 by A131,FUNCT_1:def 5; x0 in (dom (x2+(#)y2)) /\ [.d,b.] by A132,RELAT_1:90; then A133: x0 in [.d,b.] by XBOOLE_0:def 4;then A134: x0 in [.a,b.] by A98; x0 in (dom x) /\ (dom y) by A3,A4,A134,XBOOLE_0:def 4;then x0 in ((dom x) /\ (dom y)) /\ [.a,b.] by A98,A133,XBOOLE_0:def 4; then x0 in ((dom x) /\ dom ((#)y)) /\ [.a,b.] by VALUED_1:def 5; then x0 in (dom (x+(#)y)) /\ [.a,b.] by VALUED_1:def 1;then x0 in dom ((x+(#)y) | [.a,b.]) by RELAT_1:90;then A135: ((x+(#)y) | [.a,b.]).x0 in rng ((x+(#)y) | [.a,b.]) by FUNCT_1:12; reconsider t = x0 as Element of REAL by A132; A136: C.t = (x+(#)y).t by A3,A4,A98,A133,FUNCT_1:72; A137: C2.t = (x2+(#)y2).t by A12,A13,A133,FUNCT_1:72; ((x2+(#)y2) | [.d,b.]).x0 = (x2+(#)y2).x0 by A132,FUNCT_1:70 .= (x+(#)y).x0 by A1,A133,A136,A137 .= ((x+(#)y) | [.a,b.]).x0 by A98,A133,FUNCT_1:72; hence thesis by A1,A3,A132,A135; end; hence thesis by TARSKI:def 3; end; A138: x is_differentiable_on Z3 & y is_differentiable_on Z3 by A3,A97,XBOOLE_1:17,FDIFF_1:34; A139: x2 is_differentiable_on Z3 & y2 is_differentiable_on Z3 by A12,A97,XBOOLE_1:17,FDIFF_1:34; A140: [.d,b.] c= dom x & [.d,b.] c= dom y by A3,A4,A98,XBOOLE_1:1; hence integral(f,x,y,d,b,Z) = integral(f,x,y,d,b,Z3) by A3,A12,A13,A97,A123,A124,Lm1,XBOOLE_1:17 .= integral(f,x2,y2,d,b,Z3) by Lm2,A12,A13,A97,A100,A111,A122,A124,A130,A138,A139,A140,XBOOLE_1:19 .= integral(f,x2,y2,d,b,Z2) by A12,A13,A97,A123,A130,Lm1,XBOOLE_1:17; end; thus integral(f,C) = integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,b ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,b )* by A1,A3,A5,Def4 .= integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,d ) + integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,d,b ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,b )* by A1,A18,A39,A40,A41,INTEGRA6:17 .= integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,a,d ) + integral( u0(#)(x`|Z) - v0(#)(y`|Z) ,d,b ) +(integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,a,d ) + integral( v0(#)(x`|Z) + u0(#)(y`|Z) ,d,b ))* by A1,A18,A39,A40,A44,INTEGRA6:17 .= integral( f,x1,y1,a,d,Z1 ) + integral( f,x,y,d,b,Z ) by A51,A49,A47 .= integral(f,C1) + integral(f,C2) by A6,A7,A8,A17,Def4,A96; end;