
MECHANIZED MATHEMATICS AND ITS APPLICATIONS, VOL. 4, NO. 1, MARCH 2005, 3:24

MIZAR: the first 30 years

Roman Matuszewski1 and Piotr Rudnicki2?

1 University of Białystok, Białystok, Poland, romat@mizar.org
2 Dept. of Computing Science, University of Alberta, Edmonton, Canada, piotr@cs.ualberta.ca

The MIZAR project is opus magnum of Andrzej Trybulec.

Abstract – We present the story of the MIZAR project with focus on the years until 1989. A lot about
MIZAR after 1989 is available at the web3.

1. Introduction

In 1967 Andrzej4 started working at the Płock Branch of Warsaw University of Technology

in Płock (100 km North-West of Warsaw). It is here that we met Andrzej for the first time when

we entered the university: the first author in 1969 and the second in 1968. Andrzej was our math

teacher of calculus for engineers.

We remember Andrzej from these early days from the Informatics Club (in Polish: Koło

Naukowe ETO) that he ran for several years. The Club met quite frequently to discuss widely

understood issues of informatics. In those years, it seemed like everyone wanted to design their

own programming environment and needless to say Andrzej was planning to have his own, too.

This project was short lived yet something remains of it: its name—MIZAR— which, to the best of

our memory, appeared in late 1972. According to Andrzej, it was his wife Zinaida who picked the

name. She was looking through an astronomical atlas when Andrzej asked her for a good name

for a project and she suggested MIZAR, the name of a star in the familiar Big Bear constellation.

2. 1973-74: the very beginnings

Andrzej was finishing his PhD in topology at the time and apparently the final stages

of this effort provided a strong motivation for his envisaging a computerized assistance in the

process of editing mathematical papers. During September-October of 1973, Andrzej was vis-

iting Institute of Scientific and Technical Information (VINITI) in Moscow where he discussed

his ideas. The first presentation of the MIZAR ideology— ideology understood here as visionary

speculation—was presented by Andrzej on November 14, 1973 at a seminar in the Institute of

Library Science and Scientific Information at Warsaw University. During the seminar Andrzej

postulated a language for recording mathematical papers such that:

– the papers could be stored in a computer and later, at least partially, translated into natural

languages,

– the papers would be formal and concise,

? Partially supported by NSERC grant OGP9207.
3 http://mizar.org
4 When we write Andrzej, we mean Dr. Trybulec.

Manuscript received August 5, 2004; revised September 9, 2004

3

4 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

– it would form a basis for the construction of an automated information system for mathemat-

ics,

– it would facilitate detection of errors, verification of references, elimination of repeated theo-

rems, etc.

– it would open a way to machine assisted education of the art of proving theorems,

– it would enable automated generation of input into typesetting systems.

It is worth stressing that in this initial stage, the question of proof-checking has barely been

mentioned; the main stress was placed on editorial work. Andrzej initiated a group effort of

translating, into the yet non-existing language, a paper by H. Patkowska, A homotopy extension

theorem for fundamental sequences, Fund. Math. 64 (1969), pp. 87-89. In the long term, this

strategy proved to be the best way to arrive at a practical language for formalizing mathematics.

The first experiments with implementing a version of MIZAR for propositional logic started

in the Fall of 1974 by Andrzej, Krzysztof Łebkowski and Roman Matuszewski on the Polish

made machine ODRA-1204 in Algol 1204. Since the grammar of MIZAR was quite unstable, a

universal syntax analyzer was implemented, with a rather atrocious running time of generated

parsers.

3. 1975: MIZAR-PC

The above mentioned experiments continued through 1975. In June 1975, we obtained

some financing from Płock Scientific Society.5

In June 1975, Andrzej circulated a short write-up entitled Logic-information language

MIZAR. It was the first written document with clearly stated MIZAR ideology—see above—and

some details of the implementation which was in progress at that time. Andrzej presented his

ideas at IX. Kolloquium über Information und Dokumentation, November 12–14, 1975, in Ilme-

nau, East Germany, which resulted in the first MIZAR publication [9]. At that time even these

ideas were surrounded by an aura of science-fiction, although it was soon discovered that these

ideas were by no means new, one can find them in a short 1962 paper by Kaluzhnin [2], which

was brought to Andrzej’s attention around 1975–76.

A preliminary version of a report on MIZAR-PC (PC for propositional calculus) was pre-

sented to the Society in November 1975. The report included a description of a language for

recording proofs in classical propositional calculus in the Jaśkowski style of natural deduction.

Actually, it was only a few years later that we learned about the Jaśkowski style of natural

deduction, however it was the way the proofs had been written in the tradition of the Polish

mathematical school. Here is a text from the 1975 report:

begin

((p ⊃ q) ∧ (q ⊃ r)) ⊃ (p ⊃ r)

proof

let A: (p ⊃ q) ∧ (q ⊃ r) ;

then B: p ⊃ q ;

C: q ⊃ r by A ;

let p ;

then q by B ;

hence r by C

end

end

5 In Polish: Towarzystwo Naukowe Płockie. This society is one of the oldest regional societies of this type in Poland,
established in 1820, see http://www.tnp.plocman.pl.

MIZAR: THE FIRST 30 YEARS 5

Please note that this is a true picture of the texts written in MIZAR-PC: the teletype used

for the input to the machine we used provided all the characters displayed above and also made

underlining possible, which was the tradition for writing down keywords in implementation of

Algol that we used.

MIZAR-PC texts started with begin and were terminated by end, although these two

keywords also played other roles. Besides checking syntax the implemented analyzer of MIZAR-

PC was also checking correctness of proofs (proof ... end) and inference steps (... by ...).

Checking the correctness of proofs consisted of checking the equality of the sentence to

be proved and what was the contents of a proof. The contents of a proof is a sentence extracted

from assumptions (let ...) and conclusions (thus ... or hence ...) occurring in the proof. A

proof could have a number of assumptions and conclusions. In constructing the contents of

a proof, an implication was placed after an assumption and a conjunction after a conclusion

(except the last one).

MIZAR-PC offered a construct called a compound statement bracketed by symbols begin

... end between which all constructs allowed in a proof could be placed. The contents of a com-

pound statement consisted of a sentence constructed in the same way as in the contents of a

proof. A compound statement could be labeled and a reference to the label meant a reference to

its contents. Loosely speaking, a compound statement was like a proof without explicitly stating

what was being proved.

The process of checking of inference steps was based on a fixed set of rules of inference

(some five hundred of them). An inference rule was a scheme of acceptable inference and could

have up to two premises, each with at most one binary connective and a conclusion, also with

at most one binary connective. No more than three propositional variables were permitted in an

inference rule. An accepted inference step had to be an instance of exactly one of the allowed

rules of inference. This approach was abandoned in the next MIZAR version.

MIZAR-PC introduced linkage, a mechanism for making reference to the previous sen-

tence without using a label. The keyword then served this end. hence, one of the keywords

marking a conclusion, has meaning equivalent to thus then which was not permitted.

It is worth mentioning that MIZAR-PC foresaw references to a data base, although this

feature was not implemented until 1989.

The implementation of MIZAR-PC was on a Polish computer ODRA 1204 with 12k of 24

bit words and a drum of 192k such words, in Algol 1204. The input medium was paper tape

or a teletype. The members of the team implementing MIZAR-PC: Roman Matuszewski, Piotr

Rudnicki and Andrzej Trybulec.

During 1975–76, MIZAR-PC was used in teaching propositional logic at the Płock Branch

of Warsaw University of Technology (Roman Matuszewski) and at the Institute of Library Science

and Scientific Information at Warsaw University (Andrzej Trybulec).

4. 1977: MIZAR-QC/1204 and MIZAR-QC/6000

The next natural step in developing MIZAR was to furnish the language with quantifiers.

The work continued over 1976 when Andrzej moved from Płock to Białystok and started working

at the Białystok Branch of Warsaw University, where he has been working until now. Since 1997

this school has been known as University of Białystok.

Despite lack of financing, the work continued on extending MIZAR-PC towards quantifier

calculus. Under Andrzej’s supervision some longer texts were written and used in guiding the

development of the system:

6 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

1. Jan Borawski, in his MSc thesis, June 1977, formalized a paper by J. Krasinkiewicz On

homeomorphism of the Sierpiński curve, Commentationes Mathematice XII, 1969, pp. 255–

257.

2. Chinese remainder theorem from [1], by Cz. Żukiewicz.

In 1977, Andrzej secured some financing for MIZAR through a research grant of the Min-

istry of Science and Higher Education, administered in our case by the Institute of Computer

Science6, Polish Academy of Sciences.

In late August 1977, the implementation of MIZAR-QC was completed in Pascal on a CDC

6000 by: Andrzej Jankowski7, Roman Matuszewski, Piotr Rudnicki, Andrzej Trybulec.

The language of MIZAR-PC was extended with quantifiers to form MIZAR-QC. However,

the language was still quite simplistic, not much more than quantifiers and their processing in

proofs was added; here is a sample text

BEGIN

((EX X ST (FOR Y HOLDS P2[X,Y])) > (FOR X HOLDS (EX Y ST P2[Y,X])))

PROOF

ASSUME THAT A: (EX X ST (FOR Y HOLDS P2[X,Y]));

LET X BE ANYTHING;

CONSIDER Z SUCH THAT C: (FOR Y HOLDS P2[Z,Y]) BY A;

SET Y = Z;

THUS D: P2[Y,X] BY C;

END

END

The universal and existential quantifiers were written as

FOR <variable list> HOLDS<sentence>
EX <variable list> ST <sentence>

respectively8 .

A fixed set of predicates was chosen for testing the language processor

CONTRADICTION, P, Q, R, P1, Q1, R1, P2, Q2, R2, P3, Q3, R3,

where the first four were nullary, while the arity of the remaining ones was indicated by the digit

following the letter.

Variables and constants were assumed to denote objects from a fixed non-empty set. The

only terms allowed were simple terms built of a variable or a constant.

Three syntactic constructs provided the means for introducing quantifiers when computing

the contents of a proof. These constructs played a double role: 1) they affected the computation

of the contents of a proof and 2) they also introduced objects used in the rest of the proof.

– The <let statement>

LET<variable list> BE <specification>

6 Within the research program MR.I.3 we worked on the topic 02.5.1 “Logic-information language MIZAR-QC”. This
source of funding was supporting MIZAR until 1983.

7 A logician who reduced his role to convincing us that MIZAR cannot be built.
8 While everybody agrees that EX stood for there exists, there is no consensus whether ST comes from such that

or satisfying.

MIZAR: THE FIRST 30 YEARS 7

introduced fixed but arbitrary objects to be used in the rest of the proof. The only permit-

ted specification was ANYTHING and had to be stated as Andrzej did not like the look of

just LET X; (which started to occur frequently in future MIZARs once the reservation of

variables was introduced).

This statement contributed a universal quantifier to the contents of a proof with bound vari-

ables from the <variable list> and its scope was computed from the remaining proof ele-

ments.

– The <consider statement> had two syntactic variants

CONSIDER<variable list> or

CONSIDER<variable list> SUCH<conditions> <justification>

This was the MIZAR construct for recording existential elimination, i.e. the way of using

existentially quantified sentences. Since the variables denoted objects from a non-empty

set, the first variant of the statement was safe.

As a proof element, this statement introduced existential quantifiers into the contents of a

proof, and thus played the role existential introduction.

– The <set statement>

SET<variable list> = <argument>

introduced a named object (or several of them) and equated them to its argument. This

statement also played the role of existential introduction in computing contents of proofs.

In MIZAR-PC, let was used to indicate an assumption. Since LET was now used in a

new role, the new keyword ASSUME was introduced to indicate an assumption. It was possible

to assume several labeled sentences joined by AND.

The justification procedure, previously called the inference checker, had been completely

redesigned. A justification had a general shape of

β BY d1, . . . ,dn

where the designator di identified the label of a sentence αi. The justification was perceived as

correct if the following sentence

(α1 ⊃ . . . (αn ⊃ β) . . .)

was accepted by a justification procedure. The justification procedure was based on a set of

rewrite-like rules and was implemented as such. Before any rewrite rules were applied, all sen-

tences were transformed into a standard form with negation, conjunction and universal quanti-

fier as the only connectives. In the standard form there were no double negations, no fictitious

quantifiers and all quantifiers bound only one variable.

Because the running time of the justification procedure even for justifications not involving

quantifiers could have been exponential in the number of propositional variables, a complexity

value was assigned to each rewrite rule and a running sum of these values was kept during each

run of the procedure. Whenever the sum exceeded certain (quite arbitrarily chosen) value, the

justification procedure terminated, announcing that the task was too complicated and the exam-

ined justification was not accepted. The running time of the rules manipulating the substitutions

for universally bound variables was particularly bad and could lead to the running time of the or-

der of nn, where n was the number of leading universal quantifiers, as all possible substitutions

were blindly considered.

Whether a proof was acceptable was determined by running the justification procedure on

the formula φ ⊃ ψ where φ was the contents of a proof and ψ was the sentence being proved,

both sentences in the standard form.

8 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

The work was continued in 1978 and a number of simple formalizations had been carried

out: set theory (simple facts about containment, union and intersection), lattice theory (simple

facts about linear and partial orders phrased in terms of a lattice of sets), an attempt to translate

several pages in foundations of geometry (later continued in MIZAR-MS).

5. 1978: MIZAR-MS

Even the limited experience in trying to use MIZAR-QC for recording mathematics prompted

quite a number of changes as the language was too frugal for comfort. This led to MIZAR-MS9

after a number of superficial syntactic extensions and a few more substantial additions.

The superficial syntactic extensions and changes included:

1. The propositional connectives written as: NOT, &, OR IMPLIES and IFF.

2. Sentence labels became optional.

3. Relaxed usage of parentheses (MIZAR-QC required almost full parenthesizing and no sur-

plus parentheses were permitted).

(a) Quantifiers were treated as connectives with lowest priority.

(b) Parentheses were not required after negation.

(c) In a compound formula with conjunctions (or disjunctions) as the only kind of connective,

no parentheses were required and such connectives were right-associative.

4. Diffuse (compound) statements present in MIZAR-PC were reintroduced with the opening

bracket NOW.

5. Global constants were allowed (in MIZAR-QC, CONSIDER was permitted only in proofs).

6. In assumptions, the use of THAT after ASSUME was not required for a single proposition as

an assumption.

7. In universally quantified formulae, HOLDS can be omitted if the scope is an existential for-

mula (EX ...).

There was also a number of substantial additions and changes.

1. Predicate definitions, syntactically

FOR {<variables> BEING<specification>}+

ST <sentence>
PRED<pred id> DENOTES<definiens: sentence>

The arguments of the defined predicate were given by <variables> typed by <specification>
in the listed order. It was also possible to introduce predicates with no arguments.

2. Scheme definitions, syntactically

SCHEME<scheme id> ;

PREDICATE<pred id list> ;

CONSTANT<const id list> ;

<scheme claim>
SINCE

<formal premise1: labeled sentence> ;

. . .
<formal premisek : labeled sentence> ;

PROOF . . . END

9 This effort was also financed by Płock Scientific Society.

MIZAR: THE FIRST 30 YEARS 9

A scheme is a pattern of theorems expressed in terms of formal predicates and constants.

A specific theorem matching <scheme claim> is obtained after providing actual premises

that appropriately match the formal ones given by <formal premise>s. In a justification, a

scheme was used as follows

<sentence> SCHEME <scheme id> (label1, ..., labelk)

The <sentence> was accepted if it matched the <scheme claim> of <scheme id> and

the sentences labeled label1, ..., labelk matched the premises of the scheme. The actual

predicates and constants were automatically reconstructed from actual premises and the

theorem being justified. There was no other means to specify the actual predicates and

constants. Schemes were not fully implemented at that time.

3. Specification (type) declarations, only of the form

TYPE<id>

Every variable was typed either by the predefined specification ANYTHING or a declared

type. This feature was responsible for MS in MIZAR-MS, namely Multi Sorted.

4. The keyword TAKE replaced SET (from MIZAR-QC) and became the only statement in-

troducing existential quantifiers when computing the contents of a proof. The role of the

CONSIDER statement was reduced to existential elimination only.

5. Absolute equality = and inequality <> were predefined. While equality was automatically

processed as an equivalence relation, inequality was not processed as a symmetric relation.

(As a curiosity we would like to mention that in BY justifications, labels designating equalities

had to be listed last.)

Two larger texts were developed:

1. Elżbieta Ramm and Edmund Woronowicz proved the correctness of a factorial computing

program using the Winkowski method of reasoning about programs, their work appeared

later as [5].

2. Jerzy Zabilski and Roman Matuszewski translated pages 27–38 of Foundations of geometry

by K. Borsuk and W. Szmielew.

One of the problems faced in all of these formalizations was caused by the lack of any

support for stating the axioms of the theory one wanted to work in. Two workarounds were

used: either stating the entire development within one compound statement with axioms as

assumptions or stating the axioms at the main text level (typically at the very beginning) and

letting the analyzer report that they were not accepted. This problem was partially resolved in

MIZAR-2 (1981) and finally in PC-MIZAR (1988–89).

At that time, the MIZAR group started to grow substantially while anchored at the Białystok

Branch of Warsaw University. MIZAR-MS was implemented by Czesław Byliński, Piotr Rudnicki,

Andrzej Trybulec, Edmund Woronowicz and Stanisław Żukowski on a CDC 6000 in Pascal/6000.

6. 1978–79: MIZAR-FC

Until 1978 MIZAR had been lacking functional notation and therefore had only simple

terms. The situation has changed now.

10 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

6.1 Function definitions

Two syntactic constructions served to introduce functions:

1. <choice statement> introduced the so called choice functions and had the following syntax

<FOR-prefix>
CONSIDER<choice list>

SUCH<conditions>

The names of defined functions were given by identifiers from <choice list> and their argu-

ments were given by (optional) <FOR-prefix>. For example:

FOR X, Y CONSIDER F, G SUCH THAT Z1: F <> G AND

Z2: B[X,F,Y] AND

Z3: B[X,G,Y];

introduced binary functions F and G which were used to build terms, e.g., F(A,B).

A <choice statement> with <conditions> had to be justified and for the above we had to

justify the existence of F and G, i.e., we had to prove that:

FOR X, Y EX F, G ST F <> G & B[X,F,Y] & B[X,G,Y]

In further text, a reference to one of the labels in <conditions> above, say ăZ3, referred to

the following sentence:

FOR X, Y HOLDS B[X,G(X,Y),Y]

Here is a more tangible example of defining the intersection of two sets:

FOR X, Y BEING SET

CONSIDER CAP BEING SET SUCH THAT

CAPCOND: FOR Z BEING INDIVIDUAL

HOLDS IN[Z,CAP] IFF (IN[Z,X] & IN[Z,Y]);

2. <TAKE statement> played a double role and had the following syntax

<FOR prefix>
TAKE<TAKE list> = <expression>

The <FOR prefix> was optional. Without this prefix, the <TAKE statement> played a role

analogous to the <TAKE statement> introduced in MIZAR-MS.

The <TAKE statement> with the <FOR prefix> introduced functions or operations whose

behavior was defined by an expression. One can think of this statement as corresponding

to a λ definition. For example:

FOR X BEING INTEGER TAKE SUCC = X+1;

introduced one unary function to be used for terms like SUCC(A). The type returned by the

function was inferred from the type of the expression; the arguments were defined by the

<FOR prefix>.

The binary + for Integers was predefined. The functions defined in this fashion were

automatically expanded to their definiens when necessary and thus the following statement

did not require additional justification

MIZAR: THE FIRST 30 YEARS 11

SUCC(SUCC(X+Y)) = ((X+Y)+1)+1

The <TAKE statement> was also used to define operations as an alternative notation for

functions. For example:

FOR X, Y BEING REAL CONSIDER MULT BEING ELEMENT

. . .

FOR X, Y BEING REAL TAKE X*Y = MULT(X,Y)

The set of allowed operation symbols, unary and binary, was predefined and was quite

small.

6.2 Relation definitions

Similar to the method of defining operations, predicates could be defined using relational

symbols. The set of allowed binary relational symbols was fixed and quite small. For example,

set inclusion was defined as

FOR X, Y BEING SET PRED X <= Y DENOTES

FOR E BEING INDIVIDUAL HOLDS IN[E,X] IMPLIES IN[E,Y]

and the less than or equal for integers as

FOR X, Y BEING INTEGER PRED X <= Y DENOTES

EX Z BEING INTEGER ST Z > 0 & X+Z = Y+1

where relation > had to be defined earlier.

While the above definitions use the same relational symbols, they define two different

relations as the types of arguments differ.

6.3 Other changes

– The predeclaration feature allowed text to be shortened as one did not have to specify the

type of a variable at its defining point if the name of the variable was predeclared earlier to

be of some type. For example, with the predeclaration

LET X, Y, Z DENOTE SET;

the sentence FOR X, Y, X HOLDS ... was equivalent to the sentence FOR X, Y,

Z BEING SET HOLDS ...

Predeclarations were a precursor of the current reservations.

– The schemes proposed in MIZAR-MS were not implemented because an attempt to incor-

porate functions into schemes forced a change in the very idea of how to implement them.

– Type INTEGER was predeclared as well as binary operations +, *, - and binary relations

<, <, <= and >=. However, their properties had to be given explicitly in each MIZAR-FC text.

– Some syntactic means were introduced to exclude a part of the text from proof-checking.

The text between the following pragmatic comments

(*$J-*)

. . .

(*$J+*)

was checked only for syntactic correctness. It was intended to be a place for declaring

functions and relations and stating axioms defining these notions.

This feature was also used to shorten processing time of longer texts by temporarily switch-

ing off checking for parts of the text which were already finished.

12 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

– The rewrite-rules based justification procedure of MIZAR-QC was abandoned in favor of

model checking, albeit quite naively implemented. In a justification problem we are to decide

whether or not β ⊃ α is a tautology (a negative answer did not always mean that that was

not the case). The sentence was converted into β∧¬α and the procedure looked for a con-

tradiction. The sentence was first converted into a standard form (like in MIZAR-QC). Then

all atomic and universal sentences (collectively called basic sentences) were collected, at

this stage the scopes of universal quantifiers were not inspected. There was a limit (n ≤ 10)

on the number of such sentences. In the next step all 2n cases of possible logical valuations

of these sentences were considered and each was checked to see whether or not it led

to a contradiction. In this last stage, possible instantiations of positively occurring universal

sentences were considered, one such sentence at a time, which meant that the universal

sentences did not “cooperate” in the process.

MIZAR-FC was used to record a number of larger texts. Among these texts was the initial

segment of the book on arithmetics by Grzegorczyk [1]. The book was so rigorous and detailed

that the blow-up factor in the translation to MIZAR-FC was reasonably small. This effort lasted for

several months with participation of Andrzej Trybulec, Czesław Byliński and Stanisław Żukowski.

Elżbieta Ramm and Edmund Woronowicz, [5] rewrote their earlier developments in MIZAR-

MS into MIZAR-FC on building an environment for proving properties of programs.

MIZAR-FC was implemented in Pascal/6000 by Czesław Byliński, Roman Matuszewski,

Elżbieta Ramm, Piotr Rudnicki, Andrzej Trybulec, Edmund Woronowicz, Stanisław Żukowski.

7. 1981: MIZAR-2

The experience of all previous MIZARs resulted in Andrzej’s design of a language sim-

ply called MIZAR whose processor was team implemented on ODRA 1305 (ICL 1900) with

contributions by Czesław Byliński, Henryk Oryszczyszyn, and Piotr Rudnicki. The first release

of the system on July 10, 1981 was quickly followed (nobody seems to be sure why) by the

second release on September 28, 1981. This release was further called MIZAR-2 and in the

following years was ported to quite a number of different machines, e.g., mainframe IBM and

UNIX. MIZAR-2 offered substantial improvements over its predecessors and also has had quite

a future: its reimplementation in 1986 as MIZAR-4 directly led to the current MIZAR.

A MIZAR-2 text was split into two sections

environ

MIZAR statements with no justifications,

syntactic checking only

begin

statements with justifications

Note however, that each MIZAR-2 text was a stand-alone unit and there was no possibility

of information flow between articles (besides copying text). The environment section was the

place to state all the machinery and facts needed for developments in the text proper. Since

the environment section was checked only for syntactic correctness, it was not unheard of that

someone stated a false claim making further proving more convenient.

We resort to several illustrative examples in presenting more important features of MIZAR-

2 as a more general description would require substantial space.

MIZAR: THE FIRST 30 YEARS 13

7.1 Types

Several syntactic means were available for defining new types of objects. The simplest of

them was just introducing a name for a longer type expression, e.g.,

TYPE RELATION DENOTES SUBSET OF [U,U];

In a more complicated definition one could specify a type as a set of all objects satisfying certain

conditions

TYPE MAP OF A,B BEING NONEMPTY

INCLUDES F BEING SUBSET OF [A,B]

SUCH THAT

AXF1: FOR X BEING ELEMENT OF A

EX Y BEING ELEMENT OF B ST [X,Y] IN F AND

AXF2: FOR X BEING (ELEMENT OF A), Y1, Y2 BEING ELEMENT OF B

ST [X,Y1] IN F & [X,Y2] IN F HOLDS Y1=Y2

PROOF ... END

One had to prove non-emptiness of such a type by demonstrating the existence of the sample

object with the desired properties.

One could also define structures, e.g., the first step in defining a field

TYPE FIELDSHAPE CONSISTS OF

UNIV BEING NONEMPTY,

ADD, MULT BEING (RELATION OF PAIRS(UNIV),UNIV),

O, E BEING (ELEMENT OF UNIV);

This was stated in the environment and the needed field properties were then given as axioms.

Given a FIELDSHAPE F one could refer to its components as e.g. ADD(F).

7.2 Definitions of functions with an explicit format

Some freedom was added into the way the format of a function is defined. Namely, in the

case of choice functions, the arguments of a function were all variables from the FOR prefix in

the listed order but this restriction is now removed.

DEFINITION LET A,B BE NONEMPTY, X BE (ELEMENT OF A),

Y BE (ELEMENT OF B), F BE MAP OF A,B;

PRED Y = VALUE(F,X) DENOTES [X,Y] IN F

PROOF

THUS EX Y BEING ELEMENT OF B ST [X,Y] IN F BY ... ;

THUS FOR Y1,Y2 BEING ELEMENT OF B

ST [X,Y1] IN F & [X,Y2] IN F HOLDS Y1 = Y2 BY ...

END

END;

In the above definition the format of the function is given explicitly: the function has two explicit

arguments, although it really has four arguments: A, B, X and F. A proof of existence and

uniqueness was required for a defined function.

There was no means to make an explicit reference to the definiens of a function, however,

the following sentence was obvious (for appropriate arguments)

[X,Y] IN G IFF Y = VALUE(G,X);

14 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

7.3 Definitions per cases

New syntax was added which helped to organize a definiens into a more readable phrase

than just a long conjunction of implications, e.g.

DEFINITION

LET S BE SIMPLANE, A, B, X, Y, Z BE ELEMENT OF POINTS(S)

SUCH THAT Z: A<>B;

PRED Z IS CONJ OF A, B, X DENOTES

WHEN X=A => Z=A

WHEN X=B => Z=B

OTHERWISE [[A,X,Y],[A,B,Z]] IN NEGSIM(S)

END;

A definition given by cases required a justification of consistency. Although definitions per cases

were meant to be available also for functions, they became fully implemented in PC-MIZAR of

1989.

7.4 Schemes

The schemes proposed in MIZAR-MS are now fully implemented and the scheme of in-

duction is finally available

SCHEME INDUCTION;

PRED P;

FOR K BEING NATURAL HOLDS P[K]

SINCE

A: P[1];

B: FOR K BEING NATURAL ST P[K] HOLDS P[SUCC(K)]

END;

This scheme was always assumed in the environment as proving it in MIZAR-2 would be quite

a challenge. However, there were a number of defined existence schemes. E.g., the following

scheme was useful in proving the correctness of the definition of a function

SCHEME RELDEF;

PRED P;

(EX R BEING RELATION

ST FOR X,Y BEING A HOLDS [X,Y] IN R IFF P[X,Y]) &

(FOR R,L ST ((FOR X,Y BEING A HOLDS [X,Y] IN R IFF P[X,Y]) &

(FOR X,Y BEING A HOLDS [X,Y] IN L IFF P[X,Y]))

HOLDS R=L)

PROOF ... END;

and its proof used the scheme of separation of subsets which was declared in the environment.

7.5 Justification procedure

The justification procedure was still a disprover looking for a model of a formula obtained

after negating the sentence to be justified and conjuncting it with all the sentences used as

premises. However, internally the procedure has undergone a substantial remake.

MIZAR: THE FIRST 30 YEARS 15

Firstly, the procedure did not blindly consider all possible valuations of basic sentences

but rather tried to compute a valuation which would provide the sought for model. This process

involved performing joins and intersections of lists of valuations.

Secondly, the procedure did not blindly consider all possible substitutions for bound vari-

ables. Instead, a sort of pattern matching procedure was performed to find “promising” sub-

stitutions by matching basic sentences with their counterparts in the scope of a quantifier and

containing bound variables. The collected substitutions were then subjected to similar list ma-

nipulations of joins and intersections as the valuations above.

One restriction remained: in searching for a model the procedure never simultaneously

considered substitutions into more than one universal sentence. This had the drawback of not

using the full power of unification but it had the advantage of an inference checker running very

fast. The latter was happening at the expense of the MIZAR author being forced to write small

inference steps.

7.6 Miscellany

– Symbols of relational operators and operations were fixed and the language did not provide

any means for adding new ones.

– The keyword THEOREM could have preceded a (labeled) sentence but did not play any role

otherwise. There was some discussion to introduce other similar keywords like: proposition,

lemma, corollary, etc. It has not happened until now.

– The RECONSIDER statement allowed for a change in the type of an object (this required a

justification).

– Several notions, or rather notations only, were predefined

• set theory: CLASS, SET, IN NONEMPTY, ELEMENT OF and SUBSET OF.

• arithmetic: the sets NATURALS, INTEGERS were predefined as well as NATURAL

being a shorthand for ELEMENT OF NATURALS and INTEGER for ELEMENT OF

INTEGERS.

• Small natural constants (up to 9999999).

Only the most rudimentary (if any) properties of these notations were available automatically,

all essential ones had to be stated in each text that used them.

– Operational brackets [and] for constructing expressions, intended to be used for n-tuples

(e.g., pairs, Cartesian products) and type aggregates (e.g., fields).

– Attributive format for predicates such that one could write: X IS COMPACT or U IS

NEIGHBORHOOD OF W.

– Iterative equality.

7.7 Formalizations

The translations into MIZAR-2 included

– On the homotopy types of some decomposition spaces by K. Borsuk, formalized by A. Try-

bulec. This development is continually being maintained and its final version is included in

MML as [15].

– A proof that a field with conjugate and a plane with similarities are mutually interpretable by

K. Prażmowski and P. Rudnicki.

– Pigeonhole principle, by P. Rudnicki.

– Basics of set theory and theory of relations, by Z. Trybulec.

– Basics of general topology, by Cz. Byliński.

16 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

In all of these formalizations, the stress was on proving theorems rather than developing types

and auxiliary functions which were usually just stated in the environment without the burden of

having to justify their correctness.

In the following years, MIZAR-2 was also applied to prove properties of programs [7] and

software specifications [6]. The approach was based on natural, operational semantics of pro-

grams proposed by R. Burstall and J. Winkowski.

On December 13, 1981, martial law was declared in Poland. A side effect was our limited

access to computers which turned out to be a blessing in the long run as finally there was some

time to order a lot of thoughts and designs. For several months we were deprived (like all other

people in Poland) of telephone connections and inter-city travel was troublesome as special

permits were imposed. This had an adverse effect on the MIZAR team which was split between

Białystok and Warsaw.

8. 1982: MIZAR-MSE

Numerous experiments with MIZAR-2 indicated that the language was satisfactory for

recording some kinds of mathematics. Unfortunately, the semantics of the entire system seemed

too complicated and nebulous for precise description. This prompted Andrzej to define a small

sub-language of MIZAR. The sub-language included the well tested and frequently used con-

structs that were also amenable for complete and precise description [10].

The sub-language was named MIZAR-MSE and covered multi-sorted predicate calculus

with equality, thus MSE. There was no functional notation in MIZAR-MSE, no definitions for

predicates or schemes.

The first version of MIZAR-MSE was implemented by Roman Matuszewski, Piotr Rudnicki

and Andrzej; numerous further and substantially different implementations followed, too many

to mention here.

It was hoped that MIZAR-MSE could be used in teaching logic and some fragments of

mathematics and indeed the hope was materialized as MIZAR-MSE was used at many univer-

sities all over Europe and North America. One of the frequently voiced criticisms of MIZAR-MSE

was that it was too far removed from the mathematical practice and recently we are witnessing

a general switch to using “full” MIZAR in teaching. Although quite a number of longer texts were

written in MIZAR-MSE and distributed to users, these texts were stated in a very frugal notation

and constituted more of an exercise in logical manipulation than in mathematics.

A demonstration of MIZAR-MSE was presented during the International Congress of

Mathematicians, Warsaw 1982, in August 1983. The demo included a very nice example sug-

gested by Prof. J. Łoś:

Prove that if the union of two equivalence relations is full then one of the relations is full.

An interesting experiment with MIZAR-MSE[4] was run in the popular mathematics and

physics monthly Delta for 10 months starting in September 1983. For 10 consecutive months

Delta printed short papers about MIZAR-MSE and this was intended to form a gentle course on

the system. Each month three exercise problems were posted and the readers were encouraged

to send in their solutions on paper by regular mail (as it was several years before the Internet).

The solutions were typed in and checked by the machine and the results sent back to the readers

by regular mail.

MIZAR-MSE was used in the preparation of a number of MSc theses, the first of which was

by Henryk Oryszczyszyn titled A generalization of the Szmielew oriented order (on dendrites).

MIZAR: THE FIRST 30 YEARS 17

9. 1982: MIZAR-3

MIZAR-3 was meant to be an extension of MIZAR-2 and its implementation was attempted

on ODRA 1305 in Pascal-1900. It was the first multi-pass MIZAR processor with a lot of stress

on the design of intermediate files. MIZAR-3 had a richer and more systematic syntax than

MIZAR-2. Andrzej added some keywords for naming the various correctness conditions re-

quired for different definitions: existence, uniqueness, coherence, consistency,

correctness and these keywords are still with us today. MIZAR-3 was based on the von

Neumann-Bernays-Gödel set theory with classes.

This version of MIZAR was entirely experimental, never completed,10 and never used for

any substantial formalizations.

10. 1983–84: MIZAR-HPF

The language of MIZAR-HPF was designed by Andrzej in 1983 and then implemented

on PDP-11 under RSX. This was the first time when working from a monitor became com-

monplace and a dedicated editor for this MIZAR was created. This editor, called EDH, provided

syntactic checking for MIZAR-HPF and was designed and implemented by Stanisław Żukowski,

who also implemented the reasoning (contents of proofs) checker. Further processing was de-

signed only for syntactically correct texts. Both the editor and the processor proper were driven

by a modifiable LL(1) grammar which facilitated experimenting with syntax. There were many

such experiments, but not too many of them left a tangible trace. The semantic analyzer was

written by Czesław Byliński and the inference checker by Andrzej Trybulec.

While MIZAR-HPF was meant as a sub-language of MIZAR-3, it is probably best seen as

a collections of extensions of the frugal MIZAR-MSE. Features added include:

1. Unary and binary functions could be written in the usual prefix and infix notation but the

functional notation of term constructors also included:

– the F of x1,x2, . . . ,xn, e.g., the center of G, the line of a, b.

– Operational brackets (always in pairs: left and right), e.g., [x,y] for an ordered pair,

{x,y,z} for a set.

– General notation for functions x0(x1, . . . ,xn) where x0,x1, . . . ,xn are terms, e.g., f(x,y),

(f*g)(x), (f+g)(x).

2. A richer set of formats for atomic sentences:

– Attribute format in general form x1 is Aof x2, . . . ,xn with variants: x1 isA, or x1,x2, . . . ,xk

are A, or x1,x2, . . . ,xk are A of xk+1, . . . ,xk. E.g. x is even, f is inverse

of g, a, b are isomorphic.

The more natural format of negation for such sentences was also introduced, e.g., x

is not even.

– For binary predicates the infix format was provided.

– A special format for ternary predicates, e.g. x = y wrt E

3. Sorts with parameters, in a general format T of x1,x2, . . . ,xn, where T is an identifier (when

n = 0 then of must be omitted). Parameterized sorts permit substantial economy in con-

structing terms. The standard illustration of this point is the composition of two morphisms

in a category: consider the following declarations

10 One of the unpleasant side effects of this effort was that overworked Czesław Byliński, the leading implementer,
ended up in a hospital for several weeks.

18 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

let C be category;

let a,b,c be object of C;

let f be morphism of a, b;

let g be morphism of b, c;

A straightforward notation for the composition of two morphisms could have looked like

Comp(C,a,b,c,f,g) where all six arguments of the composition had to be specified

explicitly.

In MIZAR-HPF the composition could use the natural notation f*g where the remaining four

arguments could then be reconstructed from the sorts of f and g. (This feature was available

to some extent in MIZAR-2.) The omitted arguments were called hidden parameters, and

thus HPF, for hidden parameters and functions.

4. Default quantifiers allowed for skipping of leading universal quantifiers at the formula level.

Thus, instead of

for A, B, C being SUBSET of U st A <= B & B <= A holds A = B

one could shortly state A <= B & B <= A implies A = B to achieve the same

result provided an appropriate predeclaration (reservation) was made for A, B and C earlier.

In 1984, Andrzej started his one-year visit at the University of Connecticut in Storrs.11

11. 1986–1988: MIZAR-4

In 1986, MIZAR-4 was implemented as a redesign of MIZAR-2, but taking into account

features of all previous versions. The implementing team consisted of Czesław Byliński, Marcin

Mostowski, Andrzej Trybulec, Edmund Woronowicz, Anna Zalewska and Stanisław Żukowski.

Since the target machine, PDP-11, was relatively small it was necessary to design a number

of passes that communicated through files. Originally there were seven passes and the split

into passes was mainly forced by the limited amount of memory on the machine (which were

really Soviet clones of PDP-11 named SM-4 working under RSX-11). Over time the passes were

taking on meaningful roles and their number was reduced to four when MIZAR-4 gave birth to

PC-MIZAR in late 1988.

In late 1986 MIZAR-4 was ported to PCs and distributed to several dozen users over the

next few years (its distribution continued until early 1989). MIZAR-4 was also an experimental

system that was subjected to intensive evolution.

The switch to PCs under DOS also resulted in a not very good decision to use extended

ASCII IBM Set II. The initial excitement of having several dozen characters that frequently occur

in mathematical texts (and many characters that do not occur there at all) faded very quickly in

the first attempt to port the system to Linux in November of 1999. The extended ASCII disap-

peared in September of 2001, however, its 12 year presence caused a lot of grief for people that

did not use vanilla DOS systems (but it did not concern the core MIZAR team).

We would like to mention that Grzegorz Bancerek started his university studies in 1985

and by 1987 joined the MIZAR group; Grzegorz’s presence has had a big impact on the entire

future of MIZAR.

11 Most likely, this visit would have had continued if not for Andrzej’s problems with his US visa. Having a single entry
US visa, Andrzej left the US for a MIZAR workshop in Belgium and upon his return was stopped at the US border.
But this story is best told by Andrzej himself.

MIZAR: THE FIRST 30 YEARS 19

11.1 Vocabularies

Unlike in all previous MIZARs, one could now define multi-character symbols to be used

in formats of predicates and functors and one could also define operational brackets. These

symbols constituted a separate lexical category and parsing relied on their recognition. The

symbols were declared in special files called vocabularies.

The declaration of vocabulary symbols added substantial diversity to the MIZAR texts as

now the allowed formats for predicates and operations included infix (prefix, postfix) notation

with an arbitrary number of left and right (right, left) arguments. Although it does not seem like

a big change, written MIZAR texts became more varied and easier to read. Further, within the

environ part, one could define priorities for the defined symbols of predicates and functors

such that some economy of parentheses was under control of the text author.

But there was also a side effect causing quite unexpected albeit minor troubles. Namely,

an identifier declared as a symbol in a vocabulary could not serve as an identifier anymore.

The most frequent mishap was with the single character U which was used as symbol for set

union and any attempt to use it as an identifier (for a variable or a label) led to a not immediately

obvious syntactic error. Even experienced MIZAR users tripped over this. It took years before

such “symbolic” traps were eliminated (set union is now written as \/).

11.2 Predeclared

Two modes set and Any were predeclared but their meaning must have been given in

every article. (Mode Any has been eliminated in mid 90s.) Also, modes Element of and

set of were predeclared, the former took an argument which was a set while the latter’s

argument was a mode. The elementhood relation was not predeclared and some authors used

in while other preferred ∈, a character available in extended ASCII.

Nat was predeclared and small non-negative integer constants were recognized as ob-

jects of type Nat.

11.3 Reservation

One could reserve types of variables, for example:

reserve a,b,t,x,y,z,m,n,k for Nat;

such that later one did not have to specify types of variables

for t,x holds t*x=x*t;

and one could also omit leading universal quantifiers

n + m = m + n;

which were added automatically. Interestingly, there were authors who preferred not to use this

feature.

11.4 Definitions

Definitions got uniform syntax and were written in definitional blocks delimited by definition

and end. The keywords func, pred and mode indicated the nature of the defined notion. In

definitions of functors, the keyword it was used to denote the object being defined, e.g.,

20 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

definition

let A, B be set;

func A u B -> set means

Union: x in it iff x in A or x in B;

The above defines the union of two sets and in the definiens it denotes the union of A and B.

This keyword was also used in mode definitions, e.g.

definition

mode open_set -> set means open: it = Int it;

end;

The definitions of functors and modes required correctness conditions to be proved; existence

and uniqueness for functors; existence (i.e., non emptiness) for modes.

One could change the type of a functor by using the redefine statement, e.g.,

definition

let A be set;

let X, Y be Finite_Subset of A;

redefine X u Y as Finite_Subset of A;

end;

The redefined functor had a more specific type as its arguments had narrower types. For a

redefinition one needed to prove that the redefined functor was coherent with the original.

11.5 Schemes

Schemes got a new syntax and the induction scheme was now written as

scheme IND {P[Nat]}:

for n being Nat holds P[n]

provided

P[0] and

for n being Nat holds P[n] implies P[n + 1];

11.6 A problem

MIZAR-4 evolved and its evolution was influenced by formalizing in MIZAR-4 more and

more of interesting mathematics. Stanisław Czuba maintained a collection called CAMT for

Central Archive of MIZAR Texts.12 At the end of 1988, this collection included 19 texts contributed

during 1987 and 1988.

It was easy to notice that the developed texts overlapped a lot especially in the environ-

ment part where authors were stating set theoretical preliminaries over and over again. Forever,

people’s tastes varied and these set theoretic preliminaries were stated using different notation.

This led to a lot of repeated efforts and thus a waste of resources. Some sort of communication

between independently developed texts was needed. Before this happened, MIZAR as a project

got a financial boost.

12 In Polish: CATM for Centralne Archiwum Tekstów Mizarowych.

MIZAR: THE FIRST 30 YEARS 21

12. 1987: RPBP III.24

RPBP III.24 was not a name of a version of MIZAR. It is an acronym of a state research

grant program of the Polish Ministry of Science and Higher Education from which the MIZAR

group obtained substantial financing for a project named Logical systems and algorithms for

computerized checking of proof correctness where the main goal of the project was stated as

Solving the problem of whether or not there is a system of logic suitable for

– formalization of mathematical texts without substantially increasing their size, and

– automated checking of their correctness.

In particular, in answer to the question of whether or not and if so then to what degree,

the Polish system MIZAR satisfies the above requirements and determining directions of

its development and its scope of application.

The research program was coordinated by Prof. Witold Marciszewski and lasted for five years,

1987-1991. The grants obtained through the program provided major funding for the develop-

ment of the MIZAR system and especially the library. During these five years, a dozen of scientific

institutions from all over Poland were involved with the participation of about 100 people. These

efforts resulted in almost 250 MIZAR articles being contributed to the MIZAR library.

13. 1988-89: MIZAR and MML

The ongoing evolution of MIZAR-4 and its implementation on PCs, prompted Andrzej to

name the language simply MIZAR and call its implementation PC-MIZAR. While articles in pre-

vious versions of the language must have been self-contained, the final MIZAR has an accom-

panying data base and allows for cross-references among articles. The role of the environment

part of an article has changed from that in MIZAR-4: the environment section may now only

contain directives importing resources stored in the data base.

The implementation of PC-MIZAR was carried out during 1988 by Andrzej with Czesław

Byliński and other implementors of MIZAR-4. The first three articles were included into the data

base on January 1, 1989—this is the official date of starting the Mizar Mathematical Library—

MML, although this name appeared much later.

13.1 Axiomatics

As of January 1, 1989, the MIZAR data base consisted of three axiomatic articles con-

tributed by Andrzej:

– HIDDEN, see [8, pp. 191–193], contained the declarations of built-in notions and there were

quite a number of them:

• modes: Any,set,Element of,DOMAIN,TUPLE of,Subset of,SUBDOMAIN

of, Real, Nat.

• predicates: =, ∈, ≤ (for real numbers).

• functors: Cartesian product of 2, 3, and 4 sets, bool—powerset, REAL—the domain

of real numbers, NAT—the domain of naturals, + and · for addition and multiplication of

reals.

This special article has been substantially trimmed over time, see [3] and now contains only

the declarations of: mode set, equality = and inequality <> and elementhood, now written

as infix in. All other elements originally in HIDDEN have been constructed and are not

built-in anymore.

22 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

– TARSKI, see [11], contained axioms of essentially ZF set theory in which the axiom of

infinity was replaced by the axiom of existence of arbitrarily large, strongly inaccessible

cardinals (the so called Tarski axiom). This choice of foundation instead of just ZFC was

motivated by certain constructions done in category theory.

This axiomatic article has changed only a little, see [12]. One change concerned the removal

of the auxiliary mode Any, the other change removed the axiomatic definition of powerset

as it can be properly defined using the Tarski axiom.

– AXIOMS, see [13], titled Built-in Concepts, provided properties of built-in notions declared

in HIDDEN including axioms of strong arithmetic of real numbers and naturals.

Having the real numbers available axiomatically from the beginning allowed users to develop

a lot of mathematics right away. It was as late as March 1998 when Andrzej and Grzegorz

Bancerek completed the construction of real numbers. The axiomatic article AXIOMS be-

came a normal article in which all theorems are proven and its title is now Strong arithmetic

of real numbers (see [14]).

13.2 MML

The first “regular” article titled Boolean Properties of Sets, [16] was included into the data

base on January 6. By the end of 1989, there were 66 articles in the collection, covering mainly

the basic mathematical toolkit. 15 years later, at the time of this writing, MML consists of 855

articles and about 50 articles are contributed each year. Almost all of the material about the

current state of MML is available at http://mizar.org.

MIZAR—the language—is a formal system of general applicability and as such has little in

common with any set theory. MML is a specific application of MIZAR in developing mathematics

based entirely on a set theory (see [12]). In building MML, the MIZAR language, the assumed

logic, and the chosen set theory provide an environment in which all further mathematics is

developed. This development is definitional : new mathematical objects can be defined only after

supplying a model for them in the already available theories. MIZAR has been always based on

classical logic because this is the logic used by almost all mathematicians.13

In the last 15 years, the evolution of the MIZAR system has been driven by the growth

of MML. All major components of the system—the MIZAR language, the verifier and the MML

itself—have undergone numerous changes, too many to even mention the more important ones

here. Unfortunately, there is only sparse and incomplete documentation that would allow tracing

this evolution. The situation has improved substantially since all the MML files have been kept

under CVS from the beginning of 2002.

Although the MIZAR language and its processor evolve, their pace of change is relatively

slow. However, even a small change in the language or the verifier may cause vast changes in

the MML; MML is maintained to conform with the current version of the processing software.

Besides these types of updates, MML undergoes many changes and it is continually revised in

an effort to improve its integrity. This imprecise term covers quite a number of diverse issues:

choice of symbols and notation for new (and old) constructors, typing hierarchy, repetition or

presence of almost equivalent notions, redundant (repeated or weaker) theorems, cumbersome

formulation of theorems, etc.

MML is centrally maintained by the Library Committee now headed by Adam Grabowski.

Essentially every submitted article accepted by the MIZAR verifier and which passed some au-

tomatic review is included into the library. Over the years, MML has grown to the size that

searching it has become a problem for MIZAR authors. Even if one knows a lot of the library by

13 Let us note that most of the other proof assistants are based on some other logical calculi.

MIZAR: THE FIRST 30 YEARS 23

heart, one still would like to use a tool for finding a needed fact or notion. For many years the

search tool of choice was the grep utility. However, because MIZAR uses overloaded notations

and different authors do not use notations in a uniform fashion, such searches usually return

a lot of irrelevant material while missing some relevant items. Since 2001 Grzegorz Bancerek

has been developing a tool called MML QUERY which allows for semantics based browsing and

searching.

The organization of material stored in MML is not fixed. MML can be seen as a collection

of intertwined MIZAR articles where authors include whatever is to their liking. Such articles

correspond to primary scientific information that over time give rise to the secondary informa-

tion, i.e., overviews, monographs, textbooks. In 2002, the MIZAR team has begun building an

Encyclopedia of Mathematics in MIZAR, EMM, whose articles have a monographic character

and are extracted from the “raw” material of the contributed articles in a semi-automatic way.

This process is assisted by MML QUERY. Currently, there are five such encyclopedic articles

covering: Boolean properties of sets and basic arithmetic of real and complex numbers.

13.3 FM and JFM

In April-May 1989, Andrzej visited Edmonton and together with the second author was

working on a new MIZAR article. This work revealed the need for a better means to search

the available articles, or at least to browse through and read them. A superficial translation of

MIZAR articles into TEX was prepared and reported in [8]. This small experiment was one of

the steps toward the printed journal Formalized Mathematics14. Several months later Roman

Matuszewski and Stanisław Żukowski prepared more sophisticated technology for translating

MIZAR abstracts into stilted English and then typesetting them in TEX (this work was initially

supported by Fondation Philippe le Hodey, Bruxelles).

The problem with Formalized Mathematics is that once printed on paper the published

abstracts have only some archival value and they do not reflect the evolving nature of MML

making them of limited use for MIZAR authors. In the age of Internet, it was quite natural that

an electronic, hyper-linked version of MIZAR abstracts be created. This materialized in years

1995–97 when Journal of Formalized Mathematics15 was created with support from Office of

Naval Research, USA. This electronic journal reflects the current version of MML abstracts in a

variety of formats.

References

1. A. Grzegorczyk. Zarys arytmetyki teoretycznej (in Polish). PWN Warszawa, 1971.
2. L. A. Kalużnin. O jȩzyku informacyjnym matematyki (in Polish). Wiadomości Matematyczne, Roczniki PTM,

VII(2), Warszawa 1964. This paper originally appeared in a collection: Prikladnaja ligvistika i mashinnyj perevod,
Izdatielstvo Kievskogo Universiteta, 1962, pp. 21–29.

3. Library Committee. MIZAR Built-in Notions.
http://mizar.org/JFM/Axiomatics/hidden.abs.html.

4. K. Prażmowski and P. Rudnicki. MIZAR-MSE. Delta (monthly, in Polish), 1983, 10(9), pp. 8–9. This is the first

in a series of 10 popular articles which appeared monthly until June, 1984.
5. E. Ramm and E. Woronowicz. A computerized system of proving properties of programs. ICS PAS Reports No.

403, March 1980, Warszawa.
6. P. Rudnicki. What should be proved and tested symbolically in formal specifications? In 4th IEEE International

Workshop on Software Specification and Design, pages 190–195, Monterey, Ca., 1987.
7. P. Rudnicki and W. Drabent. Proving properties of Pascal programs in MIZAR-2. Acta Informatica, 22:311–331,

1985. Erratum pp. 699–707.

14 http://mizar.org/fm
15 http://mizar.org/JFM

24 ROMAN MATUSZEWSKI AND PIOTR RUDNICKI

8. P. Rudnicki and A. Trybulec. A Collection of TEXed Mizar Abstracts. University of Alberta, Dept. of Comp. Sci.,
1989, TR 89–18.
http://mizar.org/project/TR-89-18.ps

9. A. Trybulec Informationslogische Sprache MIZAR Schrifterreihe des Institutes für Informationswissenschaft,
Erfindungswesen und Recht, Technische Hochschule Ilmenau, Heft 33, Ilmenau 1977.

10. A. Trybulec. J ezyk informacyjno-logiczny MIZAR-MSE (in Polish). ICS PAS Reports 465, March 1982.
11. A. Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
12. A. Trybulec. Tarski Grothendieck set theory.

http://mizar.org/JFM/Axiomatics/tarski.html

13. A. Trybulec. Built-in Concepts. Formalized Mathematics, 1(1):13–15, 1990.
14. A. Trybulec. Strong arithmetic of real numbers.

http://mizar.org/JFM/Addenda/axioms.html

15. A. Trybulec. A Borsuk Theorem on Homotopy Types. Formalized Mathematics, 24:535–545, 1991.
http://mizar.org/JFM/Vol3/borsuk_1.html

16. Z. Trybulec and H. Świȩczkowska. Boolean Properties of Sets. Formalized Mathematics, 1(1):17–23, 1990.

