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IntroductionOur objective is to learn to write Mizar articles. The word "Mizar" is ambiguous:1. Mizar is language for the formalization of mathematics.2. Mizar is a computer system connected with the processing of articles.PC Mizar system is implemented by A. Trybulec and Cz. Byli�nski. Andrzej Trybulecis author of the Mizar language.In An Outline of PC Mizar we shall discus successively the language and the system.I am obliged to Andrzej Trybulec and Czes law Byli�nski, who took trouble of readingthe preliminary version several times, which each time inspired me to further work andalso enabled me to eliminate many errors. When writing this text I based myself onmany works by A. Trybulec pertaining to Mizar, and also on his lectures dedicated tothat language and that system.My thanks are also due to Krzysztof Pra_zmowski, who read the typescript and sharedwith me his many valuable reections intended to make my text easier to beginners inthe application of Mizar.
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Part One: The Language1. ArticleIn a Mizar article, as in a standard mathematical article, we introduce new concepts,prove the correctness of their de�nitions, and prove theorems. The proofs of those the-orems are based on theorems earlier proved by use in the article of refer to theoremsproved in other articles or else are based directly on axioms formulated in the articlesTARSKI and AXIOMS (which are checked by the system Mizar solely from the point of viewof their linguistic correctness).Every articles has the form:environ environment begin text begin text ...The environment is a sequence of directives by means of which we draw from Mizar'sactual library the information we need. On the basis of such information we can justifyin the text the correctness of the de�nitions introduced and prove theorems. More ondirectives can be found in the chapter "Directives".Further, certain words will be written in bold type. They will be words reserved forMizar, that is such whose meanings are rigorously determined by de�nition in the Mizarlanguage. That typographical distinction is to draw the Reader's attention to then, andthus more easily to remember at last some of them.The text contains de�nitions, theorems, and their proofs. To put it a little morerigorously, the units of the text are reservations, de�nitions, rede�nitions, schemes, endtheorems, which in the Mizar grammar are termed statements.It is worth while saying now that, from the point of view of the Mizar grammar,proofs, or - more broadly speaking - justi�cations are immanent units of de�nitions,rede�nitions, schemes, and statements. In other words, the said grammatical units denotecertain mathematical contents taken together with their justi�cation.Consider, by way of example, the meaning of the word de�nition. The content of ade�nition consists ofde�niendum (the expression to be de�ned) and de�niens (the de�ning expression).Hence de�nition: de�niendum de�niens proof of correctnessLikewise, statement means both a certain and its justi�cation.An abstract is another form of an article. It is obtained from a Mizar article by theelimination of all proofs, and also all lemmas and de�nitions of private objects. Onlypublic de�nitions and theorems are left. It is just to the abstract that we look whenavailing ourselves of other articles. Only that which has been transferred to the abstractfrom a Mizar article may be used in successive articles.
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Basic Linguistic Constructions2. TypesIn Mizar, every variables has its type. Some knowledge of the content of the MainMizar Library is required to know which types can be used.New types are introduced by de�nitions of structure and de�nitions of mode.The type of a variable may be �xed globally for the entire article by reservation, forinstance reserve X for set, D for DOMAIN;When formulating a sentence with the use of a variable whose type has not been reservedearlier we must explicitly state its type, for instance:for X st X <> ; ex a being Any st a 2 X;X is variable quali�ed implicitly: its type has been reserved earlier; a is a variable qual-i�ed explicitly, has the type Any given in the sentence.Types may have arguments, i.e., be derived from other objects. The symbol of thetype and its arguments are separated by the word of, e.g.,Subset of X, Element of D, Function of X,YWe shall now briey discuss the basic types in Mizar.The basic types in Mizar are to be found in the article HIDDEN, which is automaticallyjoined to every article. Those automatically joined types are called built-in types. Thearticle HIDDEN describes the following types:Any; set; Element of X; DOMAIN;Subset of D; SUBDOMAIN of D; Real; Nat;where X has the type set, and D has the type DOMAIN.The type Any is the broadest type in Mizar; every other type expands to the typeAny.The type set is equal to the type Any.The type DOMAIN denotes non-empty sets, that is so-called domains; SUBDOMAIN of D(subdomains - subsets which are domains), Real (real numbers), Nat (natural numbers).The use of the type � introduced in another article � must be preceded by twodirectives included in the environment:vocabulary �; signature �;The above does not apply to built-in types, that is those which have been introducedin the article HIDDEN. 3. TermsIn the Mizar language, as in standard mathematics, functions are de�ned. To put itmore precisely, what is de�ned is the names of functions, that is functors. Symbols offunctors are used in the construction of terms. In mathematics, terms are expressionsreceived from the iteration of functor symbols: variables and constants are terms, andmoreover if �1, ... , �p are terms, and ' is a symbol of functor of p arguments, then' (�1, ... , �p) is also a term. 3



Thus, for instance, if x,y are variables, and + is a symbol of a binary functor, then:x,y are terms of degree 0,x + y, y + x are terms of degree 1,x + (x + y), (x + x) + (x + x) are terms of degree 2, etc.In the Mizar language the concept of term is interpreted more broadly. For instance,the grammar of Mizar admits the term it which denotes within a de�niens of mode orfunctor (that term may not be used outside a de�niens) the object being de�ned. Thesentences recorded with the use of it are simply shorter and more legible.We shall con�ne ourselves to indicating the �ve most important kinds of terms:� identi�ers of a variable,� terms with a public functor,� terms with a private functor,� terms with the Fr�nkel operator,� aggregates.The arguments of the terms with a public functor may be written:� on the left side of the functor symbol,� on the right side of the functor symbol,� on both side of the functor symbol simultaneously.If the number of the arguments on one side of the functor symbol is two or more, thenthe arguments must be separated by commas, and the list of the arguments must beplaced within round brackets:', x', 'x, x'y, (xi1, ... , xik)'(xj1, ... , xjl)where ' is the functor symbol.The arguments of the terms with a private functor may be written only on the rightside, and the (round) brackets are obligatory even if the number of arguments equals 0:F( ), F(x), F(x1, ... , xn)where F is the identi�er of a private functor.Let us revert to the terms with a public functor. As has been said, the arguments ofsuch a term are written on one side of the functor symbol (on the left - pre�x recording,on the right - post�x recording) or on both sides simultaneously (in�x recording). Thusbool X, [ X, -1, graph f, dom f, rng f, id X, "f, Funcs(X,Y),�(A,X), len p, Plane(A,B,C)are pre�x terms,x", x*, x!are post�x terms, andx + y, f|X, f"X, f.(a,b)are in�x terms.Let it be sad once more:� a single argument may, but need not, be bracketed,� two or more argument must be bracketed.4



For instance: one may write (x)", but x" is enough, on the other hand the inscriptionFuncs X,Y instead of Funcs(X,Y) is not allowed.The above discussed terms with a public functor consisted of a functor symbol andarguments. In Mizar also such terms are allowed in which next to the functor and itsarguments also so-called functor brackets occur. The symbols [ and ], f and g, and [:and :] are examples of left and right functor brackets. And here are mathematicalobjects and terms describing those objects and built with the use of the said bracket:1. ordered pairs, triples, quadruples, and further n-tuples up to ordered nonatuplesinclusive: [x1,x2], ... ,[x1,x2,x3,x4,x5,x6,x7,x8,x9].2. singleton, pair, and further �nite sets, until the set of eight elements included:fx1g, fx1,x2g, fx1,x2,x3g, ... , fx1,x2,x3,x4,x5,x6,x7,x8g.3. the Cartesian product of sets:[:X1,X2:], [:X1,X2,X3:], [:X1,X2,X3,X4:].The simplest Fr�nkel term is an expression of the formf term : sentence gAnd here is an example of a Fr�nkel term:fp� : p is Element of [:the point of M, the point of M:]gThe variable p in this case denotes an ordered pair of points, and p� is the equivalenceclass of the element p. Thus the above term denotes the set of all free vectors of thestructure M.To conclude let us formulate the principle of the identi�cation of functors, that isreply to the question how functors are distinguished. Now the system Mizar identi�ersa functor by� symbol,� number of arguments,� types of arguments.Thus if two functors di�er from one another by a symbol, the number of arguments, ortype be it of single argument only, the system treats those functors are di�erent.4. Atomic formulasIn the Mizar language, as in standard mathematics, relations are de�ned. To put itmore precisely, what is de�ned is the names of relations, that is predicates. Predicatesare used to construct atomic formulas, and these in turn to construct - with the use ofconnectives and quanti�ers - arbitrary formulas.For the time being we shall discuss atomic formulas. The basic kinds of atomicformulas are:� atomic formulas with a public predicate,� atomic formulas with a private predicate,In the former case arguments may be written:� on the left side of the predicate symbol,5



� on the right side of the predicate symbol, or� on both side of the predicate symbol simultaneously.The list of arguments is not bracketed:�, x�, �x, x�y, xi1, ... , xik�xj1, ... , xjlwhere � stands for the symbol of the predicate.In particular, atomic formulas with a public predicate include the equational formulas:x = y and x <> y .In the latter case (that of atomic formulas with a private predicate) arguments may bewritten solely on the right side, and (square) brackets are obligatory even if the numberof arguments is 0:P[ ], P[x], P[x1, ... , xn]where P stands for the identi�er of a private predicate.Further the atomic formulas include the qualifying formulas, that is expression of theform term is type , for instance:p(b2 - 4ac) is RealGroupsStr � REAL, addreal, compreal,0 � is AbGroupAs in the case of functors, the system identi�ers a given predicate by means of asymbol, the number of arguments, and types of arguments. Any two predicates whichdi�er form one another by the symbol, the number of arguments, or the type be it ofonly one argument are treated by the system as di�erent predicates.5. FormulasNegation, conjunction, disjunction, implication, and equivalence are denoted, respec-tively, by not, &, or, implies, iff.The above order corresponds to the decreasing strength of binding by those connec-tives, with the proviso that the strength of binding of implication is the same as that ofequivalence.Associative recording is admissible for conjunction and disjunction, which is to saythat the system itself adds the missing brackets. For instance the formula�1 & �2 & �3is transformed by the system into(�1 & �2) & �3On the contrary, for implies and iff the associative recording is not admissible, whichis to say that, for instance, the expression�1 iff �2 iff �3is treated as erroneous.There are three kinds of quanti�ed sentences:1. a universal simple formula, e.g.,for x being Any holds x = x;2. a universal limited formula, e.g.,for x being Real st x <> 0 holds x�x" = 1;3. an existential formula, e.g.,ex x, y st x <> y;The word holds preceding a quanti�ed formula may be omitted, and hence, for instance,for x, y being Nat st x < y holds ex z being Real st x < z & z < y;6



may be replaced by:for x, y being Nat st x < y ex z being Real st x < z & z < y;The User is warned that in Mizar quanti�ers bind less strongly than connectives do.Thus for x holds � & �means the same asfor x holds (� & �)but not (for x holds �) & � .
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Proving of Theorems6. Simple justi�cationWe shall discuss in turn the various kinds of simple justi�cations.1. When referring to sentences previously assumed or justi�ed we writeby %1, ... , %n;where %1, ... , %n are references.EXAMPLEX = Y by A, TARSKI:2, BOOLE:def 1;where� the private reference A is the label of a sentence which has been proved earlier inthis article,� the library reference TARSKI:2 indicates the second theorem in thearticle TARSKI,� the library reference BOOLE:def 1 indicates the �rst de�nitional theorem in thearticle BOOLE.2. When referring to a schema we writefrom identi�er-of-schema (%1, ... , %n);where %1, ... , %n are references, if the schema has premises, orfrom identi�er-of-schema ;if the schema has no premises.EXAMPLESex Z st x holds x 2 X iff x 2 X & x 2 Y from Separation;thus thesis from FuncEx (A1,A2);The words Separation and FuncEx are identi�ers of schemes, while A1, A2 are la-bels of the sentences which are premises, that is assumptions of the schema FuncEx.Those sentences must be proved �rst in order to justify on the basis of that schema. Onthe contrary, the schema Separation has no premises.3. If the sentence written out is obvious to CHECKER (see 14. Basic informations ofChecker) then the entire justi�cation may be written in the form of the semicolon, e.g.,x c= y & x = a & y = b implies a c= b;In Mizar, the symbol c= denotes the inclusion of sets.4. When we refer the sentence preceding a given sentence it su�ces to write then.8



Thus instead ofA: X c= Y;B: Y c= Z;X c= Z by A,B,BOOLE:29;we may write more simply:A: X c= Y;Y c= Z;then X c= Z by A,BOOLE:29;The expression then is termed linking. Owing to linking we have avoided labeling thesecond sentence.7. Formula "thesis", skeleton of the proof, and resultsof reasoningThe word thesis means that which remains to be proved.Self-evidently, thesis at the beginning of a proof just means the thesis of that proof.Since Mizar admits proofs within proofs, that is nested proofs, the thesis of the proofwill sometimes be called the main thesis. Thus the main thesis is the initial value of thedynamically changing formula thesis. The changing value of thesis is computed as weread the text from proof to end.1. If we prove the implication � implies �and assume its antecedent assume �;then thesis denotes its consequent �.2. If, when proving the conjunction � & �we write down the conclusion thus �;then thesis denotes the sentence �.3. If we prove the universal sentencefor x being � holds �and write out the generalization let x be �;then the word thesis denotes �. 9



4. If we prove the existential sentenceex x being � st �we write the exempli�cation take x;the thesis denotes �.These four constructions:� assumption (1),� conclusion (2),� generalization (3), and� exempli�cation (4).from the record of the skeleton of the proof. They, as it were, cut o� from the mainthesis its initial fragments and correspondingly modify the value of the formula thesis:1'. The assumption assume �;cuts o� expression� impliesfrom the sentence � implies �leaving the expression �.2'. The conclusion thus �; cuts o� expression� &from the conjunction � & �leaving the expression �.3'. The generalization let x be �; cuts o� the expressionfor x being � holdsfrom the universal sentence for x being � holds �leaving the expression �.4'. The exempli�cation take x; cuts o� the expressionex x being � stfrom the existential sentence ex x being � st �10



leaving the expression �.EXAMPLELet us analyse the following fragment of a Mizar article:reserve x,y for Any;theorem T23: (ex x for y holds �) implies (for y ex x st �)::thesis = (ex x for y holds �) implies (for y ex x st �)proofassume ex x for y holds �;::thesis = for y ex x st �then consider y such that E: for y holds �;::thesis = for y ex x st �let y; ::thesis = ex x st �E': � by E; ::thesis = ex x st �thus thesis by E';::thesis = VERUMend;(from :: until end{of{line - comments in Mizar text - not processed by PC Mizarsystem).The sentencethen consider x such that E: for y holds � ;states the assumed existential statementex x for y holds � ;yields the statement of the choiceconsider x such that E: for y holds � ;That statement chooses such a value of the variable x for which the sentence E holds.In the above recording of our reasoning next to the assumptionassume ex x for y holds �;the generalizationlet y;and the conclusionthus thesis by E';which form the skeleton of the proof and modify thesis, there also occur the statementof choice then consider x such that E: for y holds �;and the labelled sentenceE': � by E;which do not modify thesis (they constitute the so-called auxiliary recording of therecording of the reasoning).It is self-evident that when end appears in the proof the dynamic formula of thesisshould be a VERUM (precisely speaking: not contradiction). Otherwise Mizar reportsan error of REASONER #70 (Something remains to be proved).Suppose now that we read the proof backward end the conclusion thus �; has, forsimplicity, the open form (the open form means thus thesis). As we read from end toproof we dynamically reconstruct the changing result of the reasoning by writing to theleft of the sentence � the appropriate expressions:11



1". The assumption assume �; adds to the sentence � the expression � impliesthus forming the expression � implies �.2". The conclusion thus �; adds to the sentence � the expression � & thus formingthe expression � & �.3". The generalization let x be �; adds to the sentence � the expression for xbeing � holds thus forming the expression for x being � holds �.4". The exempli�cation take x; adds to the sentence � the expression ex x being� st thus forming the expression ex x being � st �.EXAMPLESuppose that we have found a sheet of paper with the following proof:proofassume �;let x be �;take y;thus �;end;Unfortunately the thesis being proved was not recorded on that sheet. When reading theproof backward we easily �nd the result of the reasoning, which obviously is the sentence� implies for x being � ex y st �;The only thing which we have not succeeded in reconstructing is the type of the variabley because it had been �xed in the reservation preceding the statement the proof of whichwe have found on the said sheet.The various methods of skeletoning proofs and the practical methods of computingthe formula thesis will be explained below in greater detail by reference to exampleswhich will help us to discuss the various tactics of proving theorems. On the otherhand, the problem of computing the result of the reasoning will reappear a little later inconnection with the discussion of di�use statements, which consist in that their thesis isnot open.EXAMPLETo conclude this chapter we give the shortest statement:not contradiction proof end;The word contradiction denotes the logical constant falsehood. Obviously,not contradiction denotes the logical constant truth. Note also that in the Mizarlanguage contradiction and not contradiction are interpreted as sentences.8. The tactics of proving theoremsThe fundamental principle in proving theorems is that we do not write out at oncethe complete reasoning but only its skeleton, that is� assumption, and� conclusion, and also� generalizations, if we prove universal sentences, and� exempli�cations, if we prove existential sentences.The beginners may �nd it considerably di�cult to skeleton the proofs. We shallpresent many methods of skeletoning, even though not all of them. We shall disregard12



proofs by de�nitional expansion and proofs per cases. To simplify natters we shall alsodisregard simple justi�cations, that is justi�cation by by and by from. Such a methodof constructing proofs is also natural in so far as it is recommended to add simple justi-�cations to already veri�ed skeletons. We begin the description.At �rst we have to formulate the thesis of our proof. Then we writeproof ... end;The dots will, of course, be replaced by the successive steps of the reasoning. The laststep is often thus thesis;The steps of the reasoning are separated by semicolons. What those steps are dependsself-evidently on whether the proof is direct, or by contradiction, and on the thesis of theproof.Proving a thesis � by contradiction reduces to the proof of the implicationnot � implies contradictionThose Readers who are familiar with Ja�skowski's proofs by assumption will note theconvergence of the rules used in Mizar and those in Ja�skowski's system. That applies inparticular to proving by contradiction.We shall now successively examine the following forms of the thesis:1. the thesis is a conjunction,2. the thesis is an implication,3. the thesis is an equivalence,4. the thesis is a disjunction,5. the thesis is a universal sentence,6. the thesis is an existential sentence.We shall discuss one by one the tactics of writing proofs in the cases from 1 to 6.8.1. Proving a conjunctionIn the proof we have to state the truth of every constituent of the conjunction. Thus,if the thesis is in the form C1 & C2 & C3then the proof will be as follows:proofthus C1 ... ;thus C2 ... ;thus C3 ... ;end;The word thus indicates that the sentence that follow is a conclusion. By conclusion wemean the thesis of the proof or its part. The dots indicate simple justi�cation or proof.For instance: 13



T1: X = Y& (ex Z st for x holds x 2 Z iff x 2 X & x 2 Y)& for x holds x 2 X \ Y iff x 2 X & x 2 Yproofthus X = Y by A, TARSKI:2;thus ex Z st x holds x 2 Z iff x 2 X & x 2 Y from Separation;thus thesis proof ... end;end;The word thesis denotes here the third constituent of the conjunction being proved,that is the sentence for x holds x 2 X \ Y iff x 2 X & x 2 Y.8.2. Proving an implicationTactics 1 - the direct methodThe �rst step of the reasoning isassume the-antecedent-of-the-implication ;and the last thus the-consequent-of-the-implication ;The word assume points to the assumption made in the proof. The assumption maybe a single sentence (the so-called single assumption) or a sequence of labelled sentenceslinked together by the word and (the so-called collective assumption). In the latter casenote that the splitting of the assumption may be convenient because it makes it possibleto refer to partial assumption of the collective one.x 2 X & x 2 Y implies X \ Y <> ;proofassume x 2 X & x 2 Y;then B: x 2 X \ Y by T1;thus thesis by B, BOOLE:1;end;The formula thesis denotes here the sentence X \ Y <> ; . In this case the replace-ment of the single assumptionassume x 2 X & x 2 Y;by the collective assumptionassume that A1:x 2 X and A2:x 2 Y;is not recommended because after the collective assumption there is no linking (see 10.Conventions). Tactics 2 - the indirect methodThe �rst two steps are the assumptions:assume the-antecedent-of-the-implication ;assume not the-consequent-of-the-implication ;The last step is the expressionthus contradiction; 14



The following proof is incorrect:� implies �proofassume not �;..........thus not �;end;Why is that so?Mizar transforms the thesis� implies �into the sentencenot (� & not�)and expects a proof of that sentence precisely. But we have proved the sentencenot � implies not �which is transformed by Mizar into the sentencenot (not � & �)In the algebra of semantic correlates used by REASONER, that is the module of thesystem which checks the correctness of the skeleton of the proof, conjunction is notcommutative, and this is why the system will report an error, which indicates a lack ofsu�cient justi�cation. A more precise explanation would require a deeper insight intothe semantics of Mizar.The above proof can be saved as follows:Tactics 3 - di�use statement� implies �proofnow assume not �;..........thus not �;end;hence thesis;end;The constructionnow assume not �; ... thus not �; end;is called a di�use statement (currently: proof by now). This statement is marked by thefact that its thesis is not explicitly written down, but REASONER (the module of theprocessor responsible for the skeleton of the proof) itself reconstructs the thesis of thedi�use statement. The above di�use statement has the following content:not � implies not �Mizar (or, to put it more precisely, REASONER) expects the sentence� implies �but the use of the linking hence thesis after the di�use statement is a direct justi�cationof the theorem being proved.In fact, CHECKER (the module of the processor responsible for direct justi�cations)by referring to a tautology of the propositional calculus (which it may always do "byitself") will easily transform the proved di�use statement into the main thesis.15



8.3. Proving an equivalenceTactics 1If the thesis is an equivalence� iff �then we have to prove two implications� implies � and � implies �where the order in which these implication are listed is essential and must be such asabove. Thus the proof of the thesis is as follows:proofthus � implies � proof ... end;thus thesis proof ... end;end;The word thesis self-evidently denotes here the sentence � implies �.Tactics 2 - two di�use statements� iff �proofA: now assume �;............thus �;end;B: now assume �;............thus �;end;thus thesis by A,B;end;In the above proof the order in which the di�use statements with theses A and B areproved is inessential because CHECKER, when verifying the direct justi�cation thusthesis by A,B may make use of the tautologies of the propositional calculus. Notealso that the label B: is superuous because we may refer to the thesis of the seconddi�use statement by the linking hence thesis by A.8.4. Proving a disjunctionTactics 1If the thesis is in the formD1 or D2then it is convenient to assume the negation of one constituent of the disjunction and toprove the other. In such a case the proof takes on the following form:proof assume not D1; ... ; thus D2 ... ; end;For instancefxg n X = ; or fxg n X = fxgproofassume fxg n X <> ;; 16



then B: not x 2 X by Th24;thus thesis by B,Th22;end;The word thesis denotes here the sentence fxg n X = fxg. Here, too, the label issuperuous; one can refer to the sentence with the label B: by the linking hence thesisby Th22. Tactics 2 - replacement of disjunction by two implicationsLet  be an auxiliary sentence� or �proofA:  implies � proof ... end;B: not  implies � proof ... end;thus thesis by A,B;end;The label B: may be eliminated if the linking hence thesis by B is used.Tactics 3 - indirect� or �proofasume that A: not � and B: not �;............thus contradiction;end; 8.5. Proving an universal sentenceWhen we want to prove a universal statement we consider any object of a given type.In Mizar we proceed likewise.The proof of a sentence in the formfor x being � holds ... ;then begins with the so-called generalization, that is the expressionlet x be �;If the sentence being proved is in the formfor x being � st ! holds ... ;then the �rst step in the proof will belet x be � such that L: !;EXAMPLEfor X,Y,Z being set holds X c= Y & Y c= Z implies X c= Zprooflet X,Y,Z be set;assume A: X c= Y;assume B: Y c= Z;C: for x holds x 2 X implies x 2 Zproof 17



let x such that D: x 2 X;E: x 2 Y by A,D,BOOLE:5;thus x 2 Z by B,E,BOOLE:5;end;thus X c= Z by C,BOOLE:5;end;The same proof may be recorded in a simpler way:X c= Y & Y c= Z implies X c= Zproofassume A: X c= Y;assume B: Y c= Z;for x holds x 2 X implies x 2 Zprooflet x such that D: x 2 X;x 2 Y by A,D,BOOLE:5;hence x 2 Z by B,BOOLE:5;end;hence thesis by BOOLE:5;end;In fact:a) The sentencesX c= Y & Y c= Z implies X c= Z;for X,Y,Z being set holds X c= Y & Y c= Z implies X c= Z;are treated by the system as equivalent. When passing to semantic correlates the systemadds the missing quanti�ers.b) After the cutting o� of the sentences A: and B: from the main thesis the word thesisin the last but one step of the proof denotes the consequent only, that is the sentenceX c= Z which is not written explicitly.8.6. Proving an existential sentenceThe proof of the existential sentenceex x st W(x)consists in indicating an object which satis�es the condition W. The relevant proof is thusas follows:proof ..............A: W(c);take x = c;thus thesis by A;end;The symbol c denotes the object in question. The expression take x = c; indicatesthat objects. But how is that object to be found?Two methods of �nding such an object can be indicated.The �rst consists in the construction of the constant c from the constants of thetheory under consideration, if that theory has some constants or makes it possible tode�ne them. This method might be termed e�ective.18



The second, non-e�ective, consists in availing oneself from an existential sentencewhich has been proved earlier or assumed.EXAMPLE of the e�ective proof:ex x, y, z being Nat st x <> y & x <> z & y <> zprooftake x = 0, y = 1, z = 2;thus thesis;end;The word thesis denotes here the sentence 0 <> 1 & 0 <> 2 & 1 <> 2 , which isobvious to Mizar.EXAMPLE of the non-e�ective proof:Let � stand for symbol of any binary predicate.(ex x st for y holds x�y) implies (for y ex x st x�y)proofassume ex x st for y holds x�y;then consider x such that A: for y holds x�y;thus thesisprooflet y;B: x�y by A;hence thesis;end;end;The label A: cannot be eliminated because after consider linking is not allowed. Theword thesis in its �rst occurrence denotes the sentence for y ex x st x�y becausethe assumption cut o� the antecedent of the implication from the main thesis. The wordthesis in its second occurrence (in the nested proof) denotes, after the generalizationlet y, the sentence ex x st x�y. That sentence follows by linking from the sentenceB: because CHECKER applies the rule called the law of abstraction from concreteness (see14. Basic informations of Checker below).EXAMPLE as a warning!Let us read carefully the following two sentences:ex x being � st �;ex x being Any st (x is � & �);Their equivalence in the predicate calculus self-evidently does not give rise to any doubt.The brackets in the second sentence are superuous, but they had better to be retainedbecause the alarmed Reader could look for the solution of the puzzle in a wrong place.And the puzzle is: are these two sentences equivalent from Mizar's point of view? Nowthey are not. When proving the �rst sentence we use the exempli�cation take x;, wherex has the type �, and we prove the sentence �. When proving the second sentence weuse the exempli�cation take x; where x has the type Any, and we prove two sentences:x is � and �. 19



9. Change of typeIn practice it is often necessary to change the type of the objects occurring in thereasoning. This is achieved by the construction reconsider, i.e., the statement of achange of type, which has the form:reconsider x = � as � by ... ;or reconsider x = � as � from ... ;where � is a certain term.The construction reconsider introduces a new variable x which denotes the sameas � but has the type �. The statement of a change of type is justi�ed by the qualifyingformula: � is �EXAMPLElet R be Subset of X;A: R c= X by ... ;X = [:X1,X2:] by ... ;then reconsider R' = R as Relation of X1, X2 by A ... ;By means of reconsider we change the type locally, that is within the reasoning. Aglobal change is achieved by rede�nition (see 25. Rede�nitions).Suppose that the term � is the variable x and has the type �. The statement of achange of type may be recorded thus:reconsider x as �0 by ... ;or reconsider x as �0 from ... ;The name statement of a change type, which is to be used in accordnace with theMizar grammar, may in this case be misleading because the "working" of that statementis such that the variable x acquires the new type �0 without losing its old type �. We thushave to do in fact not with the change of one type into another but with the expansionof the set of the types ascribed to the given variable. The operation of expansion of theset of types, presented above, "works" only on variables; it does not work on arbitraryterms. 10. Conventions10.1. ReservationReservation makes it possible to shorten formulas. The expressionreserve x for �;establishes that the variable x has type � in those occurrences in which the type of thevariable x is not stated explicitly.reserve x for set;A: for x st x <> ; ex a being Any st a 2 x;B: for x being Any holds x = x;In the sentence A: the variable x has the type set stated in the reservation (the variablex is a variable quali�ed implicitly). In the sentence B: the variable x has the type Any20



(here x is quali�ed explicitly). The ascribing to x of the type Any in the sentence B:does not cancel the initial reservation. In fact, in the successive sentenceC: ex x st x = ;;the system will identify x as a variable of the type set.10.2. Linking by thenThe preceding of a sentence Z by the word then means that in the justi�cation of Zwe avail ourselves of the sentence A: which immediately precedes the sentence Z. Thisway of justifying is called linking.It must be emphasized that linking requires that the expression A: be a sentence. Itis thus not allowed to use linking after proof. Nor is it allowed to use linking after acollective assumption for then it could not be clear to which of the partial assumptionswe refer. Finally, it is not allowed to use linking after those constructions which - as weput it - do not leave a sentence:� after the generalization let ... ;� after the exempli�cation take ... ;� after the statement of choice consider ... ;� after the existential assumption given ... ;� after the statement of a change of type reconsider ... ;After the conclusion thus ... ; and hence ... ; linking is admissible.10.3. Linking by henceIf one of the premises of the conclusion is the sentence which precedes that conclusionthen one can use linking by replacing thus by hence. Figuratively speakingthen and thus is equal hence10.4. Existential assumptionThe construction given ... such that ... ;is called existential assumption. It replaces the assumption on the existence of certainobjects (assume ex ...) combined with the choice of one of those objects (consider ...).Linking after an existential assumption is not allowed.EXAMPLESuppose that the statement expresses the commutativity of multiplication.(ex y st x�y = x) implies (ex y st y�x = x)proofgiven x such that A: x�y = x;thus thesis by A,T3;end; 21



11. Nested proofsMizar admits the construction of proofs within other proofs, called nested proofs.The rules of the construction of inner proofs are the same as those for main proofs.12. Di�use statementIt sometimes occurs that we prove a theorem which has not been formulated openly.In Mizar, such a construction is called a di�use statement and we begin it with the wordnow. It looks thus:L: now ... thus �; end;The word now is followed by the proof of the conclusion � (the word proof is not writtenafter now).EXAMPLE L: now assume �; ... take x; thus �; end;The direct justi�cation by L is consists in the reference to the sentence� implies ex x st �REMARK 1The conclusion � must be written out openly and may not be replaced by the wordthesis. We shall explain why.The reference to the label L: is a reference to a thesis proved by the construction now,or, to put it more precisely, to the result of such a reasoning. Of course, if the result ofthat reasoning is to be computable � must be formulated openly.REMARK 2It is not allowed to precede now by the symbols then, thus, and hence.To conclude these brief comments on di�use statements we shall try to make theReader sensitive to a certain danger connected with the use of that construction. Please,examine the following reasoning:x <> y implies proofassume x <> y;then E: x < y or y < x by AXIOMS:21;A: nowassume x < y;............thus ;end;now assume y < x;hence  by A;end;hence thesis by A,E;end;The above reasoning is incorrect. Under the label A: there is the sentencex < y implies ; 22



In that sentence x,y are constants. Hence from that sentence it does not follow thatfor x,y holds x < y implies ;Hence the sentencey < x implies ;does not follow either. Thus the justi�cation of the conclusionhence  by A;is erroneous. And here is the corrected version of the above proof:x <> y implies proofassume x <> y;then E: x < y or y < x by AXIOMS:21;A: nowlet a,b;assume a < b;.........thus ;end;thus thesis by A,E;end;The sentence A: is the following universal sentence:for x,y holds x < y implies ;and that is why it is applicable in the conclusion below:thus thesis by A,E;13. Iterative equalityIterative equality is the construction of the following form:�0 = �1 justi�cation.= �2 justi�cation...............= �n justi�cation ;where �0, ... , �1 are terms.EXAMPLEx+y = (the add of G Real).(x,y) by ADD.= x'+y' by AR,A.= y'+x' by REAL 1:2.= addreal.(y',x') by AR.= y+x by ADD,O,A;The content of iterative equality is the equality of the �rst and the last term occurringin that construction.14. Basic informations of Checker1. Every tautology of the propositional calculus is accepted by CHECKER withoutjusti�cation.2. A sentence beginning with a quanti�er requires justi�cation.23



3. When verifying the correctness of a justi�cation CHECKER takes into considerationonly the following premises:� those speci�ed after by or from,� those resulting from linking (then, hence).4. The relation of equality is treated by CHECKER as reexive, symmetrical, transi-tive, and extensional. For instance, owing to extensionality CHECKER accepts thefollowing sentencex = y & x <> ; implies y <> ;;5. CHECKER usually does not accept a justi�cation which among its premises has morethan one universal sentence. CHECKER will, however, accept the justi�cationC1 & C2 by O1, O2 ;if O1 is the justi�cation of C1 and O2 is the justi�cation of C2.6. CHECKER automatically, i.e., without reference to justi�cation, applies the followingtwo rules of inference of the classical functional calculus:R1: The law of abstraction from concreteness,R2: The law of transition from the general to the particular.If c stands for a constant of the type �, then the above rules can be recorded in Mizaras follows:rule R1: W(c);then ex x being � st W(x);rule R2: for x being � holds W(x);then W(x);15. SchemesSchemes are sentences of second order. First comes the reserved word scheme andthe identi�er of the schema. They are followed by the list (in square brackets) of theparameters of the schema (functors or predicates) which play in the schema the roleof variables of second order. Next come, after the colon, successively the thesis of theschema and possibly the premises (that is, the assumptions of the schema). Finally comesthe justi�cation of the schema.Here are examples of schemes (with justi�cations replaced by dots), namely Separa-tion, without premises, and FuncEx, with two premises.Let F stand for the identi�er of a private functor (see 3. Terms), and P, for theidenti�er of a private predicate (see 4. Atomic formulas).scheme Separation f F() � > set, P[Any] g :ex X st for x holds x 2 X iff x 2 F() & P[x] justi�cation ;scheme FuncEx f F() � > set, P[Any,Any] g :ex f st dom f = F() & for x st x 2 F() holds P[x,f.x] providedA1: for x,y1,y2 st x 2 F() & P[x,y1] & P[x,y2] holds y1 = y2andA2: for x st x 2 F() ex y st P[x,y] justi�cation ;24



The premises A1:, A2: are preceded by the word provided and separated from oneanother by the separator and.Finally one more example perfectly well known to secondary school pupils, namelythe schema of induction:scheme Ind f P[Nat] g : for k holds P[k] providedB1: P[0]andB2: for k st P[k] holds P[k+1] justi�cation ;The Reader has probably noted that the scope of the applications of a given schema isdetermined by the parameters of the latter. For instance, the schema of induction allowsone to prove sentences of the formfor k being Nat holds �(k)where � is any sentence with one free variable k. The justi�cation of that sentence is afollows. We �rst prove the sentences:C1: �(0);C2: for k st �(k) holds �(k + 1);These sentences are premises which allow us to avail ourselves of the schema Ind:for k being Nat holds �(k) from Ind(C1,C2);The schema of induction has been proved in the article NAT 1. In order to make use ofthat schema one must join it to the environment, which is to say that one has to writethe directive schemes NAT 1 between the words environ and begin.
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De�nitions16. Review of de�nitionsIn the Mizar language, as in standard mathematics, we de�ne relations (strictly speak-ing, names of relations, that is predicates) and functions (strictly speaking, names of func-tions, that is functors). Moreover, in Mizar, more explicitly than it is usually done inmathematics, we use de�nitions to introduce structures (such as the structure of group),used in turn to de�ne other objects. In our example they will be groups. On the otherhand, the peculiarity of Mizar consists in types, which are de�ned, too: Mizar is basedon an system of types.The de�nitions of predicates and structures do not require the veri�cation of theircorrectness. The de�nitions of functors and types require a proof of the condition ofexistence, and those of functors also a proof of the condition of uniqueness.In the Mizar language the basic objects are types, predicates, and functors. Some ofthose objects - let us call them primary - have been built-in in the system. Their fulldescription is to be found in the articles HIDDEN, TARSKI, and AXIOMS. The review of thebuilt-in types is to be found in the chapter on Types.Secondary objects are introduced by de�nitions.The de�ned objects are classed into private and public.Private de�nitions (of a variable, a private predicate, a public functor) introduceuseful notations, but their scope is local, that is limited to a single article. In the presenttext we shall discuss only the de�nition of variable.17. De�nition of variableThe construction set x = �;where x is the identi�er of a variable, and � is a term, introduces the variable x as thedesignation of the term � .As the example we shall give the beginning of a theorem which begins with thede�nition of the variable designated by the identi�er X. The Reader may look for furtheroccurrences of that variable.theorem Th17: h�(g�f) = (h�g)�fproofset X = dom(h�(g�f));x 2 X iff x 2 dom((h�g)�f)proofthus x 2 X implies x 2 dom((h�g)�f)proof assume x 2 X;...... 18. Public de�nitionsWe now proceed to discuss public de�nitions, from de�nitions of types to those ofpredicate and functors.Types are introduced by:� de�nition of structure, 26



� de�nition of mode,� de�nition with is, which forms abbreviations of existing types,� registration of clusters.These four kinds of de�nitions of types will be discussed successively.19. De�nition of structureIn Mizar, structure are �nite sequences of objects of a �xed type, called selectorsof a given structure. The de�nition of a structure does not require any conditions andcorrectness. In particular, the condition of existence need not be justi�ed because theMizar language.Structures may be classed into:� structures without parameter, and� structures with parameter.The structure without parameter are de�ned thus:struct � � �1� > �1, ... , �p� > �p �;where � is the symbol of structure,�1 , ... , �p are symbols of selectors, and�1 , ... , �p are types.The symbol of structure and those of selectors should be included in the vocabularyand preceded by the classi�ers G and U, respectively.EXAMPLE 1struct IncStruct � Points, Lines, Planes � > DOMAIN,Inc1 � > (Relation of the Points, the Lines),Inc2 � > (Relation of the Points, the Planes),Inc3 � > (Relation of the Lines, the Planes) �It is convenient to follow the de�nition of a structure with a series of de�nitions whichfacilitate the "service" of the structure de�ned. The author of the article from whichthe above example is drawn introduced, after the de�nition of structure, the followingreservation: reserve S for IncStr;Next he de�ned the modes:POINT of S , LINES of S , PLANES of Sand the public predicates:A on L , A on P , L on Pwhich correspond to the selectors Inc1, Inc2, Inc3 for the structure S �xed by thereservation. Usually a structure is de�ned only in order to become the mother type ofthe mode of the structures which satisfy the axioms of a given theory. In the exampleunder consideration, drawn from the article INCSP 1 (Axioms of Incidency), they areincidency spaces IncSpace. The Reader is advised to consult that article in order tobecome acquainted in the way in which that well-known fragment of geometry is renderedin the Mizar language.The above example was that of a de�nition of a structure without a parameter. Thereare situations in which it is more convenient to make use of a de�nition of a structurewith a parameter. Structures with a parameter are de�ned as follows.27



definition let x1 be �1, ... , xn be �n;struct � over xi1, ... , xik� �1� > �01(x1, ... , xn), ... , �p� > �0p(x1, ... , xn) �;end;where xi1, ... , xik 2 fx1, ... , xng , and the remaining variables are reconstructible (seethe example of the superposition of permutation in the chapter on 25. Rede�nitions).EXAMPLE 2definition let F be FieldStr;struct VectrSpStr over F � carrier � > AbGroup, mult � >Function of [:the carrier of F, the carrier of the carrier:]the carrier of the carrier �;end;After the symbol of structure (in this case: VectSpStr) we write the reserved word over,followed by the parameters (in the case under consideration there is only one parameter,namely F). 20. De�nition of modeHere is the form of the most often used de�nition of mode:definition let x1 be �1 , ... , xn be �n;mode � of xi1, ... ,xik � > �(x1, ... ,xn) means:L: �(x1, ... ,xn,it);existence ... ;end;� is the symbol of mode and should be included in the vocabulary, preceded by theclassi�er M.NOTE: We shall often replace recurrent constructions by dots. In the case under con-sideration the justi�cation after the word existence was thus replaced.In the above de�nition of mode only the condition of existence, speci�ed by the wordexistence, is required. The condition of existence should include a justi�cation of thefollowing theorem:ex x being �(x1, ... ,xn) st �(x1, ... ,xn,x);And here is the form of a de�nitional theorem:for x1 being �1, ... ,xn being �n, y being �(x1, ... ,xn) holdsy is � of xi1, ... ,xik iff �(x1, ... ,xn,y);EXAMPLEdefinitionmode Function � > set means:FUNC: (for p st p 2 it ex x,y st [x,y] = p) &(for x,y1,y2 st [x,y1] 2 it iff [x,y2] 2 it holds y1 = y2);existence ... ;end; 28



The word Function is the symbol which denotes the type being introduced. The typefunction expands to the type set, or, if you prefer it that way, the type set is the mothertype of the type function. The word means is followed by the de�niens with the label:FUNC:. The object it of the type set has the type function if it is a set of orderedpairs for p st p 2 it ex x,y st [x,y] = p;and meets the condition of uniqueness for the second element of the pairfor x,y1,y2 st [x,y1] 2 it iff [x,y2] 2 it holds y1 = y2;The word existence is followed by the justi�cation of the non-emptiness of the typebeing de�ned. The system expects a justi�cation of the following sentence:ex F being set st(for p st p 2 F ex x,y st [x,y] = p) &(for x,y1,y2 st [x,y1] 2 F iff [x,y2] 2 F holds y1 = y2);In the justi�cation (see 8. The tactics of proving theorems and Proving an existentialsentence) it su�ces to take empty set as an object of the type set:take ;;The above de�nition has its analogue in the following de�nitional theorem:for F being set holds F is Function iff(for p st p 2 F ex x,y st [x,y] = p)& (for x,y1,y2 st [x,y1] 2 F iff [x,y2] 2 F holds y1 = y2);De�nitional theorems are automatically generated by the system. In order to availoneself of a de�nitional theorem one has to �nd its number in the abstract of the articleconcerned.21. Abbreviations (de�nitions with "is")We shall now describe a very convenient method of de�ning modes which are exten-sionally equal to other modes:definition let x1 be �1, ... , xn be �n;mode � of xi1, ... ,xik is �(x1, ... , xn);end;� is the symbol of mode and should be included in the vocabulary preceded by theclassi�er M.The above de�nition does not include any de�niens and hence, practically, it will playthe role of a construction which enables one conveniently to introduce abbreviations.The de�nition of mode by is does not require conditions of correctness.The system, when processing a given article, replaces the abbreviations by the originaltype. It is, therefore, sometimes said thatthe construction with is enforcesa single expansion of the type.EXAMPLEdefinition let H be Group;mode Endomorphism of H is Homomorphism of H,H;end;The system replaces the expression Endomorphism of H by the expressionHomomorphism of H,H. 29



WARNINGS1. It is incorrect to rede�ne (see 25. Rede�nitions) types de�ned by is. This caneasily be explained by reference to the example given above. Now the expressionHomomorphism of H,H is not a pattern of a mode because the argument H occursin that expression twice. By rede�ning the mode Endomorphism of H we wouldin fact rede�ne the mode Homomorphism of H,H, and thus we would rede�ne anexpression which is not a pattern of a mode.2. It is, moreover, incorrect to rede�ne by the construction is.22. Attributes and clusters22.1. AttributesThe de�nition of attribute has the following form:definition let x1 be �1, ... , xn be �n;attr � � > �(x1, ... , xn) means �(x1 , ... , xn,it);end;where � is the symbol of attribute and should be entered in the vocabulary and precededby the classi�er V.The types �1, ... , �n are called the parameters of the attribute �.The expression "� > �(x1, ... , xn)" in the de�nition of the attribute � indicatesthat that attribute may be added to any type that expands to the type �(x1, ... , xn).Let �(�) be the set of all types expanding to the type �(x1, ... , xn). The type�(x1 , ... , xn) will be called the mother type of the attribute �. Thus �(�) is the setof all types expanding to the mother type of the attribute �.Let � be a term, and #(�), the type of the term � . The expression� is �where #(�) 2 �(�), will be called attributive formulas. The following equivalence holds:� is � iff �(x1, ... ,xn,�)EXAMPLE 1definitionattr distributive � > Lattice meansfor a,b,c being Element of the carrier of it holdsat(buc) = (atb)u(atc);end;The type Lattice is the mother type of the attribute distributive. Let�(distributive)be the set of all types that expand to the mother type Lattice. The attribute distri-butive is a function de�ned on the set of those terms whose types expand to the mothertype of the attribute distributive and have values in the set of the attributive formulasA: distributive: f� : #(�) 2 �(distributive)g � > A.
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EXAMPLE 2definitionattr non-empty � > set;end;The type set is the mother type of the attribute non-empty. This example is drawnfrom the article HIDDEN.EXAMPLE 3definitionattr finite � > set means ex p being FinSequence st rng p = it;end;The type set is the mother type of the attribute finite.22.2. RegistrationsAttributes are used to construct types. This will be explained by the example below.EXAMPLE 4definitioncluster non-empty �;existence ... ;end;where � is a type such that � 2 � (non-empty).In particular, when taking typ � = Set-Family, which expands to the type set, thatis � 2 � (non-empty), we obtain the type non-empty Set-Family.The condition of existence in the above de�nition states that there is an object x ofthe type � such that x is non-empty, which is to say that x 6= ;.Such de�nitions will be termed registrations.Of course, it may sometimes be convenient to introduce an abbreviation for the regis-tered attribute. On the basis of the above de�nition we may introduce the abbreviationsof the types non-empty � for � 2 � (non-empty):EXAMPLE 5definitionmode abbreviation is non-empty �;end;In particular, for � = set and � = Subset of X we obtain the following abbrevia-tions:definitionmode DOMAIN is non-empty set;end;anddefinition let X be DOMAIN;mode SUBDOMAIN of X is non-empty Subset of X;end;The types DOMAIN and SUBDOMAIN have been introduced in the article HIDDEN.Let us consider an example of an attribute with a parameter.definition let T be TopSpace;attr open � > Subset of T means it 2 topology of T;end; 31



At present there is temporary restriction pertaining to the use of attributes with aparameter: they may be de�ned, but it is not allowed to register types which includesattributes with a parameter. 22.3. ClustersA cluster is a set f�1 , ... , �ng, where �1 , ... , �n are attributes. Clusters are usedin the construction of types.The registration in Example 4 is the registration of a cluster with one attribute. Andhere is an example of the registration of a cluster with two attributes.EXAMPLE 6definitioncluster non-empty finite �;existence ... ;end; where � is a type such that � 2 � (non-empty) \� (�nite).The above registration has the same e�ect as the registration with a changes order ofattributes:definitioncluster non-empty finite �;existence ... ;end;The present example is intended to emphasize that the order of attributes in a clusterhas no signi�cance whatever for the system.22.4. Application of attributesThe attributes are use for:a) construction of attributed types:non-empty �,distributive �,non-empty �nite �,distributive complemented �,where � 2 �(non-empty), � 2 �(distributive).In particular, the attributed types arenon-empty set,distributive Lattice,non-empty �nite set,distributive complemented Lattice.For each of these attributed types one can register some abbreviation. The �rst two ofthe above attributed types will be abbreviated into DOMAIN and D Lattice, respectively.b) formation of attributive formulas:� is non-empty,� is distributive,� is non-empty �nite,� is distributive complemented,where � , � are terms such that#(�) 2 �(non-empty), #(�) 2 �(distributive).32



22.5. Attributive formulas versus qualifying formulasNote that a qualifying formula is any formula of the form � is �, where � is any termand � is any type.The Reader is warned against confusing the attributive formulas (see point b above),which are formulas of a new kind, with the qualifying formulas formed by attributedtypes (see point a above):� is non-empty �,� is distributive �,� is non-empty �nite �,� is distributive complemented �,where � 2 � (non-empty), � 2 � (distributive), and � is any term.In particular the qualifying formulas are:� is a non-empty set,� is a distributive Lattice,� is a non-empty �nite set,� is distributive complemented Lattice,where � is any term.Formulas of both kinds are three-place ones, the �rst place being a term and thesecond place being is. The di�erences between these two kinds are as follows:� The type of the term in an attributive formula must expand into the mother typeof the attribute.The term in the qualifying formula is arbitrary.� The third place in an attributive formula is an attribute.The third place in a qualifying formula is a type.22.6. Order of attributesGenerally speaking, the attributed type has the form:�0 = �1 , ... , �n �,where �1 , ... , �n are attributes, while � is a type without an attribute.The attributes �1 , ... , �n will be termed attributes of the type �0, and the type �, thecore of the type �0.Obviously, the use of the type �0 is allowed only after the de�ning of the clusters of theattributes �1 , ... , �n.At this point it must once more be emphasized that the order of the attributes in theattributed type is of no signi�cance for the system.The general form of the attributive formula is� is �1 , ... , �nwhere �1 , ... , �n are attributes, and#(�) 2 �(�1 , ... , �n) = �(�1)\...\�(�n).The content of this formula is the conjunction� is �1 & ... & � is �nFrom the non-commutativity of conjunction in the Mizar language it follows accord-ingly that the order of the attributes in an attributive formula is essential.
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22.7. Principle of the inheritance of registrationsLet K = f�1 , ... , �ng be a cluster, and P = f�i1 , ... , �ing be any subcluster, sothat P � K. The registration of the cluster K makes the registration of the subcluster Psuperuous. Thus after having registered the type �nite non-empty Set-Family we needregister neither the type �nite Set-Family nor the type non-empty Set-Family.The principle of the inheritance of registration is very convenient as it simpli�es theintroduction of attributed types.23. De�nition of predicateHere is the most frequent de�nition of predicate:definition let x1 be �1, ... , xn be �n;pred xi1, ... ,xik�xj1, ... ,xjl means:L: �(x1, ... ,xn);end;where � is the symbol of predicate and should be entered in the vocabulary and precededwith the classi�er R.In the de�nitions of predicates no condition of correctness is required. And here isthe form of the de�nitional theorem:for x1 being �1, ... , xn being �n holdsxi1, ... , xik�xj1, ... , xjl iff �(x1 , ... , xn);EXAMPLEThe de�nition of a public predicate given belowdefinition let f;pred f is one to one means:ONE TO ONE: for x1,x2 st x1 2 dom f & x2 2 dom f & f.x1 = f.x2holds x1 = x2;end;has the following corresponding de�nitional theorem:f is one to one ifffor x1,x2 st x1 2 dom f & x2 2 dom f &f.x1 = f.x2 holds x1 = x2;24. De�nition of functorHere is the most frequent form of a de�nition of a public functor:definition let x1 be �1, ... , xn be �n;func (xi1, ... ,xik)'(xj1, ... , xjl) � > �(x1, ... ,xn) means:L: �(x1, ... ,xn,it);existence ... ;uniqueness ... ;end; 34



where ' is the symbol of a functor and should be entered in the vocabulary and precededby the classi�er O.In the above de�nition of public functor two conditions of correctness are required:that of existence and that of uniqueness. Now let �(x1, ... ,xn,x) be the de�niensoccurring in a simple de�nition of a public functor.The condition of existence should include the justi�cation of the following theorem:ex x being �(x1, ... , xn) st �(x1, ... , xn,x);EXAMPLEdefinition let f be Function;func graph f � > set means:GRAPH: f = it;existence;uniqueness;end;The condition of uniqueness should include the justi�cation of the following theorem:for y,z being �(x1, ... , xn) st �(x1 , ... , xn,y) &�(x1, ... , xn,z) holds y = z;EXAMPLEdefinition let f,Y;func f"Y � > set means:INVERSE IMAGE: for x holds x 2 it iff x 2 dom f & f.x 2 Y;existence from Separation;uniquenessprooflet X1,X2 such thatA1: x 2 X1 iff x 2 dom f & f.x 2 Y andA2: x 2 X2 iff x 2 dom f & f.x 2 Y;x 2 X1 iff x 2 X2;proof x 2 X1 iff x 2 dom f & f.x 2 Y by A1;hence thesis by A2;end;hence X1 = X2 by TARSKI:2;end;end;And here is the form of a de�nitional theorem for public functors:for x1 being �1, ... , xn being �n, y being �(x1, ... , xn) holdsy = (xi1, ... , xik) '(xj1, ... , xjl) iff �(x1, ... , xn,y);EXAMPLELet us consider the following de�nition:definition let f;func dom f � > set means 35



:DOM: for x holds x 2 it iff ex y st [x,y] 2 graph f;existence ... ;uniqueness ... ;end;It has the corresponding de�nitional theorem:X = dom f iff for x holds x 2 X iff ex y st [x,y] 2 graph f;25. Rede�nitionsRede�nitions are an important kind of de�nitions. A rede�nition in most cases con-sists in a change of a speci�cation, that is in the narrowing down of the original mothertype. Sometimes it consists in a change of a de�niens into an equivalent one. In theformer case we justi�cation that the new mother type expands to the original one, and inthe latter, that the new and the original de�niens are equivalent to one another. Theseare conditions of the correctness of a rede�nition: correctness in the case of a changeof a speci�cation, and compatibility, in the case of a change of a de�niens.From the syntactic point of view rede�nitions are a kind of de�nitions, the onlydiscriminant of a rede�nition being the reserved word redefine, which should be placedbefore the word mode, pred, or func.We shall con�ne ourselves here to the discussion of rede�nitions by a change of aspeci�cation.Let it be said once more: the admissible change of a speci�cation consists in thenarrowing down of the type. In other words, the new type, that is the one introduced inthe rede�nition, is a narrowing down of the original type, given in the original de�nition.The principle of the narrowing down of the type yields the following recommendationspertaining to the introduction of concepts:de�nitions should be as general as possible and then they should be gradually narroweddown.The practice of writing Mizar articles has proved so far that the non-observance ofthat principle results in essential complications.In the change of a speci�cation we usually omit the de�niens. As has been said above,in such a case the original de�niens is the de�niens understood.Here is the most frequent form of the rede�nition of a mode:definition let x1 be �1, ... , xn be �n;redefine mode � of xi1, ... ,xik � > �(x1, ... ,xn);coherence justi�cation ;end;In the justi�cation of this rede�nition we prove the following sentence:for x being � of xi1, ... , xik holds x is �(x1, ... , xn);And here comes the typical rede�nition of a public functor:definition let x1 be �1, ... , xn be �n;redefine func (xi1, ... ,xik)'(xj1, ... ,xjl) � > �(x1, ... ,xn);coherence justi�cation ;end; 36



In the justi�cation we prove:(xi1, ... , xik) ' (xj1, ... , xjl) is �(x1, ... , xn) .EXAMPLE 1definition let X be set; let f,g be Permutation of X;redefine func g�f � > Permutation of X;cohenrenceproofg is one to one & f is one to one & rng g = X & rng f = X by PERM;then g�f is one to one & rng(g�f) = X by FUNCT 1:46,T29;hence g�f is Permutation of X by PERM;end;end;Note that in the pattern of the functor g�f the variable X does not occur. This ispermissible because the variable X is "reproducible" by means of the variable f or thevariable g.
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Data Base26. Content of the Data BaseThe Data Base of the Mizar system is organized in the directory nMIZAR. It consistsof two subdirectories:nDICTnPRELThe subdirectory nDICT contains vocabulary �les with the extensions .voc.They are prepared by the author of a given article (or else he avails himself of the alreadyexisting ones to suit his needs).The �les with the extensions .voc contain declarations of symbols of modes, pred-icates, functors, attributes, structures, selectors, and function brackets to be used in agiven article. The declaration of a symbol consists of the classi�er of that symbol itself.Moreover the �les contain indications of the priorities of functors. Priority in that casemeans the information about the strength of binding.The subdirectory nPREL contains �les with the extensions:.nfr, .def, .dno, .dco, .the, .sch, .dclThey are formed by the LIBRARIAN from a given article and contain de�nitions (.nfr,.def, .dno, .dco), theorems (.the), and schemes (.sch), adequately processed and en-coded. The appropriate �les from that directory are drawn by the Mizar ACCOMMODA-TOR if in the declaration of the environment there are directives joining de�nitions,theorems, and schemes in the article to which one refers.Some users organize in the Mizar directory their own subdirectories, such asnMMLnABSTRThey form Main Mizar Library, play the role of documents and are not used by thesystem.The nMML subdirectory includes �les with the extensions .miz, which contain Mizararticles.The subdirectory nABSTR contains �les with extensions .abs. They are abstracts ofarticles and are obtained from the original text of a given article by the eliminationof lemmas, de�nitions of private objects, and all proofs, and by the current numberingof theorems and de�nitions. The user should refer to those numbers of theorems andde�nitions if he needs them in his own article (the numbering in the original �le is oflocal importance, only within the text of a given article).27. DirectivesIn the environment we may place directives of �ve kinds, namely:{ vocabulary directivevocabulary �1, ... ,�n;{ signature directivesignature �1, ... ,�n;{ de�nition directivedefinitions �1, ... ,�n;{ theorem directive 38



theorems �1, ... ,�n;{ schema directiveschemes �1, ... ,�n;{ cluster directiveclusters �1, ... ,�n;where �1, ... ,�n are names of vocabularies, and �1, ... ,�n are names of articles.In the course of processing the system observes the order of directives. That maybe essential with reference to the signature directives, which contain information aboutthe de�nitions (including rede�nitions) of the same symbol. As has been said, one andthe same symbol may be de�ned many times, and the binding de�nition is always thatof the last signature speci�ed in the environment. If the order is incorrect, then earlierdirectives may be overridden by later ones.EXAMPLEThe symbol U is a symbol of a functor. We de�ned A U B twice:1. in the article �.miz� as the DOMAIN which is a sum of domains, and2. in the article �.miz� as the set which is a sum of sets.As is known, the type DOMAIN expands to the type set.Suppose that in the article 1.miz and 2.miz we have adopted the directives signature�, �; and signature �; , respectively. Let A, B be domains.The term A U B in 1.miz is of the type set. Why is that so? The PROCESSORtries to adjust the types of the variables A, B to the de�nition 2. It obviously succeedsin that because the types of the variables A, B expand to the type set.The term A U B in 2.miz is of the type DOMAIN, because the processor can applyto that term the de�nition 1.NOTE: The termA U B exactly DOMAINhas in 1.miz the type DOMAIN.39. Name of articleThe �le with an article must have the extension .miz and is termed Mizar article.The name of a Mizar article consists of at most eight signs: letters, �gures, connectorsand apostrophe '. The name of a Mizar article may be neither a numeral nor a reservedword.REMARK: The usage is that the letters occurring in the name of a �le should becapital letters. Hence TARSKI is agreement with that usage while tarski and Tarskiare not. 29. VocabularyThe vocabulary lists the symbols together with their quali�ers. It also indicates thebinding strength of the functor symbols. 39



29.1. Name of the vocabularyThe vocabulary forms the �le �.vocwhere � is the name-of-vocabulary-�le. The name � may, but need not, be a name of aMizar article. For instance, the name of the �le FUNC.voc is not derived from a Mizararticle: in the Data Base there are articles FUNCT 1.miz, FUNCT 2.miz, ... , but - at leastfor the time being - there is no article FUNC.MIZ.29.2 Quali�ersThe symbols M,R,O,G,U,K,L,V called quali�ers, are used to introduce symbols, respec-tively: M mode,R predicate,O functor,G structure,U selector,K right functor bracket,L left functor bracket,V attribute.EXAMPLEBelow there is the vocabulary �le FUNC.voc:Ograph 128Oid 128O. 100MFunctionRis one to oneThe �rst column houses quali�ers, and those from the second to the space house symbols.After the space we may indicate the binding strength, also called priority. This appliesonly to the symbols of functors. The binding strength of a given functor is indicated bythe number which follows its symbols.Now graph, id, . are functor symbols. Function is a mode symbol, and is one -to one is a predicate symbol. The numbers 128 and 100 denote the magnitude ofpriority. Priority is indicated only in the case of functor symbols; thus the functor symbolsgraph and id have the priority 128, and the functor symbol . has the priority 100.REMARK1. The binding strength of predicate symbols is not indicated because these alwaysbind more weakly than functor symbols do.2. The number indicating the priority of a given functor must be separated from thesymbol of that functor by at least a single space.3. There may not be even a single space between a quali�er and the correspondingvocabulary symbol.
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29.3. Strength of bindingThe greater the number indicating the binding strength the greater the bindingstrength of the functor symbol concerned. The priority of a functor is a natural numberranging from 0 to 255. In the case of some functor symbol the number indicating itspriority may be missing. That means that that symbol has the standard priority. Thestandard binding strength is 64.The concept of the binding strength of functor symbols is linked to the sequence ofthe operation with a given binding strength. The memorization of the priorities of atleast some symbols may be largely used for the elimination of superuous brackets.
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Part Two: The System30. Preliminary information on the systemThe Mizar computer system processes and veri�es formalized theorems in the Mizarlanguage, or, to be more precise, the Mizar article which contains those theorems. Thatis achieved by two programs of the PC Mizar system, called ACCOMMODATOR and PRO-CESSOR. The ACCOMODATOR draws from Data Base the necessary information on thebasis of the directive to be found in the environment of the article, and the PROCESSORveri�es the text of the article.Mizar articles are usually written by means of editors integrated with the system.The most popular ones are multiEdit, or so-called Mem, and Brief.Suppose that we write an article GEOM.miz. We successively call the programs AC-COMMODATOR and PROCESSOR byaccom geom and mizar geom,respectively.After the termination of the processing of each program the listing will show the inscrip-tion THANKS OK or SORRY, according to whether the article is correct or contains errors.The numbers of the errors are indicating in the text, which makes their correction easier.But it may also occur that the processing is interrupted. One of the reasons of theinterruption of the processing is the bad installation of the system or discrepancy betweenthe private Data Base and the public Data Base. So-called bugs, or errors in the system,are another, very rare, cause. If the system does not accept your proof and you thinkthat it should you are advised to consult the authors of the implementation of the systemPC Mizar, namely A. Trybulec or Cz. Byli�nski.A continuous veri�cation of the article being written is recommended. That makesit possible to eliminate errors currently and facilitates formalization. Working withoutnotes, that is with the computer, is recommended, too. Of course, major problems maybe solved more conveniently on a separate sheet of paper or on a blackboard.31. Programs of the PC Mizar systemThe PC Mizar system cover Data Base and a number of programs, of which three areessential, i.e., closely linked to the system:ACCOM.exe (ACCOMMODATOR),MIZAR.exe (PROCESSOR), andEXTRACT.exe (EXTRACTOR).To simplify the description we assume that all �les are placed in standard directories.32. Installation of the PC Mizar systemThe PC Mizar system is implemented on computers compatible with IBM PC XT/AT;Mizar articles can be written on such computers only.The PC Mizar system may be installed on hard disc on the directory C:nMIZAR. Thatdirectory includes the basic programs of the system, system �les, and input macrocom-mands. The �les of the Data Base of the Main Mizar Library are also placed in thatdirectory.Note that <name-of-article> is the name of the �le containing a Mizar text. The textshould have the extension to .miz, e.g., BOOLE.miz. That extension is always implicitly42



joined by the ACCOMMODATOR, PROCESSOR, and EXTRACTOR to the name of the text.The name of the text is written without extension.33. AccommodatorThe ACCOMMODATOR is called:accom <name-of-article>We shall now briey describe the basic program ACCOM.exe. The ACCOMMODATORdraws from Data Base the required items of information on the basis of the directiveswritten out in the environment of the article concerned. The items of information thusreceived are recorded by the ACCOMMODATOR on the following �les:<name-of-article>.dic,<name-of-article>.frm,<name-of-article>.atr,<name-of-article>.eno,<name-of-article>.dfs,<name-of-article>.thl,<name-of-article>.ths,<name-of-article>.vcl,<name-of-article>.sgl,<name-of-article>.ecl.The information contained in the above �les covers, among other things, a summaryvocabulary and descriptions of formats, signatures, de�nienses, statements, and schemes.Next to that the ACCOMMODATOR forms the �le <name-of-article>.err, whichrecord the errors in the environment. In that �le the successive lines have triplets ofnumbers which in turn indicate respectively the number of the line, the number of thecolumn, and the number of the error. Indentifying the errors on the basis of that �le is,as can be seen, not very convenient, and this is why we suggest another method.Following the command:errp <my-directory>n<name-of-article>.miz c:nmizarnmizarthe program forms the �le <name-of-article>.lst, so-called listing, with errors enteredon the copy of the text of the article in question. Further the �le with the explanationof errors, MIZAR.msg, is joined following commandc:nmizarnmizarWhen using the ACCOMMODATOR one has always to bear in mind the fact thatthe PROCESSOR communicates with the library solely through the �les prepared by theACCOMMODATOR. Hence changes in the environment and/or the Data Base require anew accommodation.By restricting the calling of the ACCOMMODATOR to possible changes in the envi-ronment and/or the Data Base we considerably speed up the processing of the article.Obviously, in order to avail ourselves of those advantages we must see to it that theACCOMMODATOR and the PROCESSOR be installed independently of one another andcalled by two di�erent commands.34. ProcessorThe calling of the processor of PC Mizar (and next of the so-called ERRPRINTER,which forms the so-called listing - both terms will be explained below) has the followingform: miz <name-of-article> 43



When the text is being processed we can, at any moment, interrupt the functioningof the PROCESSOR by pressing the keys Ctrl Break. This interrupts the analysis of thetext by the PROCESSOR, an error as the signal of that interruption (error #1255) beingindicated in the line in which the interruption took place.The PROCESSOR yields the list of the errors discovered during the processing of thetext. The list of the errors is placed in the �le bearing the same name as the �le withthe input text and the extension .err. It is formed in the same directory as the Mizartext. If the text is correct the �le remains empty. The �le with the errors includes thelist of the descriptions of those errors in the form of triplets of numbers. The descriptionof a given error includes its position in the text (i.e., the number of the line and thatof the column) and the number of the error. The �le of errors may be used for variouspurposes:1. through the editors (e.g., Mem) or other programs, for �nding and identifying theirposition in the text and their identi�cation by the number;2. for forming a listing by the so-called ERRPRINTER (program ERRP).The ERRPRINTER reads the text and the �le with the errors and produces the listing. Thelisting thus formed is a document which includes a copy of the text with the indicationof the errors (in the listing) and joined explanation of the errors found in the text. If thetext is correct, then the listing, instead of the explanations of errors, is concluded by theinscription Thanks OK . The listing has the same name as the input text but with theextension .lst. The listing is formed in the same directory as the text being analysed.35. ExtractorThe EXTRACTOR is called by:extract <name-of-article>The EXTRACTOR forms the following �les:<name-of-article>.nfr - formats,<name-of-article>.dno - patterns of modes, predicates, and functors,and types of the arguments occurring in thepatterns,<name-of-article>.def - de�nienda,<name-of-article>.dco - description of the types of the results,<name-of-article>.sch - list of schemes and their description,<name-of-article>.the - list of theorems and their description,<name-of-article>.dcl - list of clusters.These �les should be transferred to the directory nPREL.36. Preparation of abstractsIf a Mizar article is correct, then it can be turned into an abstract using the programMIZ2ABS, called ABSTRACTOR (see 26.Content of the Data Base) on the directory nABSTR.The program also forms the �le of the errors found in the course of processing.The ABSTRACTOR turns a Mizar article into its abstract. The abstract has the samename as the article plus the extension .abs. That �le is formed in the same directoryas the �le with the Mizar article in question. The abstract is practically a copy of thatpart of the article which contains de�nitions of public objects and theorems. Lemmas,proofs, and de�nitions of private objects are disregarded.44



37. Use of a correct articlesA veri�ed article may be passed to the Main Mizar Library. Moreover, it may beincluded in the local library with which one works. This facilitates, and in most casesis indispensable for, the writing of the next article: usually it is so that our articles arethematically interconnected, not to say that they are continuations of earlier ones.For that purpose we have:1. To form the �les of the Data Base.2. To transfer of the �les of the Data Base to the local data base.Moreover it is worth while to prepare an abstract.38. Practical advice for users1. Start writing an article from the basic de�nitions and the basic theorems (i.e.,statements and schemes).2. Form the vocabulary and place in it the symbols with their quali�ers. In the caseof operations possibly include in the vocabulary their respective priorities.3. Write out the directives.4. Add the reservations.5. Precede de�nitions with theorems which may be useful in justifying the conditionsof the correctness of those de�nitions.6. Write out full skeletons of the proofs, but without by and from, i.e., without theso-called simple justi�cations. If the errors marked #4 are the only ones, then theskeleton are correct. Fight the errors until only the "fours" are left.7. Add auxiliary theorems so as to shorten the proofs by eliminating recurrent modulesof reasonings. In Mizar it pays because Mizar proofs are fully formalized.8. It is worth while introducing a number of private objects - variables, predicates,functors - in order to shorten the proofs.9. Finally add simple justi�cation and start eliminating the "fours". The main sourceof errors is making use of two universal sentences after one by. Unfortunately,proofs must sometimes be lengthened - do not expect too much of Mizar. A strongerCHECKER could be programmed but at the cost of a longer waiting time.
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AfterwordWe have disregarded here the following subjects which, we think, are less importantfor the beginners in using Mizar:� proving per cases,� proving by de�nitional expansion,� compound de�nitions,� de�nitions with assumption,� de�nitions of private functors and predicates,� understood properties,� antonyms and synonyms.The author presents this Outline of PC Mizar to the Readers with mixed feelings.The text seems immature and probably requires various modi�cations. But I have beentold that even such a text may prove useful in the use of Mizar. I hope that the readingof this Outline will do more good than harm. The Readers are warmly requested to sendall their comments, which are likely to be important in my further work on this Outline,to the address:M. Muzalewski,c/o Warsaw University,Bia lystok Campus,Institute of Mathematics,ul. Akademicka 2,15-267 Bia lystok,Poland.
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