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Abstra
tWe report our work on in
reasing readability of mathemati
al texts used as input totheorem veri�ers su
h as Mizar. Even though the sour
e Mizar text is written in extendedASCII (256 
hara
ters), it la
ks the power of symboli
 expression needed for mathemati
altexts. In our work, the sour
e Mizar texts were automati
ally translated into TEX input.The translation was done at a primitive level and was restri
ted to the lexi
al stru
ture ofthe sour
e texts. We brie
y des
ribe the te
hnology of TEXing and atta
h TEXed abstra
tsof 31 Mizar arti
les written by 12 authors. The results of the experiments are en
ouragingand the work on TEXing full Mizar arti
les will be 
ontinued. The main 
on
lusion of ourwork is that the quality typesetting of Mizar texts requires full synta
ti
 analysis in
ludingtreatment of some 
ontextual depende
es.
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Chapter 1Introdu
tion1.1 MotivationThe idea that an automati
 devi
e should 
he
k our logi
al derivations is by no meansnew. It 
an be tra
ed ba
k not only to Pas
al and Leibnitz, but to Ramon Llull. In re
entyears, several proje
ts have aimed at providing 
omputer assistan
e for doing mathemati
s.Among the better known there are: Nuprl [1℄, THEAX [7℄, AUTOMATH [2℄, EKL [3℄,QUIP [12℄. The spe
i�
 goals of these proje
ts vary, however, they have one 
ommonfeature: the human writes mathemati
al texts and the ma
hine veri�es their 
orre
tness.The input to any of su
h systems is an ASCII (or some other 
ode) �le. As su
h it 
anbe printed or seen at a display monitor. However, the input texts are meant to be readablefor the 
omputer (taking into a

ount 
urrent input devi
es) and they are visually far fromwhat one would 
all a mathemati
al text (even if their semanti
 
ontents fully justi�esthe name). In 
onsequen
e, the human readers are relu
tant to read the texts, althoughtheir authors did not mean only 
omputers as potential readers. We report our work onin
reasing readability of mathemati
al texts used as input to theorem veri�ers.The system we have experimented with is Mizar [13℄. The Mizar input text is writtenin extended ASCII. The following is an example of a theorem in su
h a text::: FUNCT_1:159f is_one-to-one iff for y ex x st f"{y} 
= {x};Our goal was to make this text better looking by pro
essing it automati
ally. Here is whatwe have obtained:Theorem FUNCT 1:159. f is 1-1 i� for y ex x st f�1fyg � fxg.The printouts in
luded in this report have been obtained using TEX[4℄ and LATEX[5℄.However, we wanted that neither the author of the Mizar text nor the reader of the text1



2 CHAPTER 1. INTRODUCTIONever sees the TEX input. The TEX input generated automati
ally in our experiment forthe above example is as follows:Theorem FUNCT\_1:159. f{\sf is 1-1}{\bf iff}{\bf for}y{\bf ex}x{\bf st}f$^{-1}$\{y\}$\subseteq$\{x\}\vspa
e{1mm}.We have prepared a set of software tools that 
onvert the Mizar sour
e text into theTEX input. Our experiment was limited in the sense that we generate the TEX input afterdoing only the lexi
al analysis of the Mizar text.Our original goal was to obtain a readable printout of these Mizar texts that we neededto look through to write our new arti
le (not in
luded in this 
olle
tion). Working withTEX was su
h a fun that we have ended up pro
essing all Mizar arti
les available to us.We hope that the 
ontents of this report will be useful as a referen
e for other Mizar users.1.2 The PC Mizar system1.2.1 A bit of historyThe proje
t Mizar started in 1975 in Poland under the leadership of Andrzej Trybule
.Its original goal was to design and implement a software environment to assist the pro
essof preparing mathemati
al papers.After several years of experiments, a language 
alled Mizar 2 had been designed (by A.Trybule
) and implemented on ICL 1900 (by Cz. Byli�nski, H. Orysz
zyszyn, P. Rudni
ki,and A. Trybule
, 1981). The system was later ported to other 
omputers (mainframe IBMand also to UNIX). It has in
luded the following features: stru
tured types, type hierar
hy,
omprehensive de�nitional fa
ilities, built-in fragments of arithmeti
s, and built-in variantof set theory. Among other works with Mizar 2, there was an attempt to prove propertiesof programs in it [11℄.The Mizar team e�ort in the following years resulted in developing other Mizar lan-guages and their implementations but their 
hara
ter was experimental (Mizar 3, MizarHPF); the systems were not distributed outside the Mizar group in Bia lystok. Therewas one ex
eption. A subset of Mizar, named Mizar MSE, was implemented (by R. Ma-tuszewski, P. Rudni
ki, and A. Trybule
) in 1982 and has been widely used sin
e then.The system is meant for tea
hing elementary logi
 with stress on the pra
ti
al aspe
ts of



1.2. THE PC MIZAR SYSTEM 3
onstru
ting proofs. The Mizar MSE language en
ompasses many sorted predi
ate 
al
u-lus with equality. However, the language does not support fun
tional notation. There arenumerous implementations of Mizar MSE, see [15, 14, 6, 10, 9, 8℄In 1986 Mizar 4 was implemented as a redesign of Mizar 2 and distributed to severaldozen users. Ea
h Mizar 4 arti
le in
luded the preliminaries part where the author 
ouldstate some axioms that were not 
he
ked for validity. In 1988 the design pro
ess of thelanguage was 
ompleted (by A. Trybule
) and this language is named simply Mizar. Whilearti
les in Mizar 4 must be self-
ontained, Mizar allows for 
ross-referen
es among arti
les.Moreover, an author of a Mizar text is not allowed to introdu
e new axioms. Only theprede�ned axioms 
an be used, everything else must be proved.Re
ently, the main e�ort in the Mizar proje
t has been in building the library of Mizararti
les.1.2.2 The overall stru
tureIn this subse
tion we give a brief overview of PC Mizar, further subse
tions elaborate onsome aspe
ts that are relevant to this report. PC Mizar is a Mizar pro
essor implementedon IBM PCs under DOS (by Cz. Byli�nski, A. Trybule
, and S. _Zukowski from WarsawUniversity in Bia lystok).The 
entral 
on
ept of Mizar is a Mizar arti
le. Su
h an arti
le 
an be viewed asan extremely detailed mathemati
al text written in a �xed formal notation. The sour
etext of a Mizar arti
le is prepared as a text �le (its name has obligatory extension .miz).There are rather few interesting things that one 
an prove in a short Mizar arti
le withoutmaking referen
es to other arti
les. Usually, we base our work on the a
hievements ofothers.The power of the Mizar system is in automati
 pro
essing of 
ross-referen
es amongarti
les. This is done by maintaining a Mizar library. The library 
onsists of �les that areautomati
ally 
reated from sour
e Mizar arti
les and it also in
ludes vo
abulary �les. Thevo
abulary �les (extensions .vo
 and .pri) exist separately from library arti
les. They
ontain de
larations of symbols that 
an be in
luded into the lexi
al environment of anarti
le.The Mizar pro
essor is a program that veri�es the 
orre
tness of Mizar arti
les. Toverify an arti
le, the program must run in the appropriate software environment. Namely,it must have a

ess to all the vo
abulary and library �les referen
ed from the given arti
le.PC Mizar assumes 
ertain organization of dire
tories in whi
h the vo
abulary and library�les are kept (we will not dis
uss it here).Five library �les are 
reated in the pro
ess of in
luding an arti
le into the Mizar library.These are:� format �le (extension .nfr) that, for ea
h 
onstru
tor (e.g. fun
tion) introdu
ed inthe arti
le, gives 
ertain information that is used during parsing.� signature �le (extension .sgn) that, for ea
h 
onstru
tor, spe
i�es types of its argu-ments and some additional information, e.g. the type of the result of a fun
tion.



4 CHAPTER 1. INTRODUCTION� de�nitions �le (extension .def) for ea
h de�nition from the arti
le, the de�niens isstored in this �le, the de�niendum is stored in the signature �le.� theorems �le (extension .the) stores the theorems proved in the arti
le (withoutproofs).� s
hemes �le (extension .s
h) stores the s
hemes proved in the arti
le (withoutproofs).The environment part of ea
h arti
le (between environ and begin) must de
lare allother PC Mizar units that are referen
ed from the arti
le.1.3 The lexi
al 
ontext of an arti
leThe set of symbols that 
an be used in a Mizar arti
le is not �xed externally. The authorof an arti
le indi
ates whi
h tokens are taken into a

ount while tokenizing the arti
le. Bya lexi
on of an arti
le we mean the set of su
h tokens. The lexi
on of an arti
le 
onsistsof the basi
 lexi
on and some additional lexi
ons. Additional lexi
ons are not asso
iatedwith any single Mizar arti
le, they 
an be shared by many arti
les.The basi
 lexi
on in
ludes the following tokens:� Reserved words:and as assume bebegin being by 
ase
ases 
oheren
e 
ompatibility 
onsider
onsisten
y 
ontradi
tion 
orre
tness definitiondefinitions end environ exexisten
e for from fun
given hen
e holds ififf implies is itlet means mode notnow of or otherwiseper pred proof providedqua re
onsider redefine reserves
heme s
hemes signature setst stru
t su
h takethat the then theoremtheorems thesis thus uniquenessvo
abulary� Spe
ial symbols:



1.3. THE LEXICAL CONTEXT OF AN ARTICLE 5, ; : ( ) [ ℄ { } (# #) =& -> .= <> $1 $2 $3 $4 $5 $6 $7 $8For (# and #) there are synonymous 
hara
ters with de
imal 
odes 174 and 175whose usual graphi
al representation resembles � and �, respe
tively.� Numerals are strings of de
imal digits.� Identi�ers are strings of letters, digits, unders
ore ( ), and apostrophe (') that arenot reserved words, symbols, numerals.The additional lexi
ons are de�ned in the vo
abulary �les. An additional lexi
on isa set of symbols whi
h are strings of arbitrary 
hara
ters ex
luding 
ontrol 
hara
ters,spa
e, and double 
olon. Ea
h line of su
h a �le introdu
es a symbol. Symbol are groupedinto the following 
lasses: mode symbol, fun
tion symbol, left or right fun
tion bra
ket,stru
ture symbol, sele
tor symbol, and predi
ate symbol.If an additional lexi
on de�nes a symbol represented by a string of 
hara
ters thatotherwise forms an identi�er, the symbol overrides the identi�er.The symbols introdu
ed in vo
abulary hidden are put into the lexi
on of every Mizararti
le. Symbols from other vo
abularies are put into the lexi
on of an arti
le with thehelp of the vo
abulary dire
tive.1.3.1 The stru
ture of a Mizar arti
leEa
h Mizar arti
le is written as a text �le. The general stru
ture of su
h an arti
le is asfollows: environ Environmentbegin Text-ProperThe Text-Proper 
ontains new fa
ts with their proofs and de�nitions of new 
on
epts.The Environment de
lares the items in the Mizar library that 
an be referen
ed fromthe Text-Proper . This part 
onsist of a sequen
e of dire
tives. There is one format ofvo
abulary dire
tives:vo
abulary Vo
abulary-File-Name;This dire
tive adds the symbols introdu
ed in the Vo
abulary-File-Name to the arti
le'slexi
on. We say that this dire
tive de
lares the vo
abulary in the arti
le.There are four kinds of library dire
tivessignature Signature-File-Name;



6 CHAPTER 1. INTRODUCTIONdefinitions De�nitions-File-Name;theorems Theorems-File-Name;s
hemes S
hemes-File-Name;The dire
tive signature informs the Mizar pro
essor that the arti
le is permitted touse the notation introdu
ed in arti
le Signature-File-Name.miz. The dire
tive is neededto parse the Text-Proper . The remaining three dire
tives allow us to use de�nitions,theorems, and s
hemes (e.g. indu
tion s
heme) that are de�ned or proved in anotherarti
le.The Text-Proper is a sequen
e of Text-Items, and there are the following kinds of them:� Reservation is used to reserve identi�ers for a type. If a variable has an identi�erreserved for a type, and no expli
it type is stated for the variable, then the variabletype defaults to the type for whi
h its identi�er was reserved.� De�nition-Blo
k is used to de�ne (or rede�ne) 
onstru
tors. There are three sorts of
onstru
tors: term 
onstru
tors (fun
tions), formula 
onstru
tors (predi
ates), andtype 
onstru
tors (modes).� Stru
ture-De�nition introdu
es new stru
tures. A stru
ture is an entity that 
onsistsof a number of �elds that are a

essed by sele
tors.� Theorem announ
es a proposition that 
an be referen
ed from other arti
les.� S
heme also announ
es a proposition, visible from outside. It 
ontrast to theorem,s
heme is expressed in terms of se
ond-order variables.� Auxiliary-Item introdu
es obje
ts that are lo
al to the arti
le in whi
h they o

urand are not exported to the library �les (e.g. lemmas, de�nitions of lo
al predi
ates).The goal of writing an arti
le is to prove some theorems and/or de�ne some new
on
epts su
h that the 
on
epts 
an be referen
ed by other authors. Before the theoremsand de�nitions are in
luded into the library they must be proved valid and 
orre
t. TheMizar arti
le 
ontains proofs of the theorems and justi�
ations of the 
orre
tness of thede�nitions.1.3.2 Mizar abstra
tsMizar input texts tend to be lengthy as they 
ontain 
omplete proofs in a rather demandingformalism. New arti
les strongly depend on already existing ones. Therefore, there was aneed to provide the authors with a qui
k referen
e to the already 
olle
ted arti
les. Thesolution 
onsisted in automati
ally 
reating an abstra
t for ea
h Mizar arti
le. An abstra
tof an arti
le in
ludes all the items that 
an be referen
ed from other arti
les. Therefore,there is no need to examine the entire arti
le to make a referen
e to a single theorem.Grammar of PC Mizar abstra
ts is given in appendix B.



1.4. THE TECHNOLOGY OF TEXING 7The environment of an abstra
t 
ontains only the dire
tives for a

essing vo
abulariesand signatures. Figure 1.1 presents an example of su
h an environment.environvo
abulary Boole;vo
abulary Fam_op;vo
abulary Sub_op;vo
abulary Sfamily;signature Tarski;signature Boole;signature Enumset1;signature Subset_1;begin Figure 1.1: Sample environment.1.3.3 Mizar libraryThe Mizar group at the Warsaw University (Institute of Mathemati
s in Bia lystok) started
olle
ting Mizar arti
les and organizing them into a library that is distributed to otherMizar users. This report 
ontains the abstra
ts of the arti
les in the library as of May 10,1989. The arti
les were authored by 12 people.The person responsible for the library (E. Woronowi
z) requires that authors of 
on-tributed arti
les supply an additional �le that des
ribes the bibliographi
 data of the ar-ti
le, a �le with extension .bib. These �les have been pro
essed by us to obtain the title,authors' names, and the summary. They are printed at the beginning of ea
h abstra
t.1.4 The te
hnology of TEXingIn our experiment, we have tried to produ
e a quality output on a laser printer doing onlylexi
al analysis of the sour
e of Mizar abstra
ts.1.4.1 Prepro
essingThe TEXing of Mizar abstra
ts was done under UNIX BSD 4.3. The Mizar sour
e �les, inextended ASCII IBM Set II, were transferred from IBM PC to UNIX (using kermit).The version of lex that we used re
ognized only �rst 128 
hara
ters of the 
ode.Therefore, we had to do something with the remaining 128 
hara
ters. In Mizar PC



8 CHAPTER 1. INTRODUCTIONall these 
hara
ters 
an be used in user-de�ned vo
abularies. Every 
hara
ter with 
odegreater than 127 was translated into its 3 digit de
imal representation prepended with aba
kslash.1.4.2 Lexi
al analysisWe used lex for analysis of Mizar abstra
ts and the generation of TEX input. Our �rstattempt to write one lex program that would handle all the symbols from vo
abulariesfailed. We have ex
eeded the 
apa
ity of an internal parameter of lex that 
annot be
ontrolled from outside (number of positions in a state). An attempt to have just asmall number of lex programs that 
ould pro
ess all the abstra
ts failed be
ause of theprohibitively high running time of lex (more than 15 minutes whi
h was too mu
h forus). But this solution had to be abandoned for another and mu
h more serious reason.Namely, if a vo
abulary is de
lared in an arti
le then no symbol from the vo
abulary 
anbe used as an identi�er, even if it has the syntax of an identi�er. E.g. if vo
abularyBoole is de
lared in an arti
le then 
apital U 
annot be used as an identi�er in the arti
le.(The symbol was meant to denote set union.) However, in arti
les that do not use thevo
abulary, U is a legal identi�er. Therefore, depending on the vo
abularies de
lared inan arti
le U is printed either as [ or as U.Be
ause of all that, we needed a separate lex program for ea
h of the arti
les. There-fore, we prepared a separate set of lex rules for ea
h vo
abulary, ea
h kept in a separate�le and prepared by hand. The lex program for an arti
le is obtained by the 
atenationof a 
ommon beginning part, the �les 
ontaining rules for vo
abularies used in the arti
le,and a 
ommon ending part 
ontaining rules for Mizar de�ned symbols. All Mizar reservedwords are printed in boldfa
e.1.4.3 Syntax 
hangesThe environment se
tion of an abstra
t is automati
ally 
onverted to a di�erent form.The way how it is done 
an be easily guessed from the text in �gure 1.2 that is the printedversion of the environment part listed in �gure 1.1:The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,fam op, sub op, and sfamily. The terminology and notation used in this arti
le havebeen introdu
ed in the following arti
les: tarski, boole, enumset1, and subset 1.Figure 1.2: TEXed environment.Some other 
hanges were minor.� Semi
olon was repla
ed by a period.



1.4. THE TECHNOLOGY OF TEXING 9� Ea
h theorem starts with the word `Theorem' followed by a pattern of library refer-en
e to it.� The de�nition starts with the word `De�nition' and the mat
hing end is not printed,indentation is used to improve readability.1.4.4 Lexem 
ategories and horizontal spa
ingFor the horizontal spa
ing all tokens have been 
lassi�ed into 8 groups.1. Left delimiters: spe
ial symbols ( f [ (# and vo
abulary symbols 
lassi�ed as Left-Fun
tion-Bra
ket,2. Right delimiters: spe
ial symbols ) g ℄ #) and vo
abulary symbols 
lassi�ed asRight-Fun
tion-Bra
ket,3. Pun
tuation marks: spe
ial symbols ; , :.4. Identi�ers.5. Identi�er-like symbols: Mizar reserved words and vo
abulary symbols that are printedas sequen
es of letters and possibly some other 
hara
ters (e.g. the fun
tion symbolthe left argument of).6. Binary operations: fun
tion symbols used in in�x notation and printed as one sym-bol.7. Pre�x operations: fun
tion symbols used in pre�x notation and printed as one sym-bol.8. Post�x operations: fun
tion symbols used in post�x notation and printed as onesymbol.For every pair of symbols, we de�ned the spa
ing between them depending on their
lasses. The array in �gure 1.3 spe
i�es the spa
ing rules. The 
lass 0 in the array denotesa spe
ial 
lass: beginning of a line, no previous symbol. The meaning of the entries in thearray is as follows:� 0 - no spa
ing, linebreak not allowed,� 1 - a regular spa
e,� 2 - no spa
ing, linebreak allowed (linebreak[0℄).



10 CHAPTER 1. INTRODUCTION/* 0 1 2 3 4 5 6 7 8 */int SPACES [9℄ [9℄ = {/* 0 */ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },/* 1 */ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },/* 2 */ { 0, 2, 0, 0, 2, 1, 2, 2, 0 },/* 3 */ { 0, 1, 2, 0, 1, 1, 0, 1, 0 },/* 4 */ { 0, 0, 0, 0, 1, 1, 0, 0, 0 },/* 5 */ { 0, 1, 0, 0, 1, 1, 0, 1, 0 },/* 6 */ { 0, 2, 0, 0, 0, 0, 0, 2, 0 },/* 7 */ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },/* 8 */ { 0, 0, 0, 0, 0, 1, 2, 0, 0 }}; Figure 1.3: Spa
ing rules.1.4.5 MishapsIn our experiment the analysis of Mizar sour
e texts was limited to lexi
al analysis only.Mizar vo
abularies 
lassify all symbols introdu
ed in them into 
lasses spe
i�ed in se
-tion 1.3. This 
lassi�
ation alone is not suÆ
ient to solve some problems, e.g. is a givensymbol a symbol of a pre�x or an in�x operation? Moreover, the same fun
tion symbol
an be used in the same arti
le as a post�x, pre�x, or in�x operation. However, withoutdoing synta
ti
 analysis we have no way of guessing whi
h of the three is used in a spe
i�

ase. Fortunately, the authors of the papers in question did not use this possibility, withsome ex
eptions. E.g. in 
hapter 10 the author uses the symbol ", whi
h is TEXed assupers
ript �1, as a fun
tion symbol for three di�erent fun
tions as follows.� (in�x notation) inverse image of a set under a mapping, e.g. f�1X,� (post�x notation) inverse of a bije
tive mapping: e.g. f�1,� (pre�x notation) the fun
tion indu
ed by a fun
tion f on the power set of its rangethat assigns to a set its inverse image under f: �1f.Originally, the symbol " has been introdu
ed in vo
abulary real 1 while preparing arti
lereal 1 and was used as a post�x fun
tion to denote the inverse of a real number.Despite that we used the set of amssymbols in LATEX, the symbol for symmetri
 dif-feren
e (�� ) had to be typeset by hand.There is also one thing to mention about Polish 
hara
ters available in TEX. Namely,there is Polish  l as a separate obje
t; some Polish letters 
an be obtained using a

ents.However, some Polish letters 
annot be 
onstru
ted using the available features, e.g. èwhi
h was obtained by hand and only poorly resembles the a
tual 
hara
ter (we did nothave time to design a new font).



1.5. CONCLUSIONS 111.5 Con
lusionsWe feel that our limited experiment was en
ouraging. The TEXed texts are mu
h easier toread than the Mizar sour
es and at the same time visually 
lose enough to the sour
es. Wedid not expe
t that doing only lexi
al analysis we 
an obtain the text that looks so well.We also feel that obtaining a better output would require a 
onsiderably bigger e�ort.The following remarks will be 
onsidered in the future work on typesetting of Mizararti
les and their abstra
ts:� The quality typesetting of Mizar texts requires full synta
ti
 analysis. Moreover, wefeel that pure 
ontext-free parsing is insuÆ
ient, and 
ontextual dependen
ies mustbe taken into a

ount. Only in this 
ase we will be able to bene�t from the powerof the TEX math-mode.� The authors of Mizar vo
abularies should prepare the TEX version of symbols theyintrodu
e.� It seems useful to prepare a set of TEX ma
ros that are spe
ialized for Mizar texts.� In the future, pre-editing and post-editing during the typesetting seems the only wayto solve 
ertain problems.
A
knowledgementsOur thanks are to W lodek Dobosiewi
z and Pawe l Gburzy�nski for many helpful 
om-ments while writing this report.



Chapter 2TARSKITarski Grothendie
k Set TheorybyAndrzej Trybule
 1Warsaw University (Bia lystok)Summary. This is the �rst part of the axiomati
s of the Mizar system. It in
ludesthe axioms of the Tarski-Grothendie
k set theory. They are: the axiom statingthat everything is a set, the extensionality axiom, the de�nitional axiom of thesingleton, the de�nitional axiom of the pair, the de�nitional axiom of the union ofa family of sets, the de�nitional axiom of the boolean (the power set) of a set, theregularity axiom, the de�nitional axiom of the ordered pair, the Tarski's axiom A(the existen
e of arbitrary large strongly ina

essible 
ardinals). Also, the de�nitionof equinumerosity is introdu
ed.The symbols used in this arti
le are introdu
ed in the following vo
abularies: equi rel,boole, and fam op.reserve x, y, z, u for Any, N, M, X, Y, Z for set.Theorem TARSKI:1. x is set.Theorem TARSKI:2. (for x holds x 2 X i� x 2 Y) implies X = Y.De�nitionlet y. fun
 fyg ! set means x 2 it i� x = y.1Supported by RPBP.III-24.B1. 12



13let z. fun
 fy, zg ! set means x 2 it i� x = y or x = z.Theorem TARSKI:3. X = fyg i� for x holds x 2 X i� x = y.Theorem TARSKI:4. X = fy, zg i� for x holds x 2 X i� x = y or x = z.De�nitionlet X, Y.pred X � Y means x 2 X implies x 2 Y.De�nitionlet X.fun
 SX ! set means x 2 it i� ex Y st x 2 Y & Y 2 X.Theorem TARSKI:5. X = SY i� for x holds x 2 X i� ex Z st x 2 Z & Z 2 Y.Theorem TARSKI:6. X = bool Y i� for Z holds Z 2 X i� Z � Y.Theorem TARSKI:7. x 2 X implies ex Y st Y 2 X & not ex x st x 2 X & x 2 Y.s
heme FraenkelfA() ! set, P[Any, Any℄g: ex X st for x holds x 2 X i� ex y st y2 A() & P[y, x℄ provided for x, y, z st P[x, y℄ & P[x, z℄ holds y = z.De�nitionlet x, y.fun
 [x, y℄ means it = ffx, yg, fxgg.Theorem TARSKI:8. [x, y℄ = ffx, yg, fxgg.De�nitionlet X, Y.pred X � Y means ex Z st (for x st x 2 X ex y st y 2 Y & [x, y℄ 2 Z) & (fory st y 2 Y ex x st x 2 X & [x, y℄ 2 Z) & for x, y, z, u st [x, y℄ 2 Z & [z, u℄ 2 Z holds x= z i� y = u.Theorem TARSKI:9. ex M st N 2 M & (for X, Y holds X 2 M & Y � X implies Y2 M) & (for X holds X 2 M implies bool X 2 M) & (for X holds X � M implies X �M or X 2 M).



Chapter 3AXIOMSAxioms about Built-in Con
eptsbyAndrzej Trybule
 1Warsaw University (Bia lystok)Summary. This abstra
t 
ontains the se
ond part of the axiomati
s of the Mizarsystem (the �rst part is in abstra
t Tarski). The axioms listed here 
hara
terizethe Mizar built-in 
on
epts that are introdu
ed in abstra
t HIDDEN whi
h isautomati
ally atta
hed to every Mizar arti
le. We give de�nitional axioms of thefollowing 
on
epts: element, subset, Cartesian produ
t, domain (non empty subset),subdomain (non empty subset of a domain), set domain (domain 
onsisting of sets).Axioms of strong arithmeti
s of real numbers are also in
luded.The symbols used in this arti
le are introdu
ed in vo
abulary boole. The terminologyand notation used here have been introdu
ed in arti
le tarski.reserve x, y, z for Any, X, X1, X2, X3, X4, Y for set.Theorem AXIOMS:1. (ex x st x 2 X) implies (x is Element of X i� x 2 X).Theorem AXIOMS:2. X is Subset of Y i� X � Y.Theorem AXIOMS:3. z 2 [[X, Y℄℄ i� ex x, y st x 2 X & y 2 Y & z = [x, y℄.Theorem AXIOMS:4. X is DOMAIN i� ex x st x 2 X.Theorem AXIOMS:5. [[X1, X2, X3℄℄ = [[[[X1, X2℄℄, X3℄℄.1Supported by RPBP.III-24.B1. 14



15Theorem AXIOMS:6. [[X1, X2, X3, X4℄℄ = [[[[X1, X2, X3℄℄, X4℄℄.reserve D1, D2, D3, D4 for DOMAIN.Theorem AXIOMS:7. for X being Element of [[D1, D2℄℄ holds X is TUPLE of D1,D2.Theorem AXIOMS:8. for X being Element of [[D1, D2, D3℄℄ holds X is TUPLE ofD1, D2, D3.Theorem AXIOMS:9. for X being Element of [[D1, D2, D3, D4℄℄ holds X is TUPLEof D1, D2, D3, D4.reserve D for DOMAIN.Theorem AXIOMS:10. D1 is SUBDOMAIN of D2 i� D1 � D2.Theorem AXIOMS:11. D is SET DOMAIN.reserve x, y, z for Element of REAL.Theorem AXIOMS:12. x+y = y+x.Theorem AXIOMS:13. x+(y+z) = (x+y)+z.Theorem AXIOMS:14. x+0 = x.Theorem AXIOMS:15. x�y = y�x.Theorem AXIOMS:16. x�(y�z) = (x�y)�z.Theorem AXIOMS:17. x�1 = x.Theorem AXIOMS:18. x�(y+z) = x�y+x�z.Theorem AXIOMS:19. ex y st x+y = 0.Theorem AXIOMS:20. x 6= 0 implies ex y st x�y = 1.Theorem AXIOMS:21. x 6 y & y 6 x implies x = y.Theorem AXIOMS:22. x 6 y & y 6 z implies x 6 z.Theorem AXIOMS:23. x 6 y or y 6 x.Theorem AXIOMS:24. x 6 y implies x+z 6 y+z.Theorem AXIOMS:25. x 6 y & 0 6 z implies x�z 6 y�z.Theorem AXIOMS:26. for X, Y being Subset of REAL st (ex x st x 2 X) & (ex xst x 2 Y) & for x, y st x 2 X & y 2 Y holds x 6 y ex z st for x, y st x 2 X & y 2 Yholds x 6 z & z 6 y.Theorem AXIOMS:27. x is Real.Theorem AXIOMS:28. x 2 NAT implies x+1 2 NAT.Theorem AXIOMS:29. for A being set of Real st 0 2 A & for x st x 2 A holds x+12 A holds NAT � A.Theorem AXIOMS:30. x 2 NAT implies x is Nat.



Chapter 4BOOLEBoolean Properties of SetsbyZinaida Trybule
 1Warsaw University (Bia lystok)Halina �Swiè 
zkowska 2Warsaw University (Bia lystok)Summary. The text in
ludes a number of theorems about Boolean operationson sets: union, interse
tion, di�eren
e, symmetri
 di�eren
e; and relations on sets:meets (having non-empty interse
tion), misses (being disjoint) and � (in
lusion).The symbols used in this arti
le are introdu
ed in vo
abularies fam op and boole.The terminology and notation used here have been introdu
ed in arti
le tarski.reserve x, y, z for Any, X, Y, Z, V for set.s
heme SeparationfA() ! set, P[Any℄g: ex X st for x holds x 2 X i� x 2 A() &P[x℄.De�nitionfun
 ; ! set means not ex x st x 2 it.let X, Y.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 16



17fun
 X[Y ! set means x 2 it i� x 2 X or x 2 Y.fun
 X\Y ! set means x 2 it i� x 2 X & x 2 Y.fun
 XrY ! set means x 2 it i� x 2 X & not x 2 Y.pred X meets Y means ex x st x 2 X & x 2 Y.pred X misses Y means for x holds x 2 X implies not x 2 Y.De�nitionlet X, Y.fun
 X�� Y ! set means it = (XrY)[(YrX).Theorem BOOLE:1. Z = ; i� not ex x st x 2 Z.Theorem BOOLE:2. Z = X[Y i� for x holds x 2 Z i� x 2 X or x 2 Y.Theorem BOOLE:3. Z = X\Y i� for x holds x 2 Z i� x 2 X & x 2 Y.Theorem BOOLE:4. Z = XrY i� for x holds x 2 Z i� x 2 X & not x 2 Y.Theorem BOOLE:5. X � Y i� for x holds x 2 X implies x 2 Y.Theorem BOOLE:6. X meets Y i� ex x st x 2 X & x 2 Y.Theorem BOOLE:7. X misses Y i� for x holds x 2 X implies not x 2 Y.De�nitionlet X, Y.rede�nepred X = Y means X � Y & Y � X.Theorem BOOLE:8. x 2 X[Y i� x 2 X or x 2 Y.Theorem BOOLE:9. x 2 X\Y i� x 2 X & x 2 Y.Theorem BOOLE:10. x 2 XrY i� x 2 X & not x 2 Y.Theorem BOOLE:11. x 2 X & X � Y implies x 2 Y.Theorem BOOLE:12. x 2 X & X misses Y implies not x 2 Y.Theorem BOOLE:13. x 2 X & x 2 Y implies X meets Y.Theorem BOOLE:14. x 2 X implies X 6= ;.Theorem BOOLE:15. X meets Y implies ex x st x 2 X & x 2 Y.Theorem BOOLE:16. (for x st x 2 X holds x 2 Y) implies X � Y.Theorem BOOLE:17. (for x st x 2 X holds not x 2 Y) implies X misses Y.Theorem BOOLE:18. (for x holds x 2 X i� x 2 Y or x 2 Z) implies X = Y[Z.Theorem BOOLE:19. (for x holds x 2 X i� x 2 Y & x 2 Z) implies X = Y\Z.Theorem BOOLE:20. (for x holds x 2 X i� x 2 Y & not x 2 Z) implies X = YrZ.Theorem BOOLE:21. not (ex x st x 2 X) implies X = ;.Theorem BOOLE:22. (for x holds x 2 X i� x 2 Y) implies X = Y.Theorem BOOLE:23. x 2 X�� Y i� not (x 2 X i� x 2 Y).



18 CHAPTER 4. BOOLETheorem BOOLE:24. x 2 X & x 2 Y implies X\Y 6= ;.Theorem BOOLE:25. (for x holds not x 2 X i� (x 2 Y i� x 2 Z)) implies X =Y�� Z.Theorem BOOLE:26. X � X.Theorem BOOLE:27. ; � X.Theorem BOOLE:28. X � Y & Y � X implies X = Y.Theorem BOOLE:29. X � Y & Y � Z implies X � Z.Theorem BOOLE:30. X � ; implies X = ;.Theorem BOOLE:31. X � X[Y & Y � X[Y.Theorem BOOLE:32. X � Z & Y � Z implies X[Y � Z.Theorem BOOLE:33. X � Y implies X[Z � Y[Z & Z[X � Z[Y.Theorem BOOLE:34. X � Y & Z � V implies X[Z � Y[V.Theorem BOOLE:35. X � Y implies X[Y = Y & Y[X = Y.Theorem BOOLE:36. X[Y = Y or Y[X = Y implies X � Y.Theorem BOOLE:37. X\Y � X & X\Y � Y.Theorem BOOLE:38. X\Y � X[Z.Theorem BOOLE:39. Z � X & Z � Y implies Z � X\Y.Theorem BOOLE:40. X � Y implies X\Z � Y\Z & Z\X � Z\Y.Theorem BOOLE:41. X � Y & Z � V implies X\Z � Y\V.Theorem BOOLE:42. X � Y implies X\Y = X & Y\X = X.Theorem BOOLE:43. X\Y = X or Y\X = X implies X � Y.Theorem BOOLE:44. X � Z implies X[Y\Z = (X[Y)\Z.Theorem BOOLE:45. XrY = ; i� X � Y.Theorem BOOLE:46. X � Y implies XrZ � YrZ.Theorem BOOLE:47. X � Y implies ZrY � ZrX.Theorem BOOLE:48. X � Y & Z � V implies XrV � YrZ.Theorem BOOLE:49. XrY � X.Theorem BOOLE:50. X � YrX implies X = ;.Theorem BOOLE:51. X � Y & X � Z & Y\Z = ; implies X = ;.Theorem BOOLE:52. X � Y[Z implies XrY � Z & XrZ � Y.Theorem BOOLE:53. (X\Y)[(X\Z) = X implies X � Y[Z.Theorem BOOLE:54. X � Y implies Y = X[(YrX) & Y = (YrX)[X.Theorem BOOLE:55. X � Y & Y\Z = ; implies X\Z = ;.Theorem BOOLE:56. X = Y[Z i� Y � X & Z � X & for V st Y � V & Z � V holdsX � V.



19Theorem BOOLE:57. X = Y\Z i� X � Y & X � Z & for V st V � Y & V � Z holdsV � X.Theorem BOOLE:58. XrY � X�� Y.Theorem BOOLE:59. X[Y = ; i� X = ; & Y = ;.Theorem BOOLE:60. X[; = X & ;[X = X.Theorem BOOLE:61. X\; = ; & ;\X = ;.Theorem BOOLE:62. X[X = X.Theorem BOOLE:63. X[Y = Y[X.Theorem BOOLE:64. (X[Y)[Z = X[(Y[Z).Theorem BOOLE:65. X\X = X.Theorem BOOLE:66. X\Y = Y\X.Theorem BOOLE:67. (X\Y)\Z = X\(Y\Z).Theorem BOOLE:68. X\(X[Y) = X & (X[Y)\X = X & X\(Y[X) = X & (Y[X)\X = X.Theorem BOOLE:69. X[(X\Y) = X & (X\Y)[X = X & X[(Y\X) = X & (Y\X)[X = X.Theorem BOOLE:70. X\(Y[Z) = X\Y[X\Z & (Y[Z)\X = Y\X[Z\X.Theorem BOOLE:71. X[Y\Z = (X[Y)\(X[Z) & Y\Z[X = (Y[X)\(Z[X).Theorem BOOLE:72. (X\Y)[(Y\Z)[(Z\X) = (X[Y)\(Y[Z)\(Z[X).Theorem BOOLE:73. XrX = ;.Theorem BOOLE:74. Xr; = X.Theorem BOOLE:75. ;rX = ;.Theorem BOOLE:76. Xr(X[Y) = ; & Xr(Y[X) = ;.Theorem BOOLE:77. XrX\Y = XrY & XrY\X = XrY.Theorem BOOLE:78. (XrY)\Y = ; & Y\(XrY) = ;.Theorem BOOLE:79. X[(YrX) = X[Y & (YrX)[X = Y[X.Theorem BOOLE:80. X\Y[(XrY) = X & (XrY)[X\Y = X.Theorem BOOLE:81. Xr(YrZ) = (XrY)[X\Z.Theorem BOOLE:82. Xr(XrY) = X\Y.Theorem BOOLE:83. (X[Y)rY = XrY.Theorem BOOLE:84. X\Y = ; i� XrY = X.Theorem BOOLE:85. Xr(Y[Z) = (XrY)\(XrZ).Theorem BOOLE:86. Xr(Y\Z) = (XrY)[(XrZ).Theorem BOOLE:87. (X[Y)r(X\Y) = (XrY)[(YrX).Theorem BOOLE:88. (XrY)rZ = Xr(Y[Z).



20 CHAPTER 4. BOOLETheorem BOOLE:89. (X[Y)rZ = (XrZ)[(YrZ).Theorem BOOLE:90. XrY = YrX implies X = Y.Theorem BOOLE:91. X�� Y = (XrY)[(YrX).Theorem BOOLE:92. X�� ; = X & ;�� X = X.Theorem BOOLE:93. X�� X = ;.Theorem BOOLE:94. X�� Y = Y�� X.Theorem BOOLE:95. X[Y = (X�� Y)[X\Y.Theorem BOOLE:96. X�� Y = (X[Y)rX\Y.Theorem BOOLE:97. (X�� Y)rZ = (Xr(Y[Z))[(Yr(X[Z)).Theorem BOOLE:98. Xr(Y�� Z) = Xr(Y[Z)[X\Y\Z.Theorem BOOLE:99. (X�� Y)�� Z = X�� (Y�� Z).Theorem BOOLE:100. X meets Y[Z i� X meets Y or X meets Z.Theorem BOOLE:101. X meets Y & Y � Z implies X meets Z.Theorem BOOLE:102. X meets Y\Z implies X meets Y & X meets Z.Theorem BOOLE:103. X meets Y implies Y meets X.Theorem BOOLE:104. not (X meets ; or ; meets X).Theorem BOOLE:105. X misses Y i� not X meets Y.Theorem BOOLE:106. X misses Y[Z i� X misses Y & X misses Z.Theorem BOOLE:107. X misses Z & Y � Z implies X misses Y.Theorem BOOLE:108. X misses Y or X misses Z implies X misses Y\Z.Theorem BOOLE:109. X misses ; & ; misses X.Theorem BOOLE:110. X meets X i� X 6= ;.Theorem BOOLE:111. X\Y misses XrY.Theorem BOOLE:112. X\Y misses X�� Y.Theorem BOOLE:113. X meets YrZ implies X meets Y.Theorem BOOLE:114. X � Y & X � Z & Y misses Z implies X = ;.Theorem BOOLE:115. XrY � Z & YrX � Z implies X�� Y � Z.Theorem BOOLE:116. X\(YrZ) = (X\Y)rZ.Theorem BOOLE:117. X\(YrZ) = X\YrX\Z & (YrZ)\X = Y\XrZ\X.Theorem BOOLE:118. X misses Y i� X\Y = ;.Theorem BOOLE:119. X meets Y i� X\Y 6= ;.Theorem BOOLE:120. X � (Y[Z) & X\Z = ; implies X � Y.Theorem BOOLE:121. Y � X & X\Y = ; implies Y = ;.Theorem BOOLE:122. X misses Y implies Y misses X.



Chapter 5ZFMISC 1Some Basi
 Properties of SetsbyCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. In this arti
le some basi
 theorems about singletons, pairs, power sets,unions of families of sets, and the 
artesian produ
t of two sets are proved.The symbols used in this arti
le are introdu
ed in vo
abularies boole and fam op.The arti
les tarski and boole provide the terminology and notation for this arti
le.Theorem ZFMISC 1:1. bool ; = f;g.Theorem ZFMISC 1:2. S; = ;.reserve v, x, x1, x2, y, y1, y2, z for Any.reserve A, B, X, X1, X2, Y, Y1, Y2, Z for set.Theorem ZFMISC 1:3. fxg 6= ;.Theorem ZFMISC 1:4. fx, yg 6= ;.Theorem ZFMISC 1:5. fxg = fx, xg.Theorem ZFMISC 1:6. fxg = fyg implies x = y.Theorem ZFMISC 1:7. fx1, x2g = fx2, x1g.Theorem ZFMISC 1:8. fxg = fy1, y2g implies x = y1 & x = y2.1Supported by RPBP.III-24.C1. 21



22 CHAPTER 5. ZFMISC 1Theorem ZFMISC 1:9. fxg = fy1, y2g implies y1 = y2.Theorem ZFMISC 1:10. fx1, x2g = fy1, y2g implies (x1 = y1 or x1 = y2) & (x2 =y1 or x2 = y2).Theorem ZFMISC 1:11. fx1, x2g = fx1g[fx2g.Theorem ZFMISC 1:12. fxg � fx, yg & fyg � fx, yg.Theorem ZFMISC 1:13. fxg[fyg = fxg or fxg[fyg = fyg implies x = y.Theorem ZFMISC 1:14. fxg[fx, yg = fx, yg & fx, yg[fxg = fx, yg.Theorem ZFMISC 1:15. fyg[fx, yg = fx, yg & fx, yg[fyg = fx, yg.Theorem ZFMISC 1:16. fxg\fyg = ; or fyg\fxg = ; implies x 6= y.Theorem ZFMISC 1:17. x 6= y implies fxg\fyg = ; & fyg\fxg = ;.Theorem ZFMISC 1:18. fxg\fyg = fxg or fxg\fyg = fyg implies x = y.Theorem ZFMISC 1:19. fxg\fx, yg = fxg & fyg\fx, yg = fyg & fx, yg\fxg = fxg& fx, yg\fyg = fyg.Theorem ZFMISC 1:20. fxgrfyg = fxg i� x 6= y.Theorem ZFMISC 1:21. fxgrfyg = ; implies x = y.Theorem ZFMISC 1:22. fxgrfx, yg = ; & fygrfx, yg = ;.Theorem ZFMISC 1:23. x 6= y implies fx, ygrfyg = fxg & fx, ygrfxg = fyg.Theorem ZFMISC 1:24. fxg � fyg implies fxg = fyg.Theorem ZFMISC 1:25. fzg � fx, yg implies z = x or z = y.Theorem ZFMISC 1:26. fx, yg � fzg implies x = z & y = z.Theorem ZFMISC 1:27. fx, yg � fzg implies fx, yg = fzg.Theorem ZFMISC 1:28. fx1, x2g � fy1, y2g implies (x1 = y1 or x1 = y2) & (x2 =y1 or x2 = y2).Theorem ZFMISC 1:29. x 6= y implies fxg�� fyg = fx, yg.Theorem ZFMISC 1:30. bool fxg = f;, fxgg.Theorem ZFMISC 1:31. Sfxg = x.Theorem ZFMISC 1:32. Sffxg, fygg = fx, yg.Theorem ZFMISC 1:33. [x1, x2℄ = [y1, y2℄ implies x1 = y1 & x2 = y2.Theorem ZFMISC 1:34. [x, y℄ 2 [[fx1g, fy1g℄℄ i� x = x1 & y = y1.Theorem ZFMISC 1:35. [[fxg, fyg℄℄ = f[x, y℄g.Theorem ZFMISC 1:36. [[fxg, fy, zg℄℄ = f[x, y℄, [x, z℄g & [[fx, yg, fzg℄℄ = f[x, z℄, [y,z℄g.Theorem ZFMISC 1:37. fxg � X i� x 2 X.Theorem ZFMISC 1:38. fx1, x2g � Z i� x1 2 Z & x2 2 Z.Theorem ZFMISC 1:39. Y � fxg i� Y = ; or Y = fxg.



23Theorem ZFMISC 1:40. Y � X & not x 2 Y implies Y � Xrfxg.Theorem ZFMISC 1:41. X 6= fxg & x 2 X implies ex y st y 2 X & y 6= x.Theorem ZFMISC 1:42. Z � fx1, x2g i� Z = ; or Z = fx1g or Z = fx2g or Z = fx1,x2g.Theorem ZFMISC 1:43. fzg = X[Y implies X = fzg & Y = fzg or X = ; & Y =fzg or X = fzg & Y = ;.Theorem ZFMISC 1:44. fzg = X[Y & X 6= Y implies X = ; or Y = ;.Theorem ZFMISC 1:45. fxg[X = X or X[fxg = X implies x 2 X.Theorem ZFMISC 1:46. x 2 X implies fxg[X = X & X[fxg = X.Theorem ZFMISC 1:47. fx, yg[Z = Z or Z[fx, yg = Z implies x 2 Z & y 2 Z.Theorem ZFMISC 1:48. x 2 Z & y 2 Z implies fx, yg[Z = Z & Z[fx, yg = Z.Theorem ZFMISC 1:49. fxg[X 6= ; & X[fxg 6= ;.Theorem ZFMISC 1:50. fx, yg[X 6= ; & X[fx, yg 6= ;.Theorem ZFMISC 1:51. X\fxg = fxg or fxg\X = fxg implies x 2 X.Theorem ZFMISC 1:52. x 2 X implies X\fxg = fxg & fxg\X = fxg.Theorem ZFMISC 1:53. x 2 Z & y 2 Z implies fx, yg\Z = fx, yg & fx, yg = Z\fx,yg. Theorem ZFMISC 1:54. fxg\X = ; or X\fxg = ; implies not x 2 X.Theorem ZFMISC 1:55. fx, yg\Z = ; or Z\fx, yg = ; implies not x 2 Z & not y2 Z.Theorem ZFMISC 1:56. not x 2 X implies fxg\X = ; & X\fxg = ;.Theorem ZFMISC 1:57. not x 2 Z & not y 2 Z implies fx, yg\Z = ; & Z\fx, yg =;. Theorem ZFMISC 1:58. fxg\X = ; or fxg\X = fxg & X\fxg = fxg.Theorem ZFMISC 1:59. fx, yg\X = fxg or X\fx, yg = fxg implies not y 2 X orx = y.Theorem ZFMISC 1:60. x 2 X & (not y 2 X or x = y) implies fx, yg\X = fxg &X\fx, yg = fxg.Theorem ZFMISC 1:61. fx, yg\X = fyg or X\fx, yg = fyg implies not x 2 X orx = y.Theorem ZFMISC 1:62. y 2 X & (not x 2 X or x = y) implies fx, yg\X = fyg &X\fx, yg = fyg.Theorem ZFMISC 1:63. fx, yg\X = fx, yg or X\fx, yg = fx, yg implies x 2 X &y 2 X.Theorem ZFMISC 1:64. z 2 Xrfxg i� z 2 X & z 6= x.Theorem ZFMISC 1:65. Xrfxg = X i� not x 2 X.Theorem ZFMISC 1:66. Xrfxg = ; implies X = ; or X = fxg.



24 CHAPTER 5. ZFMISC 1Theorem ZFMISC 1:67. fxgrX = fxg i� not x 2 X.Theorem ZFMISC 1:68. fxgrX = ; i� x 2 X.Theorem ZFMISC 1:69. fxgrX = ; or fxgrX = fxg.Theorem ZFMISC 1:70. fx, ygrX = fxg i� not x 2 X & (y 2 X or x = y).Theorem ZFMISC 1:71. fx, ygrX = fyg i� (x 2 X or x = y) & not y 2 X.Theorem ZFMISC 1:72. fx, ygrX = fx, yg i� not x 2 X & not y 2 X.Theorem ZFMISC 1:73. fx, ygrX = ; i� x 2 X & y 2 X.Theorem ZFMISC 1:74. fx, ygrX = ; or fx, ygrX = fxg or fx, ygrX = fyg or fx,ygrX = fx, yg.Theorem ZFMISC 1:75. Xrfx, yg = ; i� X = ; or X = fxg or X = fyg or X = fx,yg. Theorem ZFMISC 1:76. ; 2 bool A.Theorem ZFMISC 1:77. A 2 bool A.Theorem ZFMISC 1:78. bool A 6= ;.Theorem ZFMISC 1:79. A � B implies bool A � bool B.Theorem ZFMISC 1:80. fAg � bool A.Theorem ZFMISC 1:81. bool A[bool B � bool (A[B).Theorem ZFMISC 1:82. bool A[bool B = bool (A[B) implies A � B or B � A.Theorem ZFMISC 1:83. bool (A\B) = bool A\bool B.Theorem ZFMISC 1:84. bool (ArB) � f;g[(bool Arbool B).Theorem ZFMISC 1:85. X 2 bool (ArB) i� X � A & X misses B.Theorem ZFMISC 1:86. bool (ArB)[bool (BrA) � bool (A�� B).Theorem ZFMISC 1:87. X 2 bool (A�� B) i� X � A[B & X misses A\B.Theorem ZFMISC 1:88. X 2 bool A & Y 2 bool A implies X[Y 2 bool A.Theorem ZFMISC 1:89. X 2 bool A or Y 2 bool A implies X\Y 2 bool A.Theorem ZFMISC 1:90. X 2 bool A implies XrY 2 bool A.Theorem ZFMISC 1:91. X 2 bool A & Y 2 bool A implies X�� Y 2 bool A.Theorem ZFMISC 1:92. X 2 A implies X � SA.Theorem ZFMISC 1:93. SfX, Yg = X[Y.Theorem ZFMISC 1:94. (for X st X 2 A holds X � Z) implies SA � Z.Theorem ZFMISC 1:95. A � B implies SA � SB.Theorem ZFMISC 1:96. S(A[B) = SA[SB.Theorem ZFMISC 1:97. S(A\B) � SA\SB.Theorem ZFMISC 1:98. (for X st X 2 A holds X\B = ;) implies S(A)\B = ;.Theorem ZFMISC 1:99. Sbool A = A.



25Theorem ZFMISC 1:100. A � bool SA.Theorem ZFMISC 1:101. (for X, Y st X 6= Y & X 2 A[B & Y 2 A[B holds X\Y= ;) implies S(A\B) = SA\SB.Theorem ZFMISC 1:102. z 2 [[X, Y℄℄ implies ex x, y st [x, y℄ = z.Theorem ZFMISC 1:103. A � [[X, Y℄℄ & z 2 A implies ex x, y st x 2 X & y 2 Y &z = [x, y℄.Theorem ZFMISC 1:104. z 2 [[X1, Y1℄℄\[[X2, Y2℄℄ implies ex x, y st z = [x, y℄ & x 2X1\X2 & y 2 Y1\Y2.Theorem ZFMISC 1:105. [[X, Y℄℄ � bool bool (X[Y).Theorem ZFMISC 1:106. [x, y℄ 2 [[X, Y℄℄ i� x 2 X & y 2 Y.Theorem ZFMISC 1:107. [x, y℄ 2 [[X, Y℄℄ implies [y, x℄ 2 [[Y, X℄℄.Theorem ZFMISC 1:108. (for x, y holds [x, y℄ 2 [[X1, Y1℄℄ i� [x, y℄ 2 [[X2, Y2℄℄)implies [[X1, Y1℄℄ = [[X2, Y2℄℄.Theorem ZFMISC 1:109. A � [[X, Y℄℄ & (for x, y st [x, y℄ 2 A holds [x, y℄ 2 B)implies A � B.Theorem ZFMISC 1:110. A � [[X1, Y1℄℄ & B � [[X2, Y2℄℄ & (for x, y holds [x, y℄ 2 Ai� [x, y℄ 2 B) implies A = B.Theorem ZFMISC 1:111. (for z st z 2 A ex x, y st z = [x, y℄) & (for x, y st [x, y℄ 2A holds [x, y℄ 2 B) implies A � B.Theorem ZFMISC 1:112. (for z st z 2 A ex x, y st z = [x, y℄) & (for z st z 2 B exx, y st z = [x, y℄) & (for x, y holds [x, y℄ 2 A i� [x, y℄ 2 B) implies A = B.Theorem ZFMISC 1:113. [[X, Y℄℄ = ; i� X = ; or Y = ;.Theorem ZFMISC 1:114. X 6= ; & Y 6= ; & [[X, Y℄℄ = [[Y, X℄℄ implies X = Y.Theorem ZFMISC 1:115. [[X, X℄℄ = [[Y, Y℄℄ implies X = Y.Theorem ZFMISC 1:116. X � [[X, X℄℄ implies X = ;.Theorem ZFMISC 1:117. Z 6= ; & ([[X, Z℄℄ � [[Y, Z℄℄ or [[Z, X℄℄ � [[Z, Y℄℄) implies X �Y. Theorem ZFMISC 1:118. X � Y implies [[X, Z℄℄ � [[Y, Z℄℄ & [[Z, X℄℄ � [[Z, Y℄℄.Theorem ZFMISC 1:119. X1 � Y1 & X2 � Y2 implies [[X1, X2℄℄ � [[Y1, Y2℄℄.Theorem ZFMISC 1:120. [[X[Y, Z℄℄ = [[X, Z℄℄[[[Y, Z℄℄ & [[Z, X[Y℄℄ = [[Z, X℄℄[[[Z, Y℄℄.Theorem ZFMISC 1:121. [[X1[X2, Y1[Y2℄℄ = [[X1, Y1℄℄[[[X1, Y2℄℄[[[X2, Y1℄℄[[[X2,Y2℄℄.Theorem ZFMISC 1:122. [[X\Y, Z℄℄ = [[X, Z℄℄\[[Y, Z℄℄ & [[Z, X\Y℄℄ = [[Z, X℄℄\[[Z, Y℄℄.Theorem ZFMISC 1:123. [[X1\X2, Y1\Y2℄℄ = [[X1, Y1℄℄\[[X2, Y2℄℄.Theorem ZFMISC 1:124. A � X & B � Y implies [[A, Y℄℄\[[X, B℄℄ = [[A, B℄℄.Theorem ZFMISC 1:125. [[XrY, Z℄℄ = [[X, Z℄℄r[[Y, Z℄℄ & [[Z, XrY℄℄ = [[Z, X℄℄r[[Z, Y℄℄.Theorem ZFMISC 1:126. [[X1, X2℄℄r[[Y1, Y2℄℄ = [[X1rY1, X2℄℄[[[X1, X2rY2℄℄.



26 CHAPTER 5. ZFMISC 1Theorem ZFMISC 1:127. X1\X2 = ; or Y1\Y2 = ; implies [[X1, Y1℄℄\[[X2, Y2℄℄ =;. Theorem ZFMISC 1:128. [x, y℄ 2 [[fzg, Y℄℄ i� x = z & y 2 Y.Theorem ZFMISC 1:129. [x, y℄ 2 [[X, fzg℄℄ i� x 2 X & y = z.Theorem ZFMISC 1:130. X 6= ; implies [[fxg, X℄℄ 6= ; & [[X, fxg℄℄ 6= ;.Theorem ZFMISC 1:131. x 6= y implies [[fxg, X℄℄\[[fyg, Y℄℄ = ; & [[X, fxg℄℄\[[Y, fyg℄℄= ;.Theorem ZFMISC 1:132. [[fx, yg, X℄℄ = [[fxg, X℄℄[[[fyg, X℄℄ & [[X, fx, yg℄℄ = [[X, fxg℄℄[[[X, fyg℄℄.Theorem ZFMISC 1:133. Z = [[X, Y℄℄ i� for z holds z 2 Z i� ex x, y st x 2 X & y 2Y & z = [x, y℄.Theorem ZFMISC 1:134. X1 6= ; & Y1 6= ; & [[X1, Y1℄℄ = [[X2, Y2℄℄ implies X1 =X2 & Y1 = Y2.Theorem ZFMISC 1:135. X � [[X, Y℄℄ or X � [[Y, X℄℄ implies X = ;.



Chapter 6ENUMSET1Enumerated SetsbyAndrzej Trybule
 1Warsaw University (Bia lystok)Summary. We prove basi
 fa
ts about enumerated sets: de�nitional theorems andtheir immediate 
onsequen
es, some theorems related to the de
omposition of anenumerated set into union of two sets, fa
ts about removing elements that o

urmore than on
e, and fa
ts about permutations of enumerated sets (with the length� 4). The arti
le in
ludes also s
hemes enabling instantiation of up to nine universalquanti�ers.The symbols used in this arti
le are introdu
ed in vo
abularies boole and fam op.The arti
les tarski and boole provide the terminology and notation for this arti
le.reserve x, x1, x2, x3, x4, x5, x6, x7, x8, y, y1, y2, y3, y4, y5, y6, y7, y8, z, z1, z2, z3,z4, z5, z6, z7, z8 for Any.reserve X, X1, X2, Y, Y1, Y2, Z, Z1, Z2 for set.s
heme UI1fx1() ! Any, P[Any℄g: P[x1()℄ provided A: for x1 holds P[x1℄.s
heme UI2fx1() ! Any, x2() ! Any, P[Any, Any℄g: P[x1(), x2()℄ provided A: forx1, x2 holds P[x1, x2℄.s
heme UI3fx1() ! Any, x2() ! Any, x3() ! Any, P[Any, Any, Any℄g: P[x1(), x2(),x3()℄ provided A: for x1, x2, x3 holds P[x1, x2, x3℄.1Supported by RPBP.III-24.C1. 27



28 CHAPTER 6. ENUMSET1s
heme UI4fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, P[Any, Any, Any,Any℄g: P[x1(), x2(), x3(), x4()℄ provided A: for x1, x2, x3, x4 holds P[x1, x2, x3, x4℄.s
heme UI5fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, P[Any,Any, Any, Any, Any℄g: P[x1(), x2(), x3(), x4(), x5()℄ provided A: for x1, x2, x3, x4, x5holds P[x1, x2, x3, x4, x5℄.s
heme UI6fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, x6() !Any, P[Any, Any, Any, Any, Any, Any℄g: P[x1(), x2(), x3(), x4(), x5(), x6()℄ provided A:for x1, x2, x3, x4, x5, x6 holds P[x1, x2, x3, x4, x5, x6℄.s
heme UI7fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, x6() !Any, x7() ! Any, P[Any, Any, Any, Any, Any, Any, Any℄g: P[x1(), x2(), x3(), x4(), x5(),x6(), x7()℄ provided A: for x1, x2, x3, x4, x5, x6, x7 holds P[x1, x2, x3, x4, x5, x6, x7℄.s
heme UI8fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, x6() !Any, x7() ! Any, x8() ! Any, P[Any, Any, Any, Any, Any, Any, Any, Any℄g: P[x1(), x2(),x3(), x4(), x5(), x6(), x7(), x8()℄ provided A: for x1, x2, x3, x4, x5, x6, x7, x8 holdsP[x1, x2, x3, x4, x5, x6, x7, x8℄.s
heme UI9fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, x6() !Any, x7() ! Any, x8() ! Any, x9() ! Any, P[Any, Any, Any, Any, Any, Any, Any, Any,Any℄g: P[x1(), x2(), x3(), x4(), x5(), x6(), x7(), x8(), x9()℄ provided A: for x1, x2, x3,x4, x5, x6, x7, x8, x9 being Any holds P[x1, x2, x3, x4, x5, x6, x7, x8, x9℄.Theorem ENUMSET1:1. for x1, X holds X = fx1g i� for x holds x 2 X i� x = x1.Theorem ENUMSET1:2. for x1, x holds x 2 fx1g i� x = x1.Theorem ENUMSET1:3. x 2 fx1g implies x = x1.Theorem ENUMSET1:4. x 2 fxg.Theorem ENUMSET1:5. for x1, X st for x holds x 2 X i� x = x1 holds X = fx1g.Theorem ENUMSET1:6. for x1, x2, X holds X = fx1, x2g i� for x holds x 2 X i�x = x1 or x = x2.Theorem ENUMSET1:7. for x1, x2 holds for x holds x 2 fx1, x2g i� x = x1 or x= x2.Theorem ENUMSET1:8. x 2 fx1, x2g implies x = x1 or x = x2.Theorem ENUMSET1:9. x = x1 or x = x2 implies x 2 fx1, x2g.Theorem ENUMSET1:10. for x1, x2, X st for x holds x 2 X i� x = x1 or x = x2holds X = fx1, x2g.De�nitionlet x1, x2, x3.fun
 fx1, x2, x3g ! set means x 2 it i� x = x1 or x = x2 or x = x3.Theorem ENUMSET1:11. for x1, x2, x3, X holds X = fx1, x2, x3g i� for x holds x2 X i� x = x1 or x = x2 or x = x3.



29Theorem ENUMSET1:12. for x1, x2, x3 holds for x holds x 2 fx1, x2, x3g i� x =x1 or x = x2 or x = x3.Theorem ENUMSET1:13. x 2 fx1, x2, x3g implies x = x1 or x = x2 or x = x3.Theorem ENUMSET1:14. x = x1 or x = x2 or x = x3 implies x 2 fx1, x2, x3g.Theorem ENUMSET1:15. for x1, x2, x3, X st for x holds x 2 X i� x = x1 or x =x2 or x = x3 holds X = fx1, x2, x3g.De�nitionlet x1, x2, x3, x4.fun
 fx1, x2, x3, x4g ! set means x 2 it i� x = x1 or x = x2 or x = x3 or x= x4.Theorem ENUMSET1:16. for x1, x2, x3, x4, X holds X = fx1, x2, x3, x4g i� for xholds x 2 X i� x = x1 or x = x2 or x = x3 or x = x4.Theorem ENUMSET1:17. for x1, x2, x3, x4 holds for x holds x 2 fx1, x2, x3, x4gi� x = x1 or x = x2 or x = x3 or x = x4.Theorem ENUMSET1:18. x 2 fx1, x2, x3, x4g implies x = x1 or x = x2 or x = x3or x = x4.Theorem ENUMSET1:19. x = x1 or x = x2 or x = x3 or x = x4 implies x 2 fx1,x2, x3, x4g.Theorem ENUMSET1:20. for x1, x2, x3, x4, X st for x holds x 2 X i� x = x1 or x= x2 or x = x3 or x = x4 holds X = fx1, x2, x3, x4g.De�nitionlet x1, x2, x3, x4, x5.fun
 fx1, x2, x3, x4, x5g ! set means x 2 it i� x = x1 or x = x2 or x = x3or x = x4 or x = x5.Theorem ENUMSET1:21. for x1, x2, x3, x4, x5 for X being set holds X = fx1, x2,x3, x4, x5g i� for x holds x 2 X i� x = x1 or x = x2 or x = x3 or x = x4 or x = x5.Theorem ENUMSET1:22. x 2 fx1, x2, x3, x4, x5g i� x = x1 or x = x2 or x = x3 orx = x4 or x = x5.Theorem ENUMSET1:23. x 2 fx1, x2, x3, x4, x5g implies x = x1 or x = x2 or x =x3 or x = x4 or x = x5.Theorem ENUMSET1:24. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 impliesx 2 fx1, x2, x3, x4, x5g.Theorem ENUMSET1:25. for X being set st for x holds x 2 X i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 holds X = fx1, x2, x3, x4, x5g.De�nitionlet x1, x2, x3, x4, x5, x6.fun
 fx1, x2, x3, x4, x5, x6g ! set means x 2 it i� x = x1 or x = x2 or x =x3 or x = x4 or x = x5 or x = x6.



30 CHAPTER 6. ENUMSET1Theorem ENUMSET1:26. for x1, x2, x3, x4, x5, x6 for X being set holds X = fx1,x2, x3, x4, x5, x6g i� for x holds x 2 X i� x = x1 or x = x2 or x = x3 or x = x4 or x= x5 or x = x6.Theorem ENUMSET1:27. x 2 fx1, x2, x3, x4, x5, x6g i� x = x1 or x = x2 or x = x3or x = x4 or x = x5 or x = x6.Theorem ENUMSET1:28. x 2 fx1, x2, x3, x4, x5, x6g implies x = x1 or x = x2 orx = x3 or x = x4 or x = x5 or x = x6.Theorem ENUMSET1:29. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x =x6 implies x 2 fx1, x2, x3, x4, x5, x6g.Theorem ENUMSET1:30. for X being set st for x holds x 2 X i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 holds X = fx1, x2, x3, x4, x5, x6g.De�nitionlet x1, x2, x3, x4, x5, x6, x7.fun
 fx1, x2, x3, x4, x5, x6, x7g ! set means x 2 it i� x = x1 or x = x2 or x= x3 or x = x4 or x = x5 or x = x6 or x = x7.Theorem ENUMSET1:31. for x1, x2, x3, x4, x5, x6, x7 for X being set holds X =fx1, x2, x3, x4, x5, x6, x7g i� for x holds x 2 X i� x = x1 or x = x2 or x = x3 or x =x4 or x = x5 or x = x6 or x = x7.Theorem ENUMSET1:32. x 2 fx1, x2, x3, x4, x5, x6, x7g i� x = x1 or x = x2 or x= x3 or x = x4 or x = x5 or x = x6 or x = x7.Theorem ENUMSET1:33. x 2 fx1, x2, x3, x4, x5, x6, x7g implies x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 or x = x7.Theorem ENUMSET1:34. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x =x6 or x = x7 implies x 2 fx1, x2, x3, x4, x5, x6, x7g.Theorem ENUMSET1:35. for X being set st for x holds x 2 X i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 holds X = fx1, x2, x3, x4, x5, x6,x7g.De�nitionlet x1, x2, x3, x4, x5, x6, x7, x8.fun
 fx1, x2, x3, x4, x5, x6, x7, x8g ! set means x 2 it i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.Theorem ENUMSET1:36. for x1, x2, x3, x4, x5, x6, x7, x8 for X being set holds X= fx1, x2, x3, x4, x5, x6, x7, x8g i� for x holds x 2 X i� x = x1 or x = x2 or x = x3or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.Theorem ENUMSET1:37. x 2 fx1, x2, x3, x4, x5, x6, x7, x8g i� x = x1 or x = x2 orx = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.Theorem ENUMSET1:38. x 2 fx1, x2, x3, x4, x5, x6, x7, x8g implies x = x1 or x =x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.



31Theorem ENUMSET1:39. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x =x6 or x = x7 or x = x8 implies x 2 fx1, x2, x3, x4, x5, x6, x7, x8g.Theorem ENUMSET1:40. for X being set st for x holds x 2 X i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 holds X = fx1, x2, x3,x4, x5, x6, x7, x8g.Theorem ENUMSET1:41. fx1, x2g = fx1g[fx2g.Theorem ENUMSET1:42. fx1, x2, x3g = fx1g[fx2, x3g.Theorem ENUMSET1:43. fx1, x2, x3g = fx1, x2g[fx3g.Theorem ENUMSET1:44. fx1, x2, x3, x4g = fx1g[fx2, x3, x4g.Theorem ENUMSET1:45. fx1, x2, x3, x4g = fx1, x2g[fx3, x4g.Theorem ENUMSET1:46. fx1, x2, x3, x4g = fx1, x2, x3g[fx4g.Theorem ENUMSET1:47. fx1, x2, x3, x4, x5g = fx1g[fx2, x3, x4, x5g.Theorem ENUMSET1:48. fx1, x2, x3, x4, x5g = fx1, x2g[fx3, x4, x5g.Theorem ENUMSET1:49. fx1, x2, x3, x4, x5g = fx1, x2, x3g[fx4, x5g.Theorem ENUMSET1:50. fx1, x2, x3, x4, x5g = fx1, x2, x3, x4g[fx5g.Theorem ENUMSET1:51. fx1, x2, x3, x4, x5, x6g = fx1g[fx2, x3, x4, x5, x6g.Theorem ENUMSET1:52. fx1, x2, x3, x4, x5, x6g = fx1, x2g[fx3, x4, x5, x6g.Theorem ENUMSET1:53. fx1, x2, x3, x4, x5, x6g = fx1, x2, x3g[fx4, x5, x6g.Theorem ENUMSET1:54. fx1, x2, x3, x4, x5, x6g = fx1, x2, x3, x4g[fx5, x6g.Theorem ENUMSET1:55. fx1, x2, x3, x4, x5, x6g = fx1, x2, x3, x4, x5g[fx6g.Theorem ENUMSET1:56. fx1, x2, x3, x4, x5, x6, x7g = fx1g[fx2, x3, x4, x5, x6,x7g.Theorem ENUMSET1:57. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2g[fx3, x4, x5, x6,x7g.Theorem ENUMSET1:58. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3g[fx4, x5, x6,x7g.Theorem ENUMSET1:59. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3, x4g[fx5, x6,x7g.Theorem ENUMSET1:60. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3, x4, x5g[fx6,x7g.Theorem ENUMSET1:61. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3, x4, x5, x6g[fx7g.Theorem ENUMSET1:62. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1g[fx2, x3, x4, x5, x6,x7, x8g.Theorem ENUMSET1:63. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2g[fx3, x4, x5, x6,x7, x8g.



32 CHAPTER 6. ENUMSET1Theorem ENUMSET1:64. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3g[fx4, x5, x6,x7, x8g.Theorem ENUMSET1:65. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3, x4g[fx5, x6,x7, x8g.Theorem ENUMSET1:66. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3, x4, x5g[fx6,x7, x8g.Theorem ENUMSET1:67. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3, x4, x5, x6g[fx7, x8g.Theorem ENUMSET1:68. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3, x4, x5, x6,x7g[fx8g.Theorem ENUMSET1:69. fx1, x1g = fx1g.Theorem ENUMSET1:70. fx1, x1, x2g = fx1, x2g.Theorem ENUMSET1:71. fx1, x1, x2, x3g = fx1, x2, x3g.Theorem ENUMSET1:72. fx1, x1, x2, x3, x4g = fx1, x2, x3, x4g.Theorem ENUMSET1:73. fx1, x1, x2, x3, x4, x5g = fx1, x2, x3, x4, x5g.Theorem ENUMSET1:74. fx1, x1, x2, x3, x4, x5, x6g = fx1, x2, x3, x4, x5, x6g.Theorem ENUMSET1:75. fx1, x1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3, x4, x5, x6,x7g.Theorem ENUMSET1:76. fx1, x1, x1g = fx1g.Theorem ENUMSET1:77. fx1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:78. fx1, x1, x1, x2, x3g = fx1, x2, x3g.Theorem ENUMSET1:79. fx1, x1, x1, x2, x3, x4g = fx1, x2, x3, x4g.Theorem ENUMSET1:80. fx1, x1, x1, x2, x3, x4, x5g = fx1, x2, x3, x4, x5g.Theorem ENUMSET1:81. fx1, x1, x1, x2, x3, x4, x5, x6g = fx1, x2, x3, x4, x5, x6g.Theorem ENUMSET1:82. fx1, x1, x1, x1g = fx1g.Theorem ENUMSET1:83. fx1, x1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:84. fx1, x1, x1, x1, x2, x3g = fx1, x2, x3g.Theorem ENUMSET1:85. fx1, x1, x1, x1, x2, x3, x4g = fx1, x2, x3, x4g.Theorem ENUMSET1:86. fx1, x1, x1, x1, x2, x3, x4, x5g = fx1, x2, x3, x4, x5g.Theorem ENUMSET1:87. fx1, x1, x1, x1, x1g = fx1g.Theorem ENUMSET1:88. fx1, x1, x1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:89. fx1, x1, x1, x1, x1, x2, x3g = fx1, x2, x3g.Theorem ENUMSET1:90. fx1, x1, x1, x1, x1, x2, x3, x4g = fx1, x2, x3, x4g.Theorem ENUMSET1:91. fx1, x1, x1, x1, x1, x1g = fx1g.Theorem ENUMSET1:92. fx1, x1, x1, x1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:93. fx1, x1, x1, x1, x1, x1, x2, x3g = fx1, x2, x3g.



33Theorem ENUMSET1:94. fx1, x1, x1, x1, x1, x1, x1g = fx1g.Theorem ENUMSET1:95. fx1, x1, x1, x1, x1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:96. fx1, x1, x1, x1, x1, x1, x1, x1g = fx1g.Theorem ENUMSET1:97. fx1, x2g = fx2, x1g.Theorem ENUMSET1:98. fx1, x2, x3g = fx1, x3, x2g.Theorem ENUMSET1:99. fx1, x2, x3g = fx2, x1, x3g.Theorem ENUMSET1:100. fx1, x2, x3g = fx2, x3, x1g.Theorem ENUMSET1:101. fx1, x2, x3g = fx3, x1, x2g.Theorem ENUMSET1:102. fx1, x2, x3g = fx3, x2, x1g.Theorem ENUMSET1:103. fx1, x2, x3, x4g = fx1, x2, x4, x3g.Theorem ENUMSET1:104. fx1, x2, x3, x4g = fx1, x3, x2, x4g.Theorem ENUMSET1:105. fx1, x2, x3, x4g = fx1, x3, x4, x2g.Theorem ENUMSET1:106. fx1, x2, x3, x4g = fx1, x4, x2, x3g.Theorem ENUMSET1:107. fx1, x2, x3, x4g = fx1, x4, x3, x2g.Theorem ENUMSET1:108. fx1, x2, x3, x4g = fx2, x1, x3, x4g.Theorem ENUMSET1:109. fx1, x2, x3, x4g = fx2, x1, x4, x3g.Theorem ENUMSET1:110. fx1, x2, x3, x4g = fx2, x3, x1, x4g.Theorem ENUMSET1:111. fx1, x2, x3, x4g = fx2, x3, x4, x1g.Theorem ENUMSET1:112. fx1, x2, x3, x4g = fx2, x4, x1, x3g.Theorem ENUMSET1:113. fx1, x2, x3, x4g = fx2, x4, x3, x1g.Theorem ENUMSET1:114. fx1, x2, x3, x4g = fx3, x1, x2, x4g.Theorem ENUMSET1:115. fx1, x2, x3, x4g = fx3, x1, x4, x2g.Theorem ENUMSET1:116. fx1, x2, x3, x4g = fx3, x2, x1, x4g.Theorem ENUMSET1:117. fx1, x2, x3, x4g = fx3, x2, x4, x1g.Theorem ENUMSET1:118. fx1, x2, x3, x4g = fx3, x4, x1, x2g.Theorem ENUMSET1:119. fx1, x2, x3, x4g = fx3, x4, x2, x1g.Theorem ENUMSET1:120. fx1, x2, x3, x4g = fx4, x1, x2, x3g.Theorem ENUMSET1:121. fx1, x2, x3, x4g = fx4, x1, x3, x2g.Theorem ENUMSET1:122. fx1, x2, x3, x4g = fx4, x2, x1, x3g.Theorem ENUMSET1:123. fx1, x2, x3, x4g = fx4, x2, x3, x1g.Theorem ENUMSET1:124. fx1, x2, x3, x4g = fx4, x3, x1, x2g.Theorem ENUMSET1:125. fx1, x2, x3, x4g = fx4, x3, x2, x1g.



Chapter 7SUBSET 1Properties of SubsetsbyZinaida Trybule
 1Warsaw University (Bia lystok)Summary. The text in
ludes theorems 
on
erning properties of subsets, and someoperations on sets. The fun
tions yielding improper subsets of a set, i.e. the emptyset and the set itself are introdu
ed. Fun
tions and predi
ates introdu
ed for setsare rede�ned. Some theorems about enumerated sets are proved.The symbols used in this arti
le are introdu
ed in vo
abularies boole and sub op.The terminology and notation used in this arti
le have been introdu
ed in the followingarti
les: tarski, boole, and enumset1.reserve E, X for set.reserve x, y for Any.Theorem SUBSET 1:1. E 6= ; implies (x is Element of E i� x 2 E).Theorem SUBSET 1:2. x 2 E implies x is Element of E.Theorem SUBSET 1:3. X is Subset of E i� X � E.De�nitionlet E.fun
 ; E ! Subset of E means it = ;.1Supported by RPBP.III-24.C1. 34



35fun
 
E ! Subset of E means it = E.Theorem SUBSET 1:4. ; is Subset of X.Theorem SUBSET 1:5. X is Subset of X.reserve A, B, C for Subset of E.Theorem SUBSET 1:6. x 2 A implies x is Element of E.Theorem SUBSET 1:7. (for x being Element of E holds x 2 A implies x 2 B)implies A � B.Theorem SUBSET 1:8. (for x being Element of E holds x 2 A i� x 2 B) implies A= B.Theorem SUBSET 1:9. x 2 A implies x 2 E.Theorem SUBSET 1:10. A 6= ; i� ex x being Element of E st x 2 A.De�nitionlet E.let A.fun
 A
 ! Subset of E means it = ErA.let B.rede�nefun
 A[B ! Subset of E.fun
 A\B ! Subset of E.fun
 ArB ! Subset of E.fun
 A�� B ! Subset of E.Theorem SUBSET 1:11. x 2 A\B implies x is Element of A & x is Element of B.Theorem SUBSET 1:12. x 2 A[B implies x is Element of A or x is Element of B.Theorem SUBSET 1:13. x 2 ArB implies x is Element of A.Theorem SUBSET 1:14. x 2 A�� B implies x is Element of A or x is Element of B.Theorem SUBSET 1:15. (for x being Element of E holds x 2 A i� x 2 B or x 2 C)implies A = B[C.Theorem SUBSET 1:16. (for x being Element of E holds x 2 A i� x 2 B & x 2 C)implies A = B\C.Theorem SUBSET 1:17. (for x being Element of E holds x 2 A i� x 2 B & not x2 C) implies A = BrC.Theorem SUBSET 1:18. (for x being Element of E holds x 2 A i� not (x 2 B i� x2 C)) implies A = B�� C.Theorem SUBSET 1:19. ; E = ;.Theorem SUBSET 1:20. 
E = E.Theorem SUBSET 1:21. ; E = (
E)
.



36 CHAPTER 7. SUBSET 1Theorem SUBSET 1:22. 
E = (; E)
.Theorem SUBSET 1:23. A
 = ErA.Theorem SUBSET 1:24. A

 = A.Theorem SUBSET 1:25. A[A
 = 
E & A
[A = 
E.Theorem SUBSET 1:26. A\A
 = ; E & A
\A = ; E.Theorem SUBSET 1:27. A\; E = ; E & ; E\A = ; E.Theorem SUBSET 1:28. A[
E = 
E & 
E[A = 
E.Theorem SUBSET 1:29. (A[B)
 = A
\B
.Theorem SUBSET 1:30. (A\B)
 = A
[B
.Theorem SUBSET 1:31. A � B i� B
 � A
.Theorem SUBSET 1:32. ArB = A\B
.Theorem SUBSET 1:33. (ArB)
 = A
[B.Theorem SUBSET 1:34. (A�� B)
 = A\B[A
\B
.Theorem SUBSET 1:35. A � B
 implies B � A
.Theorem SUBSET 1:36. A
 � B implies B
 � A.Theorem SUBSET 1:37. ; E � E.Theorem SUBSET 1:38. A � A
 i� A = ; E.Theorem SUBSET 1:39. A
 � A i� A = 
E.Theorem SUBSET 1:40. X � A & X � A
 implies X = ;.Theorem SUBSET 1:41. (A[B)
 � A
 & (A[B)
 � B
.Theorem SUBSET 1:42. A
 � (A\B)
 & B
 � (A\B)
.Theorem SUBSET 1:43. A misses B i� A � B
.Theorem SUBSET 1:44. A misses B
 i� A � B.Theorem SUBSET 1:45. A misses A
.Theorem SUBSET 1:46. A misses B & A
 misses B
 implies A = B
.Theorem SUBSET 1:47. A � B & C misses B implies A � C
.Theorem SUBSET 1:48. (for a being Element of A holds a 2 B) implies A � B.Theorem SUBSET 1:49. (for x being Element of E holds x 2 A) implies E = A.Theorem SUBSET 1:50. E 6= ; implies for A, B holds A = B
 i� for x beingElement of E holds x 2 A i� not x 2 B.Theorem SUBSET 1:51. E 6= ; implies for A, B holds A = B
 i� for x beingElement of E holds not x 2 A i� x 2 B.Theorem SUBSET 1:52. E 6= ; implies for A, B holds A = B
 i� for x beingElement of E holds not (x 2 A i� x 2 B).Theorem SUBSET 1:53. x 2 A
 implies not x 2 A.



37reserve x1, x2, x3, x4, x5, x6, x7, x8 for Element of X.Theorem SUBSET 1:54. X 6= ; implies fx1g is Subset of X.Theorem SUBSET 1:55. X 6= ; implies fx1, x2g is Subset of X.Theorem SUBSET 1:56. X 6= ; implies fx1, x2, x3g is Subset of X.Theorem SUBSET 1:57. X 6= ; implies fx1, x2, x3, x4g is Subset of X.Theorem SUBSET 1:58. X 6= ; implies fx1, x2, x3, x4, x5g is Subset of X.Theorem SUBSET 1:59. X 6= ; implies fx1, x2, x3, x4, x5, x6g is Subset of X.Theorem SUBSET 1:60. X 6= ; implies fx1, x2, x3, x4, x5, x6, x7g is Subset of X.Theorem SUBSET 1:61. X 6= ; implies fx1, x2, x3, x4, x5, x6, x7, x8g is Subset ofX. reserve x1, x2, x3, x4, x5, x6, x7, x8 for Any.Theorem SUBSET 1:62. x1 2 X implies fx1g is Subset of X.Theorem SUBSET 1:63. x1 2 X & x2 2 X implies fx1, x2g is Subset of X.Theorem SUBSET 1:64. x1 2 X & x2 2 X & x3 2 X implies fx1, x2, x3g is Subsetof X.Theorem SUBSET 1:65. x1 2 X & x2 2 X & x3 2 X & x4 2 X implies fx1, x2, x3,x4g is Subset of X.Theorem SUBSET 1:66. x1 2 X & x2 2 X & x3 2 X & x4 2 X & x5 2 X impliesfx1, x2, x3, x4, x5g is Subset of X.Theorem SUBSET 1:67. x1 2 X & x2 2 X & x3 2 X & x4 2 X & x5 2 X & x6 2 Ximplies fx1, x2, x3, x4, x5, x6g is Subset of X.Theorem SUBSET 1:68. x1 2 X & x2 2 X & x3 2 X & x4 2 X & x5 2 X & x6 2 X& x7 2 X implies fx1, x2, x3, x4, x5, x6, x7g is Subset of X.Theorem SUBSET 1:69. x1 2 X & x2 2 X & x3 2 X & x4 2 X & x5 2 X & x6 2 X& x7 2 X & x8 2 X implies fx1, x2, x3, x4, x5, x6, x7, x8g is Subset of X.s
heme Subset ExfA() ! set, P[Any℄g: ex X being Subset of A() st for x holds x2 X i� x 2 A() & P[x℄.



Chapter 8FUNCT 1Fun
tions and Their Basi
 PropertiesbyCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. The de�nitions of the mode Fun
tion and the graph of a fun
tion areintrodu
ed. The graph of a fun
tion is de�ned to be identi
al with the fun
tion.The following 
on
epts are also de�ned: the domain of a fun
tion, the range ofa fun
tion, the identity fun
tion, the 
omposition of fun
tions, the 1-1 fun
tion,the inverse fun
tion, the restri
tion of a fun
tion, the image and the inverse image.Certain basi
 fa
ts about fun
tions and the notions de�ned in the arti
le are proved.The symbols used in this arti
le are introdu
ed in the following vo
abularies: fam op,boole, real 1, fun
 rel, and fun
. The arti
les tarski and boole provide theterminology and notation for this arti
le.reserve X, X1, X2, Y, Y1, Y2 for set, p, x, x1, x2, y, y1, y2, z, z1, z2 for Any.De�nitionmode Fun
tion ! Any means ex F being set st it = F & (for p st p 2 F exx, y st [x, y℄ = p) & (for x, y1, y2 st [x, y1℄ 2 F & [x, y2℄ 2 F holds y1 = y2).reserve f, f1, f2, g, g1, g2, h for Fun
tion.De�nitionlet f.1Supported by RPBP.III-24.C1. 38



39fun
 graph f ! set means f = it.Theorem FUNCT 1:1. graph f = f.Theorem FUNCT 1:2. for F being set st (for p st p 2 F ex x, y st [x, y℄ = p) &(for x, y1, y2 st [x, y1℄ 2 F & [x, y2℄ 2 F holds y1 = y2) ex f being Fun
tion st graph f= F.Theorem FUNCT 1:3. p 2 graph f implies ex x, y st [x, y℄ = p.Theorem FUNCT 1:4. [x, y1℄ 2 graph f & [x, y2℄ 2 graph f implies y1 = y2.Theorem FUNCT 1:5. graph f = graph g implies f = g.s
heme GraphFun
fA() ! set, P[Any, Any℄g: ex f st for x, y holds [x, y℄ 2 graph fi� x 2 A() & P[x, y℄ provided A: for x, y1, y2 st P[x, y1℄ & P[x, y2℄ holds y1 = y2.De�nitionlet f. fun
 dom f ! set means for x holds x 2 it i� ex y st [x, y℄ 2 graph f.Theorem FUNCT 1:6. X = dom f i� for x holds x 2 X i� ex y st [x, y℄ 2 graph f.De�nitionlet f, x.assume x 2 dom f.fun
 f:x ! Any means [x, it℄ 2 graph f.Theorem FUNCT 1:7. x 2 dom f implies (y = f:x i� [x, y℄ 2 graph f).Theorem FUNCT 1:8. [x, y℄ 2 graph f i� x 2 dom f & y = f:x.Theorem FUNCT 1:9. X = dom f & X = dom g & (for x st x 2 X holds f:x = g:x)implies f = g.De�nitionlet f. fun
 rng f ! set means for y holds y 2 it i� ex x st x 2 dom f & y = f:x.Theorem FUNCT 1:10. Y = rng f i� for y holds y 2 Y i� ex x st x 2 dom f & y =f:x. Theorem FUNCT 1:11. y 2 rng f i� ex x st x 2 dom f & y = f:x.Theorem FUNCT 1:12. x 2 dom f implies f:x 2 rng f.Theorem FUNCT 1:13. dom f = ; i� rng f = ;.Theorem FUNCT 1:14. dom f = fxg implies rng f = ff:xg.s
heme Fun
ExfA() ! set, P[Any, Any℄g: ex f st dom f = A() & for x st x 2 A()holds P[x, f:x℄ provided A: for x, y1, y2 st x 2 A() & P[x, y1℄ & P[x, y2℄ holds y1 =y2 and B: for x st x 2 A() ex y st P[x, y℄.s
heme LambdafA() ! set, F(Any) ! Anyg: ex f being Fun
tion st dom f = A() &for x st x 2 A() holds f:x = F(x).



40 CHAPTER 8. FUNCT 1Theorem FUNCT 1:15. X 6= ; implies for y ex f st dom f = X & rng f = fyg.Theorem FUNCT 1:16. (for f, g st dom f = X & dom g = X holds f = g) implies X= ;.Theorem FUNCT 1:17. dom f = dom g & rng f = fyg & rng g = fyg implies f = g.Theorem FUNCT 1:18. Y 6= ; or X = ; implies ex f st X = dom f & rng f � Y.Theorem FUNCT 1:19. (for y st y 2 Y ex x st x 2 dom f & y = f:x) implies Y �rng f.De�nitionlet f, g.fun
 g�f ! Fun
tion means (for x holds x 2 dom it i� x 2 dom f & f:x 2 domg) & (for x st x 2 dom it holds it:x = g:(f:x)).Theorem FUNCT 1:20. h = g�f i� (for x holds x 2 dom h i� x 2 dom f & f:x 2 domg) & (for x st x 2 dom h holds h:x = g:(f:x)).Theorem FUNCT 1:21. x 2 dom (g�f) i� x 2 dom f & f:x 2 dom g.Theorem FUNCT 1:22. x 2 dom (g�f) implies (g�f):x = g:(f:x).Theorem FUNCT 1:23. x 2 dom f & f:x 2 dom g implies (g�f):x = g:(f:x).Theorem FUNCT 1:24. dom (g�f) � dom f.Theorem FUNCT 1:25. z 2 rng (g�f) implies z 2 rng g.Theorem FUNCT 1:26. rng (g�f) � rng g.Theorem FUNCT 1:27. rng f � dom g i� dom (g�f) = dom f.Theorem FUNCT 1:28. dom g � rng f implies rng (g�f) = rng g.Theorem FUNCT 1:29. rng f = dom g implies dom (g�f) = dom f & rng (g�f) = rng g.Theorem FUNCT 1:30. h�(g�f) = (h�g)�f.Theorem FUNCT 1:31. rng f � dom g & x 2 dom f implies (g�f):x = g:(f:x).Theorem FUNCT 1:32. rng f = dom g & x 2 dom f implies (g�f):x = g:(f:x).Theorem FUNCT 1:33. rng f � Y & (for g, h st dom g = Y & dom h = Y & g�f = h�fholds g = h) implies Y = rng f.De�nitionlet X.fun
 Id X ! Fun
tion means dom it = X & for x st x 2 X holds it:x = x.Theorem FUNCT 1:34. f = Id X i� dom f = X & for x st x 2 X holds f:x = x.Theorem FUNCT 1:35. x 2 X implies (Id X):x = x.Theorem FUNCT 1:36. dom Id X = X & rng Id X = X.Theorem FUNCT 1:37. dom (f�(Id X)) = dom f\X.Theorem FUNCT 1:38. x 2 dom f\X implies f:x = (f�(Id X)):x.Theorem FUNCT 1:39. dom f � X implies f�(Id X) = f.



41Theorem FUNCT 1:40. x 2 dom ((Id Y)�f) i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:41. rng f � Y implies (Id Y)�f = f.Theorem FUNCT 1:42. f�(Id dom f) = f & (Id rng f)�f = f.Theorem FUNCT 1:43. (Id X)�(Id Y) = Id (X\Y).Theorem FUNCT 1:44. dom f = X & rng f = X & dom g = X & g�f = f implies g =Id X.De�nitionlet f. pred f is 1-1 means for x1, x2 st x1 2 dom f & x2 2 dom f & f:x1 = f:x2 holdsx1 = x2.Theorem FUNCT 1:45. f is 1-1 i� for x1, x2 st x1 2 dom f & x2 2 dom f & f:x1 =f:x2 holds x1 = x2.Theorem FUNCT 1:46. f is 1-1 & g is 1-1 implies g�f is 1-1.Theorem FUNCT 1:47. g�f is 1-1 & rng f � dom g implies f is 1-1.Theorem FUNCT 1:48. g�f is 1-1 & rng f = dom g implies f is 1-1 & g is 1-1.Theorem FUNCT 1:49. f is 1-1 i� (for g, h st rng g � dom f & rng h � dom f & domg = dom h & f�g = f�h holds g = h).Theorem FUNCT 1:50. dom f = X & dom g = X & rng g � X & f is 1-1 & f�g = fimplies g = Id X.Theorem FUNCT 1:51. rng (g�f) = rng g & g is 1-1 implies dom g � rng f.Theorem FUNCT 1:52. Id X is 1-1.Theorem FUNCT 1:53. (ex g st g�f = Id dom f) implies f is 1-1.De�nitionlet f.assume f is 1-1.fun
 f�1 ! Fun
tion means dom it = rng f & for y, x holds y 2 rng f & x =it:y i� x 2 dom f & y = f:x.Theorem FUNCT 1:54. f is 1-1 implies (g = f�1 i� dom g = rng f & for y, x holdsy 2 rng f & x = g:y i� x 2 dom f & y = f:x).Theorem FUNCT 1:55. f is 1-1 implies rng f = dom (f�1) & dom f = rng (f�1).Theorem FUNCT 1:56. f is 1-1 & x 2 dom f implies x = (f�1):(f:x) & x = (f�1�f):x.Theorem FUNCT 1:57. f is 1-1 & y 2 rng f implies y = f:((f�1):y) & y = (f�f�1):y.Theorem FUNCT 1:58. f is 1-1 implies dom (f�1�f) = dom f & rng (f�1�f) = dom f.Theorem FUNCT 1:59. f is 1-1 implies dom (f�f�1) = rng f & rng (f�f�1) = rng f.Theorem FUNCT 1:60. f is 1-1 & dom f = rng g & rng f = dom g & (for x, y st x 2dom f & y 2 dom g holds f:x = y i� g:y = x) implies g = f�1.



42 CHAPTER 8. FUNCT 1Theorem FUNCT 1:61. f is 1-1 implies f�1�f = Id dom f & f�f�1 = Id rng f.Theorem FUNCT 1:62. f is 1-1 implies f�1 is 1-1.Theorem FUNCT 1:63. f is 1-1 & rng f = dom g & g�f = Id dom f implies g = f�1.Theorem FUNCT 1:64. f is 1-1 & rng g = dom f & f�g = Id rng f implies g = f�1.Theorem FUNCT 1:65. f is 1-1 implies (f�1)�1 = f.Theorem FUNCT 1:66. f is 1-1 & g is 1-1 implies (g�f)�1 = f�1�g�1.Theorem FUNCT 1:67. (Id X)�1 = (Id X).De�nitionlet f, X.fun
 f�X ! Fun
tion means dom it = dom f\X & for x st x 2 dom it holdsit:x = f:x.Theorem FUNCT 1:68. g = f�X i� dom g = dom f\X & for x st x 2 dom g holdsg:x = f:x.Theorem FUNCT 1:69. dom (f�X) = dom f\X.Theorem FUNCT 1:70. x 2 dom (f�X) implies (f�X):x = f:x.Theorem FUNCT 1:71. x 2 dom f\X implies (f�X):x = f:x.Theorem FUNCT 1:72. x 2 dom f & x 2 X implies (f�X):x = f:x.Theorem FUNCT 1:73. x 2 dom f & x 2 X implies f:x 2 rng (f�X).Theorem FUNCT 1:74. X � dom f implies dom (f�X) = X.Theorem FUNCT 1:75. dom (f�X) � X.Theorem FUNCT 1:76. dom (f�X) � dom f & rng (f�X) � rng f.Theorem FUNCT 1:77. f�X = f�(Id X).Theorem FUNCT 1:78. dom f � X implies f�X = f.Theorem FUNCT 1:79. f�(dom f) = f.Theorem FUNCT 1:80. (f�X)�Y = f�(X\Y).Theorem FUNCT 1:81. (f�X)�X = f�X.Theorem FUNCT 1:82. X � Y implies (f�X)�Y = f�X & (f�Y)�X = f�X.Theorem FUNCT 1:83. (g�f)�X = g�(f�X).Theorem FUNCT 1:84. f is 1-1 implies f�X is 1-1.De�nitionlet Y, f.fun
 Y�f ! Fun
tion means (for x holds x 2 dom it i� x 2 dom f & f:x 2 Y)& (for x st x 2 dom it holds it:x = f:x).Theorem FUNCT 1:85. g = Y�f i� (for x holds x 2 dom g i� x 2 dom f & f:x 2 Y)& (for x st x 2 dom g holds g:x = f:x).



43Theorem FUNCT 1:86. x 2 dom (Y�f) i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:87. x 2 dom (Y�f) implies (Y�f):x = f:x.Theorem FUNCT 1:88. rng (Y�f) � Y.Theorem FUNCT 1:89. dom (Y�f) � dom f & rng (Y�f) � rng f.Theorem FUNCT 1:90. rng (Y�f) = rng f\Y.Theorem FUNCT 1:91. Y � rng f implies rng (Y�f) = Y.Theorem FUNCT 1:92. Y�f = (Id Y)�f.Theorem FUNCT 1:93. rng f � Y implies Y�f = f.Theorem FUNCT 1:94. (rng f)�f = f.Theorem FUNCT 1:95. Y�(X�f) = (Y\X)�f.Theorem FUNCT 1:96. Y�(Y�f) = Y�f.Theorem FUNCT 1:97. X � Y implies Y�(X�f) = X�f & X�(Y�f) = X�f.Theorem FUNCT 1:98. Y�(g�f) = (Y�g)�f.Theorem FUNCT 1:99. f is 1-1 implies Y�f is 1-1.Theorem FUNCT 1:100. (Y�f)�X = Y�(f�X).De�nitionlet f, X.fun
 f�X ! set means for y holds y 2 it i� ex x st x 2 dom f & x 2 X & y= f:x.Theorem FUNCT 1:101. Y = f�X i� for y holds y 2 Y i� ex x st x 2 dom f & x 2X & y = f:x.Theorem FUNCT 1:102. y 2 f�X i� ex x st x 2 dom f & x 2 X & y = f:x.Theorem FUNCT 1:103. f�X � rng f.Theorem FUNCT 1:104. f�(X) = f�(dom f\X).Theorem FUNCT 1:105. f�(dom f) = rng f.Theorem FUNCT 1:106. f�X � f�(dom f).Theorem FUNCT 1:107. rng (f�X) = f�X.Theorem FUNCT 1:108. f�X = ; i� dom f\X = ;.Theorem FUNCT 1:109. f�; = ;.Theorem FUNCT 1:110. X 6= ; & X � dom f implies f�X 6= ;.Theorem FUNCT 1:111. X1 � X2 implies f�X1 � f�X2.Theorem FUNCT 1:112. f�(X1[X2) = f�X1[f�X2.Theorem FUNCT 1:113. f�(X1\X2) � f�X1\f�X2.Theorem FUNCT 1:114. f�X1rf�X2 � f�(X1rX2).Theorem FUNCT 1:115. (g�f)�X = g�(f�X).



44 CHAPTER 8. FUNCT 1Theorem FUNCT 1:116. rng (g�f) = g�(rng f).Theorem FUNCT 1:117. x 2 dom f implies f�fxg = ff:xg.Theorem FUNCT 1:118. x1 2 dom f & x2 2 dom f implies f�fx1, x2g = ff:x1, f:x2g.Theorem FUNCT 1:119. (f�Y)�X � f�X.Theorem FUNCT 1:120. (Y�f)�X � f�X.Theorem FUNCT 1:121. f is 1-1 implies f�(X1\X2) = f�X1\f�X2.Theorem FUNCT 1:122. (for X1, X2 holds f�(X1\X2) = f�X1\f�X2) implies f is 1-1.Theorem FUNCT 1:123. f is 1-1 implies f�(X1rX2) = f�X1rf�X2.Theorem FUNCT 1:124. (for X1, X2 holds f�(X1rX2) = f�X1rf�X2) implies f is 1-1.Theorem FUNCT 1:125. X\Y = ; & f is 1-1 implies f�X\f�Y = ;.Theorem FUNCT 1:126. (Y�f)�X = Y\f�X.De�nitionlet f, Y.fun
 f�1Y ! set means for x holds x 2 it i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:127. X = f�1Y i� for x holds x 2 X i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:128. x 2 f�1Y i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:129. f�1Y � dom f.Theorem FUNCT 1:130. f�1Y = f�1(rng f\Y).Theorem FUNCT 1:131. f�1(rng f) = dom f.Theorem FUNCT 1:132. f�1; = ;.Theorem FUNCT 1:133. f�1Y = ; i� rng f\Y = ;.Theorem FUNCT 1:134. Y � rng f implies (f�1Y = ; i� Y = ;).Theorem FUNCT 1:135. Y1 � Y2 implies f�1Y1 � f�1Y2.Theorem FUNCT 1:136. f�1(Y1[Y2) = f�1Y1[f�1Y2.Theorem FUNCT 1:137. f�1(Y1\Y2) = f�1Y1\f�1Y2.Theorem FUNCT 1:138. f�1(Y1rY2) = f�1Y1rf�1Y2.Theorem FUNCT 1:139. (f�X)�1Y = X\(f�1Y).Theorem FUNCT 1:140. (g�f)�1Y = f�1(g�1Y).Theorem FUNCT 1:141. dom (g�f) = f�1(dom g).Theorem FUNCT 1:142. y 2 rng f i� f�1fyg 6= ;.Theorem FUNCT 1:143. (for y st y 2 Y holds f�1fyg 6= ;) implies Y � rng f.Theorem FUNCT 1:144. (for y st y 2 rng f ex x st f�1fyg = fxg) i� f is 1-1.Theorem FUNCT 1:145. f�(f�1Y) � Y.Theorem FUNCT 1:146. X � dom f implies X � f�1(f�X).Theorem FUNCT 1:147. Y � rng f implies f�(f�1Y) = Y.



45Theorem FUNCT 1:148. f�(f�1Y) = Y\f�(dom f).Theorem FUNCT 1:149. f�(X\f�1Y) � (f�X)\Y.Theorem FUNCT 1:150. f�(X\f�1Y) = (f�X)\Y.Theorem FUNCT 1:151. X\f�1Y � f�1(f�X\Y).Theorem FUNCT 1:152. f is 1-1 implies f�1(f�X) � X.Theorem FUNCT 1:153. (for X holds f�1(f�X) � X) implies f is 1-1.Theorem FUNCT 1:154. f is 1-1 implies f�X = (f�1)�1X.Theorem FUNCT 1:155. f is 1-1 implies f�1Y = (f�1)�Y.Theorem FUNCT 1:156. Y = rng f & dom g = Y & dom h = Y & g�f = h�f implies g= h.Theorem FUNCT 1:157. f�X1 � f�X2 & X1 � dom f & f is 1-1 implies X1 � X2.Theorem FUNCT 1:158. f�1Y1 � f�1Y2 & Y1 � rng f implies Y1 � Y2.Theorem FUNCT 1:159. f is 1-1 i� for y ex x st f�1fyg � fxg.Theorem FUNCT 1:160. rng f � dom g implies f�1X � (g�f)�1(g�X).



Chapter 9FUNCT 2Fun
tions from a Set to a Set.byCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. The arti
le is a 
ontinuation of Fun
tions and Their Basi
 Properties(FUNCT 1). We de�ne the following 
on
epts: a fun
tion from a set X into a setY, denoted by \Fun
tion of X,Y", the set of all fun
tions from a set X into a setY, denoted by Fun
s(X,Y), and the permutation of a set (mode Permutation of X,where X is a set). Theorems and s
hemes in
luded in the arti
le are reformulationsof the theorems of FUNCT 1 in the new terminology. Also some basi
 fa
ts aboutfun
tions of two variables are proved.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,fun
 rel, real 1, fun
, and fun
2. The terminology and notation used in this arti
lehave been introdu
ed in the following arti
les: tarski, boole, and fun
t 1.reserve P, Q, X, X1, X2, Y, Y1, Y2, Z for set.reserve p, q, x, x1, x2, y, y1, y2, z, z1, z2 for Any.De�nitionlet X, Y.assume Y = ; implies X = ;.mode Fun
tion of X, Y ! Fun
tion means X = dom it & rng it � Y.1Supported by RPBP.III-24.C1. 46



47Theorem FUNCT 2:1. (Y = ; implies X = ;) implies for f being Fun
tion holds fis Fun
tion of X, Y i� X = dom f & rng f � Y.Theorem FUNCT 2:2. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsX = dom f & rng f � Y.Theorem FUNCT 2:3. for f being Fun
tion holds f is Fun
tion of dom f, rng f.Theorem FUNCT 2:4. for f being Fun
tion st rng f � Y holds f is Fun
tion of domf, Y.Theorem FUNCT 2:5. for f being Fun
tion st dom f = X & for x st x 2 X holds f:x2 Y holds f is Fun
tion of X, Y.Theorem FUNCT 2:6. for f being Fun
tion of X, Y st Y 6= ; & x 2 X holds f:x 2rng f.Theorem FUNCT 2:7. for f being Fun
tion of X, Y st Y 6= ; & x 2 X holds f:x 2 Y.Theorem FUNCT 2:8. for f being Fun
tion of X, Y st (Y = ; implies X = ;) & rngf � Z holds f is Fun
tion of X, Z.Theorem FUNCT 2:9. for f being Fun
tion of X, Y st (Y = ; implies X = ;) & Y� Z holds f is Fun
tion of X, Z.s
heme Fun
Ex1fX() ! set, Y() ! set, P[Any, Any℄g: ex f being Fun
tion of X(),Y() st for x st x 2 X() holds P[x, f:x℄ provided A1: for x st x 2 X() ex y st y 2 Y()& P[x, y℄ and A2: for x, y1, y2 st x 2 X() & P[x, y1℄ & P[x, y2℄ holds y1 = y2.s
heme Lambda1fX() ! set, Y() ! set, F(Any) ! Anyg: ex f being Fun
tion ofX(), Y() st for x st x 2 X() holds f:x = F(x) provided A: for x st x 2 X() holds F(x)2 Y().De�nitionlet X, Y.fun
 Fun
s (X, Y) ! set means x 2 it i� ex f being Fun
tion st x = f & domf = X & rng f � Y.Theorem FUNCT 2:10. for F being set holds F = Fun
s (X, Y) i� for x holds x 2F i� ex f being Fun
tion st x = f & dom f = X & rng f � Y.Theorem FUNCT 2:11. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsf 2 Fun
s (X, Y).Theorem FUNCT 2:12. for f being Fun
tion of X, X holds f 2 Fun
s (X, X).Theorem FUNCT 2:13. for f being Fun
tion of ;, X holds f 2 Fun
s (;, X).Theorem FUNCT 2:14. X 6= ; implies Fun
s (X, ;) = ;.Theorem FUNCT 2:15. Fun
s (X, Y) = ; implies X 6= ; & Y = ;.Theorem FUNCT 2:16. for f being Fun
tion of X, Y st Y 6= ; & for y st y 2 Y exx st x 2 X & y = f:x holds rng f = Y.Theorem FUNCT 2:17. for f being Fun
tion of X, Y st y 2 Y & rng f = Y ex x st x2 X & f:x = y.



48 CHAPTER 9. FUNCT 2Theorem FUNCT 2:18. for f1, f2 being Fun
tion of X, Y st Y 6= ; & for x st x 2 Xholds f1:x = f2:x holds f1 = f2.Theorem FUNCT 2:19. for f being Fun
tion of X, Y for g being Fun
tion of Y, Z st(Z = ; implies Y = ;) & (Y = ; implies X = ;) holds g�f is Fun
tion of X, Z.Theorem FUNCT 2:20. for f being Fun
tion of X, Y for g being Fun
tion of Y, Z stY 6= ; & Z 6= ; & rng f = Y & rng g = Z holds rng (g�f) = Z.Theorem FUNCT 2:21. for f being Fun
tion of X, Y for g being Fun
tion of Y, Z stY 6= ; & Z 6= ; & x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:22. for f being Fun
tion of X, Y st Y 6= ; holds rng f = Y i�for Z st Z 6= ; for g, h being Fun
tion of Y, Z st g�f = h�f holds g = h.Theorem FUNCT 2:23. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsf�(Id X) = f & (Id Y)�f = f.Theorem FUNCT 2:24. for f being Fun
tion of X, Y for g being Fun
tion of Y, Xst Y 6= ; & f�g = Id Y holds rng f = Y.Theorem FUNCT 2:25. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsf is 1-1 i� for x1, x2 st x1 2 X & x2 2 X & f:x1 = f:x2 holds x1 = x2.Theorem FUNCT 2:26. for f being Fun
tion of X, Y for g being Fun
tion of Y, Z st(Z = ; implies Y = ;) & (Y = ; implies X = ;) & g�f is 1-1 holds f is 1-1.Theorem FUNCT 2:27. for f being Fun
tion of X, Y st X 6= ; & Y 6= ; holds f is1-1 i� for Z for g, h being Fun
tion of Z, X st f�g = f�h holds g = h.Theorem FUNCT 2:28. for f being Fun
tion of X, Y for g being Fun
tion of Y, Z stZ 6= ; & Y 6= ; & rng (g�f) = Z & g is 1-1 holds rng f = Y.Theorem FUNCT 2:29. for f being Fun
tion of X, Y for g being Fun
tion of Y, Xst X 6= ; & Y 6= ; & g�f = Id X holds f is 1-1 & rng g = X.Theorem FUNCT 2:30. for f being Fun
tion of X, Y for g being Fun
tion of Y, Z st(Z = ; implies Y = ;) & g�f is 1-1 & rng f = Y holds f is 1-1 & g is 1-1.Theorem FUNCT 2:31. for f being Fun
tion of X, Y st f is 1-1 & (X = ; i� Y = ;)& rng f = Y holds f�1 is Fun
tion of Y, X.Theorem FUNCT 2:32. for f being Fun
tion of X, Y st Y 6= ; & f is 1-1 & x 2 Xholds (f�1):(f:x) = x.Theorem FUNCT 2:33. for f being Fun
tion of X, Y st rng f = Y & f is 1-1 & y 2 Yholds f:((f�1):y) = y.Theorem FUNCT 2:34. for f being Fun
tion of X, Y for g being Fun
tion of Y, Xst X 6= ; & Y 6= ; & rng f = Y & f is 1-1 & for y, x holds y 2 Y & g:y = x i� x 2 X &f:x = y holds g = f�1.Theorem FUNCT 2:35. for f being Fun
tion of X, Y st Y 6= ; & rng f = Y & f is 1-1holds f�1�f = Id X & f�f�1 = Id Y.Theorem FUNCT 2:36. for f being Fun
tion of X, Y for g being Fun
tion of Y, X



49st X 6= ; & Y 6= ; & rng f = Y & g�f = Id X & f is 1-1 holds g = f�1.Theorem FUNCT 2:37. for f being Fun
tion of X, Y st Y 6= ; & ex g being Fun
tionof Y, X st g�f = Id X holds f is 1-1.Theorem FUNCT 2:38. for f being Fun
tion of X, Y st (Y = ; implies X = ;) & Z� X holds f�Z is Fun
tion of Z, Y.Theorem FUNCT 2:39. for f being Fun
tion of X, Y st Y 6= ; & x 2 X & x 2 Zholds (f�Z):x = f:x.Theorem FUNCT 2:40. for f being Fun
tion of X, Y st (Y = ; implies X = ;) & X� Z holds f�Z = f.Theorem FUNCT 2:41. for f being Fun
tion of X, Y st Y 6= ; & x 2 X & f:x 2 Zholds (Z�f):x = f:x.Theorem FUNCT 2:42. for f being Fun
tion of X, Y st (Y = ; implies X = ;) & Y� Z holds Z�f = f.Theorem FUNCT 2:43. for f being Fun
tion of X, Y st Y 6= ; for y holds y 2 f�Pi� ex x st x 2 X & x 2 P & y = f:x.Theorem FUNCT 2:44. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsf�P � Y.Theorem FUNCT 2:45. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsf�X = rng f.Theorem FUNCT 2:46. for f being Fun
tion of X, Y st Y 6= ; for x holds x 2 f�1Qi� x 2 X & f:x 2 Q.Theorem FUNCT 2:47. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsf�1Q � X.Theorem FUNCT 2:48. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsf�1Y = X.Theorem FUNCT 2:49. for f being Fun
tion of X, Y st Y 6= ; holds (for y st y 2 Yholds f�1fyg 6= ;) i� rng f = Y.Theorem FUNCT 2:50. for f being Fun
tion of X, Y st (Y = ; implies X = ;) & P� X holds P � f�1(f�P).Theorem FUNCT 2:51. for f being Fun
tion of X, Y st Y = ; implies X = ; holdsf�1(f�X) = X.Theorem FUNCT 2:52. for f being Fun
tion of X, Y st (Y = ; implies X = ;) &rng f = Y holds f�(f�1Y) = Y.Theorem FUNCT 2:53. for f being Fun
tion of X, Y for g being Fun
tion of Y, Z st(Z = ; implies Y = ;) & (Y = ; implies X = ;) holds f�1Q � (g�f)�1(g�Q).Theorem FUNCT 2:54. for f being Fun
tion of ;, Y holds dom f = ; & rng f = ;.Theorem FUNCT 2:55. for f being Fun
tion st dom f = ; holds f is Fun
tion of ;,Y.



50 CHAPTER 9. FUNCT 2Theorem FUNCT 2:56. for f1 being Fun
tion of ;, Y1 for f2 being Fun
tion of ;,Y2 holds f1 = f2.Theorem FUNCT 2:57. for f being Fun
tion of ;, Y for g being Fun
tion of Y, Z stZ = ; implies Y = ; holds g�f is Fun
tion of ;, Z.Theorem FUNCT 2:58. for f being Fun
tion of ;, Y holds f is 1-1.Theorem FUNCT 2:59. for f being Fun
tion of ;, Y holds f�P = ;.Theorem FUNCT 2:60. for f being Fun
tion of ;, Y holds f�1Q = ;.Theorem FUNCT 2:61. for f being Fun
tion of fxg, Y st Y 6= ; holds f:x 2 Y.Theorem FUNCT 2:62. for f being Fun
tion of fxg, Y st Y 6= ; holds rng f = ff:xg.Theorem FUNCT 2:63. for f being Fun
tion of fxg, Y st Y 6= ; holds f is 1-1.Theorem FUNCT 2:64. for f being Fun
tion of fxg, Y st Y 6= ; holds f�P � ff:xg.Theorem FUNCT 2:65. for f being Fun
tion of X, fyg st x 2 X holds f:x = y.Theorem FUNCT 2:66. for f1, f2 being Fun
tion of X, fyg holds f1 = f2.De�nitionlet X.let f, g being Fun
tion of X, X.rede�nefun
 g�f ! Fun
tion of X, X.De�nitionlet X.rede�nefun
 Id X ! Fun
tion of X, X.Theorem FUNCT 2:67. for f being Fun
tion of X, X holds dom f = X & rng f � X.Theorem FUNCT 2:68. for f being Fun
tion st dom f = X & rng f � X holds f isFun
tion of X, X.Theorem FUNCT 2:69. for f being Fun
tion of X, X st x 2 X holds f:x 2 X.Theorem FUNCT 2:70. for f, g being Fun
tion of X, X st x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:71. for f being Fun
tion of X, X for g being Fun
tion of X, Yst Y 6= ; & x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:72. for f being Fun
tion of X, Y for g being Fun
tion of Y, Yst Y 6= ; & x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:73. for f, g being Fun
tion of X, X st rng f = X & rng g = Xholds rng (g�f) = X.Theorem FUNCT 2:74. for f being Fun
tion of X, X holds f�(Id X) = f & (Id X)�f =f.



51Theorem FUNCT 2:75. for f, g being Fun
tion of X, X st g�f = f & rng f = X holdsg = Id X.Theorem FUNCT 2:76. for f, g being Fun
tion of X, X st f�g = f & f is 1-1 holds g= Id X.Theorem FUNCT 2:77. for f being Fun
tion of X, X holds f is 1-1 i� for x1, x2 stx1 2 X & x2 2 X & f:x1 = f:x2 holds x1 = x2.Theorem FUNCT 2:78. for f being Fun
tion of X, X holds f�P � X.De�nitionlet X.let f be Fun
tion of X, X.let P.rede�nefun
 f�P ! Subset of X.Theorem FUNCT 2:79. for f being Fun
tion of X, X holds f�X = rng f.Theorem FUNCT 2:80. for f being Fun
tion of X, X holds f�1Q � X.De�nitionlet X.let f be Fun
tion of X, X.let Q.rede�nefun
 f�1Q ! Subset of X.Theorem FUNCT 2:81. for f being Fun
tion of X, X st rng f = X holds f�(f�1X) =X. Theorem FUNCT 2:82. for f being Fun
tion of X, X holds f�1(f�X) = X.De�nitionlet X.mode Permutation of X ! Fun
tion of X, X means it is 1-1 & rng it = X.Theorem FUNCT 2:83. for f being Fun
tion of X, X holds f is Permutation of X i�f is 1-1 & rng f = X.Theorem FUNCT 2:84. for f being Permutation of X holds f is 1-1 & rng f = X.Theorem FUNCT 2:85. for f being Permutation of X for x1, x2 st x1 2 X & x2 2 X& f:x1 = f:x2 holds x1 = x2.De�nitionlet X.let f, g be Permutation of X.rede�nefun
 g�f ! Permutation of X.



52 CHAPTER 9. FUNCT 2De�nitionlet X.rede�nefun
 Id X ! Permutation of X.De�nitionlet X.let f be Permutation of X.rede�nefun
 f�1 ! Permutation of X.Theorem FUNCT 2:86. for f, g being Permutation of X st g�f = g holds f = Id X.Theorem FUNCT 2:87. for f, g being Permutation of X st g�f = Id X holds g = f�1.Theorem FUNCT 2:88. for f being Permutation of X holds (f�1)�f = Id X & f�(f�1)= Id X.Theorem FUNCT 2:89. for f being Permutation of X holds (f�1)�1 = f.Theorem FUNCT 2:90. for f, g being Permutation of X holds (g�f)�1 = f�1�g�1.Theorem FUNCT 2:91. for f being Permutation of X st P\Q = ; holds f�P\f�Q =;. Theorem FUNCT 2:92. for f being Permutation of X st P � X holds f�(f�1P) = P& f�1(f�P) = P.Theorem FUNCT 2:93. for f being Permutation of X holds f�P = (f�1)�1P & f�1P= (f�1)�P.reserve C, D, E for DOMAIN.De�nitionlet X, D, E.let f be Fun
tion of X, D.let g be Fun
tion of D, E.rede�nefun
 g�f ! Fun
tion of X, E.De�nitionlet X, D.rede�nemode Fun
tion of X, D means X = dom it & rng it � D.Theorem FUNCT 2:94. for f being Fun
tion of X, D holds dom f = X & rng f � D.Theorem FUNCT 2:95. for f being Fun
tion st dom f = X & rng f � D holds f isFun
tion of X, D.Theorem FUNCT 2:96. for f being Fun
tion of X, D st x 2 X holds f:x 2 D.



53Theorem FUNCT 2:97. for f being Fun
tion of fxg, D holds f:x 2 D.Theorem FUNCT 2:98. for f1, f2 being Fun
tion of X, D st for x st x 2 X holdsf1:x = f2:x holds f1 = f2.Theorem FUNCT 2:99. for f being Fun
tion of X, D for g being Fun
tion of D, Est x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:100. for f being Fun
tion of X, D holds f�(Id X) = f & (Id D)�f= f.Theorem FUNCT 2:101. for f being Fun
tion of X, D holds f is 1-1 i� for x1, x2 stx1 2 X & x2 2 X & f:x1 = f:x2 holds x1 = x2.Theorem FUNCT 2:102. for f being Fun
tion of X, D for y holds y 2 f�P i� ex x stx 2 X & x 2 P & y = f:x.Theorem FUNCT 2:103. for f being Fun
tion of X, D holds f�P � D.De�nitionlet X, D.let f be Fun
tion of X, D.let P.rede�nefun
 f�P ! Subset of D.Theorem FUNCT 2:104. for f being Fun
tion of X, D holds f�X = rng f.Theorem FUNCT 2:105. for f being Fun
tion of X, D st f�X = D holds rng (f) = D.Theorem FUNCT 2:106. for f being Fun
tion of X, D for x holds x 2 f�1Q i� x 2X & f:x 2 Q.Theorem FUNCT 2:107. for f being Fun
tion of X, D holds f�1Q � X.De�nitionlet X, D.let f be Fun
tion of X, D.let Q.rede�nefun
 f�1Q ! Subset of X.Theorem FUNCT 2:108. for f being Fun
tion of X, D holds f�1D = X.Theorem FUNCT 2:109. for f being Fun
tion of X, D holds (for y st y 2 D holdsf�1fyg 6= ;) i� rng f = D.Theorem FUNCT 2:110. for f being Fun
tion of X, D holds f�1(f�X) = X.Theorem FUNCT 2:111. for f being Fun
tion of X, D st rng f = D holds f�(f�1D) =D. Theorem FUNCT 2:112. for f being Fun
tion of X, D for g being Fun
tion of D, Eholds f�1Q � (g�f)�1(g�Q).



54 CHAPTER 9. FUNCT 2reserve 
, 
1, 
2 for Element of C.reserve d, d1, d2 for Element of D.De�nitionlet C, D.let f be Fun
tion of C, D.let 
.rede�nefun
 f:
 ! Element of D.s
heme Fun
ExDfC() ! DOMAIN, D() ! DOMAIN, P[Any, Any℄g: ex f being Fun
-tion of C(), D() st for x being Element of C() holds P[x, f:x℄ provided A1: for x beingElement of C() ex y being Element of D() st P[x, y℄ and A2: for x being (Element ofC()), y1, y2 being Element of D() st P[x, y1℄ & P[x, y2℄ holds y1 = y2.s
heme LambdaDfC() ! DOMAIN, D() ! DOMAIN, F((Element of C())) ! Elementof D()g: ex f being Fun
tion of C(), D() st for x being Element of C() holds f:x = F(x).Theorem FUNCT 2:113. for f1, f2 being Fun
tion of C, D st for 
 holds f1:
 = f2:
holds f1 = f2.Theorem FUNCT 2:114. (Id C):
 = 
.Theorem FUNCT 2:115. for f being Fun
tion of C, D for g being Fun
tion of D, Eholds (g�f):
 = g:(f:
).Theorem FUNCT 2:116. for f being Fun
tion of C, D for d holds d 2 f�P i� ex 
 st
 2 P & d = f:
.Theorem FUNCT 2:117. for f being Fun
tion of C, D for 
 holds 
 2 f�1Q i� f:
 2Q. Theorem FUNCT 2:118. for f1, f2 being Fun
tion of [[X, Y℄℄, Z st Z 6= ; & for x, yst x 2 X & y 2 Y holds f1:[x, y℄ = f2:[x, y℄ holds f1 = f2.Theorem FUNCT 2:119. for f being Fun
tion of [[X, Y℄℄, Z st x 2 X & y 2 Y & Z 6=; holds f:[x, y℄ 2 Z.s
heme Fun
Ex2fX() ! set, Y() ! set, Z() ! set, P[Any, Any, Any℄g: ex f beingFun
tion of [[X(), Y()℄℄, Z() st for x, y st x 2 X() & y 2 Y() holds P[x, y, f:[x, y℄℄ providedA1: for x, y st x 2 X() & y 2 Y() ex z st z 2 Z() & P[x, y, z℄ and A2: for x, y, z1, z2st x 2 X() & y 2 Y() & P[x, y, z1℄ & P[x, y, z2℄ holds z1 = z2.s
heme Lambda2fX() ! set, Y() ! set, Z() ! set, F(Any, Any) ! Anyg: ex f beingFun
tion of [[X(), Y()℄℄, Z() st for x, y st x 2 X() & y 2 Y() holds f:[x, y℄ = F(x, y)provided A: for x, y st x 2 X() & y 2 Y() holds F(x, y) 2 Z().Theorem FUNCT 2:120. for f1, f2 being Fun
tion of [[C, D℄℄, E st for 
, d holds f1:[
, d℄ = f2:[
, d℄ holds f1 = f2.s
heme Fun
Ex2DfX() ! DOMAIN, Y() ! DOMAIN, Z() ! DOMAIN, P[Any, Any,Any℄g: ex f being Fun
tion of [[X(), Y()℄℄, Z() st for x being Element of X() for y being



55Element of Y() holds P[x, y, f:[x, y℄℄ provided A1: for x being Element of X() for ybeing Element of Y() ex z being Element of Z() st P[x, y, z℄ and A2: for x beingElement of X() for y being Element of Y() for z1, z2 being Element of Z() st P[x, y, z1℄& P[x, y, z2℄ holds z1 = z2.s
heme Lambda2DfX() ! DOMAIN, Y() ! DOMAIN, Z() ! DOMAIN, F((Elementof X()), Element of Y()) ! Element of Z()g: ex f being Fun
tion of [[X(), Y()℄℄, Z() stfor x being Element of X() for y being Element of Y() holds f:[x, y℄ = F(x, y).



Chapter 10FUNCT 3Basi
 Fun
tions and Operations on Fun
tionsbyCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. We de�ne the following mappings: the 
hara
teristi
 fun
tion of asubset of a set, the in
lusion fun
tion (inje
tion or embedding), the proje
tionsfrom a 
artesian produ
t onto its arguments and diagonal fun
tion (in
lusion ofa set into its 
artesian square). Some operations on fun
tions are also de�ned:the produ
ts of two fun
tions (the 
omplex fun
tion and the more general produ
t-fun
tion), the fun
tion indu
ed on power sets by the image and inverse-image. Somesimple propositions related to the introdu
ed notions are proved.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,binop, fun
, fun
 rel, real 1, fun
3, and fam op. The terminology and nota-tion used in this arti
le have been introdu
ed in the following arti
les: tarski, boole,fun
t 1, and fun
t 2.reserve p, q, x, x1, x2, y, y1, y2, z, z1, z2 for Any.reserve A, B, V, X, X1, X2, Y, Y1, Y2, Z, P for set.reserve C, C1, C2, D, D1, D2 for DOMAIN.Theorem FUNCT 3:1. A � Y implies Id A = (Id Y)�A.Theorem FUNCT 3:2. for f, g being Fun
tion st X � dom (g�f) holds f�X � dom g.1Supported by RPBP.III-24.C1. 56



57Theorem FUNCT 3:3. for f, g being Fun
tion st X � dom f & f�X � dom g holds X� dom (g�f).Theorem FUNCT 3:4. for f, g being Fun
tion st Y � rng (g�f) & g is 1-1 holds g�1Y� rng f.Theorem FUNCT 3:5. for f, g being Fun
tion st Y � rng g & g�1Y � rng f holds Y� rng (g�f).s
heme Fun
Ex 3fA() ! set, B() ! set, P[Any, Any, Any℄g: ex f being Fun
tion stdom f = [[A(), B()℄℄ & for x, y st x 2 A() & y 2 B() holds P[x, y, f:[x, y℄℄ provided A:for x, y, z1, z2 st x 2 A() & y 2 B() & P[x, y, z1℄ & P[x, y, z2℄ holds z1 = z2 and B: forx, y st x 2 A() & y 2 B() ex z st P[x, y, z℄.s
heme Lambda 3fA() ! set, B() ! set, F(Any, Any) ! Anyg: ex f being Fun
tionst dom f = [[A(), B()℄℄ & for x, y st x 2 A() & y 2 B() holds f:[x, y℄ = F(x, y).Theorem FUNCT 3:6. for f, g being Fun
tion st dom f = [[X, Y℄℄ & dom g = [[X, Y℄℄& for x, y st x 2 X & y 2 Y holds f:[x, y℄ = g:[x, y℄ holds f = g.De�nitionlet f be Fun
tion.fun
�f ! Fun
tionmeans dom it = bool dom f & for X st X 2 bool dom f holdsit:X = f�X.Theorem FUNCT 3:7. for f, g being Fun
tion holds g =�f i� dom g = bool dom f &for X st X 2 bool dom f holds g:X = f�X.Theorem FUNCT 3:8. for f being Fun
tion st X 2 dom (�f) holds (�f):X = f�X.Theorem FUNCT 3:9. for f being Fun
tion holds (�f):; = ;.Theorem FUNCT 3:10. for f being Fun
tion holds rng (�f) � bool rng f.Theorem FUNCT 3:11. for f being Fun
tion holds Y 2 (�f)�A i� ex X st X 2 dom(�f) & X 2 A & Y = (�f):X.Theorem FUNCT 3:12. for f being Fun
tion holds (�f)�A � bool rng f.Theorem FUNCT 3:13. for f being Fun
tion holds (�f)�1B � bool dom f.Theorem FUNCT 3:14. for f being Fun
tion of X, D holds (�f)�1B � bool X.Theorem FUNCT 3:15. for f being Fun
tion holds S((�f)�A) � f�(SA).Theorem FUNCT 3:16. for f being Fun
tion st A � bool dom f holds f�(SA) = S((�f)�A).Theorem FUNCT 3:17. for f being Fun
tion of X, D st A � bool X holds f�(SA) =S((�f)�A).Theorem FUNCT 3:18. for f being Fun
tion holds S((�f)�1B) � f�1(SB).Theorem FUNCT 3:19. for f being Fun
tion st B � bool rng f holds f�1(SB) =S((�f)�1B).Theorem FUNCT 3:20. for f, g being Fun
tion holds�(g�f) =�g��f.



58 CHAPTER 10. FUNCT 3Theorem FUNCT 3:21. for f being Fun
tion holds�f is Fun
tion of bool dom f, boolrng f.Theorem FUNCT 3:22. for f being Fun
tion of X, Y st Y = ; implies X = ; holds�fis Fun
tion of bool X, bool Y.De�nitionlet X, D.let f be Fun
tion of X, D.rede�nefun
�f ! Fun
tion of bool X, bool D.De�nitionlet f be Fun
tion.fun
�1f ! Fun
tionmeans dom it = bool rng f & for Y st Y 2 bool rng f holdsit:Y = f�1Y.Theorem FUNCT 3:23. for g, f being Fun
tion holds g =�1f i� dom g = bool rng f& for Y st Y 2 bool rng f holds g:Y = f�1Y.Theorem FUNCT 3:24. for f being Fun
tion st Y 2 dom (�1f) holds (�1f):Y = f�1Y.Theorem FUNCT 3:25. for f being Fun
tion holds rng (�1f) � bool dom f.Theorem FUNCT 3:26. for f being Fun
tion holds X 2 (�1f)�A i� ex Y st Y 2 dom(�1f) & Y 2 A & X = (�1f):Y.Theorem FUNCT 3:27. for f being Fun
tion holds (�1f)�B � bool dom f.Theorem FUNCT 3:28. for f being Fun
tion holds (�1f)�1A � bool rng f.Theorem FUNCT 3:29. for f being Fun
tion holds S((�1f)�B) � f�1(SB).Theorem FUNCT 3:30. for f being Fun
tion st B � bool rng f holds S((�1f)�B) =f�1(SB).Theorem FUNCT 3:31. for f being Fun
tion holds S((�1f)�1A) � f�(SA).Theorem FUNCT 3:32. for f being Fun
tion st A � bool dom f & f is 1-1 holdsS((�1f)�1A) = f�(SA).Theorem FUNCT 3:33. for f being Fun
tion holds (�1f)�B � (�f)�1B.Theorem FUNCT 3:34. for f being Fun
tion st f is 1-1 holds (�1f)�B = (�f)�1B.Theorem FUNCT 3:35. for f being Fun
tion, A be set st A � bool dom f holds(�1f)�1A � (�f)�A.Theorem FUNCT 3:36. for f being Fun
tion, A be set st f is 1-1 holds (�f)�A �(�1f)�1A.Theorem FUNCT 3:37. for f being Fun
tion, A be set st f is 1-1 & A � bool dom fholds (�1f)�1A = (�f)�A.Theorem FUNCT 3:38. for f, g being Fun
tion st g is 1-1 holds�1(g�f) =�1f��1g.



59Theorem FUNCT 3:39. for f being Fun
tion holds�1f is Fun
tion of bool rng f, booldom f.De�nitionlet A, X.fun
 �(A, X) ! Fun
tion means dom it = X & for x st x 2 X holds (x 2 Aimplies it:x = 1) & (not x 2 A implies it:x = 0).Theorem FUNCT 3:40. for f being Fun
tion holds f = �(A, X) i� dom f = X & forx st x 2 X holds (x 2 A implies f:x = 1) & (not x 2 A implies f:x = 0).Theorem FUNCT 3:41. A � X & x 2 A implies �(A, X):x = 1.Theorem FUNCT 3:42. x 2 X & �(A, X):x = 1 implies x 2 A.Theorem FUNCT 3:43. x 2 XrA implies �(A, X):x = 0.Theorem FUNCT 3:44. x 2 X & �(A, X):x = 0 implies not x 2 A.Theorem FUNCT 3:45. x 2 X implies �(;, X):x = 0.Theorem FUNCT 3:46. x 2 X implies �(X, X):x = 1.Theorem FUNCT 3:47. A � X & B � X & �(A, X) = �(B, X) implies A = B.Theorem FUNCT 3:48. rng �(A, X) � f0, 1g.Theorem FUNCT 3:49. for f being Fun
tion of X, f0, 1g holds f = �(f�1f1g, X).De�nitionlet A, X.rede�nefun
 �(A, X) ! Fun
tion of X, f0, 1g.Theorem FUNCT 3:50. for d being Element of D holds �(A, D):d = 1 i� d 2 A.Theorem FUNCT 3:51. for d being Element of D holds �(A, D):d = 0 i� not d 2A.De�nitionlet Y.let A be Subset of Y.fun
 in
l (A) ! Fun
tion of A, Y means it = Id A.Theorem FUNCT 3:52. for A being Subset of Y holds in
l A = Id A.Theorem FUNCT 3:53. for A being Subset of Y holds in
l A = (Id Y)�A.Theorem FUNCT 3:54. for A being Subset of Y holds dom in
l A = A & rng in
l A= A.Theorem FUNCT 3:55. for A being Subset of Y st x 2 A holds (in
l A):x = x.Theorem FUNCT 3:56. for A being Subset of Y st x 2 A holds in
l (A):x 2 Y.De�nitionlet X, Y.



60 CHAPTER 10. FUNCT 3fun
 �1(X, Y) ! Fun
tion means dom it = [[X, Y℄℄ & for x, y st x 2 X & y 2Y holds it:[x, y℄ = x.fun
 �2(X, Y) ! Fun
tion means dom it = [[X, Y℄℄ & for x, y st x 2 X & y 2Y holds it:[x, y℄ = y.Theorem FUNCT 3:57. for f being Fun
tion holds f = �1(X, Y) i� dom f = [[X, Y℄℄& for x, y st x 2 X & y 2 Y holds f:[x, y℄ = x.Theorem FUNCT 3:58. for f being Fun
tion holds f = �2(X, Y) i� dom f = [[X, Y℄℄& for x, y st x 2 X & y 2 Y holds f:[x, y℄ = y.Theorem FUNCT 3:59. rng �1(X, Y) � X.Theorem FUNCT 3:60. Y 6= ; implies rng �1(X, Y) = X.Theorem FUNCT 3:61. rng �2(X, Y) � Y.Theorem FUNCT 3:62. X 6= ; implies rng �2(X, Y) = Y.De�nitionlet X, Y.rede�nefun
 �1(X, Y) ! Fun
tion of [[X, Y℄℄, X.fun
 �2(X, Y) ! Fun
tion of [[X, Y℄℄, Y.Theorem FUNCT 3:63. for d1 being Element of D1 for d2 being Element of D2holds �1(D1, D2):[d1, d2℄ = d1.Theorem FUNCT 3:64. for d1 being Element of D1 for d2 being Element of D2holds �2(D1, D2):[d1, d2℄ = d2.De�nitionlet X.fun
 Æ(X) ! Fun
tion means dom it = X & for x st x 2 X holds it:x = [x, x℄.Theorem FUNCT 3:65. for f being Fun
tion holds f = ÆX i� dom f = X & for x stx 2 X holds f:x = [x, x℄.Theorem FUNCT 3:66. rng ÆX � [[X, X℄℄.De�nitionlet X.rede�nefun
 Æ(X) ! Fun
tion of X, [[X, X℄℄.De�nitionlet f, g be Fun
tion.fun
 [(f, g)℄ ! Fun
tion means dom it = dom f\dom g & for x st x 2 dom itholds it:x = [f:x, g:x℄.Theorem FUNCT 3:67. for f, g, fg being Fun
tion holds fg = [(f, g)℄ i� dom fg = domf\dom g & for x st x 2 dom fg holds fg:x = [f:x, g:x℄.



61Theorem FUNCT 3:68. for f, g being Fun
tion st x 2 dom f\dom g holds [(f, g)℄:x =[f:x, g:x℄.Theorem FUNCT 3:69. for f, g being Fun
tion st dom f = X & dom g = X & x 2 Xholds [(f, g)℄:x = [f:x, g:x℄.Theorem FUNCT 3:70. for f, g being Fun
tion st dom f = X & dom g = X holdsdom [(f, g)℄ = X.Theorem FUNCT 3:71. for f, g being Fun
tion holds rng [(f, g)℄ � [[rng f, rng g℄℄.Theorem FUNCT 3:72. for f, g being Fun
tion st dom f = dom g & rng f � Y & rngg � Z holds �1(Y, Z)�[(f, g)℄ = f & �2(Y, Z)�[(f, g)℄ = g.Theorem FUNCT 3:73. [(�1(X, Y), �2(X, Y))℄ = Id [[X, Y℄℄.Theorem FUNCT 3:74. for f, g, h, k being Fun
tion st dom f = dom g & dom k =dom h & [(f, g)℄ = [(k, h)℄ holds f = k & g = h.Theorem FUNCT 3:75. for f, g, h being Fun
tion holds [(f�h, g�h)℄ = [(f, g)℄�h.Theorem FUNCT 3:76. for f, g being Fun
tion holds [(f, g)℄�A � [[f�A, g�A℄℄.Theorem FUNCT 3:77. for f, g being Fun
tion holds [(f, g)℄�1[[B, C℄℄ = f�1B\g�1C.Theorem FUNCT 3:78. for f being Fun
tion of X, Y for g being Fun
tion of X, Z st(Y = ; implies X = ;) & (Z = ; implies X = ;) holds [(f, g)℄ is Fun
tion of X, [[Y, Z℄℄.De�nitionlet X, D1, D2.let f1 be Fun
tion of X, D1.let f2 be Fun
tion of X, D2.rede�nefun
 [(f1, f2)℄ ! Fun
tion of X, [[D1, D2℄℄.Theorem FUNCT 3:79. for f1 being Fun
tion of C, D1 for f2 being Fun
tion of C,D2 for 
 being Element of C holds [(f1, f2)℄:
 = [f1:
, f2:
℄.Theorem FUNCT 3:80. for f being Fun
tion of X, Y for g being Fun
tion of X, Z st(Y = ; implies X = ;) & (Z = ; implies X = ;) holds rng [(f, g)℄ � [[Y, Z℄℄.Theorem FUNCT 3:81. for f being Fun
tion of X, Y for g being Fun
tion of X, Z st(Y = ; implies X = ;) & (Z = ; implies X = ;) holds �1(Y, Z)�[(f, g)℄ = f & �2(Y, Z)�[(f, g)℄ = g.Theorem FUNCT 3:82. for f being Fun
tion of X, D1 for g being Fun
tion of X, D2holds �1(D1, D2)�[(f, g)℄ = f & �2(D1, D2)�[(f, g)℄ = g.Theorem FUNCT 3:83. for f1, f2 being Fun
tion of X, Y for g1, g2 being Fun
tionof X, Z st (Y = ; implies X = ;) & (Z = ; implies X = ;) & [(f1, g1)℄ = [(f2, g2)℄ holdsf1 = f2 & g1 = g2.Theorem FUNCT 3:84. for f1, f2 being Fun
tion of X, D1 for g1, g2 being Fun
tionof X, D2 st [(f1, g1)℄ = [(f2, g2)℄ holds f1 = f2 & g1 = g2.



62 CHAPTER 10. FUNCT 3De�nitionlet f, g be Fun
tion.fun
 [[f, g℄℄ ! Fun
tion means dom it = [[dom f, dom g℄℄ & for x, y st x 2 domf & y 2 dom g holds it:[x, y℄ = [f:x, g:y℄.Theorem FUNCT 3:85. for f, g, fg being Fun
tion holds fg = [[f, g℄℄ i� dom fg = [[domf, dom g℄℄ & for x, y st x 2 dom f & y 2 dom g holds fg:[x, y℄ = [f:x, g:y℄.Theorem FUNCT 3:86. for f, g being Fun
tion, x, y st [x, y℄ 2 [[dom f, dom g℄℄ holds[[f, g℄℄:[x, y℄ = [f:x, g:y℄.Theorem FUNCT 3:87. for f, g being Fun
tion holds [[f, g℄℄ = [(f��1(dom f, dom g), g��2(dom f, dom g))℄.Theorem FUNCT 3:88. for f, g being Fun
tion holds rng [[f, g℄℄ = [[rng f, rng g℄℄.Theorem FUNCT 3:89. for f, g being Fun
tion st dom f = X & dom g = X holds [(f,g)℄ = [[f, g℄℄�(ÆX).Theorem FUNCT 3:90. [[Id X, Id Y℄℄ = Id [[X, Y℄℄.Theorem FUNCT 3:91. for f, g, h, k being Fun
tion holds [[f, h℄℄�[(g, k)℄ = [(f�g, h�k)℄.Theorem FUNCT 3:92. for f, g, h, k being Fun
tion holds [[f, h℄℄�[[g, k℄℄ = [[f�g, h�k℄℄.Theorem FUNCT 3:93. for f, g being Fun
tion holds [[f, g℄℄�[[B, C℄℄ = [[f�B, g�C℄℄.Theorem FUNCT 3:94. for f, g being Fun
tion holds [[f, g℄℄�1[[B, C℄℄ = [[f�1B, g�1C℄℄.Theorem FUNCT 3:95. for f being Fun
tion of X, Y for g being Fun
tion of V, Z st(Y = ; implies X = ;) & (Z = ; implies V = ;) holds [[f, g℄℄ is Fun
tion of [[X, V℄℄, [[Y,Z℄℄.De�nitionlet X1, X2, D1, D2.let f1 be Fun
tion of X1, D1.let f2 be Fun
tion of X2, D2.rede�nefun
 [[f1, f2℄℄ ! Fun
tion of [[X1, X2℄℄, [[D1, D2℄℄.Theorem FUNCT 3:96. for f1 being Fun
tion of C1, D1 for f2 being Fun
tion ofC2, D2 for 
1 being Element of C1 for 
2 being Element of C2 holds [[f1, f2℄℄:[
1, 
2℄ =[f1:
1, f2:
2℄.Theorem FUNCT 3:97. for f1 being Fun
tion of X1, Y1 for f2 being Fun
tion of X2,Y2 st (Y1 = ; implies X1 = ;) & (Y2 = ; implies X2 = ;) holds [[f1, f2℄℄ = [(f1��1(X1,X2), f2��2(X1, X2))℄.Theorem FUNCT 3:98. for f1 being Fun
tion of X1, D1 for f2 being Fun
tion of X2,D2 holds [[f1, f2℄℄ = [(f1��1(X1, X2), f2��2(X1, X2))℄.Theorem FUNCT 3:99. for f1 being Fun
tion of X, Y1 for f2 being Fun
tion of X,Y2 st (Y1 = ; implies X = ;) & (Y2 = ; implies X = ;) holds [(f1, f2)℄ = [[f1, f2℄℄�(ÆX).



63Theorem FUNCT 3:100. for f1 being Fun
tion of X, D1 for f2 being Fun
tion of X,D2 holds [(f1, f2)℄ = [[f1, f2℄℄�(ÆX).



Chapter 11BINOP 1 Binary Operations.byCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. In this paper we de�ne binary and unary operations on domains. Wealso de�ne the following predi
ates 
on
erning the operations: is 
ommutative, isasso
iative, is the unity of, and is distributive wrt. A number of s
hemes useful injustifying the existen
e of the operations are proved.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,binop, fun
, fun
 rel, and 
oord. The terminology and notation used in this arti
lehave been introdu
ed in the following arti
les: tarski, boole, fun
t 1, and fun
t 2.De�nitionlet f be Fun
tion.let a, b be Any.fun
 f:(a, b) ! Any means it = f:[a, b℄.Theorem BINOP 1:1. for f being Fun
tion for a, b being Any holds f:(a, b) = f:[a,b℄. reserve A, B, C for DOMAIN.1Supported by RPBP.III-24.C1. 64



65De�nitionlet A, B, C.let f be Fun
tion of [[A, B℄℄, C.let a be Element of A.let b be Element of B.rede�nefun
 f:(a, b) ! Element of C.Theorem BINOP 1:2. for f1, f2 being Fun
tion of [[A, B℄℄, C st for a being Elementof A for b being Element of B holds f1:(a, b) = f2:(a, b) holds f1 = f2.De�nitionlet A.mode UnOp of A ! Fun
tion of A, A means not 
ontradi
tion.mode BinOp of A ! Fun
tion of [[A, A℄℄, A means not 
ontradi
tion.Theorem BINOP 1:3. for f being Fun
tion of A, A holds f is UnOp of A.reserve u, u0 for UnOp of A.Theorem BINOP 1:4. for f being Fun
tion of [[A, A℄℄, A holds f is BinOp of A.s
heme UnOpExfA() ! DOMAIN, P[(Element of A()), Element of A()℄g: ex u beingUnOp of A() st for x being Element of A() holds P[x, u:x℄ provided A1: for x beingElement of A() ex y being Element of A() st P[x, y℄ and A2: for x, y1, y2 being Elementof A() st P[x, y1℄ & P[x, y2℄ holds y1 = y2.s
heme UnOpLambdafA() ! DOMAIN, F((Element of A())) ! Element of A()g: exu being UnOp of A() st for x being Element of A() holds u:x = F(x).reserve o, o0 for BinOp of A.reserve a, a1, a2, b, b1, b2, 
, e, e1, e2 for Element of A.De�nitionlet A, o, a, b.rede�nefun
 o:(a, b) ! Element of A.s
heme BinOpExfA() ! DOMAIN, P[(Element of A()), (Element of A()), Element ofA()℄g: ex o being BinOp of A() st for a, b being Element of A() holds P[a, b, o:(a, b)℄provided A1: for x, y being Element of A() ex z being Element of A() st P[x, y, z℄ andA2: for x, y being Element of A() for z1, z2 being Element of A() st P[x, y, z1℄ & P[x,y, z2℄ holds z1 = z2.s
heme BinOpLambdafA() ! DOMAIN, O((Element of A()), Element of A()) !Element of A()g: ex o being BinOp of A() st for a, b being Element of A() holds o:(a,b) = O(a, b).



66 CHAPTER 11. BINOP 1De�nitionlet A, o.pred o is 
ommutative means for a, b holds o:(a, b) = o:(b, a).pred o is asso
iative means for a, b, 
 holds o:(a, o:(b, 
)) = o:(o:(a, b), 
).pred o is an idempotent means for a holds o:(a, a) = a.Theorem BINOP 1:5. o is 
ommutative i� for a, b holds o:(a, b) = o:(b, a).Theorem BINOP 1:6. o is asso
iative i� for a, b, 
 holds o:(a, o:(b, 
)) = o:(o:(a, b),
). Theorem BINOP 1:7. o is an idempotent i� for a holds o:(a, a) = a.De�nitionlet A, e, o.pred e is a left unity wrt o means for a holds o:(e, a) = a.pred e is a right unity wrt o means for a holds o:(a, e) = a.De�nitionlet A, e, o.pred e is a unity wrt o means e is a left unity wrt o & e is a right unity wrt o.Theorem BINOP 1:8. e is a left unity wrt o i� for a holds o:(e, a) = a.Theorem BINOP 1:9. e is a right unity wrt o i� for a holds o:(a, e) = a.Theorem BINOP 1:10. e is a unity wrt o i� e is a left unity wrt o & e is a right unity wrto. Theorem BINOP 1:11. e is a unity wrt o i� for a holds o:(e, a) = a & o:(a, e) = a.Theorem BINOP 1:12. o is 
ommutative implies (e is a unity wrt o i� for a holds o:(e, a) = a).Theorem BINOP 1:13. o is 
ommutative implies (e is a unity wrt o i� for a holds o:(a, e) = a).Theorem BINOP 1:14. o is 
ommutative implies (e is a unity wrt o i� e is a left unitywrt o).Theorem BINOP 1:15. o is 
ommutative implies (e is a unity wrt o i� e is a right unitywrt o).Theorem BINOP 1:16. o is 
ommutative implies (e is a left unity wrt o i� e is a rightunity wrt o).Theorem BINOP 1:17. e1 is a left unity wrt o & e2 is a right unity wrt o implies e1 =e2. Theorem BINOP 1:18. e1 is a unity wrt o & e2 is a unity wrt o implies e1 = e2.De�nitionlet A, o.



67assume ex e st e is a unity wrt o.fun
 the unity wrt o ! Element of A means it is a unity wrt o.Theorem BINOP 1:19. (ex e st e is a unity wrt o) implies for e holds e = the unitywrt o i� e is a unity wrt o.De�nitionlet A, o0, o.pred o0 is left distributive wrt o means for a, b, 
 holds o0:(a, o:(b, 
)) = o:(o0:(a, b), o0:(a, 
)).pred o0 is right distributive wrt o means for a, b, 
 holds o0:(o:(a, b), 
) = o:(o0:(a, 
), o0:(b, 
)).De�nitionlet A, o0, o.pred o0 is distributive wrt o means o0 is left distributive wrt o & o0 is right dis-tributive wrt o.Theorem BINOP 1:20. o0 is left distributive wrt o i� for a, b, 
 holds o0:(a, o:(b, 
))= o:(o0:(a, b), o0:(a, 
)).Theorem BINOP 1:21. o0 is right distributive wrt o i� for a, b, 
 holds o0:(o:(a, b), 
)= o:(o0:(a, 
), o0:(b, 
)).Theorem BINOP 1:22. o0 is distributive wrt o i� o0 is left distributive wrt o & o0 is rightdistributive wrt o.Theorem BINOP 1:23. o0 is distributive wrt o i� for a, b, 
 holds o0:(a, o:(b, 
)) = o:(o0:(a, b), o0:(a, 
)) & o0:(o:(a, b), 
) = o:(o0:(a, 
), o0:(b, 
)).Theorem BINOP 1:24. o0 is 
ommutative implies (o0 is distributive wrt o i� for a, b, 
holds o0:(a, o:(b, 
)) = o:(o0:(a, b), o0:(a, 
))).Theorem BINOP 1:25. o0 is 
ommutative implies (o0 is distributive wrt o i� for a, b, 
holds o0:(o:(a, b), 
) = o:(o0:(a, 
), o0:(b, 
))).Theorem BINOP 1:26. o0 is 
ommutative implies (o0 is distributive wrt o i� o0 is leftdistributive wrt o).Theorem BINOP 1:27. o0 is 
ommutative implies (o0 is distributive wrt o i� o0 is rightdistributive wrt o).Theorem BINOP 1:28. o0 is 
ommutative implies (o0 is right distributive wrt o i� o0 isleft distributive wrt o).De�nitionlet A, u, o.pred u is distributive wrt o means for a, b holds u:(o:(a, b)) = o:((u:a), (u:b)).Theorem BINOP 1:29. u is distributive wrt o i� for a, b holds u:(o:(a, b)) = o:((u:a),(u:b)).



Chapter 12RELAT 1Relations and Their Basi
 PropertiesbyEdmund Woronowi
z 1Warsaw University (Bia lystok)Summary. We de�ne here: mode Relation as a set of pairs, the domain, the
odomain, and the �eld of relation; the empty and the identity relations, the 
om-position of relations, the image and the inverse image of a set under a relation. Twopredi
ates, = and �, and three fun
tions, \, [,and r are rede�ned. Basi
 fa
tsabout the above mentioned notions are presented.The symbols used in this arti
le are introdu
ed in the following vo
abularies: fam op,boole, real 1, fun
 rel, and relation. The arti
les tarski and boole provide theterminology and notation for this arti
le.reserve A, B, X, X1, X2, Y, Y1, Y2 for set.reserve a, b, 
, d, x, y, z for Any.De�nitionmode Relation ! set means x 2 it implies ex y, z st x = [y, z℄.Theorem RELAT 1:1. for R being set st (for x st x 2 R holds ex y, z st x = [y, z℄)holds R is Relation.reserve P, P1, P2, Q, R, S for Relation.1Supported by RPBP.III-24.C1. 68



69Theorem RELAT 1:2. x 2 R implies ex y, z st x = [y, z℄.Theorem RELAT 1:3. A � R implies A is Relation.Theorem RELAT 1:4. f[x, y℄g is Relation.Theorem RELAT 1:5. f[a, b℄, [
, d℄g is Relation.Theorem RELAT 1:6. [[X, Y℄℄ is Relation.s
heme Rel Existen
efA() ! set, B() ! set, P[Any, Any℄g: ex R being Relation stfor x, y holds [x, y℄ 2 R i� x 2 A() & y 2 B() & P[x, y℄.De�nitionlet P, R.rede�nepred P = R means for a, b holds [a, b℄ 2 P i� [a, b℄ 2 R.Theorem RELAT 1:7. P = R i� for a, b holds [a, b℄ 2 P i� [a, b℄ 2 R.De�nitionlet P, R.rede�nefun
 P\R ! Relation.fun
 P[R ! Relation.fun
 PrR ! Relation.pred P � R means for a, b holds [a, b℄ 2 P implies [a, b℄ 2 R.Theorem RELAT 1:8. P � R i� for a, b holds [a, b℄ 2 P implies [a, b℄ 2 R.Theorem RELAT 1:9. X\R is Relation & R\X is Relation.Theorem RELAT 1:10. RrX is Relation.De�nitionlet R.fun
 dom R ! set means x 2 it i� ex y st [x, y℄ 2 R.Theorem RELAT 1:11. X = dom R i� for x holds x 2 X i� ex y st [x, y℄ 2 R.Theorem RELAT 1:12. x 2 dom R i� ex y st [x, y℄ 2 R.Theorem RELAT 1:13. dom (P[R) = dom P[dom R.Theorem RELAT 1:14. dom (P\R) � dom P\dom R.Theorem RELAT 1:15. dom Prdom R � dom (PrR).De�nitionlet R.fun
 rng R ! set means y 2 it i� ex x st [x, y℄ 2 R.Theorem RELAT 1:16. X = rng R i� for x holds x 2 X i� ex y st [y, x℄ 2 R.Theorem RELAT 1:17. x 2 rng R i� ex y st [y, x℄ 2 R.



70 CHAPTER 12. RELAT 1Theorem RELAT 1:18. x 2 dom R implies ex y st y 2 rng R.Theorem RELAT 1:19. y 2 rng R implies ex x st x 2 dom R.Theorem RELAT 1:20. [x, y℄ 2 R implies x 2 dom R & y 2 rng R.Theorem RELAT 1:21. R � [[dom R, rng R℄℄.Theorem RELAT 1:22. R\[[dom R, rng R℄℄ = R.Theorem RELAT 1:23. R = f[x, y℄g implies dom R = fxg & rng R = fyg.Theorem RELAT 1:24. R = f[a, b℄, [x, y℄g implies dom R = fa, xg & rng R = fb,yg. Theorem RELAT 1:25. P � R implies dom P � dom R & rng P � rng R.Theorem RELAT 1:26. rng (P[R) = rng P[rng R.Theorem RELAT 1:27. rng (P\R) � rng P\rng R.Theorem RELAT 1:28. rng Prrng R � rng (PrR).De�nitionlet R.fun
 �eld R ! set means it = dom R[rng R.Theorem RELAT 1:29. �eld R = dom R[rng R.Theorem RELAT 1:30. [a, b℄ 2 R implies a 2 �eld R & b 2 �eld R.Theorem RELAT 1:31. P � R implies �eld P � �eld R.Theorem RELAT 1:32. R = f[x, y℄g implies �eld R = fx, yg.Theorem RELAT 1:33. �eld (P[R) = �eld P[�eld R.Theorem RELAT 1:34. �eld (P\R) � �eld P\�eld R.De�nitionlet R.fun
 R^ ! Relation means [x, y℄ 2 it i� [y, x℄ 2 R.Theorem RELAT 1:35. R = P^ i� for x, y holds [x, y℄ 2 R i� [y, x℄ 2 P.Theorem RELAT 1:36. [x, y℄ 2 P^ i� [y, x℄ 2 P.Theorem RELAT 1:37. (R^)^ = R.Theorem RELAT 1:38. �eld R = �eld (R^).Theorem RELAT 1:39. (P\R)^ = P^\R^.Theorem RELAT 1:40. (P[R)^ = P^[R^.Theorem RELAT 1:41. (PrR)^ = P^rR^.De�nitionlet P, R.fun
 P�R ! Relation means [x, y℄ 2 it i� ex z st [x, z℄ 2 P & [z, y℄ 2 R.



71Theorem RELAT 1:42. Q = P�R i� for x, y holds [x, y℄ 2 Q i� ex z st [x, z℄ 2 P &[z, y℄ 2 R.Theorem RELAT 1:43. [x, y℄ 2 P�R i� ex z st [x, z℄ 2 P & [z, y℄ 2 R.Theorem RELAT 1:44. dom (P�R) � dom P.Theorem RELAT 1:45. rng (P�R) � rng R.Theorem RELAT 1:46. rng R � dom P implies dom (R�P) = dom R.Theorem RELAT 1:47. dom P � rng R implies rng (R�P) = rng P.Theorem RELAT 1:48. P � R implies Q�P � Q�R.Theorem RELAT 1:49. P � Q implies P�R � Q�R.Theorem RELAT 1:50. P � R & Q � S implies P�Q � R�S.Theorem RELAT 1:51. P�(R[Q) = (P�R)[(P�Q).Theorem RELAT 1:52. P�(R\Q) � (P�R)\(P�Q).Theorem RELAT 1:53. (P�R)r(P�Q) � P�(RrQ).Theorem RELAT 1:54. (P�R)^ = R^�P^.Theorem RELAT 1:55. (P�R)�Q = P�(R�Q).De�nitionfun
 ;! Relation means not [x, y℄ 2 it.Theorem RELAT 1:56. R = ;i� for x, y holds not [x, y℄ 2 R.Theorem RELAT 1:57. not [x, y℄ 2 ;.Theorem RELAT 1:58. ;� [[A, B℄℄.Theorem RELAT 1:59. ;� R.Theorem RELAT 1:60. dom ;= ; & rng ;= ;.Theorem RELAT 1:61. ;\R = ;& ;[R = R.Theorem RELAT 1:62. ;�R = ;& R�;= ;.Theorem RELAT 1:63. R�;= ;�R.Theorem RELAT 1:64. dom R = ; or rng R = ; implies R = ;.Theorem RELAT 1:65. dom R = ; i� rng R = ;.Theorem RELAT 1:66. ;^ = ;.Theorem RELAT 1:67. rng R\dom P = ; implies R�P = ;.De�nitionlet X.fun
 4X ! Relation means [x, y℄ 2 it i� x 2 X & x = y.Theorem RELAT 1:68. P = 4X i� for x, y holds [x, y℄ 2 P i� x 2 X & x = y.Theorem RELAT 1:69. [x, y℄ 2 4X i� x 2 X & x = y.Theorem RELAT 1:70. x 2 X i� [x, x℄ 2 4X.



72 CHAPTER 12. RELAT 1Theorem RELAT 1:71. dom 4X = X & rng 4X = X.Theorem RELAT 1:72. (4X)^ = 4X.Theorem RELAT 1:73. (for x st x 2 X holds [x, x℄ 2 R) implies 4X � R.Theorem RELAT 1:74. [x, y℄ 2 (4X)�R i� x 2 X & [x, y℄ 2 R.Theorem RELAT 1:75. [x, y℄ 2 R�4Y i� y 2 Y & [x, y℄ 2 R.Theorem RELAT 1:76. R�(4X) � R & (4X)�R � R.Theorem RELAT 1:77. dom R � X implies (4X)�R = R.Theorem RELAT 1:78. (4dom R)�R = R.Theorem RELAT 1:79. rng R � Y implies R�(4Y) = R.Theorem RELAT 1:80. R�(4rng R) = R.Theorem RELAT 1:81. 4; = ;.Theorem RELAT 1:82. dom R = X & rng P2 � X & P2�R = 4(dom P1) & R�P1 =4X implies P1 = P2.Theorem RELAT 1:83. dom R = X & rng P2 = X & P2�R = 4(dom P1) & R�P1 =4X implies P1 = P2.De�nitionlet R, X.fun
 R�X ! Relation means [x, y℄ 2 it i� x 2 X & [x, y℄ 2 R.Theorem RELAT 1:84. P = R�X i� for x, y holds [x, y℄ 2 P i� x 2 X & [x, y℄ 2 R.Theorem RELAT 1:85. [x, y℄ 2 R�X i� x 2 X & [x, y℄ 2 R.Theorem RELAT 1:86. x 2 dom (R�X) i� x 2 X & x 2 dom R.Theorem RELAT 1:87. dom (R�X) � X.Theorem RELAT 1:88. R�X � R.Theorem RELAT 1:89. dom (R�X) � dom R.Theorem RELAT 1:90. dom (R�X) = dom R\X.Theorem RELAT 1:91. X � dom R implies dom (R�X) = X.Theorem RELAT 1:92. (R�X)�P � R�P.Theorem RELAT 1:93. P�(R�X) � P�R.Theorem RELAT 1:94. R�X = (4X)�R.Theorem RELAT 1:95. R�X = ;i� (dom R)\X = ;.Theorem RELAT 1:96. R�X = R\[[X, rng R℄℄.Theorem RELAT 1:97. dom R � X implies R�X = R.Theorem RELAT 1:98. R�dom R = R.Theorem RELAT 1:99. rng (R�X) � rng R.Theorem RELAT 1:100. (R�X)�Y = R�(X\Y).



73Theorem RELAT 1:101. (R�X)�X = R�X.Theorem RELAT 1:102. X � Y implies (R�X)�Y = R�X.Theorem RELAT 1:103. Y � X implies (R�X)�Y = R�Y.Theorem RELAT 1:104. X � Y implies R�X � R�Y.Theorem RELAT 1:105. P � R implies P�X � R�X.Theorem RELAT 1:106. P � R & X � Y implies P�X � R�Y.Theorem RELAT 1:107. R�(X[Y) = (R�X)[(R�Y).Theorem RELAT 1:108. R�(X\Y) = (R�X)\(R�Y).Theorem RELAT 1:109. R�(XrY) = R�XrR�Y.Theorem RELAT 1:110. R�; = ;.Theorem RELAT 1:111. ;�X = ;.Theorem RELAT 1:112. (P�R)�X = (P�X)�R.De�nitionlet Y, R.fun
 Y�R ! Relation means [x, y℄ 2 it i� y 2 Y & [x, y℄ 2 R.Theorem RELAT 1:113. P = Y�R i� for x, y holds [x, y℄ 2 P i� y 2 Y & [x, y℄ 2 R.Theorem RELAT 1:114. [x, y℄ 2 Y�R i� y 2 Y & [x, y℄ 2 R.Theorem RELAT 1:115. y 2 rng (Y�R) i� y 2 Y & y 2 rng R.Theorem RELAT 1:116. rng (Y�R) � Y.Theorem RELAT 1:117. Y�R � R.Theorem RELAT 1:118. rng (Y�R) � rng R.Theorem RELAT 1:119. rng (Y�R) = rng R\Y.Theorem RELAT 1:120. Y � rng R implies rng (Y�R) = Y.Theorem RELAT 1:121. (Y�R)�P � R�P.Theorem RELAT 1:122. P�(Y�R) � P�R.Theorem RELAT 1:123. Y�R = R�(4Y).Theorem RELAT 1:124. Y�R = R\[[dom R, Y℄℄.Theorem RELAT 1:125. rng R � Y implies Y�R = R.Theorem RELAT 1:126. rng R�R = R.Theorem RELAT 1:127. Y�(X�R) = (Y\X)�R.Theorem RELAT 1:128. Y�(Y�R) = Y�R.Theorem RELAT 1:129. X � Y implies Y�(X�R) = X�R.Theorem RELAT 1:130. Y � X implies Y�(X�R) = Y�R.Theorem RELAT 1:131. X � Y implies X�R � Y�R.Theorem RELAT 1:132. P1 � P2 implies Y�P1 � Y�P2.



74 CHAPTER 12. RELAT 1Theorem RELAT 1:133. P1 � P2 & Y1 � Y2 implies Y1�P1 � Y2�P2.Theorem RELAT 1:134. (X[Y)�R = (X�R)[(Y�R).Theorem RELAT 1:135. (X\Y)�R = X�R\Y�R.Theorem RELAT 1:136. (XrY)�R = X�RrY�R.Theorem RELAT 1:137. ;�R = ;.Theorem RELAT 1:138. Y�;= ;.Theorem RELAT 1:139. Y�(P�R) = P�(Y�R).Theorem RELAT 1:140. (Y�R)�X = Y�(R�X).De�nitionlet R, X.fun
 R�X ! set means y 2 it i� ex x st [x, y℄ 2 R & x 2 X.Theorem RELAT 1:141. Y = R�X i� for y holds y 2 Y i� ex x st [x, y℄ 2 R & x 2X. Theorem RELAT 1:142. y 2 R�X i� ex x st [x, y℄ 2 R & x 2 X.Theorem RELAT 1:143. y 2 R�X i� ex x st x 2 dom R & [x, y℄ 2 R & x 2 X.Theorem RELAT 1:144. R�X � rng R.Theorem RELAT 1:145. R�X = R�(dom R\X).Theorem RELAT 1:146. R�dom R = rng R.Theorem RELAT 1:147. R�X � R�(dom R).Theorem RELAT 1:148. rng (R�X) = R�X.Theorem RELAT 1:149. R�; = ;.Theorem RELAT 1:150. ;�X = ;.Theorem RELAT 1:151. R�X = ; i� dom R\X = ;.Theorem RELAT 1:152. X 6= ; & X � dom R implies R�X 6= ;.Theorem RELAT 1:153. R�(X[Y) = R�X[R�Y.Theorem RELAT 1:154. R�(X\Y) � R�X\R�Y.Theorem RELAT 1:155. R�XrR�Y � R�(XrY).Theorem RELAT 1:156. X � Y implies R�X � R�Y.Theorem RELAT 1:157. P � R implies P�X � R�X.Theorem RELAT 1:158. P � R & X � Y implies P�X � R�Y.Theorem RELAT 1:159. (P�R)�X = R�(P�X).Theorem RELAT 1:160. rng (P�R) = R�(rng P).Theorem RELAT 1:161. (R�X)�Y � R�Y.Theorem RELAT 1:162. R�X = ;i� (dom R)\X = ;.Theorem RELAT 1:163. (dom R)\X � (R^)�(R�X).



75De�nitionlet R, Y.fun
 R�1Y ! set means x 2 it i� ex y st [x, y℄ 2 R & y 2 Y.Theorem RELAT 1:164. X = R�1Y i� for x holds x 2 X i� ex y st [x, y℄ 2 R & y2 Y.Theorem RELAT 1:165. x 2 R�1Y i� ex y st [x, y℄ 2 R & y 2 Y.Theorem RELAT 1:166. x 2 R�1Y i� ex y st y 2 rng R & [x, y℄ 2 R & y 2 Y.Theorem RELAT 1:167. R�1Y � dom R.Theorem RELAT 1:168. R�1Y = R�1(rng R\Y).Theorem RELAT 1:169. R�1 rng R = dom R.Theorem RELAT 1:170. R�1Y � R�1 rng R.Theorem RELAT 1:171. R�1; = ;.Theorem RELAT 1:172. ;�1Y = ;.Theorem RELAT 1:173. R�1Y = ; i� rng R\Y = ;.Theorem RELAT 1:174. Y 6= ; & Y � rng R implies R�1Y 6= ;.Theorem RELAT 1:175. R�1(X[Y) = R�1X[R�1Y.Theorem RELAT 1:176. R�1(X\Y) � R�1Y\R�1Y.Theorem RELAT 1:177. R�1XrR�1Y � R�1(XrY).Theorem RELAT 1:178. X � Y implies R�1X � R�1Y.Theorem RELAT 1:179. P � R implies P�1Y � R�1Y.Theorem RELAT 1:180. P � R & X � Y implies P�1X � R�1Y.Theorem RELAT 1:181. (P�R)�1Y = P�1(R�1Y).Theorem RELAT 1:182. dom (P�R) = P�1(dom R).Theorem RELAT 1:183. (rng R)\Y � (R^)�1(R�1Y).



Chapter 13GRFUNC 1Graphs of Fun
tions.byCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. The graph of a fun
tion is de�ned in Fun
tions and their Basi
 Prop-erties (FUNCT 1). In this paper the graph of a fun
tion is rede�ned as a Relation.Operations on fun
tions are interpreted as the 
orresponding operations on rela-tions. Some theorems about graphs of fun
tions are proved.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,real 1, fun
 rel, relation, and fun
. The terminology and notation used in thisarti
le have been introdu
ed in the following arti
les: tarski, boole, fun
t 1, andrelat 1.reserve X, X1, X2, Y, Y1, Y2, Z, Z1, Z2 for set, p, x, x1, x2, y, y1, y2, z, z1, z2 forAny.reserve f, f1, f2, g, g1, g2, h, h1, h2 for Fun
tion.De�nitionlet f.rede�nefun
 graph f ! Relation.1Supported by RPBP.III-24.C1. 76



77Theorem GRFUNC 1:1. for R being Relation st for x, y1, y2 st [x, y1℄ 2 R & [x, y2℄2 R holds y1 = y2 holds ex f st graph f = R.Theorem GRFUNC 1:2. y 2 rng f i� ex x st [x, y℄ 2 graph f.Theorem GRFUNC 1:3. dom graph f = dom f & rng graph f = rng f.Theorem GRFUNC 1:4. graph f � [[dom f, rng f℄℄.Theorem GRFUNC 1:5. (for x, y holds [x, y℄ 2 graph f1 i� [x, y℄ 2 graph f2) impliesf1 = f2.Theorem GRFUNC 1:6. for G being set st G � graph f holds ex g st graph g = G.Theorem GRFUNC 1:7. graph f � graph g implies dom f � dom g & rng f � rng g.Theorem GRFUNC 1:8. graph f � graph g i� dom f � dom g & (for x st x 2 dom fholds f:x = g:x).Theorem GRFUNC 1:9. dom f = dom g & graph f � graph g implies f = g.Theorem GRFUNC 1:10. [x, z℄ 2 graph (g�f) i� ex y st [x, y℄ 2 graph f & [y, z℄ 2graph g.Theorem GRFUNC 1:11. (graph f)�(graph g) = graph (g�f).Theorem GRFUNC 1:12. [x, z℄ 2 graph (g�f) implies [x, f:x℄ 2 graph f & [f:x, z℄ 2graph g.Theorem GRFUNC 1:13. graph h � graph f implies graph (g�h) � graph (g�f) & graph(h�g) � graph (f�g).Theorem GRFUNC 1:14. graph g2 � graph g1 & graph f2 � graph f1 implies graph(g2�f2) � graph (g1�f1).Theorem GRFUNC 1:15. ex f st graph f = f[x, y℄g.Theorem GRFUNC 1:16. graph f = f[x, y℄g implies f:x = y.Theorem GRFUNC 1:17. graph f = f[x, y℄g implies dom f = fxg & rng f = fyg.Theorem GRFUNC 1:18. dom f = fxg implies graph f = f[x, f:x℄g.Theorem GRFUNC 1:19. (ex f st graph f = f[x1, y1℄, [x2, y2℄g) i� (x1 = x2 impliesy1 = y2).Theorem GRFUNC 1:20. ex f st graph f = ;.Theorem GRFUNC 1:21. graph f = ; implies dom f = ; & rng f = ;.Theorem GRFUNC 1:22. rng f = ; or dom f = ; implies graph f = ;.Theorem GRFUNC 1:23. rng f\dom g = ; implies graph (g�f) = ;.Theorem GRFUNC 1:24. graph g = ; implies graph (g�f) = ; & graph (f�g) = ;.Theorem GRFUNC 1:25. f is 1-1 i� for x1, x2, y st [x1, y℄ 2 graph f & [x2, y℄ 2 graphf holds x1 = x2.Theorem GRFUNC 1:26. graph g � graph f & f is 1-1 implies g is 1-1.Theorem GRFUNC 1:27. (ex g st graph g = graph f\X) & (ex g st graph g = X\graphf).



78 CHAPTER 13. GRFUNC 1Theorem GRFUNC 1:28. graph h = graph f\graph g implies dom h � dom f\dom g& rng h � rng f\rng g.Theorem GRFUNC 1:29. graph h = graph f\graph g & x 2 dom h implies h:x = f:x& h:x = g:x.Theorem GRFUNC 1:30. (f is 1-1 or g is 1-1) & graph h = graph f\graph g implies his 1-1.Theorem GRFUNC 1:31. dom f\dom g = ; implies ex h st graph h = graph f[graphg. Theorem GRFUNC 1:32. graph f � graph h & graph g � graph h implies ex h1 stgraph h1 = graph f[graph g.Theorem GRFUNC 1:33. graph h = graph (f)[graph (g) implies dom h = dom f[domg & rng h = rng f[rng g.Theorem GRFUNC 1:34. x 2 dom f & graph h = graph f[graph g implies h:x = f:x.Theorem GRFUNC 1:35. x 2 dom g & graph h = graph f[graph g implies h:x = g:x.Theorem GRFUNC 1:36. x 2 dom h & graph h = graph f[graph g implies h:x = f:xor h:x = g:x.Theorem GRFUNC 1:37. f is 1-1 & g is 1-1 & graph h = graph f[graph g & rng f\rngg = ; implies h is 1-1.Theorem GRFUNC 1:38. ex g st graph g = graph (f)rX.Theorem GRFUNC 1:39. [x, y℄ 2 graph Id (X) i� x 2 X & x = y.Theorem GRFUNC 1:40. graph Id X = 4X.Theorem GRFUNC 1:41. x 2 X i� [x, x℄ 2 graph Id (X).Theorem GRFUNC 1:42. [x, y℄ 2 graph (f�Id (X)) i� x 2 X & [x, y℄ 2 graph f.Theorem GRFUNC 1:43. [x, y℄ 2 graph (Id (Y)�f) i� [x, y℄ 2 graph f & y 2 Y.Theorem GRFUNC 1:44. graph (f�Id (X)) � graph f & graph (Id (X)�f) � graph (f).Theorem GRFUNC 1:45. graph Id ; = ;.Theorem GRFUNC 1:46. graph f = ; implies f is 1-1.Theorem GRFUNC 1:47. f is 1-1 implies for x, y holds [y, x℄ 2 graph (f�1) i� [x, y℄2 graph f.Theorem GRFUNC 1:48. f is 1-1 implies graph (f�1) = (graph f)^.Theorem GRFUNC 1:49. graph f = ; implies graph (f�1) = ;.Theorem GRFUNC 1:50. [x, y℄ 2 graph (f�X) i� x 2 X & [x, y℄ 2 graph f.Theorem GRFUNC 1:51. graph (f�X) = (graph f)�X.Theorem GRFUNC 1:52. x 2 dom f & x 2 X i� [x, f:x℄ 2 graph (f�X).Theorem GRFUNC 1:53. graph (f�X) � graph f.Theorem GRFUNC 1:54. graph ((f�X)�h) � graph (f�h) & graph (g�(f�X)) � graph(g�f).



79Theorem GRFUNC 1:55. graph (f�X) = graph (f)\[[X, rng f℄℄.Theorem GRFUNC 1:56. X � Y implies graph (f�X) � graph (f�Y).Theorem GRFUNC 1:57. graph f1 � graph f2 implies graph (f1�X) � graph (f2�X).Theorem GRFUNC 1:58. graph f1 � graph f2 & X1 � X2 implies graph (f1�X1) �graph (f2�X2).Theorem GRFUNC 1:59. graph (f�(X[Y)) = graph (f�X)[graph (f�Y).Theorem GRFUNC 1:60. graph (f�(X\Y)) = graph (f�X)\graph (f�Y).Theorem GRFUNC 1:61. graph (f�(XrY)) = graph (f�X)rgraph (f�Y).Theorem GRFUNC 1:62. graph (f�;) = ;.Theorem GRFUNC 1:63. graph f = ; implies graph (f�X) = ;.Theorem GRFUNC 1:64. graph g � graph f implies f�dom g = g.Theorem GRFUNC 1:65. [x, y℄ 2 graph (Y�f) i� y 2 Y & [x, y℄ 2 graph f.Theorem GRFUNC 1:66. graph (Y�f) = Y�(graph f).Theorem GRFUNC 1:67. x 2 dom f & f:x 2 Y i� [x, f:x℄ 2 graph (Y�f).Theorem GRFUNC 1:68. graph (Y�f) � graph (f).Theorem GRFUNC 1:69. graph ((Y�f)�h) � graph (f�h) & graph (g�(Y�f)) � graph(g�f).Theorem GRFUNC 1:70. graph (Y�f) = graph (f)\[[dom f, Y℄℄.Theorem GRFUNC 1:71. X � Y implies graph (X�f) � graph (Y�f).Theorem GRFUNC 1:72. graph f1 � graph f2 implies graph (Y�f1) � graph (Y�f2).Theorem GRFUNC 1:73. graph f1 � graph f2 & Y1 � Y2 implies graph (Y1�f1) �graph (Y2�f2).Theorem GRFUNC 1:74. graph ((X[Y)�f) = graph (X�f)[graph (Y�f).Theorem GRFUNC 1:75. graph ((X\Y)�f) = graph (X�f)\graph (Y�f).Theorem GRFUNC 1:76. graph ((XrY)�f) = graph (X�f)rgraph (Y�f).Theorem GRFUNC 1:77. graph (;�f) = ;.Theorem GRFUNC 1:78. graph f = ; implies graph (Y�f) = ;.Theorem GRFUNC 1:79. graph g � graph f & f is 1-1 implies rng g�f = g.Theorem GRFUNC 1:80. y 2 f�X i� ex x st [x, y℄ 2 graph f & x 2 X.Theorem GRFUNC 1:81. f�X = (graph f)�X.Theorem GRFUNC 1:82. graph f = ; implies f�X = ;.Theorem GRFUNC 1:83. graph f1 � graph f2 implies f1�X � f2�X.Theorem GRFUNC 1:84. graph f1 � graph f2 & X1 � X2 implies f1�X1 � f2�X2.Theorem GRFUNC 1:85. x 2 f�1Y i� ex y st [x, y℄ 2 graph f & y 2 Y.Theorem GRFUNC 1:86. f�1Y = (graph f)�1Y.



80 CHAPTER 13. GRFUNC 1Theorem GRFUNC 1:87. x 2 f�1Y i� [x, f:x℄ 2 graph f & f:x 2 Y.Theorem GRFUNC 1:88. graph f = ; implies f�1Y = ;.Theorem GRFUNC 1:89. graph f1 � graph f2 implies f1�1Y � f2�1Y.Theorem GRFUNC 1:90. graph f1 � graph f2 & Y1 � Y2 implies f1�1Y1 � f2�1Y2.



Chapter 14RELAT 2Properties of Binary RelationsbyEdmund Woronowi
z 1Warsaw University (Bia lystok)Anna Zalewska 2Warsaw University (Bia lystok)Summary. The paper 
ontains de�nitions of some properties of binary relations:re
exivity, irre
exivity, symmetry, asymmetry, antisymmetry, 
onne
tedness, strong
onne
tedness, and transitivity. Basi
 theorems relating the above mentioned no-tions are given.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,real 1, fun
 rel, relation, and rel rel. The terminology and notation used in thisarti
le have been introdu
ed in the following arti
les: tarski, boole, and relat 1.reserve X, Y for set.reserve a, b, 
, x, y, z for Any.reserve P, R for Relation.De�nitionlet R, X.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 81



82 CHAPTER 14. RELAT 2pred R is re
exive in X means x 2 X implies [x, x℄ 2 R.pred R is irre
exive in X means x 2 X implies not [x, x℄ 2 R.pred R is symmetri
 in X means x 2 X & y 2 X & [x, y℄ 2 R implies [y, x℄ 2R. pred R is antisymmetri
 in X means x 2 X & y 2 X & [x, y℄ 2 R & [y, x℄ 2 Rimplies x = y.pred R is asymmetri
 in X means x 2 X & y 2 X & [x, y℄ 2 R implies not [y,x℄ 2 R. pred R is 
onne
ted in X means x 2 X & y 2 X & x 6= y implies [x, y℄ 2 R or[y, x℄ 2 R.pred R is strongly 
onne
ted in X means x 2 X & y 2 X implies [x, y℄ 2 R or[y, x℄ 2 R.pred R is transitive in X means x 2 X & y 2 X & z 2 X & [x, y℄ 2 R & [y, z℄2 R implies [x, z℄ 2 R.Theorem RELAT 2:1. R is re
exive in X i� for x st x 2 X holds [x, x℄ 2 R.Theorem RELAT 2:2. R is irre
exive in X i� for x st x 2 X holds not [x, x℄ 2 R.Theorem RELAT 2:3. R is symmetri
 in X i� for x, y st x 2 X & y 2 X & [x, y℄ 2 Rholds [y, x℄ 2 R.Theorem RELAT 2:4. R is antisymmetri
 in X i� for x, y st x 2 X & y 2 X & [x, y℄2 R & [y, x℄ 2 R holds x = y.Theorem RELAT 2:5. R is asymmetri
 in X i� for x, y st x 2 X & y 2 X & [x, y℄ 2R holds not [y, x℄ 2 R.Theorem RELAT 2:6. R is 
onne
ted in X i� for x, y st x 2 X & y 2 X & x 6= yholds [x, y℄ 2 R or [y, x℄ 2 R.Theorem RELAT 2:7. R is strongly 
onne
ted in X i� for x, y st x 2 X & y 2 X holds[x, y℄ 2 R or [y, x℄ 2 R.Theorem RELAT 2:8. R is transitive in X i� for x, y, z st x 2 X & y 2 X & z 2 X &[x, y℄ 2 R & [y, z℄ 2 R holds [x, z℄ 2 R.De�nitionlet R.pred R is re
exive means R is re
exive in �eld R.pred R is irre
exive means R is irre
exive in �eld R.pred R is symmetri
 means R is symmetri
 in �eld R.pred R is antisymmetri
 means R is antisymmetri
 in �eld R.pred R is asymmetri
 means R is asymmetri
 in �eld R.pred R is 
onne
ted means R is 
onne
ted in �eld R.pred R is strongly 
onne
ted means R is strongly 
onne
ted in �eld R.



83pred R is transitive means R is transitive in �eld R.Theorem RELAT 2:9. R is re
exive i� R is re
exive in �eld R.Theorem RELAT 2:10. R is irre
exive i� R is irre
exive in �eld R.Theorem RELAT 2:11. R is symmetri
 i� R is symmetri
 in �eld R.Theorem RELAT 2:12. R is antisymmetri
 i� R is antisymmetri
 in �eld R.Theorem RELAT 2:13. R is asymmetri
 i� R is asymmetri
 in �eld R.Theorem RELAT 2:14. R is 
onne
ted i� R is 
onne
ted in �eld R.Theorem RELAT 2:15. R is strongly 
onne
ted i� R is strongly 
onne
ted in �eld R.Theorem RELAT 2:16. R is transitive i� R is transitive in �eld R.Theorem RELAT 2:17. R is re
exive i� 4�eld R � R.Theorem RELAT 2:18. R is irre
exive i� 4(�eld R)\R = ;.Theorem RELAT 2:19. R is antisymmetri
 in X i� Rr4X is asymmetri
 in X.Theorem RELAT 2:20. R is asymmetri
 in X implies R[4X is antisymmetri
 in X.Theorem RELAT 2:21. R is antisymmetri
 in X implies Rr4X is asymmetri
 in X.Theorem RELAT 2:22. R is symmetri
 & R is transitive implies R is re
exive.Theorem RELAT 2:23. 4X is symmetri
 & 4X is transitive.Theorem RELAT 2:24. 4X is antisymmetri
 & 4X is re
exive.Theorem RELAT 2:25. R is irre
exive & R is transitive implies R is asymmetri
.Theorem RELAT 2:26. R is asymmetri
 implies R is irre
exive & R is antisymmetri
.Theorem RELAT 2:27. R is re
exive implies R^ is re
exive.Theorem RELAT 2:28. R is irre
exive implies R^ is irre
exive.Theorem RELAT 2:29. R is re
exive implies dom R = dom (R^) & rng R = rng (R^).Theorem RELAT 2:30. R is symmetri
 i� R = R^.Theorem RELAT 2:31. P is re
exive & R is re
exive implies P[R is re
exive & P\Ris re
exive.Theorem RELAT 2:32. P is irre
exive & R is irre
exive implies P[R is irre
exive &P\R is irre
exive.Theorem RELAT 2:33. P is irre
exive implies PrR is irre
exive.Theorem RELAT 2:34. R is symmetri
 implies R^ is symmetri
.Theorem RELAT 2:35. P is symmetri
 & R is symmetri
 implies P[R is symmetri
 &P\R is symmetri
 & PrR is symmetri
.Theorem RELAT 2:36. R is asymmetri
 implies R^ is asymmetri
.Theorem RELAT 2:37. P is asymmetri
 & R is asymmetri
 implies P\R is asymmetri
.Theorem RELAT 2:38. P is asymmetri
 implies PrR is asymmetri
.Theorem RELAT 2:39. R is antisymmetri
 i� R\(R^) � 4(dom R).



84 CHAPTER 14. RELAT 2Theorem RELAT 2:40. R is antisymmetri
 implies R^ is antisymmetri
.Theorem RELAT 2:41. P is antisymmetri
 implies P\R is antisymmetri
 & PrR isantisymmetri
.Theorem RELAT 2:42. R is transitive implies R^ is transitive.Theorem RELAT 2:43. P is transitive & R is transitive implies P\R is transitive.Theorem RELAT 2:44. R is transitive i� R�R � R.Theorem RELAT 2:45. R is 
onne
ted i� [[�eld R, �eld R℄℄r4(�eld R) � R[R^.Theorem RELAT 2:46. R is strongly 
onne
ted implies R is 
onne
ted & R is re
exive.Theorem RELAT 2:47. R is strongly 
onne
ted i� [[�eld R, �eld R℄℄ = R[R^.



Chapter 15RELSET 1Relations De�ned on SetsbyEdmund Woronowi
z 1Warsaw University (Bia lystok)Summary. The arti
le in
ludes theorems 
on
erning properties of relations de�nedas a subset of the Cartesian produ
t of two sets (mode Relation of X,Y where X,Yare sets). Some notions, introdu
ed in RELAT 1 su
h as domain, 
odomain, �eldof a relation, 
omposition of relations, image and inverse image of a set under arelation are rede�ned.The symbols used in this arti
le are introdu
ed in the following vo
abularies: fam op,boole, real 1, fun
 rel, and relation. The terminology and notation used in thisarti
le have been introdu
ed in the following arti
les: tarski, boole, and relat 1.reserve A, B, X, X1, X2, Y, Y1, Y2, Z, W for set.reserve a, b, 
, d, x, y, z for Any.De�nitionlet X, Y.mode Relation of X, Y ! Relation means it � [[X, Y℄℄.Theorem RELSET 1:1. for R being Relation holds R � [[X, Y℄℄ i� R is Relation ofX, Y.1Supported by RPBP.III-24.C1. 85



86 CHAPTER 15. RELSET 1reserve P, P1, P2, Q, R for Relation of X, Y.Theorem RELSET 1:2. A � R implies A � [[X, Y℄℄.Theorem RELSET 1:3. A � [[X, Y℄℄ implies A is Relation of X, Y.Theorem RELSET 1:4. A � R implies A is Relation of X, Y.Theorem RELSET 1:5. [[X, Y℄℄ is Relation of X, Y.Theorem RELSET 1:6. a 2 R implies ex x, y st a = [x, y℄ & x 2 X & y 2 Y.Theorem RELSET 1:7. [x, y℄ 2 R implies x 2 X & y 2 Y.Theorem RELSET 1:8. x 2 X & y 2 Y implies f[x, y℄g is Relation of X, Y.Theorem RELSET 1:9. for R being Relation st dom R � X holds R is Relation ofX, rng R.Theorem RELSET 1:10. for R being Relation st rng R � Y holds R is Relation ofdom R, Y.Theorem RELSET 1:11. for R being Relation st dom R � X & rng R � Y holds Ris Relation of X, Y.Theorem RELSET 1:12. dom R � X & rng R � Y.Theorem RELSET 1:13. dom R � X1 implies R is Relation of X1, Y.Theorem RELSET 1:14. rng R � Y1 implies R is Relation of X, Y1.Theorem RELSET 1:15. X � X1 implies R is Relation of X1, Y.Theorem RELSET 1:16. Y � Y1 implies R is Relation of X, Y1.Theorem RELSET 1:17. X � X1 & Y � Y1 implies R is Relation of X1, Y1.De�nitionlet X, Y, P, R.rede�nefun
 P[R ! Relation of X, Y.fun
 P\R ! Relation of X, Y.fun
 PrR ! Relation of X, Y.Theorem RELSET 1:18. R\[[X, Y℄℄ = R.De�nitionlet X, Y, R.rede�nefun
 dom R ! Subset of X.fun
 rng R ! Subset of Y.Theorem RELSET 1:19. �eld R � X[Y.Theorem RELSET 1:20. for R being Relation holds R is Relation of dom R, rng R.Theorem RELSET 1:21. dom R � X1 & rng R � Y1 implies R is Relation of X1, Y1.Theorem RELSET 1:22. (for x st x 2 X ex y st [x, y℄ 2 R) i� dom R = X.



87Theorem RELSET 1:23. (for y st y 2 Y ex x st [x, y℄ 2 R) i� rng R = Y.De�nitionlet X, Y, R.rede�nefun
 R^ ! Relation of Y, X.De�nitionlet X, Y, Z.let P be Relation of X, Y.let R be Relation of Y, Z.rede�nefun
 P�R ! Relation of X, Z.Theorem RELSET 1:24. dom (R^) = rng R & rng (R^) = dom R.Theorem RELSET 1:25. ;is Relation of X, Y.Theorem RELSET 1:26. R is Relation of ;, Y implies R = ;.Theorem RELSET 1:27. R is Relation of X, ; implies R = ;.Theorem RELSET 1:28. 4X � [[X, X℄℄.Theorem RELSET 1:29. 4X is Relation of X, X.Theorem RELSET 1:30. 4A � R implies A � dom R & A � rng R.Theorem RELSET 1:31. 4X � R implies X = dom R & X � rng R.Theorem RELSET 1:32. 4Y � R implies Y � dom R & Y = rng R.De�nitionlet X, Y, R, A.rede�nefun
 R�A ! Relation of X, Y.De�nitionlet X, Y, B, R.rede�nefun
 B�R ! Relation of X, Y.Theorem RELSET 1:33. R�X1 is Relation of X1, Y.Theorem RELSET 1:34. X � X1 implies R�X1 = R.Theorem RELSET 1:35. Y1�R is Relation of X, Y1.Theorem RELSET 1:36. Y � Y1 implies Y1�R = R.De�nitionlet X, Y, R, A.rede�nefun
 R�A ! Subset of Y.



88 CHAPTER 15. RELSET 1fun
 R�1A ! Subset of X.Theorem RELSET 1:37. R�A � Y & R�1A � X.Theorem RELSET 1:38. R�X = rng R & R�1Y = dom R.Theorem RELSET 1:39. R�(R�1Y) = rng R & R�1(R�X) = dom R.s
heme Rel On Set ExfA() ! set, B() ! set, P[Any, Any℄g: ex R being Relation ofA(), B() st for x, y holds [x, y℄ 2 R i� x 2 A() & y 2 B() & P[x, y℄.De�nitionlet X.mode Relation of X ! Relation of X, X means it � [[X, X℄℄.Theorem RELSET 1:40. for R being Relation of X, X holds R � [[X, X℄℄ i� R isRelation of X.reserve P, Q, R for Relation of X.Theorem RELSET 1:41. [[X, X℄℄ is Relation of X.Theorem RELSET 1:42. for R being Relation of X, X st dom R = X & rng R = Xholds R is Relation of X.Theorem RELSET 1:43. 4X is Relation of X.Theorem RELSET 1:44. 4X � R implies X = dom R & X = rng R.Theorem RELSET 1:45. R�(4X) = R & (4X)�R = R.reserve D, D1, D2, E, E1, F for DOMAIN.reserve P, P1, Q, R for Relation of D, E.reserve a, x, x1 for Element of D.reserve b, y, y1 for Element of E.reserve 
, z for Element of F.Theorem RELSET 1:46. 4D 6= ;.De�nitionlet D, E, R.rede�nefun
 dom R ! Element of bool D.fun
 rng R ! Element of bool E.Theorem RELSET 1:47. for x being Element of D holds x 2 dom R i� ex y beingElement of E st [x, y℄ 2 R.Theorem RELSET 1:48. for y being Element of E holds y 2 rng R i� ex x beingElement of D st [x, y℄ 2 R.Theorem RELSET 1:49. for x being Element of D holds x 2 dom R implies ex ybeing Element of E st y 2 rng R.



89Theorem RELSET 1:50. for y being Element of E holds y 2 rng R implies ex xbeing Element of D st x 2 dom R.Theorem RELSET 1:51. for P being (Relation of D, E), R being (Relation of E, F)for x being (Element of D), z being Element of F holds [x, z℄ 2 P�R i� ex y beingElement of E st [x, y℄ 2 P & [y, z℄ 2 R.De�nitionlet D, E, R, D1.rede�nefun
 R�D1 ! Element of bool E.fun
 R�1D1 ! Element of bool D.Theorem RELSET 1:52. y 2 R�D1 i� ex x being Element of D st [x, y℄ 2 R & x 2D1.Theorem RELSET 1:53. x 2 R�1D2 i� ex y being Element of E st [x, y℄ 2 R & y 2D2.s
heme Rel On Dom ExfA() ! DOMAIN, B() ! DOMAIN, P[Any, Any℄g: ex Rbeing Relation of A(), B() st for x being (Element of A()), y being Element of B()holds [x, y℄ 2 R i� x 2 A() & y 2 B() & P[x, y℄.



Chapter 16WELLORD1The Well Ordering RelationsbyGrzegorz Ban
erek 1Warsaw University (Bia lystok)Summary. Some theorems about well ordering relations are proved. The goal ofthe arti
le is to prove that any two well ordering relations are either isomorphi
 orone of them is isomorphi
 to a segment of the other. The following 
on
epts arede�ned: the segment of a relation indu
ed by an element, well founded relations,well ordering relations, the restri
tion of a relation to a set, and the isomorphismof two relations. A number of simple fa
ts is presented.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,fam op, real 1, fun
 rel, relation, rel rel, wellord, and fun
. The terminologyand notation used in this arti
le have been introdu
ed in the following arti
les: tarski,boole, enumset1, relat 1, relat 2, and fun
t 1.reserve a, b, 
, d, e, x, y, z for Any, X, Y, Z for set.s
heme ExtensionalityfA() ! set, B() ! set, P[Any℄g: A() = B() provided A: fora holds a 2 A() i� P[a℄ and B: for a holds a 2 B() i� P[a℄.reserve R, S, T for Relation.De�nitionlet R, a.1Supported by RPBP.III-24.C1. 90



91fun
 R-Seg(a) ! set means x 2 it i� x 6= a & [x, a℄ 2 R.Theorem WELLORD1:1. for R, Y, a holds Y = R-Seg(a) i� for b holds b 2 Y i�b 6= a & [b, a℄ 2 R.Theorem WELLORD1:2. x 2 �eld R or R-Seg(x) = ;.De�nitionlet R.pred R is well founded means for Y st Y � �eld R & Y 6= ; ex a st a 2 Y &R-Seg(a)\Y = ;.let X.pred R is well founded in X means for Y st Y � X & Y 6= ; ex a st a 2 Y &R-Seg(a)\Y = ;.Theorem WELLORD1:3. for R holds R is well founded i� for Y st Y � �eld R & Y6= ; ex a st a 2 Y & R-Seg(a)\Y = ;.Theorem WELLORD1:4. for R, X holds R is well founded in X i� for Y st Y � X &Y 6= ; ex a st a 2 Y & R-Seg(a)\Y = ;.Theorem WELLORD1:5. R is well founded i� R is well founded in �eld R.De�nitionlet R.pred R is well-ordering-relation means R is re
exive & R is transitive & R isantisymmetri
 & R is 
onne
ted & R is well founded.let X.pred R well orders X means R is re
exive in X & R is transitive in X & R isantisymmetri
 in X & R is 
onne
ted in X & R is well founded in X.Theorem WELLORD1:6. for R holds R is well-ordering-relation i� R is re
exive & Ris transitive & R is antisymmetri
 & R is 
onne
ted & R is well founded.Theorem WELLORD1:7. for R, X holds R well orders X i� R is re
exive in X & R istransitive in X & R is antisymmetri
 in X & R is 
onne
ted in X & R is well founded in X.Theorem WELLORD1:8. R well orders �eld R i� R is well-ordering-relation.Theorem WELLORD1:9. R well orders X implies for Y st Y � X & Y 6= ; ex a st a2 Y & for b st b 2 Y holds [a, b℄ 2 R.Theorem WELLORD1:10. R is well-ordering-relation implies for Y st Y � �eld R &Y 6= ; ex a st a 2 Y & for b st b 2 Y holds [a, b℄ 2 R.Theorem WELLORD1:11. for R st R is well-ordering-relation & �eld R 6= ; ex a st a2 �eld R & for b st b 2 �eld R holds [a, b℄ 2 R.Theorem WELLORD1:12. for R st R is well-ordering-relation & �eld R 6= ; for a st a2 �eld R holds (for b st b 2 �eld R holds [b, a℄ 2 R) or (ex b st b 2 �eld R & [a, b℄ 2R & for 
 st 
 2 �eld R & [a, 
℄ 2 R holds 
 = a or [b, 
℄ 2 R).



92 CHAPTER 16. WELLORD1reserve F, G, H for Fun
tion.Theorem WELLORD1:13. R-Seg(a) � �eld R.De�nitionlet R, Y.fun
 R�2Y ! Relation means it = R\[[Y, Y℄℄.Theorem WELLORD1:14. R�2Y = R\[[Y, Y℄℄.Theorem WELLORD1:15. R�2X � R & R�2X � [[X, X℄℄.Theorem WELLORD1:16. x 2 R�2X i� x 2 R & x 2 [[X, X℄℄.Theorem WELLORD1:17. R�2X = X�R�X.Theorem WELLORD1:18. R�2X = X�(R�X).Theorem WELLORD1:19. x 2 �eld (R�2X) implies x 2 �eld R & x 2 X.Theorem WELLORD1:20. �eld (R�2X) � �eld R & �eld (R�2X) � X.Theorem WELLORD1:21. (R�2X)-Seg(a) � R-Seg(a).Theorem WELLORD1:22. R is re
exive implies R�2X is re
exive.Theorem WELLORD1:23. R is 
onne
ted implies R�2Y is 
onne
ted.Theorem WELLORD1:24. R is transitive implies R�2Y is transitive.Theorem WELLORD1:25. R is antisymmetri
 implies R�2Y is antisymmetri
.Theorem WELLORD1:26. (R�2X)�2Y = R�2(X\Y).Theorem WELLORD1:27. (R�2X)�2Y = (R�2Y)�2X.Theorem WELLORD1:28. (R�2Y)�2Y = R�2Y.Theorem WELLORD1:29. Z � Y implies (R�2Y)�2Z = R�2Z.Theorem WELLORD1:30. R�2�eld R = R.Theorem WELLORD1:31. R is well founded implies R�2X is well founded.Theorem WELLORD1:32. R is well-ordering-relation implies R�2Y is well-ordering-relation.Theorem WELLORD1:33. R is well-ordering-relation implies R-Seg(a) � R-Seg(b) orR-Seg(b) � R-Seg(a).Theorem WELLORD1:34. R is well-ordering-relation implies R�2(R-Seg(a)) is well-ordering-relation.Theorem WELLORD1:35. R is well-ordering-relation & a 2 �eld R & b 2 R-Seg(a)implies (R�2(R-Seg(a)))-Seg(b) = R-Seg(b).Theorem WELLORD1:36. R is well-ordering-relation & Y � �eld R implies (Y = �eldR or (ex a st a 2 �eld R & Y = R-Seg(a)) i� for a st a 2 Y for b st [b, a℄ 2 R holds b2 Y).Theorem WELLORD1:37. R is well-ordering-relation & a 2 �eld R & b 2 �eld R implies([a, b℄ 2 R i� R-Seg(a) � R-Seg(b)).



93Theorem WELLORD1:38. R is well-ordering-relation & a 2 �eld R & b 2 �eld R implies(R-Seg(a) � R-Seg(b) i� a = b or a 2 R-Seg(b)).Theorem WELLORD1:39. R is well-ordering-relation & X� �eld R implies �eld (R�2X)= X.Theorem WELLORD1:40. R is well-ordering-relation implies �eld (R�2R-Seg(a)) =R-Seg(a).Theorem WELLORD1:41. R is well-ordering-relation implies for Z st for a st a 2�eld R & R-Seg(a) � Z holds a 2 Z holds �eld R � Z.Theorem WELLORD1:42. R is well-ordering-relation & a 2 �eld R & b 2 �eld R & (for
 st 
 2 R-Seg(a) holds [
, b℄ 2 R & 
 6= b) implies [a, b℄ 2 R.Theorem WELLORD1:43. R is well-ordering-relation & dom F = �eld R & rng F � �eldR & (for a, b st [a, b℄ 2 R & a 6= b holds [F:a, F:b℄ 2 R & F:a 6= F:b) implies for a sta 2 �eld R holds [a, F:a℄ 2 R.De�nitionlet R, S, F.pred F is isomorphism of R, S means dom F = �eld R & rng F = �eld S & F is1-1 & for a, b holds [a, b℄ 2 R i� a 2 �eld R & b 2 �eld R & [F:a, F:b℄ 2 S.Theorem WELLORD1:44. F is isomorphism of R, S i� dom F = �eld R & rng F = �eldS & F is 1-1 & for a, b holds [a, b℄ 2 R i� a 2 �eld R & b 2 �eld R & [F:a, F:b℄ 2 S.Theorem WELLORD1:45. F is isomorphism of R, S implies for a, b st [a, b℄ 2 R &a 6= b holds [F:a, F:b℄ 2 S & F:a 6= F:b.De�nitionlet R, S.pred R, S are isomorphi
 means ex F st F is isomorphism of R, S.Theorem WELLORD1:46. R, S are isomorphi
 i� ex F st F is isomorphism of R, S.Theorem WELLORD1:47. Id (�eld R) is isomorphism of R, R.Theorem WELLORD1:48. R, R are isomorphi
.Theorem WELLORD1:49. F is isomorphism of R, S implies F�1 is isomorphism of S,R. Theorem WELLORD1:50. R, S are isomorphi
 implies S, R are isomorphi
.Theorem WELLORD1:51. F is isomorphism of R, S & G is isomorphism of S, T impliesG�F is isomorphism of R, T.Theorem WELLORD1:52. R, S are isomorphi
 & S, T are isomorphi
 implies R, T areisomorphi
.Theorem WELLORD1:53. F is isomorphism of R, S implies (R is re
exive impliesS is re
exive) & (R is transitive implies S is transitive) & (R is 
onne
ted implies S is
onne
ted) & (R is antisymmetri
 implies S is antisymmetri
) & (R is well founded impliesS is well founded).



94 CHAPTER 16. WELLORD1Theorem WELLORD1:54. R is well-ordering-relation & F is isomorphism of R, S impliesS is well-ordering-relation.Theorem WELLORD1:55. R is well-ordering-relation implies for F, G st F is isomor-phism of R, S & G is isomorphism of R, S holds F = G.De�nitionlet R, S.assume R is well-ordering-relation & R, S are isomorphi
.fun
 
anoni
al isomorphism of (R, S) ! Fun
tion means it is isomorphism of R,S. Theorem WELLORD1:56. R is well-ordering-relation & R, S are isomorphi
 implies (F= 
anoni
al isomorphism of (R, S) i� F is isomorphism of R, S).Theorem WELLORD1:57. R is well-ordering-relation implies for a st a 2 �eld R holdsnot R, R�2(R-Seg(a)) are isomorphi
.Theorem WELLORD1:58. R is well-ordering-relation & a 2 �eld R & b 2 �eld R & a6= b implies not R�2(R-Seg(a)), R�2(R-Seg(b)) are isomorphi
.Theorem WELLORD1:59. R is well-ordering-relation & Z � �eld R & F is isomorphismof R, S implies F�Z is isomorphism of R�2Z, S�2(F�Z) & R�2Z, S�2(F�Z) are isomorphi
.Theorem WELLORD1:60. R is well-ordering-relation & F is isomorphism of R, S impliesfor a st a 2 �eld R ex b st b 2 �eld S & F�(R-Seg(a)) = S-Seg(b).Theorem WELLORD1:61. R is well-ordering-relation & F is isomorphism of R, S impliesfor a st a 2 �eld R ex b st b 2 �eld S & R�2(R-Seg(a)), S�2(S-Seg(b)) are isomorphi
.Theorem WELLORD1:62. R is well-ordering-relation & S is well-ordering-relation & a 2�eld R & b 2 �eld S & 
 2 �eld S & R, S�2(S-Seg(b)) are isomorphi
 & R�2(R-Seg(a)), S�2(S-Seg(
)) are isomorphi
 implies S-Seg(
) � S-Seg(b) & [
, b℄ 2 S.Theorem WELLORD1:63. R is well-ordering-relation & S is well-ordering-relation im-plies R, S are isomorphi
 or (ex a st a 2 �eld R & R�2(R-Seg(a)), S are isomorphi
) or(ex a st a 2 �eld S & R, S�2(S-Seg(a)) are isomorphi
).Theorem WELLORD1:64. Y � �eld R & R is well-ordering-relation implies R, R�2Yare isomorphi
 or ex a st a 2 �eld R & R�2(R-Seg(a)), R�2Y are isomorphi
.



Chapter 17SETFAM 1Families of SetsbyBeata Padlewska 1Warsaw University (Bia lystok)Summary. The arti
le 
ontains de�nitions of the following 
on
epts: family ofsets, family of subsets of a set, the interse
tion of a family of sets. Fun
tions \, [,and r are rede�ned for families of subsets of a set. Some properties of these notionsare presented.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,fam op, sub op, and sfamily. The terminology and notation used in this arti
le havebeen introdu
ed in the following arti
les: tarski, boole, enumset1, and subset 1.reserve X, X1, X2, X3, Y, Z, Z1, Z2, D for set, x, y, z for Any.De�nitionlet X.fun
 TX ! set means for x holds x 2 it i� (for Y holds Y 2 X implies x2 Y) if X 6= ; otherwise it = ;.Theorem SETFAM 1:1. X 6= ; implies for x holds x 2 TX i� for Y st Y 2 X holdsx 2 Y.Theorem SETFAM 1:2. T; = ;.1Supported by RPBP.III-24.C1. 95



96 CHAPTER 17. SETFAM 1Theorem SETFAM 1:3. TX � SX.Theorem SETFAM 1:4. Z 2 X implies TX � Z.Theorem SETFAM 1:5. ; 2 X implies TX = ;.Theorem SETFAM 1:6. X 6= ; & (for Z1 st Z1 2 X holds Z � Z1) implies Z � TX.Theorem SETFAM 1:7. X 6= ; & X � Y implies TY � TX.Theorem SETFAM 1:8. X 2 Y & X � Z implies TY � Z.Theorem SETFAM 1:9. X 2 Y & X\Z = ; implies TY\Z = ;.Theorem SETFAM 1:10. X 6= ; & Y 6= ; implies T(X[Y) = TX\TY.Theorem SETFAM 1:11. Tfxg = x.Theorem SETFAM 1:12. TfX, Yg = X\Y.De�nitionmode Set-Family ! set means not 
ontradi
tion.reserve SFX, SFY, SFZ for Set-Family.Theorem SETFAM 1:13. x is Set-Family.Theorem SETFAM 1:14. SFX = SFY i� (for X holds X 2 SFX i� X 2 SFY).De�nitionlet SFX, SFY.pred SFX is �ner than SFY means for X st X 2 SFX ex Y st Y 2 SFY & X� Y. pred SFX is 
oarser than SFY means for Y st Y 2 SFY ex X st X 2 SFX &X � Y.Theorem SETFAM 1:15. SFX is �ner than SFY i� for X st X 2 SFX ex Y st Y 2SFY & X � Y.Theorem SETFAM 1:16. SFX is 
oarser than SFY i� for Y st Y 2 SFY ex X st X 2SFX & X � Y.Theorem SETFAM 1:17. SFX � SFY implies SFX is �ner than SFY.Theorem SETFAM 1:18. SFX is �ner than SFY implies SSFX � SSFY.Theorem SETFAM 1:19. SFY 6= ; & SFX is 
oarser than SFY implies TSFX �TSFY.De�nitionrede�nefun
 ; ! Set-Family.let x. fun
 fxg ! Set-Family.let y. fun
 fx, yg ! Set-Family.



97Theorem SETFAM 1:20. ; is �ner than SFX.Theorem SETFAM 1:21. SFX is �ner than ; implies SFX = ;.Theorem SETFAM 1:22. SFX is �ner than SFX.Theorem SETFAM 1:23. SFX is �ner than SFY & SFY is �ner than SFZ implies SFXis �ner than SFZ.Theorem SETFAM 1:24. SFX is �ner than fYg implies for X st X 2 SFX holds X� Y.Theorem SETFAM 1:25. SFX is �ner than fX, Yg implies for Z st Z 2 SFX holdsZ � X or Z � Y.De�nitionlet SFX, SFY.fun
 d(SFX, SFY) ! Set-Family means Z 2 it i� ex X, Y st X 2 SFX & Y 2SFY & Z = X[Y.fun
 e(SFX, SFY) ! Set-Family means Z 2 it i� ex X, Y st X 2 SFX & Y 2SFY & Z = X\Y.fun
 rr(SFX, SFY) ! Set-Family means Z 2 it i� ex X, Y st X 2 SFX & Y2 SFY & Z = XrY.Theorem SETFAM 1:26. Z 2 d(SFX, SFY) i� ex X, Y st X 2 SFX & Y 2 SFY & Z= X[Y.Theorem SETFAM 1:27. Z 2 e(SFX, SFY) i� ex X, Y st X 2 SFX & Y 2 SFY & Z= X\Y.Theorem SETFAM 1:28. Z 2 rr(SFX, SFY) i� ex X, Y st X 2 SFX & Y 2 SFY &Z = XrY.Theorem SETFAM 1:29. SFX is �ner than d(SFX, SFX).Theorem SETFAM 1:30. e(SFX, SFX) is �ner than SFX.Theorem SETFAM 1:31. rr(SFX, SFX) is �ner than SFX.Theorem SETFAM 1:32. d(SFX, SFY) = d(SFY, SFX).Theorem SETFAM 1:33. e(SFX, SFY) = e(SFY, SFX).Theorem SETFAM 1:34. SFX\SFY 6= ; implies TSFX\TSFY = Te(SFX, SFY).Theorem SETFAM 1:35. SFY 6= ; implies X[TSFY = Td(fXg, SFY).Theorem SETFAM 1:36. X\SSFY = Se(fXg, SFY).Theorem SETFAM 1:37. SFY 6= ; implies XrSSFY = Trr(fXg, SFY).Theorem SETFAM 1:38. SFY 6= ; implies XrTSFY = Srr(fXg, SFY).Theorem SETFAM 1:39. Se(SFX, SFY) � SSFX\SSFY.Theorem SETFAM 1:40. SFX 6= ; & SFY 6= ; implies TSFX[TSFY � Td(SFX,SFY).



98 CHAPTER 17. SETFAM 1Theorem SETFAM 1:41. SFX 6= ; & SFY 6= ; implies Trr(SFX, SFY) � TSFXrTSFY.De�nitionlet D be set.mode Subset-Family of D ! Subset of bool D means not 
ontradi
tion.Theorem SETFAM 1:42. for F being Subset of bool D holds F is Subset-Family ofD. reserve F, G for Subset-Family of D.reserve P, Q for Subset of D.De�nitionlet D, F, G.rede�nefun
 F[G ! Subset-Family of D.fun
 F\G ! Subset-Family of D.fun
 FrG ! Subset-Family of D.Theorem SETFAM 1:43. X 2 F implies X is Subset of D.De�nitionlet D, F.rede�nefun
 SF ! Subset of D.De�nitionlet D, F.rede�nefun
 TF ! Subset of D.Theorem SETFAM 1:44. F = G i� (for P holds P 2 F i� P 2 G).s
heme SubFamExfA() ! set, P[Subset of A()℄g: ex F being Subset-Family of A()st for B being Subset of A() holds B 2 F i� P[B℄.De�nitionlet D, F.fun
 F
 ! Subset-Family of D means for P being Subset of D holds P 2 iti� P
 2 F.Theorem SETFAM 1:45. for P holds P 2 F
 i� P
 2 F.Theorem SETFAM 1:46. F 6= ; implies F
 6= ;.Theorem SETFAM 1:47. F 6= ; implies 
DrSF = T(F
).Theorem SETFAM 1:48. F 6= ; implies SF
 = 
DrTF.



Chapter 18MCART 1Tuples, Proje
tions and Cartesian Produ
tsbyAndrzej Trybule
 1Warsaw University (Bia lystok)Summary. The purpose of this arti
le is to de�ne proje
tions of ordered pairs,and to introdu
e triples and quadruples, and their proje
tions. The theorems inthis paper may be roughly divided into two groups: theorems des
ribing basi
properties of introdu
ed 
on
epts and theorems related to the regularity, analogousto those proved for ordered pairs in Some Basi
 Properties of Sets by Cz. Byli�nski(ZFMISC 1). Cartesian produ
ts of subsets are rede�ned as subsets of Cartesianprodu
ts.The symbols used in this arti
le are introdu
ed in the following vo
abularies: fam op,boole, and 
oord. The terminology and notation used in this arti
le have been in-trodu
ed in the following arti
les: tarski, boole, enumset1, subset 1, fun
t 1, andordinal1.reserve v, x, x1, x2, x3, x4, y, y1, y2, y3, y4, z, z1, z2 for Any, X, X1, X2, X3, X4,X5, X6, Y, Y1, Y2, Y3, Y4, Y5, Z, Z1, Z2, Z3, Z4, Z5 for set.Theorem MCART 1:1. X 6= ; implies ex Y st Y 2 X & Y misses X.Theorem MCART 1:2. X 6= ; implies ex Y st Y 2 X & for Y1 st Y1 2 Y holds Y1misses X.1Supported by RPBP.III-24.C1. 99



100 CHAPTER 18. MCART 1Theorem MCART 1:3. X 6= ; implies ex Y st Y 2 X & for Y1, Y2 st Y1 2 Y2 &Y2 2 Y holds Y1 misses X.Theorem MCART 1:4. X 6= ; implies ex Y st Y 2 X & for Y1, Y2, Y3 st Y1 2 Y2& Y2 2 Y3 & Y3 2 Y holds Y1 misses X.Theorem MCART 1:5. X 6= ; implies ex Y st Y 2 X & for Y1, Y2, Y3, Y4 st Y1 2Y2 & Y2 2 Y3 & Y3 2 Y4 & Y4 2 Y holds Y1 misses X.Theorem MCART 1:6. X 6= ; implies ex Y st Y 2 X & for Y1, Y2, Y3, Y4, Y5 stY1 2 Y2 & Y2 2 Y3 & Y3 2 Y4 & Y4 2 Y5 & Y5 2 Y holds Y1 misses X.De�nitionlet x.given x1, x2 being Any su
h that x = [x1, x2℄.fun
 x1 means x = [y1, y2℄ implies it = y1.fun
 x2 means x = [y1, y2℄ implies it = y2.Theorem MCART 1:7. [x, y℄1 = x & [x, y℄2 = y.Theorem MCART 1:8. (ex x, y st z = [x, y℄) implies [z1, z2℄ = z.Theorem MCART 1:9. X 6= ; implies ex v st v 2 X & not ex x, y st (x 2 X or y 2X) & v = [x, y℄.Theorem MCART 1:10. z 2 [[X, Y℄℄ implies z1 2 X & z2 2 Y.Theorem MCART 1:11. (ex x, y st z = [x, y℄) & z1 2 X & z2 2 Y implies z 2 [[X,Y℄℄. Theorem MCART 1:12. z 2 [[fxg, Y℄℄ implies z1 = x & z2 2 Y.Theorem MCART 1:13. z 2 [[X, fyg℄℄ implies z1 2 X & z2 = y.Theorem MCART 1:14. z 2 [[fxg, fyg℄℄ implies z1 = x & z2 = y.Theorem MCART 1:15. z 2 [[fx1, x2g, Y℄℄ implies (z1 = x1 or z1 = x2) & z2 2 Y.Theorem MCART 1:16. z 2 [[X, fy1, y2g℄℄ implies z1 2 X & (z2 = y1 or z2 = y2).Theorem MCART 1:17. z 2 [[fx1, x2g, fyg℄℄ implies (z1 = x1 or z1 = x2) & z2 = y.Theorem MCART 1:18. z 2 [[fxg, fy1, y2g℄℄ implies z1 = x & (z2 = y1 or z2 = y2).Theorem MCART 1:19. z 2 [[fx1, x2g, fy1, y2g℄℄ implies (z1 = x1 or z1 = x2) & (z2= y1 or z2 = y2).Theorem MCART 1:20. (ex y, z st x = [y, z℄) implies x 6= x1 & x 6= x2.reserve xx, xx1, xx2 for Element of X.reserve yy, yy1, yy2 for Element of Y.Theorem MCART 1:21. X 6= ; & Y 6= ; implies [xx, yy℄ 2 [[X, Y℄℄.Theorem MCART 1:22. X 6= ; & Y 6= ; implies [xx, yy℄ is Element of [[X, Y℄℄.Theorem MCART 1:23. x 2 [[X, Y℄℄ implies x = [x1, x2℄.



101Theorem MCART 1:24. X 6= ; & Y 6= ; implies for x being Element of [[X, Y℄℄ holdsx = [x1, x2℄.Theorem MCART 1:25. [[fx1, x2g, fy1, y2g℄℄ = f[x1, y1℄, [x1, y2℄, [x2, y1℄, [x2, y2℄g.Theorem MCART 1:26. X 6= ; & Y 6= ; implies for x being Element of [[X, Y℄℄ holdsx 6= x1 & x 6= x2.De�nitionlet x1, x2, x3.fun
 [x1, x2, x3℄ means it = [[x1, x2℄, x3℄.Theorem MCART 1:27. [x1, x2, x3℄ = [[x1, x2℄, x3℄.Theorem MCART 1:28. [x1, x2, x3℄ = [y1, y2, y3℄ implies x1 = y1 & x2 = y2 & x3= y3.Theorem MCART 1:29. X 6= ; implies ex v st v 2 X & not ex x, y, z st (x 2 X ory 2 X) & v = [x, y, z℄.De�nitionlet x1, x2, x3, x4.fun
 [x1, x2, x3, x4℄ means it = [[x1, x2, x3℄, x4℄.Theorem MCART 1:30. [x1, x2, x3, x4℄ = [[x1, x2, x3℄, x4℄.Theorem MCART 1:31. [x1, x2, x3, x4℄ = [[[x1, x2℄, x3℄, x4℄.Theorem MCART 1:32. [x1, x2, x3, x4℄ = [[x1, x2℄, x3, x4℄.Theorem MCART 1:33. [x1, x2, x3, x4℄ = [y1, y2, y3, y4℄ implies x1 = y1 & x2 =y2 & x3 = y3 & x4 = y4.Theorem MCART 1:34. X 6= ; implies ex v st v 2 X & not ex x1, x2, x3, x4 st (x12 X or x2 2 X) & v = [x1, x2, x3, x4℄.Theorem MCART 1:35. X1 6= ; & X2 6= ; & X3 6= ; i� [[X1, X2, X3℄℄ 6= ;.reserve xx1 for (Element of X1), xx2 for (Element of X2), xx3 for (Element of X3).Theorem MCART 1:36. X1 6= ; & X2 6= ; & X3 6= ; implies ([[X1, X2, X3℄℄ = [[Y1,Y2, Y3℄℄ implies X1 = Y1 & X2 = Y2 & X3 = Y3).Theorem MCART 1:37. [[X1, X2, X3℄℄ 6= ; & [[X1, X2, X3℄℄ = [[Y1, Y2, Y3℄℄ impliesX1 = Y1 & X2 = Y2 & X3 = Y3.Theorem MCART 1:38. [[X, X, X℄℄ = [[Y, Y, Y℄℄ implies X = Y.Theorem MCART 1:39. [[fx1g, fx2g, fx3g℄℄ = f[x1, x2, x3℄g.Theorem MCART 1:40. [[fx1, y1g, fx2g, fx3g℄℄ = f[x1, x2, x3℄, [y1, x2, x3℄g.Theorem MCART 1:41. [[fx1g, fx2, y2g, fx3g℄℄ = f[x1, x2, x3℄, [x1, y2, x3℄g.Theorem MCART 1:42. [[fx1g, fx2g, fx3, y3g℄℄ = f[x1, x2, x3℄, [x1, x2, y3℄g.Theorem MCART 1:43. [[fx1, y1g, fx2, y2g, fx3g℄℄ = f[x1, x2, x3℄, [y1, x2, x3℄, [x1,y2, x3℄, [y1, y2, x3℄g.



102 CHAPTER 18. MCART 1Theorem MCART 1:44. [[fx1, y1g, fx2g, fx3, y3g℄℄ = f[x1, x2, x3℄, [y1, x2, x3℄, [x1,x2, y3℄, [y1, x2, y3℄g.Theorem MCART 1:45. [[fx1g, fx2, y2g, fx3, y3g℄℄ = f[x1, x2, x3℄, [x1, y2, x3℄, [x1,x2, y3℄, [x1, y2, y3℄g.Theorem MCART 1:46. [[fx1, y1g, fx2, y2g, fx3, y3g℄℄ = f[x1, x2, x3℄, [x1, y2, x3℄,[x1, x2, y3℄, [x1, y2, y3℄, [y1, x2, x3℄, [y1, y2, x3℄, [y1, x2, y3℄, [y1, y2, y3℄g.De�nitionlet X1, X2, X3.assume X1 6= ; & X2 6= ; & X3 6= ;.let x be Element of [[X1, X2, X3℄℄.fun
 x1 ! Element of X1 means x = [x1, x2, x3℄ implies it = x1.fun
 x2 ! Element of X2 means x = [x1, x2, x3℄ implies it = x2.fun
 x3 ! Element of X3 means x = [x1, x2, x3℄ implies it = x3.Theorem MCART 1:47. X1 6= ; & X2 6= ; & X3 6= ; implies for x being Element of[[X1, X2, X3℄℄ for x1, x2, x3 st x = [x1, x2, x3℄ holds x1 = x1 & x2 = x2 & x3 = x3.Theorem MCART 1:48. X1 6= ; & X2 6= ; & X3 6= ; implies for x being Element of[[X1, X2, X3℄℄ holds x = [x1, x2, x3℄.Theorem MCART 1:49. X � [[X, Y, Z℄℄ or X � [[Y, Z, X℄℄ or X � [[Z, X, Y℄℄ impliesX = ;.Theorem MCART 1:50. X1 6= ; & X2 6= ; & X3 6= ; implies for x being Element of[[X1, X2, X3℄℄ holds x1 = (x qua Any)11 & x2 = (x qua Any)12 & x3 = (x qua Any)2.Theorem MCART 1:51. X1 6= ; & X2 6= ; & X3 6= ; implies for x being Element of[[X1, X2, X3℄℄ holds x 6= x1 & x 6= x2 & x 6= x3.Theorem MCART 1:52. [[X1, X2, X3℄℄ meets [[Y1, Y2, Y3℄℄ implies X1 meets Y1 & X2meets Y2 & X3 meets Y3.Theorem MCART 1:53. [[X1, X2, X3, X4℄℄ = [[[[[[X1, X2℄℄, X3℄℄, X4℄℄.Theorem MCART 1:54. [[[[X1, X2℄℄, X3, X4℄℄ = [[X1, X2, X3, X4℄℄.Theorem MCART 1:55. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; i� [[X1, X2, X3, X4℄℄6= ;.Theorem MCART 1:56. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies ([[X1, X2,X3, X4℄℄ = [[Y1, Y2, Y3, Y4℄℄ implies X1 = Y1 & X2 = Y2 & X3 = Y3 & X4 = Y4).Theorem MCART 1:57. [[X1, X2, X3, X4℄℄ 6= ; & [[X1, X2, X3, X4℄℄ = [[Y1, Y2, Y3,Y4℄℄ implies X1 = Y1 & X2 = Y2 & X3 = Y3 & X4 = Y4.Theorem MCART 1:58. [[X, X, X, X℄℄ = [[Y, Y, Y, Y℄℄ implies X = Y.reserve xx4 for Element of X4.De�nitionlet X1, X2, X3, X4.



103assume X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ;.let x be Element of [[X1, X2, X3, X4℄℄.fun
 x1 ! Element of X1 means x = [x1, x2, x3, x4℄ implies it = x1.fun
 x2 ! Element of X2 means x = [x1, x2, x3, x4℄ implies it = x2.fun
 x3 ! Element of X3 means x = [x1, x2, x3, x4℄ implies it = x3.fun
 x4 ! Element of X4 means x = [x1, x2, x3, x4℄ implies it = x4.Theorem MCART 1:59. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x beingElement of [[X1, X2, X3, X4℄℄ for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds x1 = x1 &x2 = x2 & x3 = x3 & x4 = x4.Theorem MCART 1:60. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x beingElement of [[X1, X2, X3, X4℄℄ holds x = [x1, x2, x3, x4℄.Theorem MCART 1:61. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x beingElement of [[X1, X2, X3, X4℄℄ holds x1 = (x qua Any)111 & x2 = (x qua Any)112 & x3 =(x qua Any)12 & x4 = (x qua Any)2.Theorem MCART 1:62. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x beingElement of [[X1, X2, X3, X4℄℄ holds x 6= x1 & x 6= x2 & x 6= x3 & x 6= x4.Theorem MCART 1:63. X1 � [[X1, X2, X3, X4℄℄ or X1 � [[X2, X3, X4, X1℄℄ or X1 �[[X3, X4, X1, X2℄℄ or X1 � [[X4, X1, X2, X3℄℄ implies X1 = ;.Theorem MCART 1:64. [[X1, X2, X3, X4℄℄ meets [[Y1, Y2, Y3, Y4℄℄ implies X1 meetsY1 & X2 meets Y2 & X3 meets Y3 & X4 meets Y4.Theorem MCART 1:65. [[fx1g, fx2g, fx3g, fx4g℄℄ = f[x1, x2, x3, x4℄g.Theorem MCART 1:66. [[X, Y℄℄ 6= ; implies for x being Element of [[X, Y℄℄ holds x6= x1 & x 6= x2.Theorem MCART 1:67. x 2 [[X, Y℄℄ implies x 6= x1 & x 6= x2.reserve A1 for (Subset of X1), A2 for (Subset of X2), A3 for (Subset of X3), A4 forSubset of X4.reserve x for Element of [[X1, X2, X3℄℄.Theorem MCART 1:68. X1 6= ; & X2 6= ; & X3 6= ; implies for x1, x2, x3 st x =[x1, x2, x3℄ holds x1 = x1 & x2 = x2 & x3 = x3.Theorem MCART 1:69. X1 6= ; & X2 6= ; & X3 6= ; & (for xx1, xx2, xx3 st x =[xx1, xx2, xx3℄ holds y1 = xx1) implies y1 = x1.Theorem MCART 1:70. X1 6= ; & X2 6= ; & X3 6= ; & (for xx1, xx2, xx3 st x =[xx1, xx2, xx3℄ holds y2 = xx2) implies y2 = x2.Theorem MCART 1:71. X1 6= ; & X2 6= ; & X3 6= ; & (for xx1, xx2, xx3 st x =[xx1, xx2, xx3℄ holds y3 = xx3) implies y3 = x3.Theorem MCART 1:72. z 2 [[X1, X2, X3℄℄ implies ex x1, x2, x3 st x1 2 X1 & x2 2X2 & x3 2 X3 & z = [x1, x2, x3℄.



104 CHAPTER 18. MCART 1Theorem MCART 1:73. [x1, x2, x3℄ 2 [[X1, X2, X3℄℄ i� x1 2 X1 & x2 2 X2 & x3 2X3.Theorem MCART 1:74. (for z holds z 2 Z i� ex x1, x2, x3 st x1 2 X1 & x2 2 X2 &x3 2 X3 & z = [x1, x2, x3℄) implies Z = [[X1, X2, X3℄℄.Theorem MCART 1:75. X1 6= ; & X2 6= ; & X3 6= ; & Y1 6= ; & Y2 6= ; & Y3 6= ;implies for x being (Element of [[X1, X2, X3℄℄), y being Element of [[Y1, Y2, Y3℄℄ holdsx = y implies x1 = y1 & x2 = y2 & x3 = y3.Theorem MCART 1:76. for x being Element of [[X1, X2, X3℄℄ st x 2 [[A1, A2, A3℄℄holds x1 2 A1 & x2 2 A2 & x3 2 A3.Theorem MCART 1:77. X1 � Y1 & X2 � Y2 & X3 � Y3 implies [[X1, X2, X3℄℄ �[[Y1, Y2, Y3℄℄.reserve x for Element of [[X1, X2, X3, X4℄℄.Theorem MCART 1:78. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x1, x2,x3, x4 st x = [x1, x2, x3, x4℄ holds x1 = x1 & x2 = x2 & x3 = x3 & x4 = x4.Theorem MCART 1:79. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & (for xx1, xx2, xx3,xx4 st x = [xx1, xx2, xx3, xx4℄ holds y1 = xx1) implies y1 = x1.Theorem MCART 1:80. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & (for xx1, xx2, xx3,xx4 st x = [xx1, xx2, xx3, xx4℄ holds y2 = xx2) implies y2 = x2.Theorem MCART 1:81. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & (for xx1, xx2, xx3,xx4 st x = [xx1, xx2, xx3, xx4℄ holds y3 = xx3) implies y3 = x3.Theorem MCART 1:82. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & (for xx1, xx2, xx3,xx4 st x = [xx1, xx2, xx3, xx4℄ holds y4 = xx4) implies y4 = x4.Theorem MCART 1:83. z 2 [[X1, X2, X3, X4℄℄ implies ex x1, x2, x3, x4 st x1 2 X1& x2 2 X2 & x3 2 X3 & x4 2 X4 & z = [x1, x2, x3, x4℄.Theorem MCART 1:84. [x1, x2, x3, x4℄ 2 [[X1, X2, X3, X4℄℄ i� x1 2 X1 & x2 2 X2 &x3 2 X3 & x4 2 X4.Theorem MCART 1:85. (for z holds z 2 Z i� ex x1, x2, x3, x4 st x1 2 X1 & x2 2X2 & x3 2 X3 & x4 2 X4 & z = [x1, x2, x3, x4℄) implies Z = [[X1, X2, X3, X4℄℄.Theorem MCART 1:86. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & Y1 6= ; & Y2 6= ; &Y3 6= ; & Y4 6= ; implies for x being (Element of [[X1, X2, X3, X4℄℄), y being Elementof [[Y1, Y2, Y3, Y4℄℄ holds x = y implies x1 = y1 & x2 = y2 & x3 = y3 & x4 = y4.Theorem MCART 1:87. for x being Element of [[X1, X2, X3, X4℄℄ st x 2 [[A1, A2,A3, A4℄℄ holds x1 2 A1 & x2 2 A2 & x3 2 A3 & x4 2 A4.Theorem MCART 1:88. X1 � Y1 & X2 � Y2 & X3 � Y3 & X4 � Y4 implies [[X1,X2, X3, X4℄℄ � [[Y1, Y2, Y3, Y4℄℄.De�nitionlet X1, X2, A1, A2.



105rede�nefun
 [[A1, A2℄℄ ! Subset of [[X1, X2℄℄.De�nitionlet X1, X2, X3, A1, A2, A3.rede�nefun
 [[A1, A2, A3℄℄ ! Subset of [[X1, X2, X3℄℄.De�nitionlet X1, X2, X3, X4, A1, A2, A3, A4.rede�nefun
 [[A1, A2, A3, A4℄℄ ! Subset of [[X1, X2, X3, X4℄℄.



Chapter 19REAL 1Basi
 Properties of Real NumbersbyKrzysztof Hryniewie
ki 1Warsaw UniversitySummary. Basi
 fa
ts of arithmeti
s of real numbers are presented: de�nitionsand properties of the 
omplement element, the inverse element, subtra
tion anddivision; some basi
 properties of the set REAL (e.g. density), and the s
heme ofseparation for sets of reals.The symbols used in this arti
le are introdu
ed in vo
abularies real 1 and boole.The arti
les tarski and boole provide the terminology and notation for this arti
le.reserve x, y, z, t for Real.reserve a, b, 
, d for Element of REAL.reserve r for Any.De�nitionlet x, y.rede�nefun
 x+y ! Real.fun
 x�y ! Real.Theorem REAL 1:1. r is Real i� r 2 REAL.1Supported by RPBP.III-24.C1. 106



107Theorem REAL 1:2. x+y = y+x.Theorem REAL 1:3. x+(y+z) = (x+y)+z.Theorem REAL 1:4. x+0 = x & 0+x = x.Theorem REAL 1:5. x�y = y�x.Theorem REAL 1:6. x�(y�z) = (x�y)�z.Theorem REAL 1:7. x�1 = x & 1�x = x.Theorem REAL 1:8. (x+y)�z = x�z+y�z & z�(x+y) = z�x+z�y.Theorem REAL 1:9. (z 6= 0 & x 6= y) implies (x�z 6= y�z & z�x 6= y�z & z�x 6= z�y &x�z 6= z�y).Theorem REAL 1:10. (z+x = z+y or x+z = y+z or z+x = y+z or x+z = z+y)implies x = y.Theorem REAL 1:11. x 6= y i� x+z 6= y+z.Theorem REAL 1:12. (z 6= 0 & (x�z = y�z or z�x = z�y or x�z = z�y or z�x = y�z))implies x = y.De�nitionlet x. fun
�x ! Real means x+it = 0.assume x 6= 0.fun
 x�1 ! Real means x�it = 1.De�nitionlet x, y.fun
 x�y ! Real means it = x+(�y).assume y 6= 0.fun
 x=y ! Real means it = x�y�1.Theorem REAL 1:13. x+�x = 0 &�x+x = 0.Theorem REAL 1:14. x�y = x+�y.Theorem REAL 1:15. x 6= 0 implies x�x�1 = 1 & x�1�x = 1.Theorem REAL 1:16. y 6= 0 implies (x=y = x�y�1 & x=y = y�1�x).Theorem REAL 1:17. x+y�z = x+(y�z).Theorem REAL 1:18. �(�x) = x.Theorem REAL 1:19. 0�x =�x.Theorem REAL 1:20. x�0 = 0 & 0�x = 0.Theorem REAL 1:21. (�x)�y =�(x�y) & x�(�y) =�(x�y) & (�x)�y = x�(�y).Theorem REAL 1:22. x 6= 0 i��x 6= 0.Theorem REAL 1:23. x�y = 0 i� (x = 0 or y = 0).



108 CHAPTER 19. REAL 1Theorem REAL 1:24. x 6= 0 & y 6= 0 implies x�1�y�1 = (x�y)�1.Theorem REAL 1:25. x�0 = x.Theorem REAL 1:26. �0 = 0.Theorem REAL 1:27. x�(y+z) = x�y�z.Theorem REAL 1:28. x�(y�z) = x�y+z.Theorem REAL 1:29. x�(y�z) = x�y�x�z & (y�z)�x = y�x�z�x.Theorem REAL 1:30. x+z = y implies (x = y�z & z = y�x).Theorem REAL 1:31. x 6= 0 implies x�1 6= 0.Theorem REAL 1:32. x 6= 0 implies x�1�1 = x.Theorem REAL 1:33. x 6= 0 implies (1=x = x�1 & 1=x�1 = x).Theorem REAL 1:34. x 6= 0 implies x�(1=x) = 1 & (1=x)�x = 1.Theorem REAL 1:35. (y 6= 0 & t 6= 0) implies (x=y)�(z=t) = (x�z)=(y�t).Theorem REAL 1:36. x�x = 0.Theorem REAL 1:37. x 6= 0 implies x=x = 1.Theorem REAL 1:38. y 6= 0 & z 6= 0 implies x=y = (x�z)=(y�z).Theorem REAL 1:39. y 6= 0 implies (�x=y = (�x)=y & x=(�y) =�x=y).Theorem REAL 1:40. z 6= 0 implies (x=z+y=z = (x+y)=z) & (x=z�y=z = (x�y)=z).Theorem REAL 1:41. y 6= 0 & t 6= 0 implies (x=y+z=t = (x�t+z�y)=(y�t)) & (x=y�z=t= (x�t�z�y)=(y�t)).Theorem REAL 1:42. y 6= 0 & z 6= 0 implies x=(y=z) = (x�z)=y.Theorem REAL 1:43. y 6= 0 implies x=y�y = x.Theorem REAL 1:44. for x, y ex z st (x = y+z & x = z+y).Theorem REAL 1:45. for x, y st y 6= 0 ex z st (x = y�z & x = z�y).Theorem REAL 1:46. x 6 y & y 6 x implies x = y.Theorem REAL 1:47. x 6 y & y 6 z implies x 6 z.Theorem REAL 1:48. x 6 y or y 6 x.Theorem REAL 1:49. x 6 y implies (x+z 6 y+z & x�z 6 y�z).Theorem REAL 1:50. x 6 y i��y 6�x.Theorem REAL 1:51. x 6 y & 0 6 z implies (x�z 6 y�z & z�x 6 z�y & z�x 6 y�z &x�z 6 z�y).Theorem REAL 1:52. x 6 y & z 6 0 implies (y�z 6 x�z & z�y 6 z�x & y�z 6 z�x &z�y 6 x�z).Theorem REAL 1:53. x 6 y i� x+z 6 y+z.Theorem REAL 1:54. x 6 y i� x�z 6 y�z.



109Theorem REAL 1:55. (x 6 y & z 6 t) implies (x+z 6 y+t & x+z 6 t+y & z+x 6t+y & z+x 6 y+t).Theorem REAL 1:56. x 6 x.De�nitionlet x, y.pred x < y means x 6 y & x 6= y.Theorem REAL 1:57. x < y i� (x 6 y & x 6= y).Theorem REAL 1:58. ((x 6 y & y < z) or (x < y & y 6 z) or (x < y & y < z))implies x < z.Theorem REAL 1:59. x < y implies (x+z < y+z & x�z < y�z & z+x < z+y & x+z< z+y & z+x < y+z).Theorem REAL 1:60. (x+z < y+z or z+x < z+y or x+z < z+y or z+x < y+z orx�z < y�z) implies x < y.Theorem REAL 1:61. x 6= y implies x < y or y < x.Theorem REAL 1:62. not x < y i� y 6 x.Theorem REAL 1:63. x < y or y < x or x = y.Theorem REAL 1:64. x < y implies not y < x.Theorem REAL 1:65. 0 < 1.Theorem REAL 1:66. x < 0 i� 0 <�x.Theorem REAL 1:67. ((x < y & z 6 t) or (x 6 y & z < t) or (x < y & z < t))implies (x+z < y+t & z+x < y+t & z+x < t+y & x+z < t+y).Theorem REAL 1:68. x < y i��y <�x.Theorem REAL 1:69. for x, y st 0 < x holds y < y+x.Theorem REAL 1:70. 0 < z & x < y implies (x�z < y�z & z�x < z�y & x�z < z�y &z�x < y�z).Theorem REAL 1:71. z < 0 & x < y implies (y�z < x�z & z�y < z�x & y�z < z�x &z�y < x�z).Theorem REAL 1:72. 0 < z implies 0 < z�1.Theorem REAL 1:73. 0 < z implies (x < y i� x=z < y=z).Theorem REAL 1:74. z < 0 implies (x < y i� y=z < x=z).Theorem REAL 1:75. x < y implies ex z st x < z & z < y.Theorem REAL 1:76. for x ex y st x < y.Theorem REAL 1:77. for x ex y st y < x.Theorem REAL 1:78. for X, Y being Subset of REAL st (ex x st x 2 X) & (ex x stx 2 Y) & for x, y st x 2 X & y 2 Y holds x 6 y ex z st for x, y st x 2 X & y 2 Yholds x 6 z & z 6 y.



110 CHAPTER 19. REAL 1s
heme SepRealfP[Real℄g: ex X being set of Real st for x holds x 2 X i� P[x℄.Theorem REAL 1:79. y =�x i� x+y = 0.Theorem REAL 1:80. for x, y st x 6= 0 holds y = x�1 i� x�y = 1.Theorem REAL 1:81. for x, y st x 6= 0 & y 6= 0 holds (x=y)�1 = y=x.Theorem REAL 1:82. for x, y, z, t st y 6= 0 & z 6= 0 & t 6= 0 holds (x=y)=(z=t) =(x�t)=(y�z).Theorem REAL 1:83. �(x�y) = y�x.Theorem REAL 1:84. (x+y 6 z i� x 6 z�y).Theorem REAL 1:85. (x+y 6 z i� y 6 z�x).Theorem REAL 1:86. (x 6 y+z i� x�y 6 z).Theorem REAL 1:87. (x 6 y+z i� x�z 6 y).Theorem REAL 1:88. (x+y < z i� x < z�y).Theorem REAL 1:89. (x+y < z i� y < z�x).Theorem REAL 1:90. (x < z+y i� x�z < y).Theorem REAL 1:91. (x < y+z i� x�z < y).Theorem REAL 1:92. ((x 6 y & z 6 t) implies x�t 6 y�z) & (((x < y & z 6 t) or(x 6 y & z < t) or (x < y & z < t)) implies x�t < y�z).Theorem REAL 1:93. 0 6 x�x.



Chapter 20ORDINAL1The Ordinal NumbersTrans�nite Indu
tion and De�ning by Trans�nite Indu
tionbyGrzegorz Ban
erek 1Warsaw University (Bia lystok)Summary. We introdu
e some 
onsequen
es of the regularity axiom, the su

essorof a set, 2-transitivity and 2-
onne
tedness, the de�nition and basi
 properties ofordinal numbers and sets of ordinals, trans�nite sequen
es, trans�nite indu
tion,and s
hemes of de�ning by trans�nite indu
tion.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,fam op, real 1, fun
 rel, fun
, and ordinal. The terminology and notation usedin this arti
le have been introdu
ed in the following arti
les: tarski, boole, enumset1,and fun
t 1.reserve X, Y, Z, A, B, C, X1, X2, X3, X4, X5, X6 for set, x, y, z, a, b, 
 for Any.Theorem ORDINAL1:1. not X 2 X.Theorem ORDINAL1:2. not (X 2 Y & Y 2 X).Theorem ORDINAL1:3. not (X 2 Y & Y 2 Z & Z 2 X).Theorem ORDINAL1:4. not (X1 2 X2 & X2 2 X3 & X3 2 X4 & X4 2 X1).Theorem ORDINAL1:5. not (X1 2 X2 & X2 2 X3 & X3 2 X4 & X4 2 X5 & X5 2X1).1Supported by RPBP.III-24.C1. 111



112 CHAPTER 20. ORDINAL1Theorem ORDINAL1:6. not (X1 2 X2 & X2 2 X3 & X3 2 X4 & X4 2 X5 & X5 2X6 & X6 2 X1).Theorem ORDINAL1:7. Y 2 X implies not X � Y.s
heme ComprehensionfA() ! set, P[set℄g: ex B st for Z being set holds Z 2 B i�Z 2 A() & P[Z℄.Theorem ORDINAL1:8. (for X holds X 2 A i� X 2 B) implies A = B.De�nitionlet X.fun
 su

 X ! set means it = X[fXg.Theorem ORDINAL1:9. su

 X = X[fXg.Theorem ORDINAL1:10. X 2 su

 X.Theorem ORDINAL1:11. su

 X 6= ;.Theorem ORDINAL1:12. su

 X = su

 Y implies X = Y.Theorem ORDINAL1:13. x 2 su

 X i� x 2 X or x = X.Theorem ORDINAL1:14. X 6= su

 X.reserve a, b, 
, d for Any, X, Y, Z, x, y, z for set.De�nitionlet X.pred X is 2-transitive means for x st x 2 X holds x � X.pred X is 2-
onne
ted means for x, y st x 2 X & y 2 X holds x 2 y or x = yor y 2 x.Theorem ORDINAL1:15. X is 2-transitive i� for x st x 2 X holds x � X.Theorem ORDINAL1:16. X is 2-
onne
ted i� for x, y st x 2 X & y 2 X holds x 2 yor x = y or y 2 x.De�nitionmode Ordinal ! set means it is 2-transitive & it is 2-
onne
ted.reserve A, B, C, D for Ordinal.Theorem ORDINAL1:17. X is Ordinal i� X is 2-transitive & X is 2-
onne
ted.Theorem ORDINAL1:18. x 2 A implies x � A.Theorem ORDINAL1:19. A 2 B & B 2 C implies A 2 C.Theorem ORDINAL1:20. x 2 A & y 2 A implies x 2 y or x = y or y 2 x.Theorem ORDINAL1:21. for x, A being Ordinal st x � A & x 6= A holds x 2 A.Theorem ORDINAL1:22. A � B & B 2 C implies A 2 C.Theorem ORDINAL1:23. a 2 A implies a is Ordinal.Theorem ORDINAL1:24. A 2 B or A = B or B 2 A.



113Theorem ORDINAL1:25. A � B or B � A.Theorem ORDINAL1:26. A � B or B 2 A.Theorem ORDINAL1:27. ; is Ordinal.De�nitionfun
 0 ! Ordinal means it = ;.Theorem ORDINAL1:28. 0 = ;.Theorem ORDINAL1:29. x is Ordinal implies su

 x is Ordinal.Theorem ORDINAL1:30. x is Ordinal implies Sx is Ordinal.De�nitionlet A.rede�nefun
 su

 A ! Ordinal.fun
 SA ! Ordinal.Theorem ORDINAL1:31. (for x st x 2 X holds x is Ordinal & x � X) implies X isOrdinal.Theorem ORDINAL1:32. X � A & X 6= ; implies ex C st C 2 X & for B st B 2 Xholds C � B.Theorem ORDINAL1:33. A 2 B i� su

 A � B.Theorem ORDINAL1:34. A 2 su

 C i� A � C.s
heme Ordinal MinfP[Ordinal℄g: ex A st P[A℄ & for B st P[B℄ holds A � B pro-vided A: ex A st P[A℄.s
heme Trans�nite IndfP[Ordinal℄g: for A holds P[A℄ provided A: for A st for Cst C 2 A holds P[C℄ holds P[A℄.Theorem ORDINAL1:35. for X st for a st a 2 X holds a is Ordinal holds SX isOrdinal.Theorem ORDINAL1:36. for X st for a st a 2 X holds a is Ordinal ex A st X � A.Theorem ORDINAL1:37. not ex X st for x holds x 2 X i� x is Ordinal.Theorem ORDINAL1:38. not ex X st for A holds A 2 X.Theorem ORDINAL1:39. for X ex A st not A 2 X & for B st not B 2 X holds A� B.De�nitionlet A.pred A is limit ordinal means A = SA.Theorem ORDINAL1:40. A is limit ordinal i� A = SA.Theorem ORDINAL1:41. for A holds A is limit ordinal i� for C st C 2 A holds su

C 2 A.



114 CHAPTER 20. ORDINAL1Theorem ORDINAL1:42. not A is limit ordinal i� ex B st A = su

 B.reserve F, G, H for Fun
tion.De�nitionmode trans�nite sequen
e ! Fun
tion means ex A st dom it = A.De�nitionlet Z.mode trans�nite sequen
e of Z ! trans�nite sequen
e means rng it � Z.Theorem ORDINAL1:43. F is trans�nite sequen
e i� ex A st dom F = A.Theorem ORDINAL1:44. F is trans�nite sequen
e of Z i� F is trans�nite sequen
e &rng F � Z.Theorem ORDINAL1:45. ; is trans�nite sequen
e of Z.reserve L, L1, L2 for trans�nite sequen
e.Theorem ORDINAL1:46. dom F is Ordinal implies F is trans�nite sequen
e of rng F.De�nitionlet L.rede�nefun
 dom L ! Ordinal.Theorem ORDINAL1:47. X � Y implies for L being trans�nite sequen
e of X holdsL is trans�nite sequen
e of Y.De�nitionlet L, A.rede�nefun
 L�A ! trans�nite sequen
e of rng L.Theorem ORDINAL1:48. for L being trans�nite sequen
e of X for A holds L�A istrans�nite sequen
e of X.Theorem ORDINAL1:49. (for a st a 2 X holds a is trans�nite sequen
e) & (for L1,L2 st L1 2 X & L2 2 X holds graph L1 � graph L2 or graph L2 � graph L1) impliesSX is trans�nite sequen
e.s
heme TS UniqfA() ! Ordinal, H(trans�nite sequen
e) ! Any, L1() ! trans�nitesequen
e, L2() ! trans�nite sequen
eg: L1() = L2() provided B: dom L1() = A() & forB, L st B 2 A() & L = L1()�B holds L1():B = H(L) and C: dom L2() = A() & for B, Lst B 2 A() & L = L2()�B holds L2():B = H(L).s
heme TS ExistfA() ! Ordinal, H(trans�nite sequen
e) ! Anyg: ex L st dom L =A() & for B, L1 st B 2 A() & L1 = L�B holds L:B = H(L1).s
heme Fun
 TSfL() ! trans�nite sequen
e, F(Ordinal)! Any, H(trans�nite sequen
e)! Anyg: for B st B 2 dom L() holds L():B = H(L()�B) provided A: for A, a holds a



115= F(A) i� ex L st a = H(L) & dom L = A & for B st B 2 A holds L:B = H(L�B) andB: for A st A 2 dom L() holds L():A = F(A).



Chapter 21NAT 1The Fundamental Properties of Natural NumbersbyGrzegorz Ban
erek 1Warsaw University (Bia lystok)Summary. Some fundamental properties of addition, multipli
ation, order rela-tions, exa
t division, the remainder, divisibility, the least 
ommon multiple, thegreatest 
ommon divisor are presented. A proof of Eu
lid algorithm is also given.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,real 1, and nat 1. The terminology and notation used in this arti
le have been intro-du
ed in the following arti
les: tarski, boole, and real 1.reserve x, y, z for Real, k, l, m, n, u, w, v for Nat, X, Y, Z for set of Real.Theorem NAT 1:1. x is Nat implies x+1 is Nat.Theorem NAT 1:2. for X st 0 2 X & for x st x 2 X holds x+1 2 X for k holds k 2X. Theorem NAT 1:3. k+n = n+k.Theorem NAT 1:4. k+m+n = k+(m+n).Theorem NAT 1:5. k+0 = k & 0+k = k.Theorem NAT 1:6. k�n = n�k.1Supported by RPBP.III-24.C1. 116



117Theorem NAT 1:7. k�(m�n) = (k�m)�n.Theorem NAT 1:8. k�1 = k & 1�k = k.Theorem NAT 1:9. k�(n+m) = k�n+k�m & (n+m)�k = n�k+m�k.Theorem NAT 1:10. k+m = n+m or k+m = m+n or m+k = m+n implies k = n.Theorem NAT 1:11. k�0 = 0 & 0�k = 0.De�nitionlet n, k.rede�nefun
 n+k ! Nat.s
heme IndfP[Nat℄g: for k holds P[k℄ provided A: P[0℄ and B: for k st P[k℄ holdsP[k+1℄.De�nitionlet n, k.rede�nefun
 n�k ! Nat.Theorem NAT 1:12. k 6 n & n 6 k implies k = n.Theorem NAT 1:13. k 6 n & n 6 m implies k 6 m.Theorem NAT 1:14. k 6 n or n 6 k.Theorem NAT 1:15. k 6 k.Theorem NAT 1:16. k 6 n implies k+m 6 n+m & k+m 6 m+n & m+k 6 m+n &m+k 6 n+m.Theorem NAT 1:17. k+m 6 n+m or k+m 6 m+n or m+k 6 m+n or m+k 6 n+mimplies k 6 n.Theorem NAT 1:18. for k holds 0 6 k.Theorem NAT 1:19. 0 6= k implies 0 < k.Theorem NAT 1:20. k 6 n implies k�m 6 n�m & k�m 6 m�n & m�k 6 n�m & m�k 6m�n.Theorem NAT 1:21. 0 6= k+1.Theorem NAT 1:22. k = 0 or ex n st k = n+1.Theorem NAT 1:23. k+n = 0 implies k = 0 & n = 0.Theorem NAT 1:24. k 6= 0 & (n�k = m�k or n�k = k�m or k�n = k�m) implies n = m.Theorem NAT 1:25. k�n = 0 implies k = 0 or n = 0.s
heme Def by IndfN() ! Nat, F(Nat, Nat) ! Nat, P[Nat, Nat℄g: (for k ex n st P[k,n℄) & for k, n, m st P[k, n℄ & P[k, m℄ holds n = m provided A: for k, n holds P[k, n℄i� k = 0 & n = N() or ex m, l st k = m+1 & P[m, l℄ & n = F(k, l).Theorem NAT 1:26. for k, n st k 6 n+1 holds k 6 n or k = n+1.



118 CHAPTER 21. NAT 1Theorem NAT 1:27. for n, k st n 6 k & k 6 n+1 holds n = k or k = n+1.Theorem NAT 1:28. for k, n st k 6 n ex m st n = k+m.Theorem NAT 1:29. n = k+m implies k 6 n.Theorem NAT 1:30. k < n i� k 6 n & k 6= n.Theorem NAT 1:31. not k < 0.s
heme Comp IndfP[Nat℄g: for k holds P[k℄ provided A: for k st for n st n < kholds P[n℄ holds P[k℄.s
heme MinfP[Nat℄g: ex k st P[k℄ & for n st P[n℄ holds k 6 n provided A: ex kst P[k℄.s
heme MaxfP[Nat℄, N() ! Natg: ex k st P[k℄ & for n st P[n℄ holds n 6 k providedA: for k st P[k℄ holds k 6 N() and B: ex k st P[k℄.Theorem NAT 1:32. not (k < n & n < k).Theorem NAT 1:33. k < n & n < m implies k < m.Theorem NAT 1:34. k < n or k = n or n < k.Theorem NAT 1:35. not k < k.Theorem NAT 1:36. k < n implies k+m < n+m & k+m < m+n & m+k < m+n &m+k < n+m.Theorem NAT 1:37. k 6 n implies k 6 n+m.Theorem NAT 1:38. k < n+1 i� k 6 n.Theorem NAT 1:39. k 6 n & n < m or k < n & n 6 m or k < n & n < m implies k< m.Theorem NAT 1:40. k�n = 1 implies k = 1 & n = 1.Theorem NAT 1:41. k+1 6 n i� k < n.s
heme RegrfP[Nat℄g: P[0℄ provided A: ex k st P[k℄ and B: for k st k 6= 0 & P[k℄ex n st n < k & P[n℄.reserve k1, t, t1 for Nat.Theorem NAT 1:42. for m st 0 < m for n ex k, t st n = (m�k)+t & t < m.Theorem NAT 1:43. for n, m, k, k1, t, t1 st n = m�k+t & t < m & n = m�k1+t1 &t1 < m holds k = k1 & t = t1.De�nitionlet k, l be Nat.fun
 k�l ! Nat means (ex t st k = l�it+t & t < l) or it = 0 & l = 0.fun
 k mod l ! Nat means (ex t st k = l�t+it & it < l) or it = 0 & l = 0.Theorem NAT 1:44. for k, l, n being Nat holds n = k�l i� (ex t st k = l�n+t & t< l) or n = 0 & l = 0.



119Theorem NAT 1:45. for k, l, n being Nat holds n = k mod l i� (ex t st k = l�t+n& n < l) or n = 0 & l = 0.Theorem NAT 1:46. for m, n st 0 < m holds n mod m < m.Theorem NAT 1:47. for n, m st 0 < m holds n = m�(n�m)+(n mod m).De�nitionlet k, l be Nat.pred k j l means ex t st l = k�t.Theorem NAT 1:48. for k, l being Nat holds k j l i� ex t st l = k�t.Theorem NAT 1:49. for n, m holds m j n i� n = m�(n�m).Theorem NAT 1:50. for n holds n j n.Theorem NAT 1:51. for n, m, l st n j m & m j l holds n j l.Theorem NAT 1:52. for n, m st n j m & m j n holds n = m.Theorem NAT 1:53. k j 0 & 1 j k.Theorem NAT 1:54. for n, m st 0 < m & n j m holds n 6 m.Theorem NAT 1:55. for n, m, l st n j m & n j l holds n j m+l.Theorem NAT 1:56. n j k implies n j k�m.Theorem NAT 1:57. for n, m, l st n j m & n j m+l holds n j l.Theorem NAT 1:58. n j m & n j k implies n j m mod k.De�nitionlet k, n.fun
 k l
m n ! Nat means k j it & n j it & for m st k j m & n j m holds it jm.De�nitionlet k, n.fun
 k g
d n ! Nat means it j k & it j n & for m st m j k & m j n holds m jit. s
heme EuklidesfQ(Nat) ! Nat, a() ! Nat, b() ! Natg: ex n st Q(n) = a() g
d b()& Q(n+1) = 0 provided A: 0 < b() & b() < a() and B: Q(0) = a() & Q(1) = b() andC: for n holds Q(n+2) = Q(n) mod Q(n+1).



Chapter 22FINSEQ 1Segments of Natural Numbers and FiniteSequen
esbyGrzegorz Ban
erek 1Warsaw University (Bia lystok)Krzysztof Hryniewie
ki 2Warsaw UniversitySummary. We de�ne the notion of an initial segment of natural numbers andprove a number of their properties. Using this notion we introdu
e �nite sequen
es,subsequen
es, the empty sequen
e, a sequen
e of a domain, and the operation of
on
atenation of two sequen
es.The symbols used in this arti
le are introdu
ed in the following vo
abularies: finseq,fun
 rel, fun
, boole, real 1, and nat 1. The terminology and notation used in thisarti
le have been introdu
ed in the following arti
les: tarski, boole, fun
t 1, real 1,and nat 1.reserve k, l, m, n, k1, k2 for Nat, X, Y, Z for set, x, y, z, y1, y2 for Any, f, g, h forFun
tion.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 120



121De�nitionlet n. fun
 Seg n ! set of Nat means it = fk: 1 6 k & k 6 ng.Theorem FINSEQ 1:1. Seg n = fk: 1 6 k & k 6 ng.Theorem FINSEQ 1:2. x 2 Seg n implies x is Nat.Theorem FINSEQ 1:3. k 2 Seg n i� 1 6 k & k 6 n.Theorem FINSEQ 1:4. Seg 0 = ; & Seg 1 = f1g & Seg 2 = f1, 2g.Theorem FINSEQ 1:5. n = 0 or n 2 Seg n.Theorem FINSEQ 1:6. n+1 2 Seg (n+1).Theorem FINSEQ 1:7. n 6 m i� Seg n � Seg m.Theorem FINSEQ 1:8. Seg n = Seg m implies n = m.Theorem FINSEQ 1:9. k 6 n implies Seg k = Seg k\Seg n & Seg k = Seg n\Seg k.Theorem FINSEQ 1:10. (Seg k = Seg k\Seg n or Seg k = Seg n\Seg k) implies k 6n. Theorem FINSEQ 1:11. Seg n[fn+1g = Seg (n+1).De�nitionmode FinSequen
e ! Fun
tion means ex n st dom it = Seg n.reserve p, q, r, s, t, v for FinSequen
e.De�nitionlet p. fun
 len p ! Nat means Seg it = dom p.Theorem FINSEQ 1:12. for f being Fun
tion holds f is FinSequen
e i� ex n st domf = Seg n.Theorem FINSEQ 1:13. k = len p i� Seg k = dom p.Theorem FINSEQ 1:14. ; is FinSequen
e.Theorem FINSEQ 1:15. (ex k st dom f � Seg k) implies ex p st graph f � graph p.s
heme SeqExfA() ! Nat, P[Any, Any℄g: ex p st dom p = Seg A() & for k st k 2Seg A() holds P[k, p:k℄ provided A: for k, y1, y2 st k 2 Seg A() & P[k, y1℄ & P[k, y2℄holds y1 = y2 and B: for k st k 2 Seg A() ex x st P[k, x℄.s
heme SeqLambdafA() ! Nat, F(Any) ! Anyg: ex p being FinSequen
e st len p= A() & for k st k 2 Seg A() holds p:k = F(k).Theorem FINSEQ 1:16. z 2 graph p implies ex k st (k 2 dom p & z = [k, p:k℄).Theorem FINSEQ 1:17. X = dom p & X = dom q & (for k st k 2 X holds p:k = q:k)implies p = q.Theorem FINSEQ 1:18. for p, q st (len p = len q) & for k st 1 6 k & k 6 len p holdsp:k = q:k holds p = q.



122 CHAPTER 22. FINSEQ 1Theorem FINSEQ 1:19. p�(Seg n) is FinSequen
e.Theorem FINSEQ 1:20. (rng p � dom f) implies (f�p is FinSequen
e).Theorem FINSEQ 1:21. k 6 len p & q = p�(Seg k) implies len q = k & dom q = Segk.De�nitionlet D be DOMAIN.mode FinSequen
e of D ! FinSequen
e means rng it � D.reserve D, D1, D2 for DOMAIN.Theorem FINSEQ 1:22. p is FinSequen
e of D i� rng p � D.Theorem FINSEQ 1:23. for D, k for p being FinSequen
e of D holds p�(Seg k) isFinSequen
e of D.Theorem FINSEQ 1:24. ex p being FinSequen
e of D st len p = k.De�nitionfun
 " ! FinSequen
e means len it = 0.Theorem FINSEQ 1:25. p = " i� len p = 0.Theorem FINSEQ 1:26. p = " i� dom p = ;.Theorem FINSEQ 1:27. p = " i� rng p = ;.Theorem FINSEQ 1:28. graph " = ;.Theorem FINSEQ 1:29. for D holds " is FinSequen
e of D.De�nitionlet D be DOMAIN.fun
 "(D) ! FinSequen
e of D means it = ".Theorem FINSEQ 1:30. p = "(D) i� dom p = ;.Theorem FINSEQ 1:31. "(D) = ".Theorem FINSEQ 1:32. p = "(D) i� len p = 0.Theorem FINSEQ 1:33. p = "(D) i� rng p = ;.De�nitionlet p, q.fun
 p_q ! FinSequen
e means dom it = Seg (len p+len q) & (for k st k 2dom p holds it:k = p:k) & (for k st k 2 dom q holds it:(len p+k) = q:k).Theorem FINSEQ 1:34. r = p_q i� (dom r = Seg (len p+len q) & (for k st k 2 domp holds r:k = p:k) & (for k st k 2 dom q holds r:(len p+k) = q:k)).Theorem FINSEQ 1:35. len (p_q) = len p+len q.Theorem FINSEQ 1:36. for k st len p+1 6 k & k 6 len p+len q holds (p_q):k = q:(k�len p).Theorem FINSEQ 1:37. len p < k & k 6 len (p_q) implies (p_q):k = q:(k�len p).



123Theorem FINSEQ 1:38. k 2 dom (p_q) implies (k 2 dom p or (ex n st n 2 dom q& k = len p+n)).Theorem FINSEQ 1:39. dom p � dom (p_q).Theorem FINSEQ 1:40. x 2 dom q implies ex k st k = x & len p+k 2 dom (p_q).Theorem FINSEQ 1:41. k 2 dom q implies len p+k 2 dom (p_q).Theorem FINSEQ 1:42. rng p � rng (p_q).Theorem FINSEQ 1:43. rng q � rng (p_q).Theorem FINSEQ 1:44. rng (p_q) = rng p[rng q.Theorem FINSEQ 1:45. p_q_r = p_(q_r).Theorem FINSEQ 1:46. p_r = q_r or r_p = r_q implies p = q.Theorem FINSEQ 1:47. p_" = p & "_p = p.Theorem FINSEQ 1:48. p_q = " implies p = " & q = ".De�nitionlet D.let p, q be FinSequen
e of D.rede�nefun
 p_q ! FinSequen
e of D.Theorem FINSEQ 1:49. for p, q being FinSequen
e of D holds p_q is FinSequen
eof D.De�nitionlet x. fun
 hxi ! FinSequen
e means dom it = Seg 1 & it:1 = x.Theorem FINSEQ 1:50. p_q is FinSequen
e of D implies p is FinSequen
e of D & qis FinSequen
e of D.De�nitionlet x, y.fun
 hx, yi ! FinSequen
e means it = hxi_hyi.let z. fun
 hx, y, zi ! FinSequen
e means it = hxi_hyi_hzi.Theorem FINSEQ 1:51. p = hxi i� dom p = Seg 1 & p:1 = x.Theorem FINSEQ 1:52. graph hxi = f[1, x℄g.Theorem FINSEQ 1:53. hx, yi = hxi_hyi.Theorem FINSEQ 1:54. hx, y, zi = hxi_hyi_hzi.Theorem FINSEQ 1:55. p = hxi i� dom p = Seg 1 & rng p = fxg.Theorem FINSEQ 1:56. p = hxi i� len p = 1 & rng p = fxg.



124 CHAPTER 22. FINSEQ 1Theorem FINSEQ 1:57. p = hxi i� len p = 1 & p:1 = x.Theorem FINSEQ 1:58. (hxi_p):1 = x.Theorem FINSEQ 1:59. (p_hxi):(len p+1) = x.Theorem FINSEQ 1:60. hx, y, zi = hxi_hy, zi & hx, y, zi = hx, yi_hzi.Theorem FINSEQ 1:61. p = hx, yi i� len p = 2 & p:1 = x & p:2 = y.Theorem FINSEQ 1:62. p = hx, y, zi i� len p = 3 & p:1 = x & p:2 = y & p:3 = z.Theorem FINSEQ 1:63. for p st p 6= " holds ex q, x st p = q_hxi.De�nitionlet D.let x be Element of D.rede�nefun
 hxi ! FinSequen
e of D.De�nitionlet D.let S be SUBDOMAIN of D.let x be Element of S.rede�nefun
 hxi ! FinSequen
e of S.De�nitionlet S be SUBDOMAIN of REAL.let x be Element of S.rede�nefun
 hxi ! FinSequen
e of S.s
heme IndSeqfP[FinSequen
e℄g: for p holds P[p℄ provided A: P["℄ and B: for p,x st P[p℄ holds P[p_hxi℄.Theorem FINSEQ 1:64. for p, q, r, s being FinSequen
e st p_q = r_s & len p 6 lenr ex t being FinSequen
e st p_t = r.De�nitionlet D.fun
 D? ! DOMAIN means x 2 it i� x is FinSequen
e of D.Theorem FINSEQ 1:65. x 2 D? i� x is FinSequen
e of D.Theorem FINSEQ 1:66. " 2 D?.s
heme SepSeqfD() ! DOMAIN, P[FinSequen
e℄g: ex X st (for x holds x 2 X i�ex p st (p 2 D()? & P[p℄ & x = p)).De�nitionmode FinSubsequen
e ! Fun
tion means ex k st dom it � Seg k.



125Theorem FINSEQ 1:67. f is FinSubsequen
e i� ex k st dom f � Seg k.Theorem FINSEQ 1:68. for p being FinSequen
e holds p is FinSubsequen
e.Theorem FINSEQ 1:69. for p, X holds (p�X is FinSubsequen
e & X�p is FinSubse-quen
e).reserve p0, q0 for FinSubsequen
e.De�nitionlet X.given k su
h that X � Seg k.fun
 Sgm X ! FinSequen
e of NAT means rng it = X & for l, m, k1, k2 st (16 l & l < m & m 6 len it & k1 = it:l & k2 = it:m) holds k1 < k2.Theorem FINSEQ 1:70. (ex k st X � Seg k) implies for p being FinSequen
e ofNAT holds (p = Sgm X i� rng p = X & for l, m, k1, k2 st (1 6 l & l < m & m 6 len p& k1 = p:l & k2 = p:m) holds k1 < k2).Theorem FINSEQ 1:71. rng Sgm dom p0 = dom p0.De�nitionlet p0.fun
 Seq p0 ! FinSequen
e means it = p0�Sgm (dom p0).Theorem FINSEQ 1:72. for X st ex k st X � Seg k holds Sgm X = " i� X = ;.



Chapter 23FINSET 1 Finite SetsbyAgata Darmo
hwa l1Warsaw University (Bia lystok)Summary. The arti
le 
ontains the de�nition of a �nite set based on the notionof �nite sequen
e. Some theorems about properties of �nite sets and �nite familiesof sets are proved.The symbols used in this arti
le are introdu
ed in the following vo
abularies: finseq,boole, fam op, 
oord, fun
, fun
 rel, finite, nat 1, real 1, and sfamily. Theterminology and notation used in this arti
le have been introdu
ed in the following arti
les:tarski, boole, enumset1, subset 1, fun
t 1, ordinal1, m
art 1, real 1, nat 1,finseq 1, and setfam 1.De�nitionlet A be set.pred A is �nite means ex p being FinSequen
e st rng p = A.reserve A, B, C, D, X, Y, Y1, Y2, Z for set.reserve p, q for FinSequen
e.reserve x, y, z, x1, x2, x3, x4, x5, x6, x7, x8, y1, y2 for Any.reserve f, g for Fun
tion.1Supported by RPBP.III-24.C1. 126



127reserve n for Nat.Theorem FINSET 1:1. A is �nite i� ex p being FinSequen
e st rng p = A.Theorem FINSET 1:2. for p being FinSequen
e holds rng p is �nite.Theorem FINSET 1:3. Seg n is �nite.Theorem FINSET 1:4. ; is �nite.Theorem FINSET 1:5. fxg is �nite.Theorem FINSET 1:6. fx, yg is �nite.Theorem FINSET 1:7. fx, y, zg is �nite.Theorem FINSET 1:8. fx1, x2, x3, x4g is �nite.Theorem FINSET 1:9. fx1, x2, x3, x4, x5g is �nite.Theorem FINSET 1:10. fx1, x2, x3, x4, x5, x6g is �nite.Theorem FINSET 1:11. fx1, x2, x3, x4, x5, x6, x7g is �nite.Theorem FINSET 1:12. fx1, x2, x3, x4, x5, x6, x7, x8g is �nite.Theorem FINSET 1:13. A � B & B is �nite implies A is �nite.Theorem FINSET 1:14. A is �nite & B is �nite implies A[B is �nite.Theorem FINSET 1:15. A is �nite implies A\B is �nite & B\A is �nite.Theorem FINSET 1:16. A is �nite implies ArB is �nite.Theorem FINSET 1:17. A is �nite implies f�A is �nite.Theorem FINSET 1:18. A is �nite implies for X being Subset-Family of A st X 6= ;ex x being set st x 2 X & for B being set st B 2 X holds x � B implies B = x.s
heme FinitefA() ! set, P[set℄g: P[A()℄ provided A: A() is �nite and B: P[;℄ andC: for x, B being set st x 2 A() & B � A() & P[B℄ holds P[B[fxg℄.Theorem FINSET 1:19. A is �nite & B is �nite implies [[A, B℄℄ is �nite.Theorem FINSET 1:20. A is �nite & B is �nite & C is �nite implies [[A, B, C℄℄ is �nite.Theorem FINSET 1:21. A is �nite & B is �nite & C is �nite & D is �nite implies [[A,B, C, D℄℄ is �nite.Theorem FINSET 1:22. B 6= ; & [[A, B℄℄ is �nite implies A is �nite.Theorem FINSET 1:23. A 6= ; & [[A, B℄℄ is �nite implies B is �nite.Theorem FINSET 1:24. A is �nite i� bool A is �nite.Theorem FINSET 1:25. A is �nite & (for X st X 2 A holds X is �nite) i� SA is �nite.Theorem FINSET 1:26. dom f is �nite implies rng f is �nite.Theorem FINSET 1:27. Y � rng f & f�1Y is �nite implies Y is �nite.



Chapter 24DOMAIN 1Domains and Their Cartesian Produ
tsbyAndrzej Trybule
 1Warsaw University (Bia lystok)Summary. The arti
le in
ludes: theorems related to domains, theorems relatedto Cartesian produ
ts presented earlier in various arti
les and simpli�ed here bysubstituting domains for sets and omitting the assumption that the sets involvedmust not be empty. Several s
hemes and theorems related to Fr�nkel operator aregiven. We also rede�ne subset yielding fun
tions su
h as the pair of elements of aset and the union of two subsets of a set.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,
oord, and sub op. The terminology and notation used in this arti
le have been intro-du
ed in the following arti
les: tarski, boole, enumset1, subset 1, fun
t 1, ordi-nal1, and m
art 1.reserve a, b, 
, d for Any, A, B, C for set.reserve D, X1, X2, X3, X4, Y1, Y2, Y3, Y4 for DOMAIN.reserve x1, y1, z1 for (Element of X1), x2, y2, z2 for (Element of X2), x3, y3, z3 for(Element of X3), x4, y4, z4 for (Element of X4).Theorem DOMAIN 1:1. A is DOMAIN i� A 6= ;.Theorem DOMAIN 1:2. D 6= ;.1Supported by RPBP.III-24.C1. 128



129Theorem DOMAIN 1:3. a is Element of D implies a 2 D.reserve A1, B1 for Subset of X1.Theorem DOMAIN 1:4. A1 = B1
 i� for x1 holds x1 2 A1 i� not x1 2 B1.Theorem DOMAIN 1:5. A1 = B1
 i� for x1 holds not x1 2 A1 i� x1 2 B1.Theorem DOMAIN 1:6. A1 = B1
 i� for x1 holds not (x1 2 A1 i� x1 2 B1).Theorem DOMAIN 1:7. [x1, x2℄ 2 [[X1, X2℄℄.Theorem DOMAIN 1:8. [x1, x2℄ is Element of [[X1, X2℄℄.Theorem DOMAIN 1:9. a 2 [[X1, X2℄℄ implies ex x1, x2 st a = [x1, x2℄.reserve x for Element of [[X1, X2℄℄.Theorem DOMAIN 1:10. x = [x1, x2℄.Theorem DOMAIN 1:11. x 6= x1 & x 6= x2.Theorem DOMAIN 1:12. for x, y being Element of [[X1, X2℄℄ st x1 = y1 & x2 = y2holds x = y.Theorem DOMAIN 1:13. [[A, D℄℄ � [[B, D℄℄ or [[D, A℄℄ � [[D, B℄℄ implies A � B.Theorem DOMAIN 1:14. [[X1, X2℄℄ = [[A, B℄℄ implies X1 = A & X2 = B.De�nitionlet X1, X2, x1, x2.rede�nefun
 [x1, x2℄ ! Element of [[X1, X2℄℄.De�nitionlet X1, X2.let x be Element of [[X1, X2℄℄.rede�nefun
 x1 ! Element of X1.fun
 x2 ! Element of X2.Theorem DOMAIN 1:15. a 2 [[X1, X2, X3℄℄ i� ex x1, x2, x3 st a = [x1, x2, x3℄.Theorem DOMAIN 1:16. (for a holds a 2 D i� ex x1, x2, x3 st a = [x1, x2, x3℄)implies D = [[X1, X2, X3℄℄.Theorem DOMAIN 1:17. D = [[X1, X2, X3℄℄ i� for a holds a 2 D i� ex x1, x2, x3 sta = [x1, x2, x3℄.Theorem DOMAIN 1:18. [[X1, X2, X3℄℄ = [[Y1, Y2, Y3℄℄ implies X1 = Y1 & X2 = Y2& X3 = Y3.reserve x, y for Element of [[X1, X2, X3℄℄.Theorem DOMAIN 1:19. x = [a, b, 
℄ implies x1 = a & x2 = b & x3 = 
.Theorem DOMAIN 1:20. x = [x1, x2, x3℄.



130 CHAPTER 24. DOMAIN 1Theorem DOMAIN 1:21. x1 = (x qua Any)11 & x2 = (x qua Any)12 & x3 = (x quaAny)2.Theorem DOMAIN 1:22. x 6= x1 & x 6= x2 & x 6= x3.Theorem DOMAIN 1:23. [x1, x2, x3℄ 2 [[X1, X2, X3℄℄.De�nitionlet X1, X2, X3, x1, x2, x3.rede�nefun
 [x1, x2, x3℄ ! Element of [[X1, X2, X3℄℄.De�nitionlet X1, X2, X3.let x be Element of [[X1, X2, X3℄℄.rede�nefun
 x1 ! Element of X1.fun
 x2 ! Element of X2.fun
 x3 ! Element of X3.Theorem DOMAIN 1:24. a = x1 i� for x1, x2, x3 st x = [x1, x2, x3℄ holds a = x1.Theorem DOMAIN 1:25. b = x2 i� for x1, x2, x3 st x = [x1, x2, x3℄ holds b = x2.Theorem DOMAIN 1:26. 
 = x3 i� for x1, x2, x3 st x = [x1, x2, x3℄ holds 
 = x3.Theorem DOMAIN 1:27. [x1, x2, x3℄ = x.Theorem DOMAIN 1:28. x1 = y1 & x2 = y2 & x3 = y3 implies x = y.Theorem DOMAIN 1:29. [x1, x2, x3℄1 = x1 & [x1, x2, x3℄2 = x2 & [x1, x2, x3℄3 = x3.Theorem DOMAIN 1:30. for x being (Element of [[X1, X2, X3℄℄), y being Element of[[Y1, Y2, Y3℄℄ holds x = y implies x1 = y1 & x2 = y2 & x3 = y3.Theorem DOMAIN 1:31. a 2 [[X1, X2, X3, X4℄℄ i� ex x1, x2, x3, x4 st a = [x1, x2,x3, x4℄.Theorem DOMAIN 1:32. (for a holds a 2 D i� ex x1, x2, x3, x4 st a = [x1, x2, x3,x4℄) implies D = [[X1, X2, X3, X4℄℄.Theorem DOMAIN 1:33. D = [[X1, X2, X3, X4℄℄ i� for a holds a 2 D i� ex x1, x2,x3, x4 st a = [x1, x2, x3, x4℄.reserve x, y for Element of [[X1, X2, X3, X4℄℄.Theorem DOMAIN 1:34. [[X1, X2, X3, X4℄℄ = [[Y1, Y2, Y3, Y4℄℄ implies X1 = Y1 &X2 = Y2 & X3 = Y3 & X4 = Y4.Theorem DOMAIN 1:35. x = [a, b, 
, d℄ implies x1 = a & x2 = b & x3 = 
 & x4 =d. Theorem DOMAIN 1:36. x = [x1, x2, x3, x4℄.Theorem DOMAIN 1:37. x1 = (x qua Any)111 & x2 = (x qua Any)112 & x3 = (x quaAny)12 & x4 = (x qua Any)2.



131Theorem DOMAIN 1:38. x 6= x1 & x 6= x2 & x 6= x3 & x 6= x4.Theorem DOMAIN 1:39. [x1, x2, x3, x4℄ 2 [[X1, X2, X3, X4℄℄.De�nitionlet X1, X2, X3, X4, x1, x2, x3, x4.rede�nefun
 [x1, x2, x3, x4℄ ! Element of [[X1, X2, X3, X4℄℄.De�nitionlet X1, X2, X3, X4.let x be Element of [[X1, X2, X3, X4℄℄.rede�nefun
 x1 ! Element of X1.fun
 x2 ! Element of X2.fun
 x3 ! Element of X3.fun
 x4 ! Element of X4.Theorem DOMAIN 1:40. a = x1 i� for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds a= x1.Theorem DOMAIN 1:41. b = x2 i� for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds b= x2.Theorem DOMAIN 1:42. 
 = x3 i� for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds 
= x3.Theorem DOMAIN 1:43. d = x4 i� for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds d= x4.Theorem DOMAIN 1:44. for x being Element of [[X1, X2, X3, X4℄℄ holds [x1, x2, x3,x4℄ = x.Theorem DOMAIN 1:45. for x, y being Element of [[X1, X2, X3, X4℄℄ st x1 = y1 &x2 = y2 & x3 = y3 & x4 = y4 holds x = y.Theorem DOMAIN 1:46. [x1, x2, x3, x4℄1 = x1 & [x1, x2, x3, x4℄2 = x2 & [x1, x2, x3,x4℄3 = x3 & [x1, x2, x3, x4℄4 = x4.Theorem DOMAIN 1:47. for x being (Element of [[X1, X2, X3, X4℄℄), y being Elementof [[Y1, Y2, Y3, Y4℄℄ holds x = y implies x1 = y1 & x2 = y2 & x3 = y3 & x4 = y4.reserve A2 for (Subset of X2), A3 for (Subset of X3), A4 for Subset of X4.s
heme Fraenkel1fP[Any℄g: for X1 holds fx1: P[x1℄g is Subset of X1.s
heme Fraenkel2fP[Any, Any℄g: for X1, X2 holds f[x1, x2℄: P[x1, x2℄g is Subset of[[X1, X2℄℄.s
heme Fraenkel3fP[Any, Any, Any℄g: for X1, X2, X3 holds f[x1, x2, x3℄: P[x1, x2,x3℄g is Subset of [[X1, X2, X3℄℄.



132 CHAPTER 24. DOMAIN 1s
heme Fraenkel4fP[Any, Any, Any, Any℄g: for X1, X2, X3, X4 holds f[x1, x2, x3,x4℄: P[x1, x2, x3, x4℄g is Subset of [[X1, X2, X3, X4℄℄.s
heme Fraenkel5fP[Any℄, Q[Any℄g: for X1 st for x1 holds P[x1℄ implies Q[x1℄holds fy1: P[y1℄g � fz1: Q[z1℄g.s
heme Fraenkel6fP[Any℄, Q[Any℄g: for X1 st for x1 holds P[x1℄ i� Q[x1℄ holdsfy1: P[y1℄g = fz1: Q[z1℄g.Theorem DOMAIN 1:48. X1 = fx1: not 
ontradi
tiong.Theorem DOMAIN 1:49. [[X1, X2℄℄ = f[x1, x2℄: not 
ontradi
tiong.Theorem DOMAIN 1:50. [[X1, X2, X3℄℄ = f[x1, x2, x3℄: not 
ontradi
tiong.Theorem DOMAIN 1:51. [[X1, X2, X3, X4℄℄ = f[x1, x2, x3, x4℄: not 
ontradi
tiong.Theorem DOMAIN 1:52. A1 = fx1: x1 2 A1g.De�nitionlet X1, X2, A1, A2.rede�nefun
 [[A1, A2℄℄ ! Subset of [[X1, X2℄℄.Theorem DOMAIN 1:53. [[A1, A2℄℄ = f[x1, x2℄: x1 2 A1 & x2 2 A2g.De�nitionlet X1, X2, X3, A1, A2, A3.rede�nefun
 [[A1, A2, A3℄℄ ! Subset of [[X1, X2, X3℄℄.Theorem DOMAIN 1:54. [[A1, A2, A3℄℄ = f[x1, x2, x3℄: x1 2 A1 & x2 2 A2 & x3 2A3g.De�nitionlet X1, X2, X3, X4, A1, A2, A3, A4.rede�nefun
 [[A1, A2, A3, A4℄℄ ! Subset of [[X1, X2, X3, X4℄℄.Theorem DOMAIN 1:55. [[A1, A2, A3, A4℄℄ = f[x1, x2, x3, x4℄: x1 2 A1 & x2 2 A2& x3 2 A3 & x4 2 A4g.Theorem DOMAIN 1:56. ; X1 = fx1: 
ontradi
tiong.Theorem DOMAIN 1:57. A1
 = fx1: not x1 2 A1g.Theorem DOMAIN 1:58. A1\B1 = fx1: x1 2 A1 & x1 2 B1g.Theorem DOMAIN 1:59. A1[B1 = fx1: x1 2 A1 or x1 2 B1g.Theorem DOMAIN 1:60. A1rB1 = fx1: x1 2 A1 & not x1 2 B1g.Theorem DOMAIN 1:61. A1�� B1 = fx1: x1 2 A1 & not x1 2 B1 or not x1 2 A1 &x1 2 B1g.Theorem DOMAIN 1:62. A1�� B1 = fx1: not x1 2 A1 i� x1 2 B1g.



133Theorem DOMAIN 1:63. A1�� B1 = fx1: x1 2 A1 i� not x1 2 B1g.Theorem DOMAIN 1:64. A1�� B1 = fx1: not (x1 2 A1 i� x1 2 B1)g.reserve x1, x2, x3, x4, x5, x6, x7, x8 for Element of D.Theorem DOMAIN 1:65. fx1g is Subset of D.Theorem DOMAIN 1:66. fx1, x2g is Subset of D.Theorem DOMAIN 1:67. fx1, x2, x3g is Subset of D.Theorem DOMAIN 1:68. fx1, x2, x3, x4g is Subset of D.Theorem DOMAIN 1:69. fx1, x2, x3, x4, x5g is Subset of D.Theorem DOMAIN 1:70. fx1, x2, x3, x4, x5, x6g is Subset of D.Theorem DOMAIN 1:71. fx1, x2, x3, x4, x5, x6, x7g is Subset of D.Theorem DOMAIN 1:72. fx1, x2, x3, x4, x5, x6, x7, x8g is Subset of D.De�nitionlet D.rede�nelet x1 be Element of D.fun
 fx1g ! Subset of D.let x2 be Element of D.fun
 fx1, x2g ! Subset of D.let x3 be Element of D.fun
 fx1, x2, x3g ! Subset of D.let x4 be Element of D.fun
 fx1, x2, x3, x4g ! Subset of D.let x5 be Element of D.fun
 fx1, x2, x3, x4, x5g ! Subset of D.let x6 be Element of D.fun
 fx1, x2, x3, x4, x5, x6g ! Subset of D.let x7 be Element of D.fun
 fx1, x2, x3, x4, x5, x6, x7g ! Subset of D.let x8 be Element of D.fun
 fx1, x2, x3, x4, x5, x6, x7, x8g ! Subset of D.De�nitionlet X1, A1.rede�nefun
 A1
 ! Subset of X1.let B1.



134 CHAPTER 24. DOMAIN 1fun
 A1[B1 ! Subset of X1.fun
 A1\B1 ! Subset of X1.fun
 A1rB1 ! Subset of X1.fun
 A1�� B1 ! Subset of X1.



Chapter 25FINSUB 1Boolean DomainsbyAndrzej Trybule
 1Warsaw University (Bia lystok)Agata Darmo
hwa l2Warsaw University (Bia lystok)Summary. BOOLE DOMAIN is a SET DOMAIN that is 
losed under union anddi�eren
e. This 
ondition is equivalent to being 
losed under symmetri
 di�eren
eand one of the following operations: union, interse
tion or di�eren
e. We introdu
ethe set of all �nite subsets of a set A, denoted by Fin A. The mode Finite Subsetof a set A is introdu
ed with the mother type: Element of Fin A. In 
onsequen
e,\Finite Subset of ..." is an elementary type, therefore one may use su
h types as\set of Finite Subset of A", \[(Finite Subset of A), Finite Subset of A℄", and so on.The arti
le begins with some auxiliary theorems that belong really to BOOLEor ORDINAL1 but are missing there. Moreover, bool A is rede�ned as a SETDOMAIN, for an arbitrary set A.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,finite, and booledom. The terminology and notation used in this arti
le have beenintrodu
ed in the following arti
les: tarski, boole, fun
t 1, real 1, nat 1, finseq 1,enumset1, subset 1, ordinal1, m
art 1, setfam 1, finset 1, and domain 1.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 135



136 CHAPTER 25. FINSUB 1reserve X, Y for set.Theorem FINSUB 1:1. X misses Y implies XrY = X & YrX = Y.Theorem FINSUB 1:2. X misses Y implies (X[Y)rY = X & (X[Y)rX = Y.Theorem FINSUB 1:3. X[Y = X�� (YrX).Theorem FINSUB 1:4. X[Y = X�� Y�� X\Y.Theorem FINSUB 1:5. XrY = X�� (X\Y).Theorem FINSUB 1:6. X\Y = X�� Y�� (X[Y).Theorem FINSUB 1:7. (for x being set st x 2 X holds x 2 Y) implies X � Y.De�nitionlet X.rede�nefun
 bool X ! SET DOMAIN.Theorem FINSUB 1:8. for Y being Element of bool X holds Y � X.De�nitionmode BOOLE DOMAIN! SET DOMAIN means for X, Y being Element of itholds X[Y 2 it & XrY 2 it.Theorem FINSUB 1:9. for A being SET DOMAIN holds A is BOOLE DOMAIN i�for X, Y being Element of A holds X[Y 2 A & XrY 2 A.reserve A for BOOLE DOMAIN.Theorem FINSUB 1:10. X 2 A & Y 2 A implies X[Y 2 A & XrY 2 A.Theorem FINSUB 1:11. X is Element of A & Y is Element of A implies X[Y isElement of A.Theorem FINSUB 1:12. X is Element of A & Y is Element of A implies XrY isElement of A.De�nitionlet A.let X, Y be Element of A.rede�nefun
 X[Y ! Element of A.fun
 XrY ! Element of A.Theorem FINSUB 1:13. X is Element of A & Y is Element of A implies X\Y isElement of A.Theorem FINSUB 1:14. X is Element of A & Y is Element of A implies X�� Y isElement of A.Theorem FINSUB 1:15. for A being SET DOMAIN st for X, Y being Element of Aholds X�� Y 2 A & XrY 2 A holds A is BOOLE DOMAIN.



137Theorem FINSUB 1:16. for A being SET DOMAIN st for X, Y being Element of Aholds X�� Y 2 A & X\Y 2 A holds A is BOOLE DOMAIN.Theorem FINSUB 1:17. for A being SET DOMAIN st for X, Y being Element of Aholds X�� Y 2 A & X[Y 2 A holds A is BOOLE DOMAIN.De�nitionlet A.let X, Y be Element of A.rede�nefun
 X\Y ! Element of A.fun
 X�� Y ! Element of A.Theorem FINSUB 1:18. ; 2 A.Theorem FINSUB 1:19. ; is Element of A.Theorem FINSUB 1:20. bool A is BOOLE DOMAIN.Theorem FINSUB 1:21. for A, B being BOOLE DOMAIN holds A\B is BOOLEDOMAIN.reserve A, B, P for set.reserve x, y for Any.De�nitionlet A.fun
 Fin A ! BOOLE DOMAIN means for X being set holds X 2 it i� X �A & X is �nite.Theorem FINSUB 1:22. B 2 Fin A i� B � A & B is �nite.Theorem FINSUB 1:23. A � B implies Fin A � Fin B.Theorem FINSUB 1:24. Fin (A\B) = Fin A\Fin B.Theorem FINSUB 1:25. Fin A[Fin B � Fin (A[B).Theorem FINSUB 1:26. Fin A � bool A.Theorem FINSUB 1:27. A is �nite implies Fin A = bool A.Theorem FINSUB 1:28. Fin ; = f;g.De�nitionlet A.mode Finite Subset of A ! Element of Fin A means not 
ontradi
tion.Theorem FINSUB 1:29. for X being Element of Fin A holds X is Finite Subset of A.De�nitionlet A.let X, Y be Finite Subset of A.



138 CHAPTER 25. FINSUB 1rede�nefun
 X[Y ! Finite Subset of A.fun
 X\Y ! Finite Subset of A.fun
 XrY ! Finite Subset of A.fun
 X�� Y ! Finite Subset of A.Theorem FINSUB 1:30. for X being Finite Subset of A holds X is �nite.Theorem FINSUB 1:31. for X being Finite Subset of A holds X � A.Theorem FINSUB 1:32. for X being Finite Subset of A holds X is Subset of A.Theorem FINSUB 1:33. ; is Finite Subset of A.Theorem FINSUB 1:34. A is �nite implies for X being Subset of A holds X is FiniteSubset of A.



Chapter 26INCSP 1 Axioms of In
iden
ybyWoj
ie
h A. Trybule
 1Warsaw UniversitySummary. This text is a translation into Mizar of a small part of Foundationsof Geometry by K. Borsuk and W. Szmielew related to the axioms of in
iden
y.(Remark: The fourth axiom of in
iden
y is weakened in this text. In the sour
etext it has the form: for any plane there exist three non-
ollinear points in theplane and in this text: for any plane there exists one point in the plane. Theoriginal axiom is proved in the text.) The arti
le in
ludes: theorems 
on
erning
ollinearity of points and 
oplanarity of points and lines, basi
 theorems 
on
erninglines and planes, fundamental existen
e theorems, theorems 
on
erning interse
tionof lines and planes.The symbols used in this arti
le are introdu
ed in the following vo
abularies: in
sp 1,boole, and relation. The terminology and notation used in this arti
le have beenintrodu
ed in the following arti
les: tarski, boole, enumset1, subset 1, relat 1,m
art 1, domain 1, and relset 1.stru
t In
Stru
t hhPoints, Lines, Planes ! DOMAIN, In
1 ! (Relation of the Points,the Lines), In
2 ! (Relation of the Points, the Planes), In
3 ! Relation of the Lines, thePlanesii.1Supported by RPBP.III-24.C1. 139



140 CHAPTER 26. INCSP 1De�nitionlet S be In
Stru
t.mode POINT of S ! Element of the Points of S means not 
ontradi
tion.mode LINE of S ! Element of the Lines of S means not 
ontradi
tion.mode PLANE of S ! Element of the Planes of S means not 
ontradi
tion.reserve S for In
Stru
t.reserve A for Element of the Points of S.reserve L for Element of the Lines of S.reserve P for Element of the Planes of S.Theorem INCSP 1:1. A is POINT of S.Theorem INCSP 1:2. L is LINE of S.Theorem INCSP 1:3. P is PLANE of S.reserve A, B, C, D, E for POINT of S.reserve K, L, L1, L2 for LINE of S.reserve P, P1, P2, Q for PLANE of S.reserve F, G for Subset of the Points of S.De�nitionlet S.let A be (POINT of S), L be LINE of S.pred A on L means [A, L℄ 2 the In
1 of S.De�nitionlet S.let A be (POINT of S), P be PLANE of S.pred A on P means [A, P℄ 2 the In
2 of S.De�nitionlet S.let L be (LINE of S), P be PLANE of S.pred L on P means [L, P℄ 2 the In
3 of S.De�nitionlet S.let F be (set of POINT of S), L be LINE of S.pred F on L means for A being POINT of S st A 2 F holds A on L.De�nitionlet S.let F be (set of POINT of S), P be PLANE of S.



141pred F on P means for A st A 2 F holds A on P.De�nitionlet S.let F be set of POINT of S.pred F is 
ollinear means ex L st F on L.De�nitionlet S.let F be set of POINT of S.pred F is 
oplanar means ex P st F on P.Theorem INCSP 1:4. A on L i� [A, L℄ 2 the In
1 of S.Theorem INCSP 1:5. A on P i� [A, P℄ 2 the In
2 of S.Theorem INCSP 1:6. L on P i� [L, P℄ 2 the In
3 of S.Theorem INCSP 1:7. F on L i� for A st A 2 F holds A on L.Theorem INCSP 1:8. F on P i� for A st A 2 F holds A on P.Theorem INCSP 1:9. F is 
ollinear i� ex L st F on L.Theorem INCSP 1:10. F is 
oplanar i� ex P st F on P.Theorem INCSP 1:11. fA, Bg on L i� A on L & B on L.Theorem INCSP 1:12. fA, B, Cg on L i� A on L & B on L & C on L.Theorem INCSP 1:13. fA, Bg on P i� A on P & B on P.Theorem INCSP 1:14. fA, B, Cg on P i� A on P & B on P & C on P.Theorem INCSP 1:15. fA, B, C, Dg on P i� A on P & B on P & C on P & D on P.Theorem INCSP 1:16. G � F & F on L implies G on L.Theorem INCSP 1:17. G � F & F on P implies G on P.Theorem INCSP 1:18. F on L & A on L i� F[fAg on L.Theorem INCSP 1:19. F on P & A on P i� F[fAg on P.Theorem INCSP 1:20. F[G on L i� F on L & G on L.Theorem INCSP 1:21. F[G on P i� F on P & G on P.Theorem INCSP 1:22. G � F & F is 
ollinear implies G is 
ollinear.Theorem INCSP 1:23. G � F & F is 
oplanar implies G is 
oplanar.De�nitionmode In
Spa
e ! In
Stru
t means (for L being LINE of it ex A, B beingPOINT of it st A 6= B & fA, Bg on L) & (for A, B being POINT of it ex L being LINEof it st fA, Bg on L) & (for A, B being (POINT of it), K, L being LINE of it st A 6= B& fA, Bg on K & fA, Bg on L holds K = L) & (for P being PLANE of it ex A beingPOINT of it st A on P) & (for A, B, C being POINT of it ex P being PLANE of it stfA, B, Cg on P) & (for A, B, C being (POINT of it), P, Q being PLANE of it st not



142 CHAPTER 26. INCSP 1fA, B, Cg is 
ollinear & fA, B, Cg on P & fA, B, Cg on Q holds P = Q) & (for L being(LINE of it), P being PLANE of it st ex A, B being POINT of it st A 6= B & fA, Bgon L & fA, Bg on P holds L on P) & (for A being (POINT of it), P, Q being PLANEof it st A on P & A on Q ex B being POINT of it st A 6= B & B on P & B on Q) & (exA, B, C, D being POINT of it st not fA, B, C, Dg is 
oplanar) & (for A being (POINTof it), L being (LINE of it), P being PLANE of it st A on L & L on P holds A on P).Theorem INCSP 1:24. (for L being LINE of S ex A, B being POINT of S st A 6= B& fA, Bg on L) & (for A, B being POINT of S ex L being LINE of S st fA, Bg on L)& (for A, B being (POINT of S), K, L being LINE of S st A 6= B & fA, Bg on K & fA,Bg on L holds K = L) & (for P being PLANE of S ex A being POINT of S st A on P)& (for A, B, C being POINT of S ex P being PLANE of S st fA, B, Cg on P) & (for A,B, C being (POINT of S), P, Q being PLANE of S st not fA, B, Cg is 
ollinear & fA, B,Cg on P & fA, B, Cg on Q holds P = Q) & (for L being (LINE of S), P being PLANEof S st ex A, B being POINT of S st A 6= B & fA, Bg on L & fA, Bg on P holds L onP) & (for A being (POINT of S), P, Q being PLANE of S st A on P & A on Q ex Bbeing POINT of S st A 6= B & B on P & B on Q) & (ex A, B, C, D being POINT of Sst not fA, B, C, Dg is 
oplanar) & (for A being (POINT of S), L being (LINE of S), Pbeing PLANE of S st A on L & L on P holds A on P) implies S is In
Spa
e.reserve S for In
Spa
e.reserve A, B, C, D, E for POINT of S.reserve K, L, L1, L2 for LINE of S.reserve P, P1, P2, Q for PLANE of S.reserve F for Subset of the Points of S.Theorem INCSP 1:25. ex A, B st A 6= B & fA, Bg on L.Theorem INCSP 1:26. ex L st fA, Bg on L.Theorem INCSP 1:27. A 6= B & fA, Bg on K & fA, Bg on L implies K = L.Theorem INCSP 1:28. ex A st A on P.Theorem INCSP 1:29. ex P st fA, B, Cg on P.Theorem INCSP 1:30. not fA, B, Cg is 
ollinear & fA, B, Cg on P & fA, B, Cg on Qimplies P = Q.Theorem INCSP 1:31. (ex A, B st A 6= B & fA, Bg on L & fA, Bg on P) implies Lon P.Theorem INCSP 1:32. A on P & A on Q implies (ex B st A 6= B & B on P & B onQ).Theorem INCSP 1:33. ex A, B, C, D st not fA, B, C, Dg is 
oplanar.Theorem INCSP 1:34. A on L & L on P implies A on P.Theorem INCSP 1:35. F on L & L on P implies F on P.Theorem INCSP 1:36. fA, A, Bg is 
ollinear.



143Theorem INCSP 1:37. fA, A, B, Cg is 
oplanar.Theorem INCSP 1:38. fA, B, Cg is 
ollinear implies fA, B, C, Dg is 
oplanar.Theorem INCSP 1:39. A 6= B & fA, Bg on L & not C on L implies not fA, B, Cgis 
ollinear.Theorem INCSP 1:40. not fA, B, Cg is 
ollinear & fA, B, Cg on P & not D on Pimplies not fA, B, C, Dg is 
oplanar.Theorem INCSP 1:41. not (ex P st K on P & L on P) implies K 6= L.Theorem INCSP 1:42. not (ex P st L on P & L1 on P & L2 on P) & (ex A st A onL & A on L1 & A on L2) implies L 6= L1.Theorem INCSP 1:43. L1 on P & L2 on P & not L on P & L1 6= L2 implies not (exQ st L on Q & L1 on Q & L2 on Q).Theorem INCSP 1:44. ex P st A on P & L on P.Theorem INCSP 1:45. (ex A st A on K & A on L) implies (ex P st K on P & L onP). Theorem INCSP 1:46. A 6= B implies ex L st for K holds fA, Bg on K i� K = L.Theorem INCSP 1:47. not fA, B, Cg is 
ollinear implies ex P st for Q holds fA, B,Cg on Q i� P = Q.Theorem INCSP 1:48. not A on L implies ex P st for Q holds A on Q & L on Qi� P = Q.Theorem INCSP 1:49. K 6= L & (ex A st A on K & A on L) implies ex P st for Qholds K on Q & L on Q i� P = Q.De�nitionlet S.let A, B.assume A 6= B.fun
 Line (A, B) ! LINE of S means fA, Bg on it.De�nitionlet S.let A, B, C.assume not fA, B, Cg is 
ollinear.fun
 Plane (A, B, C) ! PLANE of S means fA, B, Cg on it.De�nitionlet S.let A, L.assume not A on L.fun
 Plane (A, L) ! PLANE of S means A on it & L on it.



144 CHAPTER 26. INCSP 1De�nitionlet S.let K, L.assume that K 6= L and (ex A st A on K & A on L).fun
 Plane (K, L) ! PLANE of S means K on it & L on it.Theorem INCSP 1:50. A 6= B implies fA, Bg on Line (A, B).Theorem INCSP 1:51. A 6= B & fA, Bg on K implies K = Line (A, B).Theorem INCSP 1:52. not fA, B, Cg is 
ollinear implies fA, B, Cg on Plane (A, B,C). Theorem INCSP 1:53. not fA, B, Cg is 
ollinear & fA, B, Cg on Q implies Q = Plane(A, B, C).Theorem INCSP 1:54. not A on L implies A on Plane (A, L) & L on Plane (A, L).Theorem INCSP 1:55. not A on L & A on Q & L on Q implies Q = Plane (A, L).Theorem INCSP 1:56. K 6= L & (ex A st A on K & A on L) implies K on Plane (K,L) & L on Plane (K, L).Theorem INCSP 1:57. A 6= B implies Line (A, B) = Line (B, A).Theorem INCSP 1:58. not fA, B, Cg is 
ollinear implies Plane (A, B, C) = Plane (A,C, B).Theorem INCSP 1:59. not fA, B, Cg is 
ollinear implies Plane (A, B, C) = Plane (B,A, C).Theorem INCSP 1:60. not fA, B, Cg is 
ollinear implies Plane (A, B, C) = Plane (B,C, A).Theorem INCSP 1:61. not fA, B, Cg is 
ollinear implies Plane (A, B, C) = Plane (C,A, B).Theorem INCSP 1:62. not fA, B, Cg is 
ollinear implies Plane (A, B, C) = Plane (C,B, A).Theorem INCSP 1:63. K 6= L & (ex A st A on K & A on L) & K on Q & L on Qimplies Q = Plane (K, L).Theorem INCSP 1:64. K 6= L & (ex A st A on K & A on L) implies Plane (K, L) =Plane (L, K).Theorem INCSP 1:65. A 6= B & C on Line (A, B) implies fA, B, Cg is 
ollinear.Theorem INCSP 1:66. A 6= B & A 6= C & fA, B, Cg is 
ollinear implies Line (A, B)= Line (A, C).Theorem INCSP 1:67. not fA, B, Cg is 
ollinear implies Plane (A, B, C) = Plane (C,Line (A, B)).Theorem INCSP 1:68. not fA, B, Cg is 
ollinear & D on Plane (A, B, C) implies fA,B, C, Dg is 
oplanar.



145Theorem INCSP 1:69. not C on L & fA, Bg on L & A 6= B implies Plane (C, L) =Plane (A, B, C).Theorem INCSP 1:70. not fA, B, Cg is 
ollinear implies Plane (A, B, C) = Plane(Line (A, B), Line (A, C)).Theorem INCSP 1:71. ex A, B, C st fA, B, Cg on P & not fA, B, Cg is 
ollinear.Theorem INCSP 1:72. ex A, B, C, D st A on P & not fA, B, C, Dg is 
oplanar.Theorem INCSP 1:73. ex B st A 6= B & B on L.Theorem INCSP 1:74. A 6= B implies ex C st C on P & not fA, B, Cg is 
ollinear.Theorem INCSP 1:75. not fA, B, Cg is 
ollinear implies ex D st not fA, B, C, Dgis 
oplanar.Theorem INCSP 1:76. ex B, C st fB, Cg on P & not fA, B, Cg is 
ollinear.Theorem INCSP 1:77. A 6= B implies (ex C, D st not fA, B, C, Dg is 
oplanar).Theorem INCSP 1:78. ex B, C, D st not fA, B, C, Dg is 
oplanar.Theorem INCSP 1:79. ex L st not A on L & L on P.Theorem INCSP 1:80. A on P implies (ex L, L1, L2 st L1 6= L2 & L1 on P & L2 onP & not L on P & A on L & A on L1 & A on L2).Theorem INCSP 1:81. ex L, L1, L2 st A on L & A on L1 & A on L2 & not (ex P stL on P & L1 on P & L2 on P).Theorem INCSP 1:82. ex P st A on P & not L on P.Theorem INCSP 1:83. ex A st A on P & not A on L.Theorem INCSP 1:84. ex K st not (ex P st L on P & K on P).Theorem INCSP 1:85. ex P, Q st P 6= Q & L on P & L on Q.Theorem INCSP 1:86. K 6= L & fA, Bg on K & fA, Bg on L implies A = B.Theorem INCSP 1:87. not L on P & fA, Bg on L & fA, Bg on P implies A = B.Theorem INCSP 1:88. P 6= Q implies not (ex A st A on P & A on Q) or (ex L stfor B holds B on P & B on Q i� B on L).



Chapter 27LATTICESIntrodu
tion to Latti
e TheorybyStanis law _Zukowski 1Warsaw University (Bia lystok)Summary. A latti
e is de�ned as an algebra on a nonempty set with binaryoperations join and meet whi
h are 
ommutative and asso
iative, and satisfy theabsorption identities. The following kinds of latti
es are 
onsidered: distributive,modular, bounded (with zero and unit elements), 
omplemented, and Boolean (with
omplement). The arti
le in
ludes also theorems whi
h immediately follow fromde�nitions.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,
oord, fun
, sub op, binop, fun
 rel, booledom, and latti
es. The terminologyand notation used in this arti
le have been introdu
ed in the following arti
les: tarski,boole, enumset1, subset 1, fun
t 1, m
art 1, domain 1, fun
t 2, binop 1, fin-set 1, and finsub 1.s
heme BooleDomBinOpLambdafA() ! BOOLE DOMAIN, O((Element of A()), Ele-ment of A()) ! Element of A()g: ex o being BinOp of A() st for a, b being Element ofA() holds o:(a, b) = O(a, b).stru
t LattStr hhL 
arrier ! DOMAIN, L join, L meet ! BinOp of the L 
arrierii.reserve G for LattStr.1Supported by RPBP.III-24.C1. 146



147reserve p, q, r for Element of the L 
arrier of G.De�nitionlet G, p, q.fun
 ptq ! Element of the L 
arrier of G means it = (the L join of G):(p, q).fun
 puq ! Element of the L 
arrier of G means it = (the L meet of G):(p,q). Theorem LATTICES:1. ptq = (the L join of G):(p, q).Theorem LATTICES:2. puq = (the L meet of G):(p, q).De�nitionlet G, p, q.pred p v q means ptq = q.Theorem LATTICES:3. p v q i� ptq = q.De�nitionmode Latti
e ! LattStr means (for a, b being Element of the L 
arrier of itholds atb = bta) & (for a, b, 
 being Element of the L 
arrier of it holds at(bt
) =(atb)t
) & (for a, b being Element of the L 
arrier of it holds (aub)tb = b) & (for a,b being Element of the L 
arrier of it holds aub = bua) & (for a, b, 
 being Element ofthe L 
arrier of it holds au(bu
) = (aub)u
) & (for a, b being Element of the L 
arrierof it holds au(atb) = a).Theorem LATTICES:4. (for p, q holds ptq = qtp) & (for p, q, r holds pt(qtr) =(ptq)tr) & (for p, q holds (puq)tq = q) & (for p, q holds puq = qup) & (for p, q, rholds pu(qur) = (puq)ur) & (for p, q holds pu(ptq) = p) implies G is Latti
e.reserve L for Latti
e.reserve a, b, 
, 
1, 
2 for Element of the L 
arrier of L.Theorem LATTICES:5. atb = bta.Theorem LATTICES:6. aub = bua.Theorem LATTICES:7. at(bt
) = (atb)t
.Theorem LATTICES:8. au(bu
) = (aub)u
.Theorem LATTICES:9. (aub)tb = b & bt(aub) = b & bt(bua) = b & (bua)tb =b. Theorem LATTICES:10. au(atb) = a & (atb)ua = a & (bta)ua = a & au(bta) =a.De�nitionmode D Latti
e ! Latti
e means for a, b, 
 being Element of the L 
arrier ofit holds au(bt
) = (aub)t(au
).Theorem LATTICES:11. (for a, b, 
 holds au(bt
) = (aub)t(au
)) implies L is DLatti
e.



148 CHAPTER 27. LATTICESDe�nitionmode M Latti
e ! Latti
e means for a, b, 
 being Element of the L 
arrier ofit st a v 
 holds at(bu
) = (atb)u
.Theorem LATTICES:12. (for a, b, 
 st a v 
 holds at(bu
) = (atb)u
) implies Lis M Latti
e.De�nitionmode 0 Latti
e ! Latti
e means ex 
 being Element of the L 
arrier of it stfor a being Element of the L 
arrier of it holds 
ua = 
.Theorem LATTICES:13. (ex 
 st for a holds 
ua = 
) implies L is 0 Latti
e.De�nitionmode 1 Latti
e ! Latti
e means ex 
 being Element of the L 
arrier of it stfor a being Element of the L 
arrier of it holds 
ta = 
.Theorem LATTICES:14. (ex 
 st for a holds 
ta = 
) implies L is 1 Latti
e.De�nitionmode 01 Latti
e ! Latti
e means it is 0 Latti
e & it is 1 Latti
e.Theorem LATTICES:15. (L is 0 Latti
e & L is 1 Latti
e) implies L is 01 Latti
e.De�nitionlet L.assume ex 
 st for a holds 
ua = 
.fun
 ?L ! Element of the L 
arrier of L means itua = it.De�nitionlet L be 0 Latti
e.rede�nefun
 ?L ! Element of the L 
arrier of L.De�nitionlet L.assume ex 
 st for a holds 
ta = 
.fun
 >L ! Element of the L 
arrier of L means itta = it.De�nitionlet L be 1 Latti
e.rede�nefun
 >L ! Element of the L 
arrier of L.De�nitionlet L be 01 Latti
e.rede�nefun
 ?L ! Element of the L 
arrier of L.



149fun
 >L ! Element of the L 
arrier of L.De�nitionlet L, a, b.assume L is 01 Latti
e.pred a is a 
omplement b means atb = >L & aub = ?L.De�nitionmode C Latti
e ! 01 Latti
e means for b being Element of the L 
arrier of itex a being Element of the L 
arrier of it st a is a 
omplement b.De�nitionmode B Latti
e ! C Latti
e means it is D Latti
e.Theorem LATTICES:16. atb = b i� aub = a.Theorem LATTICES:17. ata = a.Theorem LATTICES:18. aua = a.Theorem LATTICES:19. for L holds (for a, b, 
 holds au(bt
) = (aub)t(au
)) i�(for a, b, 
 holds at(bu
) = (atb)u(at
)).Theorem LATTICES:20. a v b i� atb = b.Theorem LATTICES:21. a v b i� aub = a.Theorem LATTICES:22. a v atb.Theorem LATTICES:23. aub v a.Theorem LATTICES:24. a v a.Theorem LATTICES:25. a v b & b v 
 implies a v 
.Theorem LATTICES:26. a v b & b v a implies a = b.Theorem LATTICES:27. a v b implies au
 v bu
.Theorem LATTICES:28. a v b implies 
ua v 
ub.Theorem LATTICES:29. (for a, b, 
 holds (aub)t(bu
)t(
ua) = (atb)u(bt
)u(
ta)) implies L is D Latti
e.reserve L for D Latti
e.reserve a, b, 
 for Element of the L 
arrier of L.Theorem LATTICES:30. for L holds (for a, b, 
 holds au(bt
) = (aub)t(au
)) &(for a, b, 
 holds (bt
)ua = (bua)t(
ua)).Theorem LATTICES:31. for L holds (for a, b, 
 holds at(bu
) = (atb)u(at
)) &(for a, b, 
 holds (bu
)ta = (bta)u(
ta)).Theorem LATTICES:32. 
ua = 
ub & 
ta = 
tb implies a = b.Theorem LATTICES:33. au
 = bu
 & at
 = bt
 implies a = b.Theorem LATTICES:34. (atb)u(bt
)u(
ta) = (aub)t(bu
)t(
ua).



150 CHAPTER 27. LATTICESTheorem LATTICES:35. L is M Latti
e.reserve L for M Latti
e.reserve a, b, 
 for Element of the L 
arrier of L.Theorem LATTICES:36. a v 
 implies at(bu
) = (atb)u
.Theorem LATTICES:37. 
 v a implies au(bt
) = (aub)t
.reserve L for 0 Latti
e.reserve a, b, 
 for Element of the L 
arrier of L.Theorem LATTICES:38. ex 
 st for a holds 
ua = 
.Theorem LATTICES:39. ?Lta = a & at?L = a.Theorem LATTICES:40. ?Lua = ?L & au?L = ?L.Theorem LATTICES:41. ?L v a.reserve L for 1 Latti
e.reserve a, b, 
 for Element of the L 
arrier of L.Theorem LATTICES:42. ex 
 st for a holds 
ta = 
.Theorem LATTICES:43. >Lua = a & au>L = a.Theorem LATTICES:44. >Lta = >L & at>L = >L.Theorem LATTICES:45. a v >L.reserve L for C Latti
e.reserve a, b, 
 for Element of the L 
arrier of L.Theorem LATTICES:46. ex a st a is a 
omplement b.reserve L for Latti
e.reserve a, b, 
 for Element of the L 
arrier of L.De�nitionlet L.let x be Element of the L 
arrier of L.assume L is B Latti
e.fun
 x
 ! Element of the L 
arrier of L means it is a 
omplement x.De�nitionlet L be B Latti
e.let x be Element of the L 
arrier of L.rede�nefun
 x
 ! Element of the L 
arrier of L.reserve L for B Latti
e.reserve a, b, 
 for Element of the L 
arrier of L.Theorem LATTICES:47. a
ua = ?L & aua
 = ?L.



151Theorem LATTICES:48. a
ta = >L & ata
 = >L.Theorem LATTICES:49. a

 = a.Theorem LATTICES:50. (aub)
 = a
tb
.Theorem LATTICES:51. (atb)
 = a
ub
.Theorem LATTICES:52. bua = ?L i� b v a
.Theorem LATTICES:53. a v b implies b
 v a
.



Chapter 28PRE TOPCTopologi
al Spa
es and Continuous Fun
tionsbyBeata Padlewska 1Warsaw University (Bia lystok)Agata Darmo
hwa l2Warsaw University (Bia lystok)Summary. The arti
le 
ontains a de�nition of topologi
al spa
e. The followingnotions are de�ned: point of topologi
al spa
e, subset of topologi
al spa
e, subspa
eof topologi
al spa
e, and 
ontinuous fun
tion.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,fun
, fun
 rel, real 1, sub op, fam op, sfamily, and top
on. The terminologyand notation used in this arti
le have been introdu
ed in the following arti
les: tarski,boole, enumset1, subset 1, fun
t 1, ordinal1, m
art 1, domain 1, fun
t 2, andsetfam 1.stru
t TopStru
t hh
arrier ! DOMAIN, topology ! Subset-Family of the 
arrierii.reserve T for TopStru
t.reserve p, q for Subset of the 
arrier of T.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 152



153reserve x for Any.De�nitionmode TopSpa
e ! TopStru
t means ; 2 the topology of it & the 
arrier of it2 the topology of it & (for a being Subset-Family of the 
arrier of it st a � the topologyof it holds Sa 2 the topology of it) & (for a, b being Subset of the 
arrier of it st a 2the topology of it & b 2 the topology of it holds a\b 2 the topology of it).Theorem PRE TOPC:1. (; 2 the topology of T & the 
arrier of T 2 the topology ofT & (for a being Subset-Family of the 
arrier of T st a � the topology of T holds Sa 2the topology of T) & (for p, q being Subset of the 
arrier of T st p 2 the topology ofT & q 2 the topology of T holds p\q 2 the topology of T)) implies T is TopSpa
e.reserve T, S, GX, GY for TopSpa
e.De�nitionlet T.mode Point of T ! Element of the 
arrier of T means not 
ontradi
tion.Theorem PRE TOPC:2. for x being Element of the 
arrier of T holds x is Point ofT.De�nitionlet T.mode Subset of T ! set of Point of T means not 
ontradi
tion.Theorem PRE TOPC:3. for P being Subset of the 
arrier of T holds P is Subset ofT. reserve P, Q, R for Subset of T.reserve p, q, r for Point of T.De�nitionlet T.mode Subset-Family of T ! Subset-Family of the 
arrier of T means not 
on-tradi
tion.Theorem PRE TOPC:4. for F being Subset-Family of the 
arrier of T holds F isSubset-Family of T.reserve F for Subset-Family of T.s
heme SubFamEx1fA() ! TopSpa
e, P[Subset of A()℄g: ex F being Subset-Familyof A() st for B being Subset of A() holds B 2 F i� P[B℄.Theorem PRE TOPC:5. ; 2 the topology of T.Theorem PRE TOPC:6. the 
arrier of T 2 the topology of T.Theorem PRE TOPC:7. for a being Subset-Family of T st a � the topology of Tholds Sa 2 the topology of T.



154 CHAPTER 28. PRE TOPCTheorem PRE TOPC:8. P 2 the topology of T & Q 2 the topology of T impliesP\Q 2 the topology of T.De�nitionlet T.fun
 ;(T) ! Subset of T means it = ; the 
arrier of T.fun
 
(T) ! Subset of T means it = 
the 
arrier of T.Theorem PRE TOPC:9. ; T = ; the 
arrier of T.Theorem PRE TOPC:10. 
T = 
the 
arrier of T.Theorem PRE TOPC:11. ;(T) = ;.Theorem PRE TOPC:12. 
(T) = the 
arrier of T.De�nitionlet T, P.fun
 P
 ! Subset of T means it = P
.De�nitionlet T, P, Q.rede�nefun
 P[Q ! Subset of T.fun
 P\Q ! Subset of T.fun
 PrQ ! Subset of T.fun
 P�� Q ! Subset of T.Theorem PRE TOPC:13. p 2 
(T).Theorem PRE TOPC:14. P � 
(T).Theorem PRE TOPC:15. P\
(T) = P.Theorem PRE TOPC:16. for A being set holds A � 
(T) implies A is Subset ofT. Theorem PRE TOPC:17. P
 = 
(T)rP.Theorem PRE TOPC:18. P[P
 = 
(T).Theorem PRE TOPC:19. P � Q i� Q
 � P
.Theorem PRE TOPC:20. P = P

.Theorem PRE TOPC:21. P � Q
 i� P\Q = ;.Theorem PRE TOPC:22. 
(T)r(
(T)rP) = P.Theorem PRE TOPC:23. P 6= 
(T) i� 
(T)rP 6= ;.Theorem PRE TOPC:24. 
(T)rP = Q implies 
(T) = P[Q.Theorem PRE TOPC:25. 
(T) = P[Q & P\Q = ; implies Q = 
(T)rP.Theorem PRE TOPC:26. P\P
 = ;(T).



155Theorem PRE TOPC:27. 
(T) = (; T)
.Theorem PRE TOPC:28. PrQ = P\Q
.Theorem PRE TOPC:29. P = Q implies 
(T)rP = 
(T)rQ.De�nitionlet T, P.pred P is open means P 2 the topology of T.Theorem PRE TOPC:30. P is open i� P 2 the topology of T.De�nitionlet T, P.pred P is 
losed means 
(T)rP is open.Theorem PRE TOPC:31. P is 
losed i� 
(T)rP is open.De�nitionlet T, P.pred P is open 
losed means P is open & P is 
losed.Theorem PRE TOPC:32. P is open 
losed i� P is open & P is 
losed.De�nitionlet T, F.rede�nefun
 SF ! Subset of T.De�nitionlet T, F.rede�nefun
 TF ! Subset of T.De�nitionlet T, F.pred F is a 
over of T means 
(T) = SF.Theorem PRE TOPC:33. F is a 
over of T i� 
(T) = SF.De�nitionlet T.mode SubSpa
e of T ! TopSpa
e means 
(it) � 
(T) & for P being Subsetof it holds P 2 the topology of it i� ex Q being Subset of T st Q 2 the topology of T& P = Q\
(it).Theorem PRE TOPC:34. (
(S) � 
(T) & for P being Subset of S holds P 2 thetopology of S i� ex Q being Subset of T st Q 2 the topology of T & P = Q\
(S))implies S is SubSpa
e of T.



156 CHAPTER 28. PRE TOPCTheorem PRE TOPC:35. for V being SubSpa
e of T holds 
(V) � 
(T) & for Pbeing Subset of V holds P 2 the topology of V i� ex Q being Subset of T st Q 2 thetopology of T & P = Q\
(V).De�nitionlet T, P.assume P 6= ;(T).fun
 T�P ! SubSpa
e of T means 
(it) = P & ;(it) = ;.Theorem PRE TOPC:36. P 6= ;(T) implies 
(T�P) = P & ;(T�P) = ;.De�nitionlet T, S.mode map of T, S ! Fun
tion of (the 
arrier of T), (the 
arrier of S) meansnot 
ontradi
tion.Theorem PRE TOPC:37. for f being Fun
tion of the 
arrier of T, the 
arrier of Sholds f is map of T, S.reserve f, g for map of T, S.reserve P1, Q1, R1 for Subset of S.De�nitionlet T, S, f, P.rede�nefun
 f�P ! (Subset of S).De�nitionlet T, S, f, P1.rede�nefun
 f�1P1 ! (Subset of T).De�nitionlet T, S, f.pred f is 
ontinuous means for P1 holds P1 is 
losed implies f�1P1 is 
losed.Theorem PRE TOPC:38. f is 
ontinuous i� (for P1 holds P1 is 
losed implies f�1P1is 
losed).s
heme TopAbstrfA() ! TopSpa
e, P[Point of A()℄g: ex P being Subset of A() stfor x being Point of A() holds x 2 P i� P[x℄.Theorem PRE TOPC:39. for X0 being SubSpa
e of GX for A being Subset of X0holds A is Subset of GX.Theorem PRE TOPC:40. for A being (Subset of GX), x being Any st x 2 A holdsx is Point of GX.Theorem PRE TOPC:41. for A being Subset of GX st A 6= ;(GX) ex x being Pointof GX st x 2 A.



157Theorem PRE TOPC:42. 
(GX) is 
losed.Theorem PRE TOPC:43. for X0 being (SubSpa
e of GX), B being Subset of X0holds B is 
losed i� ex C being Subset of GX st C is 
losed & C\(
(X0)) = B.Theorem PRE TOPC:44. for F being Subset-Family of GX st F 6= ; & for A beingSubset of GX st A 2 F holds A is 
losed holds TF is 
losed.De�nitionlet GX be TopSpa
e, A be Subset of GX.fun
 Cl A ! Subset of GX means for p being Point of GX holds p 2 it i�for G being Subset of GX st G is open holds p 2 G implies A\G 6= ;(GX).Theorem PRE TOPC:45. for A being (Subset of GX), p being Point of GX holdsp 2 Cl A i� for C being Subset of GX st C is 
losed holds (A � C implies p 2 C).Theorem PRE TOPC:46. for A being (Subset of GX) ex F being Subset-Family ofGX st (for C being Subset of GX holds C 2 F i� C is 
losed & A � C) & Cl A = TF.Theorem PRE TOPC:47. for X0 being (SubSpa
e of GX), A being (Subset of GX),A1 being Subset of X0 st A = A1 holds Cl A1 = (Cl A)\(
(X0)).Theorem PRE TOPC:48. for A being Subset of GX holds A � Cl A.Theorem PRE TOPC:49. for A, B being Subset of GX st A � B holds Cl A � Cl B.Theorem PRE TOPC:50. for A, B being Subset of GX holds Cl (A[B) = Cl A[ClB. Theorem PRE TOPC:51. for A, B being Subset of GX holds Cl (A\B) � (Cl A)\ClB. Theorem PRE TOPC:52. for A being Subset of GX holds A is 
losed i� Cl A = A.Theorem PRE TOPC:53. for A being Subset of GX holds A is open i� Cl (
(GX)rA) = 
(GX)rA.Theorem PRE TOPC:54. for A being (Subset of GX), p being Point of GX holds p2 Cl A i� for G being Subset of GX st G is open holds p 2 G implies A\G 6= ;(GX).



Chapter 29TOPS 1Subsets of a Topologi
al Spa
ebyMiros law Wyso
ki 1Warsaw University (Bia lystok)Agata Darmo
hwa l2Warsaw University (Bia lystok)Summary. The arti
le 
ontains some theorems about open and 
losed sets. Thefollowing topologi
al operations on sets are de�ned: 
losure, interior and frontier.The following notions are introdu
ed: dense set, boundary set, nowheredense setand set being domain (
losed domain and open domain), and some basi
 fa
ts
on
erning them are proved.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,fun
, fun
 rel, rel rel, real 1, sub op, fam op, sfamily, top
on, and top1. Theterminology and notation used in this arti
le have been introdu
ed in the following arti-
les: tarski, boole, enumset1, subset 1, fun
t 1, ordinal1, m
art 1, domain 1,fun
t 2, setfam 1, and pre top
.reserve TS for TopSpa
e.reserve x for Any.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 158



159reserve X, Y, Z for set.reserve P, Q, G for Subset of TS.reserve p for Point of TS.Theorem TOPS 1:1. x 2 P implies x is Point of TS.Theorem TOPS 1:2. P[
TS = 
TS & 
TS[P = 
TS.Theorem TOPS 1:3. P\
TS = P & 
TS\P = P.Theorem TOPS 1:4. P\; TS = ; TS & ; TS\P = ; TS.Theorem TOPS 1:5. P
 = 
TSrP.Theorem TOPS 1:6. P
 = (P qua Subset of the 
arrier of TS)
.Theorem TOPS 1:7. p 2 P
 i� not p 2 P.Theorem TOPS 1:8. (
TS)
 = ; TS.Theorem TOPS 1:9. 
TS = (; TS)
.Theorem TOPS 1:10. (P
)
 = P.Theorem TOPS 1:11. P[P
 = 
TS & P
[P = 
TS.Theorem TOPS 1:12. P\P
 = ; TS & P
\P = ; TS.Theorem TOPS 1:13. (P[Q)
 = (P
)\(Q
).Theorem TOPS 1:14. (P\Q)
 = (P
)[(Q
).Theorem TOPS 1:15. P � Q i� Q
 � P
.Theorem TOPS 1:16. PrQ = P\Q
.Theorem TOPS 1:17. (PrQ)
 = P
[Q.Theorem TOPS 1:18. P � Q
 implies Q � P
.Theorem TOPS 1:19. P
 � Q implies Q
 � P.Theorem TOPS 1:20. P � Q i� P\Q
 = ;.Theorem TOPS 1:21. P
 = Q
 implies P = Q.Theorem TOPS 1:22. ; TS is 
losed.Theorem TOPS 1:23. Cl (; TS) = ; TS.Theorem TOPS 1:24. P � Cl P.Theorem TOPS 1:25. P � Q implies Cl P � Cl Q.Theorem TOPS 1:26. Cl (Cl P) = Cl P.Theorem TOPS 1:27. Cl (
TS) = 
TS.Theorem TOPS 1:28. 
TS is 
losed.Theorem TOPS 1:29. P is 
losed i� P
 is open.Theorem TOPS 1:30. P is open i� P
 is 
losed.Theorem TOPS 1:31. Q is 
losed & P � Q implies Cl P � Q.Theorem TOPS 1:32. Cl PrCl Q � Cl (PrQ).



160 CHAPTER 29. TOPS 1Theorem TOPS 1:33. Cl (P\Q) � Cl P\Cl Q.Theorem TOPS 1:34. P is 
losed & Q is 
losed implies Cl (P\Q) = Cl P\Cl Q.Theorem TOPS 1:35. P is 
losed & Q is 
losed implies P\Q is 
losed.Theorem TOPS 1:36. P is 
losed & Q is 
losed implies P[Q is 
losed.Theorem TOPS 1:37. P is open & Q is open implies P[Q is open.Theorem TOPS 1:38. P is open & Q is open implies P\Q is open.Theorem TOPS 1:39. p 2 Cl P i� for G st G is open holds (p 2 G implies P\G 6=;). Theorem TOPS 1:40. Q is open implies Q\Cl P � Cl (Q\P).Theorem TOPS 1:41. Q is open implies Cl (Q\Cl P) = Cl (Q\P).De�nitionlet TS, P.fun
 Int P ! Subset of TS means it = (Cl (P
))
.Theorem TOPS 1:42. Int P = (Cl P
)
.Theorem TOPS 1:43. Int (
TS) = 
TS.Theorem TOPS 1:44. Int P � P.Theorem TOPS 1:45. Int (Int P) = Int P.Theorem TOPS 1:46. Int P\Int Q = Int (P\Q).Theorem TOPS 1:47. Int (; TS) = ; TS.Theorem TOPS 1:48. P � Q implies Int P � Int Q.Theorem TOPS 1:49. Int P[Int Q � Int (P[Q).Theorem TOPS 1:50. Int (PrQ) � Int PrInt Q.Theorem TOPS 1:51. Int P is open.Theorem TOPS 1:52. ; TS is open.Theorem TOPS 1:53. 
TS is open.Theorem TOPS 1:54. x 2 Int P i� ex Q st Q is open & Q � P & x 2 Q.Theorem TOPS 1:55. P is open i� Int P = P.Theorem TOPS 1:56. Q is open & Q � P implies Q � Int P.Theorem TOPS 1:57. P is open i� (for x holds x 2 P i� ex Q st Q is open & Q � P& x 2 Q).Theorem TOPS 1:58. Cl (Int P) = Cl (Int (Cl (Int P))).Theorem TOPS 1:59. P is open implies Cl (Int (Cl P)) = Cl P.De�nitionlet TS, P.fun
 Fr P ! Subset of TS means it = Cl P\Cl (P
).



161Theorem TOPS 1:60. Fr P = Cl P\Cl (P
).Theorem TOPS 1:61. p 2 Fr P i� (for Q st Q is open & p 2 Q holds (P\Q 6= ; &P
\Q 6= ;)).Theorem TOPS 1:62. Fr P = Fr (P
).Theorem TOPS 1:63. Fr P � Cl P.Theorem TOPS 1:64. Fr P = Cl (P
)\P[(Cl PrP).Theorem TOPS 1:65. Cl P = P[Fr P.Theorem TOPS 1:66. Fr (P\Q) � Fr P[Fr Q.Theorem TOPS 1:67. Fr (P[Q) � Fr P[Fr Q.Theorem TOPS 1:68. Fr (Fr P) � Fr P.Theorem TOPS 1:69. P is 
losed implies Fr P � P.Theorem TOPS 1:70. Fr P[Fr Q = Fr (P[Q)[Fr (P\Q)[(Fr P\Fr Q).Theorem TOPS 1:71. Fr (Int P) � Fr P.Theorem TOPS 1:72. Fr (Cl P) � Fr P.Theorem TOPS 1:73. Int P\Fr P = ;.Theorem TOPS 1:74. Int P = PrFr P.Theorem TOPS 1:75. Fr (Fr (Fr P)) = Fr (Fr P).Theorem TOPS 1:76. P is open i� Fr P = Cl PrP.Theorem TOPS 1:77. P is 
losed i� Fr P = PrInt P.De�nitionlet TS, P.pred P is dense means Cl P = 
TS.Theorem TOPS 1:78. P is dense i� Cl P = 
TS.Theorem TOPS 1:79. P is dense & P � Q implies Q is dense.Theorem TOPS 1:80. P is dense i� (for Q st Q 6= ; & Q is open holds P\Q 6= ;).Theorem TOPS 1:81. P is dense implies (for Q holds Q is open implies Cl Q = Cl(Q\P)).Theorem TOPS 1:82. P is dense & Q is dense & Q is open implies P\Q is dense.De�nitionlet TS, P.pred P is boundary means P
 is dense.Theorem TOPS 1:83. P is boundary i� P
 is dense.Theorem TOPS 1:84. P is boundary i� Int P = ;.Theorem TOPS 1:85. P is boundary & Q is boundary & Q is 
losed implies P[Q isboundary.



162 CHAPTER 29. TOPS 1Theorem TOPS 1:86. P is boundary i� (for Q st Q � P & Q is open holds Q = ;).Theorem TOPS 1:87. P is 
losed implies (P is boundary i� for Q st Q 6= ; & Q isopen ex G st G � Q & G 6= ; & G is open & P\G = ;).Theorem TOPS 1:88. P is boundary i� P � Fr P.De�nitionlet TS, P.pred P is nowheredense means Cl P is boundary.Theorem TOPS 1:89. P is nowheredense i� Cl P is boundary.Theorem TOPS 1:90. P is nowheredense & Q is nowheredense implies P[Q is nowhere-dense.Theorem TOPS 1:91. P is nowheredense implies P
 is dense.Theorem TOPS 1:92. P is nowheredense implies P is boundary.Theorem TOPS 1:93. Q is boundary & Q is 
losed implies Q is nowheredense.Theorem TOPS 1:94. P is 
losed implies (P is nowheredense i� P = Fr P).Theorem TOPS 1:95. P is open implies Fr P is nowheredense.Theorem TOPS 1:96. P is 
losed implies Fr P is nowheredense.Theorem TOPS 1:97. P is open & P is nowheredense implies P = ;.De�nitionlet TS, P.pred P is domain means Int (Cl P) � P & P � Cl (Int P).pred P is 
losed domain means P = Cl (Int P).pred P is open domain means P = Int (Cl P).Theorem TOPS 1:98. P is domain i� Int (Cl P) � P & P � Cl (Int P).Theorem TOPS 1:99. P is 
losed domain i� P = Cl (Int P).Theorem TOPS 1:100. P is open domain i� P = Int (Cl P).Theorem TOPS 1:101. P is open domain i� P
 is 
losed domain.Theorem TOPS 1:102. P is 
losed domain implies Fr (Int P) = Fr P.Theorem TOPS 1:103. P is 
losed domain implies Fr P � Cl (Int P).Theorem TOPS 1:104. P is open domain implies Fr P = Fr (Cl P) & Fr (Cl P) = ClPrP.Theorem TOPS 1:105. P is open & P is 
losed implies (P is 
losed domain i� P isopen domain).Theorem TOPS 1:106. P is 
losed & P is domain i� P is 
losed domain.Theorem TOPS 1:107. P is open & P is domain i� P is open domain.Theorem TOPS 1:108. P is 
losed domain & Q is 
losed domain implies P[Q is 
loseddomain.



163Theorem TOPS 1:109. P is open domain & Q is open domain implies P\Q is opendomain.Theorem TOPS 1:110. P is domain implies Int (Fr P) = ;.Theorem TOPS 1:111. P is domain implies Int P is domain & Cl P is domain.



Chapter 30CONNSP 1Conne
ted Spa
esbyBeata Padlewska 1Warsaw University (Bia lystok)Summary. The following notions are de�ned: separated sets, 
onne
ted spa
es,
onne
ted sets, 
omponents of a topologi
al spa
e, the 
omponent of a point. Thede�nition of the boundary of a set is also in
luded. The singleton of a point of atopologi
al spa
e is rede�ned as a subset of the spa
e. Some theorems about thesenotions are proved.The symbols used in this arti
le are introdu
ed in the following vo
abularies: boole,real 1, fun
, fun
 rel, rel rel, sub op, fam op, sfamily, and top
on. The ter-minology and notation used in this arti
le have been introdu
ed in the following arti
les:tarski, boole, enumset1, fun
t 1, subset 1, setfam 1, ordinal1, m
art 1, do-main 1, fun
t 2, pre top
, and tops 1.reserve GX, GY for TopSpa
e.reserve A, A1, B, B1, C for Subset of GX.De�nitionlet GX be TopSpa
e, A, B be Subset of GX.pred A, B are separated means Cl A\B = ;(GX) & A\Cl B = ;(GX).1Supported by RPBP.III-24.C1. 164



165Theorem CONNSP 1:1. A, B are separated implies B, A are separated.Theorem CONNSP 1:2. A, B are separated implies A\B = ;(GX).Theorem CONNSP 1:3. 
(GX) = A[B & A is 
losed & B is 
losed & A\B = ;(GX)implies A, B are separated.Theorem CONNSP 1:4. 
(GX) = A[B & A is open & B is open & A\B = ;(GX)implies A, B are separated.Theorem CONNSP 1:5. 
(GX) = A[B & A, B are separated implies A is open 
losed& B is open 
losed.Theorem CONNSP 1:6. for X0 being (SubSpa
e of GX), P1, Q1 being (Subset ofGX), P, Q being Subset of X0 st P = P1 & Q = Q1 holds P, Q are separated impliesP1, Q1 are separated.Theorem CONNSP 1:7. for X0 being (SubSpa
e of GX), P, Q being (Subset of GX),P1, Q1 being Subset of X0 st P = P1 & Q = Q1 & P[Q � 
(X0) holds P, Q are separatedimplies P1, Q1 are separated.Theorem CONNSP 1:8. A, B are separated & A1 � A & B1 � B implies A1, B1 areseparated.Theorem CONNSP 1:9. A, B are separated & A, C are separated implies A, B[C areseparated.Theorem CONNSP 1:10. (A is 
losed & B is 
losed) or (A is open & B is open) impliesArB, BrA are separated.De�nitionlet GX be TopSpa
e.pred GX is 
onne
ted means for A, B being Subset of GX st 
(GX) = A[B& A, B are separated holds A = ;(GX) or B = ;(GX).Theorem CONNSP 1:11. GX is 
onne
ted i� for A, B being Subset of GX st 
(GX)= A[B & A 6= ;(GX) & B 6= ;(GX) & A is 
losed & B is 
losed holds A\B 6= ;(GX).Theorem CONNSP 1:12. GX is 
onne
ted i� for A, B being Subset of GX st 
(GX)= A[B & A 6= ;(GX) & B 6= ;(GX) & A is open & B is open holds A\B 6= ;(GX).Theorem CONNSP 1:13. GX is 
onne
ted i� for A being Subset of GX st A 6= ;(GX)& A 6= 
(GX) holds (Cl A)\Cl (
(GX)rA) 6= ;(GX).Theorem CONNSP 1:14. GX is 
onne
ted i� for A being Subset of GX st A is open
losed holds A = ;(GX) or A = 
(GX).Theorem CONNSP 1:15. for F being map of GX, GY st F is 
ontinuous & F�(
(GX))= 
(GY) & GX is 
onne
ted holds GY is 
onne
ted.De�nitionlet GX be TopSpa
e, A be Subset of GX.pred A is 
onne
ted means GX�A is 
onne
ted.



166 CHAPTER 30. CONNSP 1Theorem CONNSP 1:16. A 6= ;(GX) implies (A is 
onne
ted i� for P, Q beingSubset of GX st A = P[Q & P, Q are separated holds P = ;(GX) or Q = ;(GX)).Theorem CONNSP 1:17. A is 
onne
ted & A � B[C & B, C are separated implies A� B or A � C.Theorem CONNSP 1:18. A is 
onne
ted & B is 
onne
ted & not A, B are separatedimplies A[B is 
onne
ted.Theorem CONNSP 1:19. C 6= ;(GX) & C is 
onne
ted & C � A & A � Cl C impliesA is 
onne
ted.Theorem CONNSP 1:20. A 6= ;(GX) & A is 
onne
ted implies Cl A is 
onne
ted.Theorem CONNSP 1:21. GX is 
onne
ted & A 6= ;(GX) & A is 
onne
ted & 
(GX)rA = B[C & B, C are separated implies A[B is 
onne
ted & A[C is 
onne
ted.Theorem CONNSP 1:22. 
(GX)rA = B[C & B, C are separated & A is 
losed impliesA[B is 
losed & A[C is 
losed.Theorem CONNSP 1:23. C is 
onne
ted & C\A 6= ;(GX) & CrA 6= ;(GX) impliesC\Fr A 6= ;(GX).Theorem CONNSP 1:24. for X0 being (SubSpa
e of GX), A being (Subset of GX),B being Subset of X0 st A 6= ;(GX) & A = B holds A is 
onne
ted i� B is 
onne
ted.Theorem CONNSP 1:25. A\B 6= ;(GX) & A is 
losed & B is 
losed implies (A[B is
onne
ted & A\B is 
onne
ted implies A is 
onne
ted & B is 
onne
ted).Theorem CONNSP 1:26. for F being Subset-Family of GX st (for A being Subsetof GX st A 2 F holds A is 
onne
ted) & (ex A being Subset of GX st A 6= ;(GX) &A 2 F & (for B being Subset of GX st B 2 F & B 6= A holds not A, B are separated))holds SF is 
onne
ted.Theorem CONNSP 1:27. for F being Subset-Family of GX st (for A being Subsetof GX st A 2 F holds A is 
onne
ted) & TF 6= ;(GX) holds SF is 
onne
ted.Theorem CONNSP 1:28. 
(GX) is 
onne
ted i� GX is 
onne
ted.De�nitionlet GX be TopSpa
e, x be Point of GX.rede�nefun
 fxg ! Subset of GX.Theorem CONNSP 1:29. for x being Point of GX holds fxg is 
onne
ted.De�nitionlet GX be TopSpa
e, x, y be Point of GX.pred x, y are joined means ex C being Subset of GX st C is 
onne
ted & x 2C & y 2 C.Theorem CONNSP 1:30. (ex x being Point of GX st for y being Point of GX holdsx, y are joined) implies GX is 
onne
ted.



167Theorem CONNSP 1:31. (ex x being Point of GX st for y being Point of GX holdsx, y are joined) i� (for x, y being Point of GX holds x, y are joined).Theorem CONNSP 1:32. (for x, y being Point of GX holds x, y are joined) impliesGX is 
onne
ted.Theorem CONNSP 1:33. for x being (Point of GX), F being Subset-Family of GXst for A being Subset of GX holds A 2 F i� A is 
onne
ted & x 2 A holds F 6= ;.De�nitionlet GX be TopSpa
e, A be Subset of GX.pred A is a 
omponent of GX means A is 
onne
ted & for B being Subset ofGX st B is 
onne
ted holds A � B implies A = B.Theorem CONNSP 1:34. A is a 
omponent of GX implies A 6= ;(GX).Theorem CONNSP 1:35. A is a 
omponent of GX implies A is 
losed.Theorem CONNSP 1:36. A is a 
omponent of GX & B is a 
omponent of GX impliesA = B or (A 6= B implies A, B are separated).Theorem CONNSP 1:37. A is a 
omponent of GX & B is a 
omponent of GX impliesA = B or (A 6= B implies A\B = ;(GX)).Theorem CONNSP 1:38. C is 
onne
ted implies for S being Subset of GX st S is a
omponent of GX holds C\S = ;(GX) or C � S.De�nitionlet GX be TopSpa
e, A, B be Subset of GX.pred B is a 
omponent of A means ex B1 being Subset of GX�A st B1 = B &B1 is a 
omponent of (GX�A).Theorem CONNSP 1:39. GX is 
onne
ted & A 6= 
(GX) & A 6= ;(GX) & A is
onne
ted & C is a 
omponent of (
(GX)rA) implies (
(GX)rC) is 
onne
ted.De�nitionlet GX be TopSpa
e, x be Point of GX.fun
 skl x ! Subset of GX means ex F being Subset-Family of GX st (for Abeing Subset of GX holds A 2 F i� A is 
onne
ted & x 2 A) & SF = it.reserve x, y for Point of GX.Theorem CONNSP 1:40. x 2 skl x.Theorem CONNSP 1:41. skl x is 
onne
ted.Theorem CONNSP 1:42. C is 
onne
ted implies (skl x � C implies C = skl x).Theorem CONNSP 1:43. A is a 
omponent of GX i� ex x being Point of GX st A =skl x.Theorem CONNSP 1:44. A is a 
omponent of GX & x 2 A implies A = skl x.Theorem CONNSP 1:45. for S being Subset of GX st S = skl x holds (for p beingPoint of GX st p 6= x & p 2 S holds skl p = S).



168 CHAPTER 30. CONNSP 1Theorem CONNSP 1:46. for F being Subset-Family of GX st for A being Subset ofGX holds A 2 F i� A is a 
omponent of GX holds F is a 
over of GX.Theorem CONNSP 1:47. A, B are separated i� Cl A\B = ;(GX) & A\Cl B = ;(GX).Theorem CONNSP 1:48. GX is 
onne
ted i� for A, B being Subset of GX st 
(GX)= A[B & A, B are separated holds A = ;(GX) or B = ;(GX).Theorem CONNSP 1:49. A is 
onne
ted i� GX�A is 
onne
ted.Theorem CONNSP 1:50. A is a 
omponent of GX i� A is 
onne
ted & for B beingSubset of GX st B is 
onne
ted holds A � B implies A = B.Theorem CONNSP 1:51. B is a 
omponent of A i� ex B1 being Subset of GX�A stB1 = B & B1 is a 
omponent of (GX�A).Theorem CONNSP 1:52. B = skl x i� ex F being Subset-Family of GX st (for Abeing Subset of GX holds A 2 F i� A is 
onne
ted & x 2 A) & SF = B.



Chapter 31SCHEMS 1Some Basi
 Properties of Quanti�ersbyStanis law T. Czuba 1Warsaw University (Bia lystok)Summary. A number of s
hemes 
orresponding to simple tautologies of quanti�er
al
ulus are presented.This arti
le is written in plain Mizar; no additional vo
abularies or signatures arereferen
ed.reserve a, b, 
, d for Any.s
heme S
hemat0fP[Any℄g: ex a st P[a℄ provided A: for a holds P[a℄.s
heme S
hemat1afP[Any℄, T[℄g: (for a holds P[a℄) & T[℄ provided A: for a holds(P[a℄ & T[℄).s
heme S
hemat1bfP[Any℄, T[℄g: for a holds (P[a℄ & T[℄) provided A: (for a holdsP[a℄) & T[℄.s
heme S
hemat2afP[Any℄, T[℄g: (ex a st P[a℄) or T[℄ provided A: ex a st (P[a℄ orT[℄).s
heme S
hemat2bfP[Any℄, T[℄g: ex a st (P[a℄ or T[℄) provided A: (ex a st P[a℄)or T[℄.1Supported by RPBP.III-24.C1. 169



170 CHAPTER 31. SCHEMS 1s
heme S
hemat3fS[Any, Any℄g: for b ex a st S[a, b℄ provided A: ex a st for bholds S[a, b℄.s
heme S
hemat4afP[Any℄, Q[Any℄g: (ex a st P[a℄) or (ex a st Q[a℄) provided A:ex a st (P[a℄ or Q[a℄).s
heme S
hemat4bfP[Any℄, Q[Any℄g: ex a st (P[a℄ or Q[a℄) provided A: (ex a stP[a℄) or (ex a st Q[a℄).s
heme S
hemat5fP[Any℄, Q[Any℄g: (ex a st P[a℄) & (ex a st Q[a℄) provided A: exa st (P[a℄ & Q[a℄).s
heme S
hemat6afP[Any℄, Q[Any℄g: (for a holds P[a℄) & (for a holds Q[a℄) pro-vided A: for a holds (P[a℄ & Q[a℄).s
heme S
hemat6bfP[Any℄, Q[Any℄g: for a holds (P[a℄ & Q[a℄) provided A: (for aholds P[a℄) & (for a holds Q[a℄).s
heme S
hemat7fP[Any℄, Q[Any℄g: for a holds (P[a℄ or Q[a℄) provided A: (for aholds P[a℄) or (for a holds Q[a℄).s
heme S
hemat8fP[Any℄, Q[Any℄g: (for a holds P[a℄) implies (for a holds Q[a℄)provided A: for a holds P[a℄ implies Q[a℄.s
heme S
hemat9fP[Any℄, Q[Any℄g: (for a holds P[a℄) i� (for a holds Q[a℄) pro-vided A: for a holds (P[a℄ i� Q[a℄).s
heme S
hemat10afT[℄g: T[℄ provided A: for a holds T[℄.s
heme S
hemat10bfT[℄g: for a holds T[℄ provided A: T[℄.s
heme S
hemat11afP[Any℄, T[℄g: (for a holds P[a℄) or T[℄ provided A: for a holds(P[a℄ or T[℄).s
heme S
hemat11bfP[Any℄, T[℄g: for a holds (P[a℄ or T[℄) provided A: (for aholds P[a℄) or T[℄.s
heme S
hemat12afP[Any℄, T[℄g: ex a st (T[℄ & P[a℄) provided A: T[℄ & (ex a stP[a℄).s
heme S
hemat12bfP[Any℄, T[℄g: T[℄ & (ex a st P[a℄) provided A: ex a st (T[℄ &P[a℄).s
heme S
hemat13afP[Any℄, T[℄g: for a holds (T[℄ implies P[a℄) provided A: T[℄implies (for a holds P[a℄).s
heme S
hemat13bfP[Any℄, T[℄g: T[℄ implies (for a holds P[a℄) provided A: fora holds (T[℄ implies P[a℄).s
heme S
hemat14fP[Any℄, T[℄g: ex a st (T[℄ implies P[a℄) provided A: T[℄ implies(ex a st P[a℄).s
heme S
hemat15fP[Any℄, T[℄g: for a holds (P[a℄ implies T[℄) provided A: (ex ast P[a℄) implies T[℄.s
heme S
hemat16fP[Any℄, T[℄g: ex a st (P[a℄ implies T[℄) provided A: (for aholds P[a℄) implies T[℄.



171s
heme S
hemat17fP[Any℄, T[℄g: (for a holds P[a℄) implies T[℄ provided A: for aholds (P[a℄ implies T[℄).s
heme S
hemat18afP[Any℄, Q[Any℄g: ex a st (for b holds (P[a℄ or Q[b℄)) providedA: (ex a st P[a℄) or (for b holds Q[b℄).s
heme S
hemat18bfP[Any℄, Q[Any℄g: (ex a st P[a℄) or (for b holds Q[b℄) providedA: ex a st (for b holds (P[a℄ or Q[b℄)).s
heme S
hemat19afP[Any℄, Q[Any℄g: for b holds (ex a st (P[a℄ or Q[b℄)) providedA: (ex a st P[a℄) or (for b holds Q[b℄).s
heme S
hemat19bfP[Any℄, Q[Any℄g: (ex a st P[a℄) or (for b holds Q[b℄) providedA: for b holds (ex a st (P[a℄ or Q[b℄)).s
heme S
hemat20afP[Any℄, Q[Any℄g: for b ex a st (P[a℄ or Q[b℄) provided A: exa st (for b holds (P[a℄ or Q[b℄)).s
heme S
hemat20bfP[Any℄, Q[Any℄g: ex a st (for b holds (P[a℄ or Q[b℄)) providedA: for b ex a st (P[a℄ or Q[b℄).s
heme S
hemat21afP[Any℄, Q[Any℄g: ex a st for b holds P[a℄ & Q[b℄ provided A:(ex a st P[a℄) & (for b holds Q[b℄).s
heme S
hemat21bfP[Any℄, Q[Any℄g: (ex a st P[a℄) & (for b holds Q[b℄) providedA: ex a st for b holds P[a℄ & Q[b℄.s
heme S
hemat22afP[Any℄, Q[Any℄g: for b ex a st (P[a℄ & Q[b℄) provided A: (exa st P[a℄) & (for b holds Q[b℄).s
heme S
hemat22bfP[Any℄, Q[Any℄g: (ex a st P[a℄) & (for b holds Q[b℄) providedA: for b ex a st (P[a℄ & Q[b℄).s
heme S
hemat23afP[Any℄, Q[Any℄g: for b ex a st P[a℄ & Q[b℄ provided A: ex ast for b holds P[a℄ & Q[b℄.s
heme S
hemat23bfP[Any℄, Q[Any℄g: ex a st for b holds (P[a℄ & Q[b℄) providedA: for b ex a st (P[a℄ & Q[b℄).s
heme S
hemat24afS[Any, Any℄, Q[Any℄g: for a ex b st (S[a, b℄ implies Q[a℄)provided A: for a holds ((for b holds S[a, b℄) implies Q[a℄).s
heme S
hemat24bfS[Any, Any℄, Q[Any℄g: for a holds ((for b holds S[a, b℄) impliesQ[a℄) provided A: for a ex b st (S[a, b℄ implies Q[a℄).s
heme S
hemat25afS[Any, Any℄, Q[Any℄g: for a, b holds (S[a, b℄ implies Q[a℄)provided A: for a holds ((ex b st S[a, b℄) implies Q[a℄).s
heme S
hemat25bfS[Any, Any℄, Q[Any℄g: for a holds ((ex b st S[a, b℄) impliesQ[a℄) provided A: for a, b holds (S[a, b℄ implies Q[a℄).s
heme S
hemat26fS[Any, Any℄g: ex a st for b holds S[a, b℄ provided A: for a, bholds S[a, b℄.s
heme S
hemat27fS[Any, Any℄g: for a holds S[a, a℄ provided A: for a, b holdsS[a, b℄.



172 CHAPTER 31. SCHEMS 1s
heme S
hemat28fS[Any, Any℄g: ex b st for a holds S[a, b℄ provided A: for a, bholds S[a, b℄.s
heme S
hemat29fS[Any, Any℄g: for b ex a st S[a, b℄ provided A: ex a st for bholds S[a, b℄.s
heme S
hemat30fS[Any, Any℄g: ex a st S[a, a℄ provided A: ex a st for b holdsS[a, b℄.s
heme S
hemat31fS[Any, Any℄g: for a ex b st S[b, a℄ provided A: for a holds S[a,a℄. s
heme S
hemat32fS[Any, Any℄g: ex a st S[a, a℄ provided A: for a holds S[a, a℄.s
heme S
hemat33fS[Any, Any℄g: for a ex b st S[a, b℄ provided A: for a holds S[a,a℄. s
heme S
hemat34fS[Any, Any℄g: ex b st S[b, b℄ provided A: ex b st for a holdsS[a, b℄.s
heme S
hemat35fS[Any, Any℄g: for a ex b st S[a, b℄ provided A: ex b st for aholds S[a, b℄.s
heme S
hemat36fS[Any, Any℄g: ex a, b st S[a, b℄ provided A: for b ex a st S[a,b℄. s
heme S
hemat37fS[Any, Any℄g: ex a, b st S[a, b℄ provided A: ex a st S[a, a℄.s
heme S
hemat38fS[Any, Any℄g: ex a, b st S[a, b℄ provided A: for a ex b st S[a,b℄.



Chapter 32ZF LANGA Model of ZF Set Theory LanguagebyGrzegorz Ban
erek 1Warsaw University (Bia lystok)Summary. The goal of this arti
le is to 
onstru
t a language of the ZF set theoryand to develop a notational and 
on
eptual base whi
h fa
ilitates a 
onvenient usageof the language.The symbols used in this arti
le are introdu
ed in the following vo
abularies: finseq,zf lang, fun
 rel, fun
, boole, real 1, and nat 1. The terminology and nota-tion used in this arti
le have been introdu
ed in the following arti
les: tarski, boole,fun
t 1, real 1, nat 1, and finseq 1.reserve k, l, m, n for Nat, X, Y, Z for set, D, D1, D2 for DOMAIN, a, b, 
, d forAny.reserve p, q, r, p0, q0 for FinSequen
e of NAT.De�nitionfun
 VAR ! SUBDOMAIN of NAT means it = fk: 5 6 kg.Theorem ZF LANG:1. VAR = fk: 5 6 kg.De�nitionmode Variable ! Element of VAR means not 
ontradi
tion.1Supported by RPBP.III-24.C1. 173



174 CHAPTER 32. ZF LANGTheorem ZF LANG:2. a is Variable i� a is Element of VAR.De�nitionlet n. fun
 �n ! Variable means it = 5+n.Theorem ZF LANG:3. �n = 5+n.reserve x, y, z, t, s for Variable.De�nitionlet x.rede�nefun
 hxi ! FinSequen
e of NAT.De�nitionlet x, y.fun
 x`='y ! FinSequen
e of NAT means it = h0i_hxi_hyi.fun
 x`2'y ! FinSequen
e of NAT means it = h1i_hxi_hyi.Theorem ZF LANG:4. x`='y = h0i_hxi_hyi.Theorem ZF LANG:5. x`2'y = h1i_hxi_hyi.Theorem ZF LANG:6. x`='y = z`='t implies x = z & y = t.Theorem ZF LANG:7. x`2'y = z`2't implies x = z & y = t.De�nitionlet p. fun
 :p ! FinSequen
e of NAT means it = h2i_p.let q. fun
 p^q ! FinSequen
e of NAT means it = h3i_p_q.Theorem ZF LANG:8. :p = h2i_p.Theorem ZF LANG:9. p^q = h3i_p_q.Theorem ZF LANG:10. :p = :q implies p = q.De�nitionlet x, p.fun
 8(x, p) ! FinSequen
e of NAT means it = h4i_hxi_p.Theorem ZF LANG:11. 8(x, p) = h4i_hxi_p.Theorem ZF LANG:12. 8(x, p) = 8(y, q) implies x = y & p = q.De�nitionfun
 WFF ! DOMAIN means (for a st a 2 it holds a is FinSequen
e of NAT)& (for x, y holds x`='y 2 it & x`2'y 2 it) & (for p st p 2 it holds :p 2 it) & (for p,q st p 2 it & q 2 it holds p^q 2 it) & (for x, p st p 2 it holds 8(x, p) 2 it) & for Dst (for a st a 2 D holds a is FinSequen
e of NAT) & (for x, y holds x`='y 2 D & x`2'y



1752 D) & (for p st p 2 D holds :p 2 D) & (for p, q st p 2 D & q 2 D holds p^q 2 D)& (for x, p st p 2 D holds 8(x, p) 2 D) holds it � D.Theorem ZF LANG:13. (for a st a 2 WFF holds a is FinSequen
e of NAT) & (for x,y holds x`='y 2 WFF & x`2'y 2 WFF) & (for p st p 2 WFF holds :p 2 WFF) & (forp, q st p 2 WFF & q 2 WFF holds p^q 2 WFF) & (for x, p st p 2 WFF holds 8(x, p)2 WFF) & for D st (for a st a 2 D holds a is FinSequen
e of NAT) & (for x, y holdsx`='y 2 D & x`2'y 2 D) & (for p st p 2 D holds :p 2 D) & (for p, q st p 2 D & q 2D holds p^q 2 D) & (for x, p st p 2 D holds 8(x, p) 2 D) holds WFF � D.De�nitionmode ZF-formula ! FinSequen
e of NAT means it is Element of WFF.Theorem ZF LANG:14. a is ZF-formula i� a 2 WFF.Theorem ZF LANG:15. a is ZF-formula i� a is Element of WFF.reserve F, F1, G, G1, H, H1 for ZF-formula.De�nitionlet x, y.rede�nefun
 x`='y ! ZF-formula.fun
 x`2'y ! ZF-formula.De�nitionlet H.rede�nefun
 :H ! ZF-formula.let G.fun
 H^G ! ZF-formula.De�nitionlet x, H.rede�nefun
 8(x, H) ! ZF-formula.De�nitionlet H.pred H is equality means ex x, y st H = x`='y.pred H is membership means ex x, y st H = x`2'y.pred H is negative means ex H1 st H = :H1.pred H is 
onjun
tive means ex F, G st H = F^G.pred H is universal means ex x, H1 st H = 8(x, H1).



176 CHAPTER 32. ZF LANGTheorem ZF LANG:16. (H is equality i� ex x, y st H = x`='y) & (H is membershipi� ex x, y st H = x`2'y) & (H is negative i� ex H1 st H = :H1) & (H is 
onjun
tive i�ex F, G st H = F^G) & (H is universal i� ex x, H1 st H = 8(x, H1)).De�nitionlet H.pred H is atomi
 means H is equality or H is membership.Theorem ZF LANG:17. H is atomi
 i� H is equality or H is membership.De�nitionlet F, G.fun
 F_G ! ZF-formula means it = :(:F^:G).fun
 F)G ! ZF-formula means it = :(F^:G).Theorem ZF LANG:18. F_G = :(:F^:G).Theorem ZF LANG:19. F)G = :(F^:G).De�nitionlet F, G.fun
 F,G ! ZF-formula means it = (F)G)^(G)F).Theorem ZF LANG:20. F,G = (F)G)^(G)F).De�nitionlet x, H.fun
 9(x, H) ! ZF-formula means it = :8(x, :H).Theorem ZF LANG:21. 9(x, H) = :8(x, :H).De�nitionlet H.pred H is disjun
tive means ex F, G st H = F_G.pred H is 
onditional means ex F, G st H = F)G.pred H is bi
onditional means ex F, G st H = F,G.pred H is existential means ex x, H1 st H = 9(x, H1).Theorem ZF LANG:22. (H is disjun
tive i� ex F, G st H = F_G) & (H is 
onditionali� ex F, G st H = F)G) & (H is bi
onditional i� ex F, G st H = F,G) & (H is existentiali� ex x, H1 st H = 9(x, H1)).De�nitionlet x, y, H.fun
 8(x, y, H) ! ZF-formula means it = 8(x, 8(y, H)).fun
 9(x, y, H) ! ZF-formula means it = 9(x, 9(y, H)).Theorem ZF LANG:23. 8(x, y, H) = 8(x, 8(y, H)) & 9(x, y, H) = 9(x, 9(y, H)).



177De�nitionlet x, y, z, H.fun
 8(x, y, z, H) ! ZF-formula means it = 8(x, 8(y, z, H)).fun
 9(x, y, z, H) ! ZF-formula means it = 9(x, 9(y, z, H)).Theorem ZF LANG:24. 8(x, y, z, H) = 8(x, 8(y, z, H)) & 9(x, y, z, H) = 9(x, 9(y, z,H)).Theorem ZF LANG:25. H is equality or H is membership or H is negative or H is
onjun
tive or H is universal.Theorem ZF LANG:26. H is atomi
 or H is negative or H is 
onjun
tive or H is universal.Theorem ZF LANG:27. H is atomi
 implies len H = 3.Theorem ZF LANG:28. H is atomi
 or ex H1 st len H1+1 6 len H.Theorem ZF LANG:29. 3 6 len H.Theorem ZF LANG:30. len H = 3 implies H is atomi
.reserve p, q, r for ZF-formula.Theorem ZF LANG:31. for x, y holds (x`='y):1 = 0 & (x`2'y):1 = 1.Theorem ZF LANG:32. for H holds (:H):1 = 2.Theorem ZF LANG:33. for F, G holds (F^G):1 = 3.Theorem ZF LANG:34. for x, H holds 8(x, H):1 = 4.Theorem ZF LANG:35. H is equality implies H:1 = 0.Theorem ZF LANG:36. H is membership implies H:1 = 1.Theorem ZF LANG:37. H is negative implies H:1 = 2.Theorem ZF LANG:38. H is 
onjun
tive implies H:1 = 3.Theorem ZF LANG:39. H is universal implies H:1 = 4.Theorem ZF LANG:40. H is equality & H:1 = 0 or H is membership & H:1 = 1 or His negative & H:1 = 2 or H is 
onjun
tive & H:1 = 3 or H is universal & H:1 = 4.Theorem ZF LANG:41. H:1 = 0 implies H is equality.Theorem ZF LANG:42. H:1 = 1 implies H is membership.Theorem ZF LANG:43. H:1 = 2 implies H is negative.Theorem ZF LANG:44. H:1 = 3 implies H is 
onjun
tive.Theorem ZF LANG:45. H:1 = 4 implies H is universal.reserve sq, sq0 for FinSequen
e.Theorem ZF LANG:46. H = F_sq implies H = F.Theorem ZF LANG:47. H^G = H1^G1 implies H = H1 & G = G1.Theorem ZF LANG:48. F_G = F1_G1 implies F = F1 & G = G1.Theorem ZF LANG:49. F)G = F1)G1 implies F = F1 & G = G1.



178 CHAPTER 32. ZF LANGTheorem ZF LANG:50. F,G = F1,G1 implies F = F1 & G = G1.Theorem ZF LANG:51. 9(x, H) = 9(y, G) implies x = y & H = G.De�nitionlet H.assume H is atomi
.fun
 V ar1H ! Variable means it = H:2.fun
 V ar2H ! Variable means it = H:3.Theorem ZF LANG:52. H is atomi
 implies V ar1H = H:2 & V ar2H = H:3.Theorem ZF LANG:53. H is equality implies H = (V ar1H)`='V ar2H.Theorem ZF LANG:54. H is membership implies H = (V ar1H)`2'V ar2H.De�nitionlet H.assume H is negative.fun
 the argument of H ! ZF-formula means :it = H.Theorem ZF LANG:55. H is negative implies H = :the argument of H.De�nitionlet H.assume H is 
onjun
tive or H is disjun
tive.fun
 the left argument of H ! ZF-formula means ex H1 st it^H1 = H if H is
onjun
tive otherwise ex H1 st it_H1 = H.fun
 the right argument of H ! ZF-formula means ex H1 st H1^it = H if H is
onjun
tive otherwise ex H1 st H1_it = H.Theorem ZF LANG:56. H is 
onjun
tive implies (F = the left argument of H i� ex Gst F^G = H) & (F = the right argument of H i� ex G st G^F = H).Theorem ZF LANG:57. H is disjun
tive implies (F = the left argument of H i� ex Gst F_G = H) & (F = the right argument of H i� ex G st G_F = H).Theorem ZF LANG:58. H is 
onjun
tive implies H = (the left argument of H)^theright argument of H.Theorem ZF LANG:59. H is disjun
tive implies H = (the left argument of H)_the rightargument of H.De�nitionlet H.assume H is universal or H is existential.fun
 bound in H ! Variable means ex H1 st 8(it, H1) = H if H is universalotherwise ex H1 st 9(it, H1) = H.



179fun
 the s
ope of H ! ZF-formula means ex x st 8(x, it) = H if H is universalotherwise ex x st 9(x, it) = H.Theorem ZF LANG:60. H is universal implies (x = bound in H i� ex H1 st 8(x, H1)= H) & (H1 = the s
ope of H i� ex x st 8(x, H1) = H).Theorem ZF LANG:61. H is existential implies (x = bound in H i� ex H1 st 9(x, H1)= H) & (H1 = the s
ope of H i� ex x st 9(x, H1) = H).Theorem ZF LANG:62. H is universal implies H = 8(bound in H, the s
ope of H).Theorem ZF LANG:63. H is existential implies H = 9(bound in H, the s
ope of H).De�nitionlet H.assume H is 
onditional.fun
 the ante
edent of H ! ZF-formula means ex H1 st H = it)H1.fun
 the 
onsequent of H ! ZF-formula means ex H1 st H = H1)it.Theorem ZF LANG:64. H is 
onditional implies (F = the ante
edent of H i� ex G stH = F)G) & (F = the 
onsequent of H i� ex G st H = G)F).Theorem ZF LANG:65. H is 
onditional implies H = (the ante
edent of H))the
onsequent of H.De�nitionlet H.assume H is bi
onditional.fun
 the left side of H ! ZF-formula means ex H1 st H = it,H1.fun
 the right side of H ! ZF-formula means ex H1 st H = H1,it.Theorem ZF LANG:66. H is bi
onditional implies (F = the left side of H i� ex G stH = F,G) & (F = the right side of H i� ex G st H = G,F).Theorem ZF LANG:67. H is bi
onditional implies H = (the left side of H),the rightside of H.De�nitionlet H, F.pred H is immediate 
onstituent of F means F = :H or (ex H1 st F = H^H1or F = H1^H) or ex x st F = 8(x, H).Theorem ZF LANG:68. H is immediate 
onstituent of F i� F = :H or (ex H1 st F =H^H1 or F = H1^H) or ex x st F = 8(x, H).Theorem ZF LANG:69. not H is immediate 
onstituent of x`='y.Theorem ZF LANG:70. not H is immediate 
onstituent of x`2'y.Theorem ZF LANG:71. F is immediate 
onstituent of :H i� F = H.Theorem ZF LANG:72. F is immediate 
onstituent of G^H i� F = G or F = H.



180 CHAPTER 32. ZF LANGTheorem ZF LANG:73. F is immediate 
onstituent of 8(x, H) i� F = H.Theorem ZF LANG:74. H is atomi
 implies not F is immediate 
onstituent of H.Theorem ZF LANG:75. H is negative implies (F is immediate 
onstituent of H i� F =the argument of H).Theorem ZF LANG:76. H is 
onjun
tive implies (F is immediate 
onstituent of H i�F = the left argument of H or F = the right argument of H).Theorem ZF LANG:77. H is universal implies (F is immediate 
onstituent of H i� F= the s
ope of H).reserve L, L0 for FinSequen
e, f for Fun
tion.De�nitionlet H, F.pred H is subformula of F means ex n, L st 1 6 n & len L = n & L:1 = H &L:n = F & for k st 1 6 k & k < n ex H1, F1 st L:k = H1 & L:(k+1) = F1 & H1 isimmediate 
onstituent of F1.Theorem ZF LANG:78. H is subformula of F i� ex n, L st 1 6 n & len L = n & L:1= H & L:n = F & for k st 1 6 k & k < n ex H1, F1 st L:k = H1 & L:(k+1) = F1 & H1is immediate 
onstituent of F1.Theorem ZF LANG:79. H is subformula of H.De�nitionlet H, F.pred H is proper subformula of F means H is subformula of F & H 6= F.Theorem ZF LANG:80. H is proper subformula of F i� H is subformula of F & H 6= F.Theorem ZF LANG:81. H is immediate 
onstituent of F implies len H < len F.Theorem ZF LANG:82. H is immediate 
onstituent of F implies H is proper subformulaof F.Theorem ZF LANG:83. H is proper subformula of F implies len H < len F.Theorem ZF LANG:84. H is proper subformula of F implies ex G st G is immediate
onstituent of F.reserve j, j1, j2 for Nat.Theorem ZF LANG:85. F is proper subformula of G & G is proper subformula of Himplies F is proper subformula of H.Theorem ZF LANG:86. F is subformula of G & G is subformula of H implies F issubformula of H.Theorem ZF LANG:87. G is subformula of H & H is subformula of G implies G = H.Theorem ZF LANG:88. not F is proper subformula of x`='y.Theorem ZF LANG:89. not F is proper subformula of x`2'y.Theorem ZF LANG:90. F is proper subformula of :H implies F is subformula of H.



181Theorem ZF LANG:91. F is proper subformula of G^H implies F is subformula of Gor F is subformula of H.Theorem ZF LANG:92. F is proper subformula of 8(x, H) implies F is subformula ofH. Theorem ZF LANG:93. H is atomi
 implies not F is proper subformula of H.Theorem ZF LANG:94. H is negative implies the argument of H is proper subformulaof H.Theorem ZF LANG:95. H is 
onjun
tive implies the left argument of H is propersubformula of H & the right argument of H is proper subformula of H.Theorem ZF LANG:96. H is universal implies the s
ope of H is proper subformula ofH. Theorem ZF LANG:97. H is subformula of x`='y i� H = x`='y.Theorem ZF LANG:98. H is subformula of x`2'y i� H = x`2'y.De�nitionlet H.fun
 Subformulae H ! set means a 2 it i� ex F st F = a & F is subformula ofH. Theorem ZF LANG:99. a 2 Subformulae H i� ex F st F = a & F is subformula of H.Theorem ZF LANG:100. G 2 Subformulae H implies G is subformula of H.Theorem ZF LANG:101. F is subformula of H implies Subformulae F � SubformulaeH. Theorem ZF LANG:102. Subformulae x`='y = fx`='yg.Theorem ZF LANG:103. Subformulae x`2'y = fx`2'yg.Theorem ZF LANG:104. Subformulae :H = Subformulae H[f:Hg.Theorem ZF LANG:105. Subformulae (H^F) = Subformulae H[Subformulae F[fH^Fg.Theorem ZF LANG:106. Subformulae 8(x, H) = Subformulae H[f8(x, H)g.Theorem ZF LANG:107. H is atomi
 i� Subformulae H = fHg.Theorem ZF LANG:108. H is negative implies Subformulae H = Subformulae theargument of H[fHg.Theorem ZF LANG:109. H is 
onjun
tive implies Subformulae H = Subformulae theleft argument of H[Subformulae the right argument of H[fHg.Theorem ZF LANG:110. H is universal implies Subformulae H = Subformulae the s
opeof H[fHg.Theorem ZF LANG:111. (H is immediate 
onstituent of G or H is proper subformula ofG or H is subformula of G) & G 2 Subformulae F implies H 2 Subformulae F.s
heme ZF IndfP[ZF-formula℄g: for H holds P[H℄ provided A: for H st H is atomi
holds P[H℄ and B: for H st H is negative & P[the argument of H℄ holds P[H℄ and C: for



182 CHAPTER 32. ZF LANGH st H is 
onjun
tive & P[the left argument of H℄ & P[the right argument of H℄ holds P[H℄and D: for H st H is universal & P[the s
ope of H℄ holds P[H℄.s
heme ZF CompIndfP[ZF-formula℄g: for H holds P[H℄ provided A: for H st forF st F is proper subformula of H holds P[F℄ holds P[H℄.



Chapter 33ZF MODELModels and Satis�abilityDe�ning by Stru
tural Indu
tion and Free Variables in ZF-formulaebyGrzegorz Ban
erek 1Warsaw University (Bia lystok)Summary. The arti
le in
ludes s
hemes of de�ning by stru
tural indu
tion, andde�nitions and theorems related to: the set of variables whi
h have free o

urren
esin a ZF-formula, the set of all valuations of variables in a model, the set of allvaluations whi
h satisfy a ZF-formula in a model, the satis�ability of a ZF-formulain a model by a valuation, the validity of a ZF-formula in a model, the axioms ofZF-language, the model of the ZF set theory.The symbols used in this arti
le are introdu
ed in the following vo
abularies: finseq,zf lang, zf sat, zf axiom, ordinal, fun
 rel, fun
, fam op, boole, real 1, andnat 1. The terminology and notation used in this arti
le have been introdu
ed in the fol-lowing arti
les: tarski, boole, fun
t 1, real 1, nat 1, finseq 1, zf lang, fun
t 2,enumset1, and ordinal1.reserve F, G, H, H0 for ZF-formula, f, g, h for Fun
tion, x, y, z, t for Variable, a, b, 
,d for Any, A, X, Y, Z for set, D for DOMAIN.s
heme ZFs
h exfF1(Variable, Variable)! Any, F2(Variable, Variable)! Any, F3(Any)! Any, F4(Any, Any) ! Any, F5(Variable, Any) ! Any, H() ! ZF-formulag: ex a, A st1Supported by RPBP.III-24.C1. 183



184 CHAPTER 33. ZF MODEL(for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y, F2(x, y)℄ 2 A) & [H(), a℄ 2 A & for H, ast [H, a℄ 2 A holds (H is equality implies a = F1(V ar1H, V ar2H)) & (H is membershipimplies a = F2(V ar1H, V ar2H)) & (H is negative implies ex b st a = F3(b) & [theargument of H, b℄ 2 A) & (H is 
onjun
tive implies ex b, 
 st (a = F4(b, 
) & [the leftargument of H, b℄ 2 A) & [the right argument of H, 
℄ 2 A) & (H is universal implies exb, x st x = bound in H & a = F5(x, b) & [the s
ope of H, b℄ 2 A).s
heme ZFs
h uniqfF1(Variable, Variable)! Any, F2(Variable, Variable)! Any, F3(Any)! Any, F4(Any, Any) ! Any, F5(Variable, Any) ! Any, H() ! ZF-formula, a() ! Any, b()! Anyg: a() = b() provided A: ex A st (for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y,F2(x, y)℄ 2 A) & [H(), a()℄ 2 A & for H, a st [H, a℄ 2 A holds (H is equality impliesa = F1(V ar1H, V ar2H)) & (H is membership implies a = F2(V ar1H, V ar2H)) & (H isnegative implies ex b st a = F3(b) & [the argument of H, b℄ 2 A) & (H is 
onjun
tiveimplies ex b, 
 st a = F4(b, 
) & [the left argument of H, b℄ 2 A & [the right argument ofH, 
℄ 2 A) & (H is universal implies ex b, x st x = bound in H & a = F5(x, b) & [the s
opeof H, b℄ 2 A) and B: ex A st (for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y, F2(x, y)℄ 2A) & [H(), b()℄ 2 A & for H, a st [H, a℄ 2 A holds (H is equality implies a = F1(V ar1H,V ar2H)) & (H is membership implies a = F2(V ar1H, V ar2H)) & (H is negative impliesex b st a = F3(b) & [the argument of H, b℄ 2 A) & (H is 
onjun
tive implies ex b, 
 st a= F4(b, 
) & [the left argument of H, b℄ 2 A & [the right argument of H, 
℄ 2 A) & (H isuniversal implies ex b, x st x = bound in H & a = F5(x, b) & [the s
ope of H, b℄ 2 A).s
heme ZFs
h resultfF1(Variable, Variable) ! Any, F2(Variable, Variable) ! Any,F3(Any) ! Any, F4(Any, Any) ! Any, F5(Variable, Any) ! Any, H() ! ZF-formula,f(ZF-formula) ! Anyg: (H() is equality implies f(H()) = F1(V ar1H(), V ar2H())) & (H()is membership implies f(H()) = F2(V ar1H(), V ar2H())) & (H() is negative implies f(H())= F3(f(the argument of H()))) & (H() is 
onjun
tive implies for a, b st a = f(the leftargument of H()) & b = f(the right argument of H()) holds f(H()) = F4(a, b)) & (H() isuniversal implies f(H()) = F5(bound in H(), f(the s
ope of H()))) provided A: for H0, aholds a = f(H0) i� ex A st (for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y, F2(x, y)℄ 2A) & [H0, a℄ 2 A & for H, a st [H, a℄ 2 A holds (H is equality implies a = F1(V ar1H,V ar2H)) & (H is membership implies a = F2(V ar1H, V ar2H)) & (H is negative impliesex b st a = F3(b) & [the argument of H, b℄ 2 A) & (H is 
onjun
tive implies ex b, 
 st a= F4(b, 
) & [the left argument of H, b℄ 2 A & [the right argument of H, 
℄ 2 A) & (H isuniversal implies ex b, x st x = bound in H & a = F5(x, b) & [the s
ope of H, b℄ 2 A).s
heme ZFs
h propertyfF1(Variable, Variable) ! Any, F2(Variable, Variable) ! Any,F3(Any) ! Any, F4(Any, Any) ! Any, F5(Variable, Any) ! Any, H() ! ZF-formula, f(ZF-formula) ! Any, P[Any℄g: P[f(H())℄ provided A: for H0, a holds a = f(H0) i� ex A st(for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y, F2(x, y)℄ 2 A) & [H0, a℄ 2 A & for H, ast [H, a℄ 2 A holds (H is equality implies a = F1(V ar1H, V ar2H)) & (H is membershipimplies a = F2(V ar1H, V ar2H)) & (H is negative implies ex b st a = F3(b) & [theargument of H, b℄ 2 A) & (H is 
onjun
tive implies ex b, 
 st a = F4(b, 
) & [the leftargument of H, b℄ 2 A & [the right argument of H, 
℄ 2 A) & (H is universal implies ex b,



185x st x = bound in H & a = F5(x, b) & [the s
ope of H, b℄ 2 A) and B: for x, y holdsP[F1(x, y)℄ & P[F2(x, y)℄ and C: for a st P[a℄ holds P[F3(a)℄ and D: for a, b st P[a℄ &P[b℄ holds P[F4(a, b)℄ and E: for a, x st P[a℄ holds P[F5(x, a)℄.De�nitionlet H.fun
 Free H ! Anymeans ex A st (for x, y holds [x`='y, fx, yg℄ 2 A & [x`2'y,fx, yg℄ 2 A) & [H, it℄ 2 A & for H0, a st [H0, a℄ 2 A holds (H0 is equality implies a =fV ar1H0, V ar2H0g) & (H0 is membership implies a = fV ar1H0, V ar2H0g) & (H0 is negativeimplies ex b st a = b & [the argument of H0, b℄ 2 A) & (H0 is 
onjun
tive implies ex b,
 st a = Sfb, 
g & [the left argument of H0, b℄ 2 A & [the right argument of H0, 
℄ 2 A) &(H0 is universal implies ex b, x st x = bound in H0 & a = (Sfbg)rfxg & [the s
ope of H0,b℄ 2 A).De�nitionlet H.rede�nefun
 Free H ! set of Variable.Theorem ZF MODEL:1. for H holds (H is equality implies Free H = fV ar1H,V ar2Hg) & (H is membership implies Free H = fV ar1H, V ar2Hg) & (H is negative im-plies Free H = Free the argument of H) & (H is 
onjun
tive implies Free H = Free the leftargument of H[Free the right argument of H) & (H is universal implies Free H = (Free thes
ope of H)rfbound in Hg).De�nitionlet D be SET DOMAIN.fun
 VAL D ! DOMAIN means a 2 it i� a is Fun
tion of VAR, D.De�nitionlet D1 be SET DOMAIN, f be Fun
tion of VAR, D1.let x.rede�nefun
 f:x ! Element of D1.reserve E for SET DOMAIN, f, g, h for (Fun
tion of VAR, E), v1, v2, v3, v4, v5, u1,u2, u3, u4, u5 for (Element of VAL E), S, T for Subset of [[WFF, VAL E℄℄.De�nitionlet H, E.fun
 St (H, E) ! Any means ex A st (for x, y holds [x`='y, fv1: for f st f =v1 holds f:x = f:yg℄ 2 A & [x`2'y, fv2: for f st f = v2 holds f:x 2 f:yg℄ 2 A) & [H, it℄ 2A & for H0, a st [H0, a℄ 2 A holds (H0 is equality implies a = fv3: for f st f = v3 holdsf:(V ar1H0) = f:(V ar2H0)g) & (H0 is membership implies a = fv4: for f st f = v4 holdsf:(V ar1H0) 2 f:(V ar2H0)g) & (H0 is negative implies ex b st a = (VAL E)rSfbg & [the



186 CHAPTER 33. ZF MODELargument of H0, b℄ 2 A) & (H0 is 
onjun
tive implies ex b, 
 st a = (Sfbg)\Sf
g & [theleft argument of H0, b℄ 2 A & [the right argument of H0, 
℄ 2 A) & (H0 is universal impliesex b, x st x = bound in H0 & a = fv5: for X, f st X = b & f = v5 holds f 2 X & for gst for y st g:y 6= f:y holds x = y holds g 2 Xg & [the s
ope of H0, b℄ 2 A).De�nitionlet H, E.rede�nefun
 St (H, E) ! Subset of VAL E.Theorem ZF MODEL:2. for x, y, f holds f:x = f:y i� f 2 St (x`='y, E).Theorem ZF MODEL:3. for x, y, f holds f:x 2 f:y i� f 2 St (x`2'y, E).Theorem ZF MODEL:4. for H, f holds not f 2 St (H, E) i� f 2 St (:H, E).Theorem ZF MODEL:5. for H, H0, f holds f 2 St (H, E) & f 2 St (H0, E) i� f 2 St(H^H0, E).Theorem ZF MODEL:6. for x, H, f holds (f 2 St (H, E) & for g st for y st g:y 6= f:yholds x = y holds g 2 St (H, E)) i� f 2 St (8(x, H), E).Theorem ZF MODEL:7. H is equality implies for f holds f:(V ar1H) = f:(V ar2H) i�f 2 St (H, E).Theorem ZF MODEL:8. H is membership implies for f holds f:(V ar1H) 2 f:(V ar2H)i� f 2 St (H, E).Theorem ZF MODEL:9. H is negative implies for f holds not f 2 St (the argumentof H, E) i� f 2 St (H, E).Theorem ZF MODEL:10. H is 
onjun
tive implies for f holds f 2 St (the left argumentof H, E) & f 2 St (the right argument of H, E) i� f 2 St (H, E).Theorem ZF MODEL:11. H is universal implies for f holds (f 2 St (the s
ope of H,E) & for g st for y st g:y 6= f:y holds bound in H = y holds g 2 St (the s
ope of H, E))i� f 2 St (H, E).De�nitionlet D be SET DOMAIN.let f be Fun
tion of VAR, D.let H.pred D, f j= H means f 2 St (H, D).Theorem ZF MODEL:12. for E, f, x, y holds E, f j= x`='y i� f:x = f:y.Theorem ZF MODEL:13. for E, f, x, y holds E, f j= x`2'y i� f:x 2 f:y.Theorem ZF MODEL:14. for E, f, H holds E, f j= H i� not E, f j= :H.Theorem ZF MODEL:15. for E, f, H, H0 holds E, f j= H^H0 i� E, f j= H & E, f j=H0.



187Theorem ZF MODEL:16. for E, f, H, x holds E, f j= 8(x, H) i� for g st for y st g:y6= f:y holds x = y holds E, g j= H.Theorem ZF MODEL:17. for E, f, H, H0 holds E, f j= H_H0 i� E, f j= H or E, f j=H0. Theorem ZF MODEL:18. for E, f, H, H0 holds E, f j= H)H0 i� (E, f j= H impliesE, f j= H0).Theorem ZF MODEL:19. for E, f, H, H0 holds E, f j= H,H0 i� (E, f j= H i� E, f j=H0).Theorem ZF MODEL:20. for E, f, H, x holds E, f j= 9(x, H) i� ex g st (for y st g:y6= f:y holds x = y) & E, g j= H.Theorem ZF MODEL:21. for E, f, x for e being Element of E ex g st g:x = e & forz st z 6= x holds g:z = f:z.Theorem ZF MODEL:22. E, f j= 8(x, y, H) i� for g st for z st g:z 6= f:z holds x = zor y = z holds E, g j= H.Theorem ZF MODEL:23. E, f j= 9(x, y, H) i� ex g st (for z st g:z 6= f:z holds x = zor y = z) & E, g j= H.De�nitionlet E, H.pred E j= H means for f holds E, f j= H.Theorem ZF MODEL:24. E j= H i� for f holds E, f j= H.Theorem ZF MODEL:25. E j= 8(x, H) i� E j= H.De�nitionfun
 the axiom of extensionality ! ZF-formula means it = 8(�0, �1, 8(�2, �2`2'�0,�2`2'�1))�0`='�1).fun
 the axiom of pairs ! ZF-formula means it = 8(�0, �1, 9(�2, 8(�3, �3`2'�2,(�3`='�0_�3`='�1)))).fun
 the axiom of unions ! ZF-formula means it = 8(�0, 9(�1, 8(�2, �2`2'�1,9(�3, �2`2'�3^�3`2'�0)))).fun
 the axiom of in�nity ! ZF-formula means it = 9(�0, �1, �1`2'�0^8(�2,�2`2'�0)9(�3, �3`2'�0^:�3`='�2^8(�4, �4`2'�2)�4`2'�3)))).fun
 the axiom of power sets ! ZF-formula means it = 8(�0, 9(�1, 8(�2, �2`2'�1,8(�3, �3`2'�2)�3`2'�0)))).De�nitionlet H be ZF-formula.assume f�0, �1, �2g misses Free H.fun
 the axiom of substitution for H ! ZF-formula means it = 8(�3, 9(�0, 8(�4,H,�4`='�0))))8(�1, 9(�2, 8(�4, �4`2'�2,9(�3, �3`2'�1^H)))).



188 CHAPTER 33. ZF MODELTheorem ZF MODEL:26. the axiom of extensionality = 8(�0, �1, 8(�2, �2`2'�0,�2`2'�1))�0`='�1).Theorem ZF MODEL:27. the axiom of pairs = 8(�0, �1, 9(�2, 8(�3, �3`2'�2,(�3`='�0_�3`='�1)))).Theorem ZF MODEL:28. the axiom of unions = 8(�0, 9(�1, 8(�2, �2`2'�1,9(�3, �2`2'�3^�3`2'�0)))).Theorem ZF MODEL:29. the axiom of in�nity = 9(�0, �1, �1`2'�0^8(�2, �2`2'�0)9(�3, �3`2'�0^:�3`='�2^8(�4, �4`2'�2)�4`2'�3)))).Theorem ZF MODEL:30. the axiom of power sets = 8(�0, 9(�1, 8(�2, �2`2'�1,8(�3,�3`2'�2)�3`2'�0)))).Theorem ZF MODEL:31. f�0, �1, �2g misses Free H implies the axiom of substitutionfor H = 8(�3, 9(�0, 8(�4, H,�4`='�0))))8(�1, 9(�2, 8(�4, �4`2'�2,9(�3, �3`2'�1^H)))).De�nitionlet E.pred E is a model of ZF means E is 2-transitive & E j= the axiom of pairs & Ej= the axiom of unions & E j= the axiom of in�nity & E j= the axiom of power sets & for Hst f�0, �1, �2g misses Free H holds E j= the axiom of substitution for H.Theorem ZF MODEL:32. E is a model of ZF i� E is 2-transitive & E j= the axiom ofpairs & E j= the axiom of unions & E j= the axiom of in�nity & E j= the axiom of power sets& for H st f�0, �1, �2g misses Free H holds E j= the axiom of substitution for H.



Chapter 34ZF COLLAThe Contra
tion LemmabyGrzegorz Ban
erek 1Warsaw University (Bia lystok)Summary. The arti
le in
ludes the proof of the 
ontra
tion lemma whi
h 
laimsthat every 
lass in whi
h the axiom of extensionality is valid is isomorphi
 with atransitive 
lass. In this arti
le the isomorphism (wrt membership relation) of twosets is de�ned. It is based on Constru
tible sets by A. Mostowski.The symbols used in this arti
le are introdu
ed in the following vo
abularies: fin-seq, zf lang, zf sat, zf axiom, 
ollaps, ordinal, fun
 rel, fun
, boole, fam op,real 1, and nat 1. The terminology and notation used in this arti
le have been intro-du
ed in the following arti
les: tarski, boole, fun
t 1, real 1, nat 1, finseq 1,zf lang, fun
t 2, enumset1, ordinal1, and zf model.reserve X, Y, Z for set, v, w, x, y, z for Any, E for SET DOMAIN, A, B, C forOrdinal, L, L1 for trans�nite sequen
e, f, f1, f2, g, h for Fun
tion, d, d1, d2, d0 for Elementof E.De�nitionlet E, A.1Supported by RPBP.III-24.C1. 189



190 CHAPTER 34. ZF COLLAfun
 M�(E, A) ! set means ex L st it = fd: for d1 st d1 2 d ex B st B 2dom L & d1 2 SfL:Bgg & dom L = A & for B st B 2 A holds L:B = fd1: for d st d 2d1 ex C st C 2 dom (L�B) & d 2 SfL�B:Cgg.De�nitionlet f, X, Y.pred f is 2-isomorphism of X, Y means dom f = X & rng f = Y & f is 1-1 & forx, y st x 2 X & y 2 X holds (ex Z st Z = y & x 2 Z) i� (ex Z st f:y = Z & f:x 2 Z).De�nitionlet X, Y.pred X, Y are 2-isomorphi
 means ex f st f is 2-isomorphism of X, Y.reserve f, g, h for (Fun
tion of VAR, E), u, v, w for (Element of E), x, y, z for Variable,a, b, 
 for Any.Theorem ZF COLLA:1. E j= the axiom of extensionality implies for u, v st for wholds w 2 u i� w 2 v holds u = v.Theorem ZF COLLA:2. E j= the axiom of extensionality implies ex X st X is 2-transitive & E, X are 2-isomorphi
.



Appendix ABuilt-in Con
eptsThis arti
le is written in plain Mizar; no additional vo
abularies or signatures are referen
ed.De�nitionmode Any.De�nitionmode set ! Any.De�nitionlet x, y be Any.pred x = y.De�nitionlet x be Any, X be set.pred x 2 X.De�nitionlet X be set.mode Element of X.De�nitionmode DOMAIN ! set.De�nitionlet X be DOMAIN.rede�nemode Element of X.De�nitionlet X1, X2 be set.fun
 [[X1, X2℄℄ ! set. 191



192 APPENDIX A. BUILT-IN CONCEPTSlet X3 be set.fun
 [[X1, X2, X3℄℄ ! set.let X4 be set.fun
 [[X1, X2, X3, X4℄℄ ! set.De�nitionlet X1, X2 be DOMAIN.rede�nefun
 [[X1, X2℄℄ ! DOMAIN.let X3 be DOMAIN.fun
 [[X1, X2, X3℄℄ ! DOMAIN.let X4 be DOMAIN.fun
 [[X1, X2, X3, X4℄℄ ! DOMAIN.De�nitionlet X1, X2 be DOMAIN.mode TUPLE of X1, X2 ! Element of [[X1, X2℄℄ means not 
ontradi
tion.let X3 be DOMAIN.mode TUPLE of X1, X2, X3 ! Element of [[X1, X2, X3℄℄ means not 
ontra-di
tion.let X4 be DOMAIN.mode TUPLE of X1, X2, X3, X4 ! Element of [[X1, X2, X3, X4℄℄ means not
ontradi
tion.De�nitionlet X be set.mode Subset of X ! set.fun
 bool X ! set.De�nitionmode SET DOMAIN ! DOMAIN.De�nitionlet D be DOMAIN.rede�nefun
 bool D ! SET DOMAIN.De�nitionlet D be SET DOMAIN.rede�nemode Element of D ! set.



193De�nitionlet X be DOMAIN.rede�nemode Subset of X ! Element of bool X means not 
ontradi
tion.De�nitionlet X be DOMAIN.mode SUBDOMAIN of X ! DOMAIN.De�nitionfun
 REAL ! DOMAIN.De�nitionfun
 NAT ! SUBDOMAIN of REAL.De�nitionlet x, y be Element of REAL.fun
 x+y ! Element of REAL.fun
 x�y ! Element of REAL.pred x 6 y.De�nitionmode Real ! Element of REAL means not 
ontradi
tion.De�nitionlet D be DOMAIN, X be SUBDOMAIN of D.rede�nemode Element of X ! Element of D.De�nitionlet X be SUBDOMAIN of REAL.rede�nemode Element of X ! Real.De�nitionmode Nat ! Element of NAT means not 
ontradi
tion.



Appendix BThe Grammar of Mizar Abstra
tsAbstra
t = "environ" Environment "begin" Text-Proper .Environment = { Dire
tive } .Dire
tive ="vo
abulary" Vo
abulary-File-Name ";" |"signature" Signature-File-Name ";" .Text-Proper = { Text-Item } .Text-Item =Reservation | Definition-Blo
k |Stru
ture-Definition |Theorem | S
heme .Theorem = Compa
t-Statement .Reservation ="reserve" Reservation-Segment{ "," Reservation-Segment } ";" .Reservation-Segment = Reserved-Identifiers-List "for" Type .Reserved-Identifiers-List = Identifier { "," Identifier } .Definition-Blo
k ="definition" Definitions [ "redefine" Redefinitions ℄"end" ";".Definitions = { Definition-Item } .Redefinitions = { Definition-Item } .Definition-Item =Generalization |Assumption |Mode-Definition |Fun
tion-Definition |Predi
ate-Definition . 194



195Mode-Definition ="mode" Mode-Pattern [ Spe
ifi
ation ℄[ "means" Definiens ℄ ";" .Mode-Pattern = Mode-Symbol [ "of" Lo
i ℄ .Fun
tion-Definition ="fun
" Fun
tion-Pattern [ Spe
ifi
ation ℄[ "means" Definiens ℄ ";" .Fun
tion-Pattern =[ Fun
tion-Lo
i ℄ Fun
tion-Symbol [ Fun
tion-Lo
i ℄ |Left-Fun
tion-Bra
ket Lo
i Right-Fun
tion-Bra
ket |"{" Lo
i "}" |"[" Lo
i "℄".Predi
ate-Definition ="pred" Predi
ate-Pattern [ "means" Definiens ℄ ";" .Predi
ate-Pattern =[ Lo
i ℄ Predi
ate-Symbol [ Lo
i ℄ |Lo
us "=" Lo
us.Stru
ture-Definition ="stru
t" Stru
ture-Symbol "(#" Sele
tor-List "#)" ";".Sele
tor-List = Sele
tor-Segment { "," Sele
tor-Segment }.Sele
tor-Segment =Sele
tor-Symbol { "," Sele
tor-Symbol } Spe
ifi
ation .Fun
tion-Lo
i = Lo
us |"(" Lo
i ")".Lo
i = Lo
us { "," Lo
us }.Lo
us = Variable-Identifier.Spe
ifi
ation = "->" Type .Definiens = Simple-Definiens | Compound-Definiens .Simple-Definiens = Senten
e .Compound-Definiens = Partial-Definiens-List [ "otherwise" Senten
e ℄ .Partial-Definiens-List =Partial-Definiens { "," Partial-Definiens } .Partial-Definiens = Senten
e "if" Senten
e .S
heme ="s
heme" S
heme-Identifier "{" S
heme-Parameter-List "}" ":"



196 APPENDIX B. THE GRAMMAR OF MIZAR ABSTRACTSS
heme-Con
lusion"provided" S
heme-Premise { "and" S
heme-Premise }Justifi
ation ";" .S
heme-Con
lusion = Senten
e.S
heme-Premise = Proposition .S
heme-Parameter-List = S
heme-Parameter { "," S
heme-Parameter } .S
heme-Parameter =Lo
al-Fun
tion-Pattern Spe
ifi
ation |Lo
al-Predi
ate-Pattern .Lo
al-Fun
tion-Pattern =Fun
tion-Identifier "(" [ Type-List ℄ ")" .Lo
al-Predi
ate-Pattern =Predi
ate-Identifier "[" [ Type-List ℄ "℄" .Generalization = "let" Fixed-Variables .Assumption =Single-Assumption |Colle
tive-Assumption |Existential-Assumption .Single-Assumption = "assume" Senten
e ";" .Colle
tive-Assumption = "assume" Conditions ";" .Existential-Assumption = "given" Fixed-Variables ";" .Compa
t-Statement = Senten
e ";" .Fixed-Variables = Qualified-Variables [ "su
h" Conditions ℄ .Conditions = "that" Senten
e { "and" Senten
e } .Proposition = [ Label-Identifier ":" ℄ Senten
e .Senten
e = Formula .Formula =Atomi
-Formula |Quantified-Formula |Formula "&" Formula |Formula "or" Formula |Formula "implies" Formula |Formula "iff" Formula |"not" Formula |"
ontradi
tion" .Quantified-Formula ="for" Qualified-Variables [ "st" Formula ℄



197( "holds" Formula | Quantified-Formula ) |"ex" Qualified-Variables "st" Formula .Atomi
-Formula =[ Term-List ℄ Predi
ate-Symbol [ Term-List ℄ |Term ( "<>" | "=" ) Term |Predi
ate-Identifier "[" [ Term-List ℄ "℄" |Term "is" Type .Qualified-Variables =Impli
itly-Qualified-Variables |Expli
itly-Qualified-Variables |Expli
itly-Qualified-Variables ","Impli
itly-Qualified-Variables .Expli
itly-Qualified-Variables =Qualified-Segment { "," Qualified-Segment } .Qualified-Segment = Variable-List Qualifi
ation .Impli
itly-Qualified-Variables = Variable-List .Variable-List =Variable-Identifier {"," Variable-Identifier } .Qualifi
ation = ("being" | "be" ) Type .Type = "(" Type ")" |Mode-Symbol [ "of" Term-List ℄ |Stru
ture-Symbol |"set" [ "of" Type ℄ |"[" Type-List "℄" .Type-List = Type { "," Type } .Term = "(" Term ")" |[ Argument-List ℄ Fun
tion-Symbol [ Argument-List ℄ |Left-Fun
tion-Bra
ket Term-List Right-Fun
tion-Bra
ket |Fun
tion-Identifier "(" [ Term-List ℄ ")" |"the" Sele
tor-Symbol "of" Term |"the" Sele
tor-Symbol |Stru
ture-Symbol "," Term-List "." |Variable-Identifier |"[" Term-List "℄" |"{" Term-List "}" |"{" Term ":" Senten
e "}" |Numeral |"it" |



198 APPENDIX B. THE GRAMMAR OF MIZAR ABSTRACTSTerm "qua" Type .Term-List = Term { "," Term } .Argument-List = Term | "(" Term-List ")" .Variable-Identifier = Identifier .Fun
tion-Identifier = Identifier .Predi
ate-Identifier = Identifier .S
heme-Identifier = Identifier .Label-Identifier = Identifier .Vo
abulary-File-Name = File-Name .Signature-File-Name = File-Name .Definitions-File-Name = File-Name .Theorems-File-Name = File-Name .S
hemes-File-Name = File-Name .File-Name = Identifier .Stru
ture-Symbol = Symbol .Sele
tor-Symbol = Symbol .Predi
ate-Symbol = Symbol .Fun
tion-Symbol = Symbol .Mode-Symbol = Symbol .Left-Fun
tion-Bra
ket = Symbol .Right-Fun
tion-Bra
ket = Symbol .



Appendix CVo
abulariesddd stands for a 
hara
ter from extended ASCII with 
ode ddd > 127 .Vo
abulary bin opBinOp BinOpUnOp UnOpthe unity wrt the unity wrtis asso
iative is asso
iativeis 
ommutative is 
ommutativeis a unity wrt is a unity wrtis a left unity wrt is a left unity wrtis a right unity wrt is a right unity wrtis an idempotent is an idempotentis distributive wrt is distributive wrtis left distributive wrt is left distributive wrtis right distributive wrt is right distributive wrtVo
abulary booleU [\ r
= �237 ;239 \246 ��meets meetsmisses misses199



200 APPENDIX C. VOCABULARIESVo
abulary booledomBOOLE DOMAIN BOOLE DOMAINVo
abulary 
ollapsM 230 M�is 238 -isomorphism of is 2-isomorphism ofare 238 -isomorphi
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