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AbstratWe report our work on inreasing readability of mathematial texts used as input totheorem veri�ers suh as Mizar. Even though the soure Mizar text is written in extendedASCII (256 haraters), it laks the power of symboli expression needed for mathematialtexts. In our work, the soure Mizar texts were automatially translated into TEX input.The translation was done at a primitive level and was restrited to the lexial struture ofthe soure texts. We briey desribe the tehnology of TEXing and attah TEXed abstratsof 31 Mizar artiles written by 12 authors. The results of the experiments are enouragingand the work on TEXing full Mizar artiles will be ontinued. The main onlusion of ourwork is that the quality typesetting of Mizar texts requires full syntati analysis inludingtreatment of some ontextual dependees.
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Chapter 1Introdution1.1 MotivationThe idea that an automati devie should hek our logial derivations is by no meansnew. It an be traed bak not only to Pasal and Leibnitz, but to Ramon Llull. In reentyears, several projets have aimed at providing omputer assistane for doing mathematis.Among the better known there are: Nuprl [1℄, THEAX [7℄, AUTOMATH [2℄, EKL [3℄,QUIP [12℄. The spei� goals of these projets vary, however, they have one ommonfeature: the human writes mathematial texts and the mahine veri�es their orretness.The input to any of suh systems is an ASCII (or some other ode) �le. As suh it anbe printed or seen at a display monitor. However, the input texts are meant to be readablefor the omputer (taking into aount urrent input devies) and they are visually far fromwhat one would all a mathematial text (even if their semanti ontents fully justi�esthe name). In onsequene, the human readers are relutant to read the texts, althoughtheir authors did not mean only omputers as potential readers. We report our work oninreasing readability of mathematial texts used as input to theorem veri�ers.The system we have experimented with is Mizar [13℄. The Mizar input text is writtenin extended ASCII. The following is an example of a theorem in suh a text::: FUNCT_1:159f is_one-to-one iff for y ex x st f"{y} = {x};Our goal was to make this text better looking by proessing it automatially. Here is whatwe have obtained:Theorem FUNCT 1:159. f is 1-1 i� for y ex x st f�1fyg � fxg.The printouts inluded in this report have been obtained using TEX[4℄ and LATEX[5℄.However, we wanted that neither the author of the Mizar text nor the reader of the text1



2 CHAPTER 1. INTRODUCTIONever sees the TEX input. The TEX input generated automatially in our experiment forthe above example is as follows:Theorem FUNCT\_1:159. f{\sf is 1-1}{\bf iff}{\bf for}y{\bf ex}x{\bf st}f$^{-1}$\{y\}$\subseteq$\{x\}\vspae{1mm}.We have prepared a set of software tools that onvert the Mizar soure text into theTEX input. Our experiment was limited in the sense that we generate the TEX input afterdoing only the lexial analysis of the Mizar text.Our original goal was to obtain a readable printout of these Mizar texts that we neededto look through to write our new artile (not inluded in this olletion). Working withTEX was suh a fun that we have ended up proessing all Mizar artiles available to us.We hope that the ontents of this report will be useful as a referene for other Mizar users.1.2 The PC Mizar system1.2.1 A bit of historyThe projet Mizar started in 1975 in Poland under the leadership of Andrzej Trybule.Its original goal was to design and implement a software environment to assist the proessof preparing mathematial papers.After several years of experiments, a language alled Mizar 2 had been designed (by A.Trybule) and implemented on ICL 1900 (by Cz. Byli�nski, H. Oryszzyszyn, P. Rudniki,and A. Trybule, 1981). The system was later ported to other omputers (mainframe IBMand also to UNIX). It has inluded the following features: strutured types, type hierarhy,omprehensive de�nitional failities, built-in fragments of arithmetis, and built-in variantof set theory. Among other works with Mizar 2, there was an attempt to prove propertiesof programs in it [11℄.The Mizar team e�ort in the following years resulted in developing other Mizar lan-guages and their implementations but their harater was experimental (Mizar 3, MizarHPF); the systems were not distributed outside the Mizar group in Bia lystok. Therewas one exeption. A subset of Mizar, named Mizar MSE, was implemented (by R. Ma-tuszewski, P. Rudniki, and A. Trybule) in 1982 and has been widely used sine then.The system is meant for teahing elementary logi with stress on the pratial aspets of



1.2. THE PC MIZAR SYSTEM 3onstruting proofs. The Mizar MSE language enompasses many sorted prediate alu-lus with equality. However, the language does not support funtional notation. There arenumerous implementations of Mizar MSE, see [15, 14, 6, 10, 9, 8℄In 1986 Mizar 4 was implemented as a redesign of Mizar 2 and distributed to severaldozen users. Eah Mizar 4 artile inluded the preliminaries part where the author ouldstate some axioms that were not heked for validity. In 1988 the design proess of thelanguage was ompleted (by A. Trybule) and this language is named simply Mizar. Whileartiles in Mizar 4 must be self-ontained, Mizar allows for ross-referenes among artiles.Moreover, an author of a Mizar text is not allowed to introdue new axioms. Only theprede�ned axioms an be used, everything else must be proved.Reently, the main e�ort in the Mizar projet has been in building the library of Mizarartiles.1.2.2 The overall strutureIn this subsetion we give a brief overview of PC Mizar, further subsetions elaborate onsome aspets that are relevant to this report. PC Mizar is a Mizar proessor implementedon IBM PCs under DOS (by Cz. Byli�nski, A. Trybule, and S. _Zukowski from WarsawUniversity in Bia lystok).The entral onept of Mizar is a Mizar artile. Suh an artile an be viewed asan extremely detailed mathematial text written in a �xed formal notation. The souretext of a Mizar artile is prepared as a text �le (its name has obligatory extension .miz).There are rather few interesting things that one an prove in a short Mizar artile withoutmaking referenes to other artiles. Usually, we base our work on the ahievements ofothers.The power of the Mizar system is in automati proessing of ross-referenes amongartiles. This is done by maintaining a Mizar library. The library onsists of �les that areautomatially reated from soure Mizar artiles and it also inludes voabulary �les. Thevoabulary �les (extensions .vo and .pri) exist separately from library artiles. Theyontain delarations of symbols that an be inluded into the lexial environment of anartile.The Mizar proessor is a program that veri�es the orretness of Mizar artiles. Toverify an artile, the program must run in the appropriate software environment. Namely,it must have aess to all the voabulary and library �les referened from the given artile.PC Mizar assumes ertain organization of diretories in whih the voabulary and library�les are kept (we will not disuss it here).Five library �les are reated in the proess of inluding an artile into the Mizar library.These are:� format �le (extension .nfr) that, for eah onstrutor (e.g. funtion) introdued inthe artile, gives ertain information that is used during parsing.� signature �le (extension .sgn) that, for eah onstrutor, spei�es types of its argu-ments and some additional information, e.g. the type of the result of a funtion.



4 CHAPTER 1. INTRODUCTION� de�nitions �le (extension .def) for eah de�nition from the artile, the de�niens isstored in this �le, the de�niendum is stored in the signature �le.� theorems �le (extension .the) stores the theorems proved in the artile (withoutproofs).� shemes �le (extension .sh) stores the shemes proved in the artile (withoutproofs).The environment part of eah artile (between environ and begin) must delare allother PC Mizar units that are referened from the artile.1.3 The lexial ontext of an artileThe set of symbols that an be used in a Mizar artile is not �xed externally. The authorof an artile indiates whih tokens are taken into aount while tokenizing the artile. Bya lexion of an artile we mean the set of suh tokens. The lexion of an artile onsistsof the basi lexion and some additional lexions. Additional lexions are not assoiatedwith any single Mizar artile, they an be shared by many artiles.The basi lexion inludes the following tokens:� Reserved words:and as assume bebegin being by aseases oherene ompatibility onsideronsisteny ontradition orretness definitiondefinitions end environ exexistene for from fungiven hene holds ififf implies is itlet means mode notnow of or otherwiseper pred proof providedqua reonsider redefine reservesheme shemes signature setst strut suh takethat the then theoremtheorems thesis thus uniquenessvoabulary� Speial symbols:



1.3. THE LEXICAL CONTEXT OF AN ARTICLE 5, ; : ( ) [ ℄ { } (# #) =& -> .= <> $1 $2 $3 $4 $5 $6 $7 $8For (# and #) there are synonymous haraters with deimal odes 174 and 175whose usual graphial representation resembles � and �, respetively.� Numerals are strings of deimal digits.� Identi�ers are strings of letters, digits, undersore ( ), and apostrophe (') that arenot reserved words, symbols, numerals.The additional lexions are de�ned in the voabulary �les. An additional lexion isa set of symbols whih are strings of arbitrary haraters exluding ontrol haraters,spae, and double olon. Eah line of suh a �le introdues a symbol. Symbol are groupedinto the following lasses: mode symbol, funtion symbol, left or right funtion braket,struture symbol, seletor symbol, and prediate symbol.If an additional lexion de�nes a symbol represented by a string of haraters thatotherwise forms an identi�er, the symbol overrides the identi�er.The symbols introdued in voabulary hidden are put into the lexion of every Mizarartile. Symbols from other voabularies are put into the lexion of an artile with thehelp of the voabulary diretive.1.3.1 The struture of a Mizar artileEah Mizar artile is written as a text �le. The general struture of suh an artile is asfollows: environ Environmentbegin Text-ProperThe Text-Proper ontains new fats with their proofs and de�nitions of new onepts.The Environment delares the items in the Mizar library that an be referened fromthe Text-Proper . This part onsist of a sequene of diretives. There is one format ofvoabulary diretives:voabulary Voabulary-File-Name;This diretive adds the symbols introdued in the Voabulary-File-Name to the artile'slexion. We say that this diretive delares the voabulary in the artile.There are four kinds of library diretivessignature Signature-File-Name;



6 CHAPTER 1. INTRODUCTIONdefinitions De�nitions-File-Name;theorems Theorems-File-Name;shemes Shemes-File-Name;The diretive signature informs the Mizar proessor that the artile is permitted touse the notation introdued in artile Signature-File-Name.miz. The diretive is neededto parse the Text-Proper . The remaining three diretives allow us to use de�nitions,theorems, and shemes (e.g. indution sheme) that are de�ned or proved in anotherartile.The Text-Proper is a sequene of Text-Items, and there are the following kinds of them:� Reservation is used to reserve identi�ers for a type. If a variable has an identi�erreserved for a type, and no expliit type is stated for the variable, then the variabletype defaults to the type for whih its identi�er was reserved.� De�nition-Blok is used to de�ne (or rede�ne) onstrutors. There are three sorts ofonstrutors: term onstrutors (funtions), formula onstrutors (prediates), andtype onstrutors (modes).� Struture-De�nition introdues new strutures. A struture is an entity that onsistsof a number of �elds that are aessed by seletors.� Theorem announes a proposition that an be referened from other artiles.� Sheme also announes a proposition, visible from outside. It ontrast to theorem,sheme is expressed in terms of seond-order variables.� Auxiliary-Item introdues objets that are loal to the artile in whih they ourand are not exported to the library �les (e.g. lemmas, de�nitions of loal prediates).The goal of writing an artile is to prove some theorems and/or de�ne some newonepts suh that the onepts an be referened by other authors. Before the theoremsand de�nitions are inluded into the library they must be proved valid and orret. TheMizar artile ontains proofs of the theorems and justi�ations of the orretness of thede�nitions.1.3.2 Mizar abstratsMizar input texts tend to be lengthy as they ontain omplete proofs in a rather demandingformalism. New artiles strongly depend on already existing ones. Therefore, there was aneed to provide the authors with a quik referene to the already olleted artiles. Thesolution onsisted in automatially reating an abstrat for eah Mizar artile. An abstratof an artile inludes all the items that an be referened from other artiles. Therefore,there is no need to examine the entire artile to make a referene to a single theorem.Grammar of PC Mizar abstrats is given in appendix B.



1.4. THE TECHNOLOGY OF TEXING 7The environment of an abstrat ontains only the diretives for aessing voabulariesand signatures. Figure 1.1 presents an example of suh an environment.environvoabulary Boole;voabulary Fam_op;voabulary Sub_op;voabulary Sfamily;signature Tarski;signature Boole;signature Enumset1;signature Subset_1;begin Figure 1.1: Sample environment.1.3.3 Mizar libraryThe Mizar group at the Warsaw University (Institute of Mathematis in Bia lystok) startedolleting Mizar artiles and organizing them into a library that is distributed to otherMizar users. This report ontains the abstrats of the artiles in the library as of May 10,1989. The artiles were authored by 12 people.The person responsible for the library (E. Woronowiz) requires that authors of on-tributed artiles supply an additional �le that desribes the bibliographi data of the ar-tile, a �le with extension .bib. These �les have been proessed by us to obtain the title,authors' names, and the summary. They are printed at the beginning of eah abstrat.1.4 The tehnology of TEXingIn our experiment, we have tried to produe a quality output on a laser printer doing onlylexial analysis of the soure of Mizar abstrats.1.4.1 PreproessingThe TEXing of Mizar abstrats was done under UNIX BSD 4.3. The Mizar soure �les, inextended ASCII IBM Set II, were transferred from IBM PC to UNIX (using kermit).The version of lex that we used reognized only �rst 128 haraters of the ode.Therefore, we had to do something with the remaining 128 haraters. In Mizar PC



8 CHAPTER 1. INTRODUCTIONall these haraters an be used in user-de�ned voabularies. Every harater with odegreater than 127 was translated into its 3 digit deimal representation prepended with abakslash.1.4.2 Lexial analysisWe used lex for analysis of Mizar abstrats and the generation of TEX input. Our �rstattempt to write one lex program that would handle all the symbols from voabulariesfailed. We have exeeded the apaity of an internal parameter of lex that annot beontrolled from outside (number of positions in a state). An attempt to have just asmall number of lex programs that ould proess all the abstrats failed beause of theprohibitively high running time of lex (more than 15 minutes whih was too muh forus). But this solution had to be abandoned for another and muh more serious reason.Namely, if a voabulary is delared in an artile then no symbol from the voabulary anbe used as an identi�er, even if it has the syntax of an identi�er. E.g. if voabularyBoole is delared in an artile then apital U annot be used as an identi�er in the artile.(The symbol was meant to denote set union.) However, in artiles that do not use thevoabulary, U is a legal identi�er. Therefore, depending on the voabularies delared inan artile U is printed either as [ or as U.Beause of all that, we needed a separate lex program for eah of the artiles. There-fore, we prepared a separate set of lex rules for eah voabulary, eah kept in a separate�le and prepared by hand. The lex program for an artile is obtained by the atenationof a ommon beginning part, the �les ontaining rules for voabularies used in the artile,and a ommon ending part ontaining rules for Mizar de�ned symbols. All Mizar reservedwords are printed in boldfae.1.4.3 Syntax hangesThe environment setion of an abstrat is automatially onverted to a di�erent form.The way how it is done an be easily guessed from the text in �gure 1.2 that is the printedversion of the environment part listed in �gure 1.1:The symbols used in this artile are introdued in the following voabularies: boole,fam op, sub op, and sfamily. The terminology and notation used in this artile havebeen introdued in the following artiles: tarski, boole, enumset1, and subset 1.Figure 1.2: TEXed environment.Some other hanges were minor.� Semiolon was replaed by a period.



1.4. THE TECHNOLOGY OF TEXING 9� Eah theorem starts with the word `Theorem' followed by a pattern of library refer-ene to it.� The de�nition starts with the word `De�nition' and the mathing end is not printed,indentation is used to improve readability.1.4.4 Lexem ategories and horizontal spaingFor the horizontal spaing all tokens have been lassi�ed into 8 groups.1. Left delimiters: speial symbols ( f [ (# and voabulary symbols lassi�ed as Left-Funtion-Braket,2. Right delimiters: speial symbols ) g ℄ #) and voabulary symbols lassi�ed asRight-Funtion-Braket,3. Puntuation marks: speial symbols ; , :.4. Identi�ers.5. Identi�er-like symbols: Mizar reserved words and voabulary symbols that are printedas sequenes of letters and possibly some other haraters (e.g. the funtion symbolthe left argument of).6. Binary operations: funtion symbols used in in�x notation and printed as one sym-bol.7. Pre�x operations: funtion symbols used in pre�x notation and printed as one sym-bol.8. Post�x operations: funtion symbols used in post�x notation and printed as onesymbol.For every pair of symbols, we de�ned the spaing between them depending on theirlasses. The array in �gure 1.3 spei�es the spaing rules. The lass 0 in the array denotesa speial lass: beginning of a line, no previous symbol. The meaning of the entries in thearray is as follows:� 0 - no spaing, linebreak not allowed,� 1 - a regular spae,� 2 - no spaing, linebreak allowed (linebreak[0℄).



10 CHAPTER 1. INTRODUCTION/* 0 1 2 3 4 5 6 7 8 */int SPACES [9℄ [9℄ = {/* 0 */ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },/* 1 */ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },/* 2 */ { 0, 2, 0, 0, 2, 1, 2, 2, 0 },/* 3 */ { 0, 1, 2, 0, 1, 1, 0, 1, 0 },/* 4 */ { 0, 0, 0, 0, 1, 1, 0, 0, 0 },/* 5 */ { 0, 1, 0, 0, 1, 1, 0, 1, 0 },/* 6 */ { 0, 2, 0, 0, 0, 0, 0, 2, 0 },/* 7 */ { 0, 0, 0, 0, 0, 0, 0, 0, 0 },/* 8 */ { 0, 0, 0, 0, 0, 1, 2, 0, 0 }}; Figure 1.3: Spaing rules.1.4.5 MishapsIn our experiment the analysis of Mizar soure texts was limited to lexial analysis only.Mizar voabularies lassify all symbols introdued in them into lasses spei�ed in se-tion 1.3. This lassi�ation alone is not suÆient to solve some problems, e.g. is a givensymbol a symbol of a pre�x or an in�x operation? Moreover, the same funtion symbolan be used in the same artile as a post�x, pre�x, or in�x operation. However, withoutdoing syntati analysis we have no way of guessing whih of the three is used in a spei�ase. Fortunately, the authors of the papers in question did not use this possibility, withsome exeptions. E.g. in hapter 10 the author uses the symbol ", whih is TEXed assupersript �1, as a funtion symbol for three di�erent funtions as follows.� (in�x notation) inverse image of a set under a mapping, e.g. f�1X,� (post�x notation) inverse of a bijetive mapping: e.g. f�1,� (pre�x notation) the funtion indued by a funtion f on the power set of its rangethat assigns to a set its inverse image under f: �1f.Originally, the symbol " has been introdued in voabulary real 1 while preparing artilereal 1 and was used as a post�x funtion to denote the inverse of a real number.Despite that we used the set of amssymbols in LATEX, the symbol for symmetri dif-ferene (�� ) had to be typeset by hand.There is also one thing to mention about Polish haraters available in TEX. Namely,there is Polish  l as a separate objet; some Polish letters an be obtained using aents.However, some Polish letters annot be onstruted using the available features, e.g. èwhih was obtained by hand and only poorly resembles the atual harater (we did nothave time to design a new font).



1.5. CONCLUSIONS 111.5 ConlusionsWe feel that our limited experiment was enouraging. The TEXed texts are muh easier toread than the Mizar soures and at the same time visually lose enough to the soures. Wedid not expet that doing only lexial analysis we an obtain the text that looks so well.We also feel that obtaining a better output would require a onsiderably bigger e�ort.The following remarks will be onsidered in the future work on typesetting of Mizarartiles and their abstrats:� The quality typesetting of Mizar texts requires full syntati analysis. Moreover, wefeel that pure ontext-free parsing is insuÆient, and ontextual dependenies mustbe taken into aount. Only in this ase we will be able to bene�t from the powerof the TEX math-mode.� The authors of Mizar voabularies should prepare the TEX version of symbols theyintrodue.� It seems useful to prepare a set of TEX maros that are speialized for Mizar texts.� In the future, pre-editing and post-editing during the typesetting seems the only wayto solve ertain problems.
AknowledgementsOur thanks are to W lodek Dobosiewiz and Pawe l Gburzy�nski for many helpful om-ments while writing this report.



Chapter 2TARSKITarski Grothendiek Set TheorybyAndrzej Trybule 1Warsaw University (Bia lystok)Summary. This is the �rst part of the axiomatis of the Mizar system. It inludesthe axioms of the Tarski-Grothendiek set theory. They are: the axiom statingthat everything is a set, the extensionality axiom, the de�nitional axiom of thesingleton, the de�nitional axiom of the pair, the de�nitional axiom of the union ofa family of sets, the de�nitional axiom of the boolean (the power set) of a set, theregularity axiom, the de�nitional axiom of the ordered pair, the Tarski's axiom A(the existene of arbitrary large strongly inaessible ardinals). Also, the de�nitionof equinumerosity is introdued.The symbols used in this artile are introdued in the following voabularies: equi rel,boole, and fam op.reserve x, y, z, u for Any, N, M, X, Y, Z for set.Theorem TARSKI:1. x is set.Theorem TARSKI:2. (for x holds x 2 X i� x 2 Y) implies X = Y.De�nitionlet y. fun fyg ! set means x 2 it i� x = y.1Supported by RPBP.III-24.B1. 12



13let z. fun fy, zg ! set means x 2 it i� x = y or x = z.Theorem TARSKI:3. X = fyg i� for x holds x 2 X i� x = y.Theorem TARSKI:4. X = fy, zg i� for x holds x 2 X i� x = y or x = z.De�nitionlet X, Y.pred X � Y means x 2 X implies x 2 Y.De�nitionlet X.fun SX ! set means x 2 it i� ex Y st x 2 Y & Y 2 X.Theorem TARSKI:5. X = SY i� for x holds x 2 X i� ex Z st x 2 Z & Z 2 Y.Theorem TARSKI:6. X = bool Y i� for Z holds Z 2 X i� Z � Y.Theorem TARSKI:7. x 2 X implies ex Y st Y 2 X & not ex x st x 2 X & x 2 Y.sheme FraenkelfA() ! set, P[Any, Any℄g: ex X st for x holds x 2 X i� ex y st y2 A() & P[y, x℄ provided for x, y, z st P[x, y℄ & P[x, z℄ holds y = z.De�nitionlet x, y.fun [x, y℄ means it = ffx, yg, fxgg.Theorem TARSKI:8. [x, y℄ = ffx, yg, fxgg.De�nitionlet X, Y.pred X � Y means ex Z st (for x st x 2 X ex y st y 2 Y & [x, y℄ 2 Z) & (fory st y 2 Y ex x st x 2 X & [x, y℄ 2 Z) & for x, y, z, u st [x, y℄ 2 Z & [z, u℄ 2 Z holds x= z i� y = u.Theorem TARSKI:9. ex M st N 2 M & (for X, Y holds X 2 M & Y � X implies Y2 M) & (for X holds X 2 M implies bool X 2 M) & (for X holds X � M implies X �M or X 2 M).



Chapter 3AXIOMSAxioms about Built-in ConeptsbyAndrzej Trybule 1Warsaw University (Bia lystok)Summary. This abstrat ontains the seond part of the axiomatis of the Mizarsystem (the �rst part is in abstrat Tarski). The axioms listed here haraterizethe Mizar built-in onepts that are introdued in abstrat HIDDEN whih isautomatially attahed to every Mizar artile. We give de�nitional axioms of thefollowing onepts: element, subset, Cartesian produt, domain (non empty subset),subdomain (non empty subset of a domain), set domain (domain onsisting of sets).Axioms of strong arithmetis of real numbers are also inluded.The symbols used in this artile are introdued in voabulary boole. The terminologyand notation used here have been introdued in artile tarski.reserve x, y, z for Any, X, X1, X2, X3, X4, Y for set.Theorem AXIOMS:1. (ex x st x 2 X) implies (x is Element of X i� x 2 X).Theorem AXIOMS:2. X is Subset of Y i� X � Y.Theorem AXIOMS:3. z 2 [[X, Y℄℄ i� ex x, y st x 2 X & y 2 Y & z = [x, y℄.Theorem AXIOMS:4. X is DOMAIN i� ex x st x 2 X.Theorem AXIOMS:5. [[X1, X2, X3℄℄ = [[[[X1, X2℄℄, X3℄℄.1Supported by RPBP.III-24.B1. 14



15Theorem AXIOMS:6. [[X1, X2, X3, X4℄℄ = [[[[X1, X2, X3℄℄, X4℄℄.reserve D1, D2, D3, D4 for DOMAIN.Theorem AXIOMS:7. for X being Element of [[D1, D2℄℄ holds X is TUPLE of D1,D2.Theorem AXIOMS:8. for X being Element of [[D1, D2, D3℄℄ holds X is TUPLE ofD1, D2, D3.Theorem AXIOMS:9. for X being Element of [[D1, D2, D3, D4℄℄ holds X is TUPLEof D1, D2, D3, D4.reserve D for DOMAIN.Theorem AXIOMS:10. D1 is SUBDOMAIN of D2 i� D1 � D2.Theorem AXIOMS:11. D is SET DOMAIN.reserve x, y, z for Element of REAL.Theorem AXIOMS:12. x+y = y+x.Theorem AXIOMS:13. x+(y+z) = (x+y)+z.Theorem AXIOMS:14. x+0 = x.Theorem AXIOMS:15. x�y = y�x.Theorem AXIOMS:16. x�(y�z) = (x�y)�z.Theorem AXIOMS:17. x�1 = x.Theorem AXIOMS:18. x�(y+z) = x�y+x�z.Theorem AXIOMS:19. ex y st x+y = 0.Theorem AXIOMS:20. x 6= 0 implies ex y st x�y = 1.Theorem AXIOMS:21. x 6 y & y 6 x implies x = y.Theorem AXIOMS:22. x 6 y & y 6 z implies x 6 z.Theorem AXIOMS:23. x 6 y or y 6 x.Theorem AXIOMS:24. x 6 y implies x+z 6 y+z.Theorem AXIOMS:25. x 6 y & 0 6 z implies x�z 6 y�z.Theorem AXIOMS:26. for X, Y being Subset of REAL st (ex x st x 2 X) & (ex xst x 2 Y) & for x, y st x 2 X & y 2 Y holds x 6 y ex z st for x, y st x 2 X & y 2 Yholds x 6 z & z 6 y.Theorem AXIOMS:27. x is Real.Theorem AXIOMS:28. x 2 NAT implies x+1 2 NAT.Theorem AXIOMS:29. for A being set of Real st 0 2 A & for x st x 2 A holds x+12 A holds NAT � A.Theorem AXIOMS:30. x 2 NAT implies x is Nat.



Chapter 4BOOLEBoolean Properties of SetsbyZinaida Trybule 1Warsaw University (Bia lystok)Halina �Swiè zkowska 2Warsaw University (Bia lystok)Summary. The text inludes a number of theorems about Boolean operationson sets: union, intersetion, di�erene, symmetri di�erene; and relations on sets:meets (having non-empty intersetion), misses (being disjoint) and � (inlusion).The symbols used in this artile are introdued in voabularies fam op and boole.The terminology and notation used here have been introdued in artile tarski.reserve x, y, z for Any, X, Y, Z, V for set.sheme SeparationfA() ! set, P[Any℄g: ex X st for x holds x 2 X i� x 2 A() &P[x℄.De�nitionfun ; ! set means not ex x st x 2 it.let X, Y.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 16



17fun X[Y ! set means x 2 it i� x 2 X or x 2 Y.fun X\Y ! set means x 2 it i� x 2 X & x 2 Y.fun XrY ! set means x 2 it i� x 2 X & not x 2 Y.pred X meets Y means ex x st x 2 X & x 2 Y.pred X misses Y means for x holds x 2 X implies not x 2 Y.De�nitionlet X, Y.fun X�� Y ! set means it = (XrY)[(YrX).Theorem BOOLE:1. Z = ; i� not ex x st x 2 Z.Theorem BOOLE:2. Z = X[Y i� for x holds x 2 Z i� x 2 X or x 2 Y.Theorem BOOLE:3. Z = X\Y i� for x holds x 2 Z i� x 2 X & x 2 Y.Theorem BOOLE:4. Z = XrY i� for x holds x 2 Z i� x 2 X & not x 2 Y.Theorem BOOLE:5. X � Y i� for x holds x 2 X implies x 2 Y.Theorem BOOLE:6. X meets Y i� ex x st x 2 X & x 2 Y.Theorem BOOLE:7. X misses Y i� for x holds x 2 X implies not x 2 Y.De�nitionlet X, Y.rede�nepred X = Y means X � Y & Y � X.Theorem BOOLE:8. x 2 X[Y i� x 2 X or x 2 Y.Theorem BOOLE:9. x 2 X\Y i� x 2 X & x 2 Y.Theorem BOOLE:10. x 2 XrY i� x 2 X & not x 2 Y.Theorem BOOLE:11. x 2 X & X � Y implies x 2 Y.Theorem BOOLE:12. x 2 X & X misses Y implies not x 2 Y.Theorem BOOLE:13. x 2 X & x 2 Y implies X meets Y.Theorem BOOLE:14. x 2 X implies X 6= ;.Theorem BOOLE:15. X meets Y implies ex x st x 2 X & x 2 Y.Theorem BOOLE:16. (for x st x 2 X holds x 2 Y) implies X � Y.Theorem BOOLE:17. (for x st x 2 X holds not x 2 Y) implies X misses Y.Theorem BOOLE:18. (for x holds x 2 X i� x 2 Y or x 2 Z) implies X = Y[Z.Theorem BOOLE:19. (for x holds x 2 X i� x 2 Y & x 2 Z) implies X = Y\Z.Theorem BOOLE:20. (for x holds x 2 X i� x 2 Y & not x 2 Z) implies X = YrZ.Theorem BOOLE:21. not (ex x st x 2 X) implies X = ;.Theorem BOOLE:22. (for x holds x 2 X i� x 2 Y) implies X = Y.Theorem BOOLE:23. x 2 X�� Y i� not (x 2 X i� x 2 Y).



18 CHAPTER 4. BOOLETheorem BOOLE:24. x 2 X & x 2 Y implies X\Y 6= ;.Theorem BOOLE:25. (for x holds not x 2 X i� (x 2 Y i� x 2 Z)) implies X =Y�� Z.Theorem BOOLE:26. X � X.Theorem BOOLE:27. ; � X.Theorem BOOLE:28. X � Y & Y � X implies X = Y.Theorem BOOLE:29. X � Y & Y � Z implies X � Z.Theorem BOOLE:30. X � ; implies X = ;.Theorem BOOLE:31. X � X[Y & Y � X[Y.Theorem BOOLE:32. X � Z & Y � Z implies X[Y � Z.Theorem BOOLE:33. X � Y implies X[Z � Y[Z & Z[X � Z[Y.Theorem BOOLE:34. X � Y & Z � V implies X[Z � Y[V.Theorem BOOLE:35. X � Y implies X[Y = Y & Y[X = Y.Theorem BOOLE:36. X[Y = Y or Y[X = Y implies X � Y.Theorem BOOLE:37. X\Y � X & X\Y � Y.Theorem BOOLE:38. X\Y � X[Z.Theorem BOOLE:39. Z � X & Z � Y implies Z � X\Y.Theorem BOOLE:40. X � Y implies X\Z � Y\Z & Z\X � Z\Y.Theorem BOOLE:41. X � Y & Z � V implies X\Z � Y\V.Theorem BOOLE:42. X � Y implies X\Y = X & Y\X = X.Theorem BOOLE:43. X\Y = X or Y\X = X implies X � Y.Theorem BOOLE:44. X � Z implies X[Y\Z = (X[Y)\Z.Theorem BOOLE:45. XrY = ; i� X � Y.Theorem BOOLE:46. X � Y implies XrZ � YrZ.Theorem BOOLE:47. X � Y implies ZrY � ZrX.Theorem BOOLE:48. X � Y & Z � V implies XrV � YrZ.Theorem BOOLE:49. XrY � X.Theorem BOOLE:50. X � YrX implies X = ;.Theorem BOOLE:51. X � Y & X � Z & Y\Z = ; implies X = ;.Theorem BOOLE:52. X � Y[Z implies XrY � Z & XrZ � Y.Theorem BOOLE:53. (X\Y)[(X\Z) = X implies X � Y[Z.Theorem BOOLE:54. X � Y implies Y = X[(YrX) & Y = (YrX)[X.Theorem BOOLE:55. X � Y & Y\Z = ; implies X\Z = ;.Theorem BOOLE:56. X = Y[Z i� Y � X & Z � X & for V st Y � V & Z � V holdsX � V.



19Theorem BOOLE:57. X = Y\Z i� X � Y & X � Z & for V st V � Y & V � Z holdsV � X.Theorem BOOLE:58. XrY � X�� Y.Theorem BOOLE:59. X[Y = ; i� X = ; & Y = ;.Theorem BOOLE:60. X[; = X & ;[X = X.Theorem BOOLE:61. X\; = ; & ;\X = ;.Theorem BOOLE:62. X[X = X.Theorem BOOLE:63. X[Y = Y[X.Theorem BOOLE:64. (X[Y)[Z = X[(Y[Z).Theorem BOOLE:65. X\X = X.Theorem BOOLE:66. X\Y = Y\X.Theorem BOOLE:67. (X\Y)\Z = X\(Y\Z).Theorem BOOLE:68. X\(X[Y) = X & (X[Y)\X = X & X\(Y[X) = X & (Y[X)\X = X.Theorem BOOLE:69. X[(X\Y) = X & (X\Y)[X = X & X[(Y\X) = X & (Y\X)[X = X.Theorem BOOLE:70. X\(Y[Z) = X\Y[X\Z & (Y[Z)\X = Y\X[Z\X.Theorem BOOLE:71. X[Y\Z = (X[Y)\(X[Z) & Y\Z[X = (Y[X)\(Z[X).Theorem BOOLE:72. (X\Y)[(Y\Z)[(Z\X) = (X[Y)\(Y[Z)\(Z[X).Theorem BOOLE:73. XrX = ;.Theorem BOOLE:74. Xr; = X.Theorem BOOLE:75. ;rX = ;.Theorem BOOLE:76. Xr(X[Y) = ; & Xr(Y[X) = ;.Theorem BOOLE:77. XrX\Y = XrY & XrY\X = XrY.Theorem BOOLE:78. (XrY)\Y = ; & Y\(XrY) = ;.Theorem BOOLE:79. X[(YrX) = X[Y & (YrX)[X = Y[X.Theorem BOOLE:80. X\Y[(XrY) = X & (XrY)[X\Y = X.Theorem BOOLE:81. Xr(YrZ) = (XrY)[X\Z.Theorem BOOLE:82. Xr(XrY) = X\Y.Theorem BOOLE:83. (X[Y)rY = XrY.Theorem BOOLE:84. X\Y = ; i� XrY = X.Theorem BOOLE:85. Xr(Y[Z) = (XrY)\(XrZ).Theorem BOOLE:86. Xr(Y\Z) = (XrY)[(XrZ).Theorem BOOLE:87. (X[Y)r(X\Y) = (XrY)[(YrX).Theorem BOOLE:88. (XrY)rZ = Xr(Y[Z).



20 CHAPTER 4. BOOLETheorem BOOLE:89. (X[Y)rZ = (XrZ)[(YrZ).Theorem BOOLE:90. XrY = YrX implies X = Y.Theorem BOOLE:91. X�� Y = (XrY)[(YrX).Theorem BOOLE:92. X�� ; = X & ;�� X = X.Theorem BOOLE:93. X�� X = ;.Theorem BOOLE:94. X�� Y = Y�� X.Theorem BOOLE:95. X[Y = (X�� Y)[X\Y.Theorem BOOLE:96. X�� Y = (X[Y)rX\Y.Theorem BOOLE:97. (X�� Y)rZ = (Xr(Y[Z))[(Yr(X[Z)).Theorem BOOLE:98. Xr(Y�� Z) = Xr(Y[Z)[X\Y\Z.Theorem BOOLE:99. (X�� Y)�� Z = X�� (Y�� Z).Theorem BOOLE:100. X meets Y[Z i� X meets Y or X meets Z.Theorem BOOLE:101. X meets Y & Y � Z implies X meets Z.Theorem BOOLE:102. X meets Y\Z implies X meets Y & X meets Z.Theorem BOOLE:103. X meets Y implies Y meets X.Theorem BOOLE:104. not (X meets ; or ; meets X).Theorem BOOLE:105. X misses Y i� not X meets Y.Theorem BOOLE:106. X misses Y[Z i� X misses Y & X misses Z.Theorem BOOLE:107. X misses Z & Y � Z implies X misses Y.Theorem BOOLE:108. X misses Y or X misses Z implies X misses Y\Z.Theorem BOOLE:109. X misses ; & ; misses X.Theorem BOOLE:110. X meets X i� X 6= ;.Theorem BOOLE:111. X\Y misses XrY.Theorem BOOLE:112. X\Y misses X�� Y.Theorem BOOLE:113. X meets YrZ implies X meets Y.Theorem BOOLE:114. X � Y & X � Z & Y misses Z implies X = ;.Theorem BOOLE:115. XrY � Z & YrX � Z implies X�� Y � Z.Theorem BOOLE:116. X\(YrZ) = (X\Y)rZ.Theorem BOOLE:117. X\(YrZ) = X\YrX\Z & (YrZ)\X = Y\XrZ\X.Theorem BOOLE:118. X misses Y i� X\Y = ;.Theorem BOOLE:119. X meets Y i� X\Y 6= ;.Theorem BOOLE:120. X � (Y[Z) & X\Z = ; implies X � Y.Theorem BOOLE:121. Y � X & X\Y = ; implies Y = ;.Theorem BOOLE:122. X misses Y implies Y misses X.



Chapter 5ZFMISC 1Some Basi Properties of SetsbyCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. In this artile some basi theorems about singletons, pairs, power sets,unions of families of sets, and the artesian produt of two sets are proved.The symbols used in this artile are introdued in voabularies boole and fam op.The artiles tarski and boole provide the terminology and notation for this artile.Theorem ZFMISC 1:1. bool ; = f;g.Theorem ZFMISC 1:2. S; = ;.reserve v, x, x1, x2, y, y1, y2, z for Any.reserve A, B, X, X1, X2, Y, Y1, Y2, Z for set.Theorem ZFMISC 1:3. fxg 6= ;.Theorem ZFMISC 1:4. fx, yg 6= ;.Theorem ZFMISC 1:5. fxg = fx, xg.Theorem ZFMISC 1:6. fxg = fyg implies x = y.Theorem ZFMISC 1:7. fx1, x2g = fx2, x1g.Theorem ZFMISC 1:8. fxg = fy1, y2g implies x = y1 & x = y2.1Supported by RPBP.III-24.C1. 21



22 CHAPTER 5. ZFMISC 1Theorem ZFMISC 1:9. fxg = fy1, y2g implies y1 = y2.Theorem ZFMISC 1:10. fx1, x2g = fy1, y2g implies (x1 = y1 or x1 = y2) & (x2 =y1 or x2 = y2).Theorem ZFMISC 1:11. fx1, x2g = fx1g[fx2g.Theorem ZFMISC 1:12. fxg � fx, yg & fyg � fx, yg.Theorem ZFMISC 1:13. fxg[fyg = fxg or fxg[fyg = fyg implies x = y.Theorem ZFMISC 1:14. fxg[fx, yg = fx, yg & fx, yg[fxg = fx, yg.Theorem ZFMISC 1:15. fyg[fx, yg = fx, yg & fx, yg[fyg = fx, yg.Theorem ZFMISC 1:16. fxg\fyg = ; or fyg\fxg = ; implies x 6= y.Theorem ZFMISC 1:17. x 6= y implies fxg\fyg = ; & fyg\fxg = ;.Theorem ZFMISC 1:18. fxg\fyg = fxg or fxg\fyg = fyg implies x = y.Theorem ZFMISC 1:19. fxg\fx, yg = fxg & fyg\fx, yg = fyg & fx, yg\fxg = fxg& fx, yg\fyg = fyg.Theorem ZFMISC 1:20. fxgrfyg = fxg i� x 6= y.Theorem ZFMISC 1:21. fxgrfyg = ; implies x = y.Theorem ZFMISC 1:22. fxgrfx, yg = ; & fygrfx, yg = ;.Theorem ZFMISC 1:23. x 6= y implies fx, ygrfyg = fxg & fx, ygrfxg = fyg.Theorem ZFMISC 1:24. fxg � fyg implies fxg = fyg.Theorem ZFMISC 1:25. fzg � fx, yg implies z = x or z = y.Theorem ZFMISC 1:26. fx, yg � fzg implies x = z & y = z.Theorem ZFMISC 1:27. fx, yg � fzg implies fx, yg = fzg.Theorem ZFMISC 1:28. fx1, x2g � fy1, y2g implies (x1 = y1 or x1 = y2) & (x2 =y1 or x2 = y2).Theorem ZFMISC 1:29. x 6= y implies fxg�� fyg = fx, yg.Theorem ZFMISC 1:30. bool fxg = f;, fxgg.Theorem ZFMISC 1:31. Sfxg = x.Theorem ZFMISC 1:32. Sffxg, fygg = fx, yg.Theorem ZFMISC 1:33. [x1, x2℄ = [y1, y2℄ implies x1 = y1 & x2 = y2.Theorem ZFMISC 1:34. [x, y℄ 2 [[fx1g, fy1g℄℄ i� x = x1 & y = y1.Theorem ZFMISC 1:35. [[fxg, fyg℄℄ = f[x, y℄g.Theorem ZFMISC 1:36. [[fxg, fy, zg℄℄ = f[x, y℄, [x, z℄g & [[fx, yg, fzg℄℄ = f[x, z℄, [y,z℄g.Theorem ZFMISC 1:37. fxg � X i� x 2 X.Theorem ZFMISC 1:38. fx1, x2g � Z i� x1 2 Z & x2 2 Z.Theorem ZFMISC 1:39. Y � fxg i� Y = ; or Y = fxg.



23Theorem ZFMISC 1:40. Y � X & not x 2 Y implies Y � Xrfxg.Theorem ZFMISC 1:41. X 6= fxg & x 2 X implies ex y st y 2 X & y 6= x.Theorem ZFMISC 1:42. Z � fx1, x2g i� Z = ; or Z = fx1g or Z = fx2g or Z = fx1,x2g.Theorem ZFMISC 1:43. fzg = X[Y implies X = fzg & Y = fzg or X = ; & Y =fzg or X = fzg & Y = ;.Theorem ZFMISC 1:44. fzg = X[Y & X 6= Y implies X = ; or Y = ;.Theorem ZFMISC 1:45. fxg[X = X or X[fxg = X implies x 2 X.Theorem ZFMISC 1:46. x 2 X implies fxg[X = X & X[fxg = X.Theorem ZFMISC 1:47. fx, yg[Z = Z or Z[fx, yg = Z implies x 2 Z & y 2 Z.Theorem ZFMISC 1:48. x 2 Z & y 2 Z implies fx, yg[Z = Z & Z[fx, yg = Z.Theorem ZFMISC 1:49. fxg[X 6= ; & X[fxg 6= ;.Theorem ZFMISC 1:50. fx, yg[X 6= ; & X[fx, yg 6= ;.Theorem ZFMISC 1:51. X\fxg = fxg or fxg\X = fxg implies x 2 X.Theorem ZFMISC 1:52. x 2 X implies X\fxg = fxg & fxg\X = fxg.Theorem ZFMISC 1:53. x 2 Z & y 2 Z implies fx, yg\Z = fx, yg & fx, yg = Z\fx,yg. Theorem ZFMISC 1:54. fxg\X = ; or X\fxg = ; implies not x 2 X.Theorem ZFMISC 1:55. fx, yg\Z = ; or Z\fx, yg = ; implies not x 2 Z & not y2 Z.Theorem ZFMISC 1:56. not x 2 X implies fxg\X = ; & X\fxg = ;.Theorem ZFMISC 1:57. not x 2 Z & not y 2 Z implies fx, yg\Z = ; & Z\fx, yg =;. Theorem ZFMISC 1:58. fxg\X = ; or fxg\X = fxg & X\fxg = fxg.Theorem ZFMISC 1:59. fx, yg\X = fxg or X\fx, yg = fxg implies not y 2 X orx = y.Theorem ZFMISC 1:60. x 2 X & (not y 2 X or x = y) implies fx, yg\X = fxg &X\fx, yg = fxg.Theorem ZFMISC 1:61. fx, yg\X = fyg or X\fx, yg = fyg implies not x 2 X orx = y.Theorem ZFMISC 1:62. y 2 X & (not x 2 X or x = y) implies fx, yg\X = fyg &X\fx, yg = fyg.Theorem ZFMISC 1:63. fx, yg\X = fx, yg or X\fx, yg = fx, yg implies x 2 X &y 2 X.Theorem ZFMISC 1:64. z 2 Xrfxg i� z 2 X & z 6= x.Theorem ZFMISC 1:65. Xrfxg = X i� not x 2 X.Theorem ZFMISC 1:66. Xrfxg = ; implies X = ; or X = fxg.



24 CHAPTER 5. ZFMISC 1Theorem ZFMISC 1:67. fxgrX = fxg i� not x 2 X.Theorem ZFMISC 1:68. fxgrX = ; i� x 2 X.Theorem ZFMISC 1:69. fxgrX = ; or fxgrX = fxg.Theorem ZFMISC 1:70. fx, ygrX = fxg i� not x 2 X & (y 2 X or x = y).Theorem ZFMISC 1:71. fx, ygrX = fyg i� (x 2 X or x = y) & not y 2 X.Theorem ZFMISC 1:72. fx, ygrX = fx, yg i� not x 2 X & not y 2 X.Theorem ZFMISC 1:73. fx, ygrX = ; i� x 2 X & y 2 X.Theorem ZFMISC 1:74. fx, ygrX = ; or fx, ygrX = fxg or fx, ygrX = fyg or fx,ygrX = fx, yg.Theorem ZFMISC 1:75. Xrfx, yg = ; i� X = ; or X = fxg or X = fyg or X = fx,yg. Theorem ZFMISC 1:76. ; 2 bool A.Theorem ZFMISC 1:77. A 2 bool A.Theorem ZFMISC 1:78. bool A 6= ;.Theorem ZFMISC 1:79. A � B implies bool A � bool B.Theorem ZFMISC 1:80. fAg � bool A.Theorem ZFMISC 1:81. bool A[bool B � bool (A[B).Theorem ZFMISC 1:82. bool A[bool B = bool (A[B) implies A � B or B � A.Theorem ZFMISC 1:83. bool (A\B) = bool A\bool B.Theorem ZFMISC 1:84. bool (ArB) � f;g[(bool Arbool B).Theorem ZFMISC 1:85. X 2 bool (ArB) i� X � A & X misses B.Theorem ZFMISC 1:86. bool (ArB)[bool (BrA) � bool (A�� B).Theorem ZFMISC 1:87. X 2 bool (A�� B) i� X � A[B & X misses A\B.Theorem ZFMISC 1:88. X 2 bool A & Y 2 bool A implies X[Y 2 bool A.Theorem ZFMISC 1:89. X 2 bool A or Y 2 bool A implies X\Y 2 bool A.Theorem ZFMISC 1:90. X 2 bool A implies XrY 2 bool A.Theorem ZFMISC 1:91. X 2 bool A & Y 2 bool A implies X�� Y 2 bool A.Theorem ZFMISC 1:92. X 2 A implies X � SA.Theorem ZFMISC 1:93. SfX, Yg = X[Y.Theorem ZFMISC 1:94. (for X st X 2 A holds X � Z) implies SA � Z.Theorem ZFMISC 1:95. A � B implies SA � SB.Theorem ZFMISC 1:96. S(A[B) = SA[SB.Theorem ZFMISC 1:97. S(A\B) � SA\SB.Theorem ZFMISC 1:98. (for X st X 2 A holds X\B = ;) implies S(A)\B = ;.Theorem ZFMISC 1:99. Sbool A = A.



25Theorem ZFMISC 1:100. A � bool SA.Theorem ZFMISC 1:101. (for X, Y st X 6= Y & X 2 A[B & Y 2 A[B holds X\Y= ;) implies S(A\B) = SA\SB.Theorem ZFMISC 1:102. z 2 [[X, Y℄℄ implies ex x, y st [x, y℄ = z.Theorem ZFMISC 1:103. A � [[X, Y℄℄ & z 2 A implies ex x, y st x 2 X & y 2 Y &z = [x, y℄.Theorem ZFMISC 1:104. z 2 [[X1, Y1℄℄\[[X2, Y2℄℄ implies ex x, y st z = [x, y℄ & x 2X1\X2 & y 2 Y1\Y2.Theorem ZFMISC 1:105. [[X, Y℄℄ � bool bool (X[Y).Theorem ZFMISC 1:106. [x, y℄ 2 [[X, Y℄℄ i� x 2 X & y 2 Y.Theorem ZFMISC 1:107. [x, y℄ 2 [[X, Y℄℄ implies [y, x℄ 2 [[Y, X℄℄.Theorem ZFMISC 1:108. (for x, y holds [x, y℄ 2 [[X1, Y1℄℄ i� [x, y℄ 2 [[X2, Y2℄℄)implies [[X1, Y1℄℄ = [[X2, Y2℄℄.Theorem ZFMISC 1:109. A � [[X, Y℄℄ & (for x, y st [x, y℄ 2 A holds [x, y℄ 2 B)implies A � B.Theorem ZFMISC 1:110. A � [[X1, Y1℄℄ & B � [[X2, Y2℄℄ & (for x, y holds [x, y℄ 2 Ai� [x, y℄ 2 B) implies A = B.Theorem ZFMISC 1:111. (for z st z 2 A ex x, y st z = [x, y℄) & (for x, y st [x, y℄ 2A holds [x, y℄ 2 B) implies A � B.Theorem ZFMISC 1:112. (for z st z 2 A ex x, y st z = [x, y℄) & (for z st z 2 B exx, y st z = [x, y℄) & (for x, y holds [x, y℄ 2 A i� [x, y℄ 2 B) implies A = B.Theorem ZFMISC 1:113. [[X, Y℄℄ = ; i� X = ; or Y = ;.Theorem ZFMISC 1:114. X 6= ; & Y 6= ; & [[X, Y℄℄ = [[Y, X℄℄ implies X = Y.Theorem ZFMISC 1:115. [[X, X℄℄ = [[Y, Y℄℄ implies X = Y.Theorem ZFMISC 1:116. X � [[X, X℄℄ implies X = ;.Theorem ZFMISC 1:117. Z 6= ; & ([[X, Z℄℄ � [[Y, Z℄℄ or [[Z, X℄℄ � [[Z, Y℄℄) implies X �Y. Theorem ZFMISC 1:118. X � Y implies [[X, Z℄℄ � [[Y, Z℄℄ & [[Z, X℄℄ � [[Z, Y℄℄.Theorem ZFMISC 1:119. X1 � Y1 & X2 � Y2 implies [[X1, X2℄℄ � [[Y1, Y2℄℄.Theorem ZFMISC 1:120. [[X[Y, Z℄℄ = [[X, Z℄℄[[[Y, Z℄℄ & [[Z, X[Y℄℄ = [[Z, X℄℄[[[Z, Y℄℄.Theorem ZFMISC 1:121. [[X1[X2, Y1[Y2℄℄ = [[X1, Y1℄℄[[[X1, Y2℄℄[[[X2, Y1℄℄[[[X2,Y2℄℄.Theorem ZFMISC 1:122. [[X\Y, Z℄℄ = [[X, Z℄℄\[[Y, Z℄℄ & [[Z, X\Y℄℄ = [[Z, X℄℄\[[Z, Y℄℄.Theorem ZFMISC 1:123. [[X1\X2, Y1\Y2℄℄ = [[X1, Y1℄℄\[[X2, Y2℄℄.Theorem ZFMISC 1:124. A � X & B � Y implies [[A, Y℄℄\[[X, B℄℄ = [[A, B℄℄.Theorem ZFMISC 1:125. [[XrY, Z℄℄ = [[X, Z℄℄r[[Y, Z℄℄ & [[Z, XrY℄℄ = [[Z, X℄℄r[[Z, Y℄℄.Theorem ZFMISC 1:126. [[X1, X2℄℄r[[Y1, Y2℄℄ = [[X1rY1, X2℄℄[[[X1, X2rY2℄℄.



26 CHAPTER 5. ZFMISC 1Theorem ZFMISC 1:127. X1\X2 = ; or Y1\Y2 = ; implies [[X1, Y1℄℄\[[X2, Y2℄℄ =;. Theorem ZFMISC 1:128. [x, y℄ 2 [[fzg, Y℄℄ i� x = z & y 2 Y.Theorem ZFMISC 1:129. [x, y℄ 2 [[X, fzg℄℄ i� x 2 X & y = z.Theorem ZFMISC 1:130. X 6= ; implies [[fxg, X℄℄ 6= ; & [[X, fxg℄℄ 6= ;.Theorem ZFMISC 1:131. x 6= y implies [[fxg, X℄℄\[[fyg, Y℄℄ = ; & [[X, fxg℄℄\[[Y, fyg℄℄= ;.Theorem ZFMISC 1:132. [[fx, yg, X℄℄ = [[fxg, X℄℄[[[fyg, X℄℄ & [[X, fx, yg℄℄ = [[X, fxg℄℄[[[X, fyg℄℄.Theorem ZFMISC 1:133. Z = [[X, Y℄℄ i� for z holds z 2 Z i� ex x, y st x 2 X & y 2Y & z = [x, y℄.Theorem ZFMISC 1:134. X1 6= ; & Y1 6= ; & [[X1, Y1℄℄ = [[X2, Y2℄℄ implies X1 =X2 & Y1 = Y2.Theorem ZFMISC 1:135. X � [[X, Y℄℄ or X � [[Y, X℄℄ implies X = ;.



Chapter 6ENUMSET1Enumerated SetsbyAndrzej Trybule 1Warsaw University (Bia lystok)Summary. We prove basi fats about enumerated sets: de�nitional theorems andtheir immediate onsequenes, some theorems related to the deomposition of anenumerated set into union of two sets, fats about removing elements that ourmore than one, and fats about permutations of enumerated sets (with the length� 4). The artile inludes also shemes enabling instantiation of up to nine universalquanti�ers.The symbols used in this artile are introdued in voabularies boole and fam op.The artiles tarski and boole provide the terminology and notation for this artile.reserve x, x1, x2, x3, x4, x5, x6, x7, x8, y, y1, y2, y3, y4, y5, y6, y7, y8, z, z1, z2, z3,z4, z5, z6, z7, z8 for Any.reserve X, X1, X2, Y, Y1, Y2, Z, Z1, Z2 for set.sheme UI1fx1() ! Any, P[Any℄g: P[x1()℄ provided A: for x1 holds P[x1℄.sheme UI2fx1() ! Any, x2() ! Any, P[Any, Any℄g: P[x1(), x2()℄ provided A: forx1, x2 holds P[x1, x2℄.sheme UI3fx1() ! Any, x2() ! Any, x3() ! Any, P[Any, Any, Any℄g: P[x1(), x2(),x3()℄ provided A: for x1, x2, x3 holds P[x1, x2, x3℄.1Supported by RPBP.III-24.C1. 27



28 CHAPTER 6. ENUMSET1sheme UI4fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, P[Any, Any, Any,Any℄g: P[x1(), x2(), x3(), x4()℄ provided A: for x1, x2, x3, x4 holds P[x1, x2, x3, x4℄.sheme UI5fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, P[Any,Any, Any, Any, Any℄g: P[x1(), x2(), x3(), x4(), x5()℄ provided A: for x1, x2, x3, x4, x5holds P[x1, x2, x3, x4, x5℄.sheme UI6fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, x6() !Any, P[Any, Any, Any, Any, Any, Any℄g: P[x1(), x2(), x3(), x4(), x5(), x6()℄ provided A:for x1, x2, x3, x4, x5, x6 holds P[x1, x2, x3, x4, x5, x6℄.sheme UI7fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, x6() !Any, x7() ! Any, P[Any, Any, Any, Any, Any, Any, Any℄g: P[x1(), x2(), x3(), x4(), x5(),x6(), x7()℄ provided A: for x1, x2, x3, x4, x5, x6, x7 holds P[x1, x2, x3, x4, x5, x6, x7℄.sheme UI8fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, x6() !Any, x7() ! Any, x8() ! Any, P[Any, Any, Any, Any, Any, Any, Any, Any℄g: P[x1(), x2(),x3(), x4(), x5(), x6(), x7(), x8()℄ provided A: for x1, x2, x3, x4, x5, x6, x7, x8 holdsP[x1, x2, x3, x4, x5, x6, x7, x8℄.sheme UI9fx1() ! Any, x2() ! Any, x3() ! Any, x4() ! Any, x5() ! Any, x6() !Any, x7() ! Any, x8() ! Any, x9() ! Any, P[Any, Any, Any, Any, Any, Any, Any, Any,Any℄g: P[x1(), x2(), x3(), x4(), x5(), x6(), x7(), x8(), x9()℄ provided A: for x1, x2, x3,x4, x5, x6, x7, x8, x9 being Any holds P[x1, x2, x3, x4, x5, x6, x7, x8, x9℄.Theorem ENUMSET1:1. for x1, X holds X = fx1g i� for x holds x 2 X i� x = x1.Theorem ENUMSET1:2. for x1, x holds x 2 fx1g i� x = x1.Theorem ENUMSET1:3. x 2 fx1g implies x = x1.Theorem ENUMSET1:4. x 2 fxg.Theorem ENUMSET1:5. for x1, X st for x holds x 2 X i� x = x1 holds X = fx1g.Theorem ENUMSET1:6. for x1, x2, X holds X = fx1, x2g i� for x holds x 2 X i�x = x1 or x = x2.Theorem ENUMSET1:7. for x1, x2 holds for x holds x 2 fx1, x2g i� x = x1 or x= x2.Theorem ENUMSET1:8. x 2 fx1, x2g implies x = x1 or x = x2.Theorem ENUMSET1:9. x = x1 or x = x2 implies x 2 fx1, x2g.Theorem ENUMSET1:10. for x1, x2, X st for x holds x 2 X i� x = x1 or x = x2holds X = fx1, x2g.De�nitionlet x1, x2, x3.fun fx1, x2, x3g ! set means x 2 it i� x = x1 or x = x2 or x = x3.Theorem ENUMSET1:11. for x1, x2, x3, X holds X = fx1, x2, x3g i� for x holds x2 X i� x = x1 or x = x2 or x = x3.



29Theorem ENUMSET1:12. for x1, x2, x3 holds for x holds x 2 fx1, x2, x3g i� x =x1 or x = x2 or x = x3.Theorem ENUMSET1:13. x 2 fx1, x2, x3g implies x = x1 or x = x2 or x = x3.Theorem ENUMSET1:14. x = x1 or x = x2 or x = x3 implies x 2 fx1, x2, x3g.Theorem ENUMSET1:15. for x1, x2, x3, X st for x holds x 2 X i� x = x1 or x =x2 or x = x3 holds X = fx1, x2, x3g.De�nitionlet x1, x2, x3, x4.fun fx1, x2, x3, x4g ! set means x 2 it i� x = x1 or x = x2 or x = x3 or x= x4.Theorem ENUMSET1:16. for x1, x2, x3, x4, X holds X = fx1, x2, x3, x4g i� for xholds x 2 X i� x = x1 or x = x2 or x = x3 or x = x4.Theorem ENUMSET1:17. for x1, x2, x3, x4 holds for x holds x 2 fx1, x2, x3, x4gi� x = x1 or x = x2 or x = x3 or x = x4.Theorem ENUMSET1:18. x 2 fx1, x2, x3, x4g implies x = x1 or x = x2 or x = x3or x = x4.Theorem ENUMSET1:19. x = x1 or x = x2 or x = x3 or x = x4 implies x 2 fx1,x2, x3, x4g.Theorem ENUMSET1:20. for x1, x2, x3, x4, X st for x holds x 2 X i� x = x1 or x= x2 or x = x3 or x = x4 holds X = fx1, x2, x3, x4g.De�nitionlet x1, x2, x3, x4, x5.fun fx1, x2, x3, x4, x5g ! set means x 2 it i� x = x1 or x = x2 or x = x3or x = x4 or x = x5.Theorem ENUMSET1:21. for x1, x2, x3, x4, x5 for X being set holds X = fx1, x2,x3, x4, x5g i� for x holds x 2 X i� x = x1 or x = x2 or x = x3 or x = x4 or x = x5.Theorem ENUMSET1:22. x 2 fx1, x2, x3, x4, x5g i� x = x1 or x = x2 or x = x3 orx = x4 or x = x5.Theorem ENUMSET1:23. x 2 fx1, x2, x3, x4, x5g implies x = x1 or x = x2 or x =x3 or x = x4 or x = x5.Theorem ENUMSET1:24. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 impliesx 2 fx1, x2, x3, x4, x5g.Theorem ENUMSET1:25. for X being set st for x holds x 2 X i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 holds X = fx1, x2, x3, x4, x5g.De�nitionlet x1, x2, x3, x4, x5, x6.fun fx1, x2, x3, x4, x5, x6g ! set means x 2 it i� x = x1 or x = x2 or x =x3 or x = x4 or x = x5 or x = x6.



30 CHAPTER 6. ENUMSET1Theorem ENUMSET1:26. for x1, x2, x3, x4, x5, x6 for X being set holds X = fx1,x2, x3, x4, x5, x6g i� for x holds x 2 X i� x = x1 or x = x2 or x = x3 or x = x4 or x= x5 or x = x6.Theorem ENUMSET1:27. x 2 fx1, x2, x3, x4, x5, x6g i� x = x1 or x = x2 or x = x3or x = x4 or x = x5 or x = x6.Theorem ENUMSET1:28. x 2 fx1, x2, x3, x4, x5, x6g implies x = x1 or x = x2 orx = x3 or x = x4 or x = x5 or x = x6.Theorem ENUMSET1:29. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x =x6 implies x 2 fx1, x2, x3, x4, x5, x6g.Theorem ENUMSET1:30. for X being set st for x holds x 2 X i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 holds X = fx1, x2, x3, x4, x5, x6g.De�nitionlet x1, x2, x3, x4, x5, x6, x7.fun fx1, x2, x3, x4, x5, x6, x7g ! set means x 2 it i� x = x1 or x = x2 or x= x3 or x = x4 or x = x5 or x = x6 or x = x7.Theorem ENUMSET1:31. for x1, x2, x3, x4, x5, x6, x7 for X being set holds X =fx1, x2, x3, x4, x5, x6, x7g i� for x holds x 2 X i� x = x1 or x = x2 or x = x3 or x =x4 or x = x5 or x = x6 or x = x7.Theorem ENUMSET1:32. x 2 fx1, x2, x3, x4, x5, x6, x7g i� x = x1 or x = x2 or x= x3 or x = x4 or x = x5 or x = x6 or x = x7.Theorem ENUMSET1:33. x 2 fx1, x2, x3, x4, x5, x6, x7g implies x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 or x = x7.Theorem ENUMSET1:34. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x =x6 or x = x7 implies x 2 fx1, x2, x3, x4, x5, x6, x7g.Theorem ENUMSET1:35. for X being set st for x holds x 2 X i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 holds X = fx1, x2, x3, x4, x5, x6,x7g.De�nitionlet x1, x2, x3, x4, x5, x6, x7, x8.fun fx1, x2, x3, x4, x5, x6, x7, x8g ! set means x 2 it i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.Theorem ENUMSET1:36. for x1, x2, x3, x4, x5, x6, x7, x8 for X being set holds X= fx1, x2, x3, x4, x5, x6, x7, x8g i� for x holds x 2 X i� x = x1 or x = x2 or x = x3or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.Theorem ENUMSET1:37. x 2 fx1, x2, x3, x4, x5, x6, x7, x8g i� x = x1 or x = x2 orx = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.Theorem ENUMSET1:38. x 2 fx1, x2, x3, x4, x5, x6, x7, x8g implies x = x1 or x =x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.



31Theorem ENUMSET1:39. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x =x6 or x = x7 or x = x8 implies x 2 fx1, x2, x3, x4, x5, x6, x7, x8g.Theorem ENUMSET1:40. for X being set st for x holds x 2 X i� x = x1 or x = x2or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 holds X = fx1, x2, x3,x4, x5, x6, x7, x8g.Theorem ENUMSET1:41. fx1, x2g = fx1g[fx2g.Theorem ENUMSET1:42. fx1, x2, x3g = fx1g[fx2, x3g.Theorem ENUMSET1:43. fx1, x2, x3g = fx1, x2g[fx3g.Theorem ENUMSET1:44. fx1, x2, x3, x4g = fx1g[fx2, x3, x4g.Theorem ENUMSET1:45. fx1, x2, x3, x4g = fx1, x2g[fx3, x4g.Theorem ENUMSET1:46. fx1, x2, x3, x4g = fx1, x2, x3g[fx4g.Theorem ENUMSET1:47. fx1, x2, x3, x4, x5g = fx1g[fx2, x3, x4, x5g.Theorem ENUMSET1:48. fx1, x2, x3, x4, x5g = fx1, x2g[fx3, x4, x5g.Theorem ENUMSET1:49. fx1, x2, x3, x4, x5g = fx1, x2, x3g[fx4, x5g.Theorem ENUMSET1:50. fx1, x2, x3, x4, x5g = fx1, x2, x3, x4g[fx5g.Theorem ENUMSET1:51. fx1, x2, x3, x4, x5, x6g = fx1g[fx2, x3, x4, x5, x6g.Theorem ENUMSET1:52. fx1, x2, x3, x4, x5, x6g = fx1, x2g[fx3, x4, x5, x6g.Theorem ENUMSET1:53. fx1, x2, x3, x4, x5, x6g = fx1, x2, x3g[fx4, x5, x6g.Theorem ENUMSET1:54. fx1, x2, x3, x4, x5, x6g = fx1, x2, x3, x4g[fx5, x6g.Theorem ENUMSET1:55. fx1, x2, x3, x4, x5, x6g = fx1, x2, x3, x4, x5g[fx6g.Theorem ENUMSET1:56. fx1, x2, x3, x4, x5, x6, x7g = fx1g[fx2, x3, x4, x5, x6,x7g.Theorem ENUMSET1:57. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2g[fx3, x4, x5, x6,x7g.Theorem ENUMSET1:58. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3g[fx4, x5, x6,x7g.Theorem ENUMSET1:59. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3, x4g[fx5, x6,x7g.Theorem ENUMSET1:60. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3, x4, x5g[fx6,x7g.Theorem ENUMSET1:61. fx1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3, x4, x5, x6g[fx7g.Theorem ENUMSET1:62. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1g[fx2, x3, x4, x5, x6,x7, x8g.Theorem ENUMSET1:63. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2g[fx3, x4, x5, x6,x7, x8g.



32 CHAPTER 6. ENUMSET1Theorem ENUMSET1:64. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3g[fx4, x5, x6,x7, x8g.Theorem ENUMSET1:65. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3, x4g[fx5, x6,x7, x8g.Theorem ENUMSET1:66. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3, x4, x5g[fx6,x7, x8g.Theorem ENUMSET1:67. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3, x4, x5, x6g[fx7, x8g.Theorem ENUMSET1:68. fx1, x2, x3, x4, x5, x6, x7, x8g = fx1, x2, x3, x4, x5, x6,x7g[fx8g.Theorem ENUMSET1:69. fx1, x1g = fx1g.Theorem ENUMSET1:70. fx1, x1, x2g = fx1, x2g.Theorem ENUMSET1:71. fx1, x1, x2, x3g = fx1, x2, x3g.Theorem ENUMSET1:72. fx1, x1, x2, x3, x4g = fx1, x2, x3, x4g.Theorem ENUMSET1:73. fx1, x1, x2, x3, x4, x5g = fx1, x2, x3, x4, x5g.Theorem ENUMSET1:74. fx1, x1, x2, x3, x4, x5, x6g = fx1, x2, x3, x4, x5, x6g.Theorem ENUMSET1:75. fx1, x1, x2, x3, x4, x5, x6, x7g = fx1, x2, x3, x4, x5, x6,x7g.Theorem ENUMSET1:76. fx1, x1, x1g = fx1g.Theorem ENUMSET1:77. fx1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:78. fx1, x1, x1, x2, x3g = fx1, x2, x3g.Theorem ENUMSET1:79. fx1, x1, x1, x2, x3, x4g = fx1, x2, x3, x4g.Theorem ENUMSET1:80. fx1, x1, x1, x2, x3, x4, x5g = fx1, x2, x3, x4, x5g.Theorem ENUMSET1:81. fx1, x1, x1, x2, x3, x4, x5, x6g = fx1, x2, x3, x4, x5, x6g.Theorem ENUMSET1:82. fx1, x1, x1, x1g = fx1g.Theorem ENUMSET1:83. fx1, x1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:84. fx1, x1, x1, x1, x2, x3g = fx1, x2, x3g.Theorem ENUMSET1:85. fx1, x1, x1, x1, x2, x3, x4g = fx1, x2, x3, x4g.Theorem ENUMSET1:86. fx1, x1, x1, x1, x2, x3, x4, x5g = fx1, x2, x3, x4, x5g.Theorem ENUMSET1:87. fx1, x1, x1, x1, x1g = fx1g.Theorem ENUMSET1:88. fx1, x1, x1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:89. fx1, x1, x1, x1, x1, x2, x3g = fx1, x2, x3g.Theorem ENUMSET1:90. fx1, x1, x1, x1, x1, x2, x3, x4g = fx1, x2, x3, x4g.Theorem ENUMSET1:91. fx1, x1, x1, x1, x1, x1g = fx1g.Theorem ENUMSET1:92. fx1, x1, x1, x1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:93. fx1, x1, x1, x1, x1, x1, x2, x3g = fx1, x2, x3g.



33Theorem ENUMSET1:94. fx1, x1, x1, x1, x1, x1, x1g = fx1g.Theorem ENUMSET1:95. fx1, x1, x1, x1, x1, x1, x1, x2g = fx1, x2g.Theorem ENUMSET1:96. fx1, x1, x1, x1, x1, x1, x1, x1g = fx1g.Theorem ENUMSET1:97. fx1, x2g = fx2, x1g.Theorem ENUMSET1:98. fx1, x2, x3g = fx1, x3, x2g.Theorem ENUMSET1:99. fx1, x2, x3g = fx2, x1, x3g.Theorem ENUMSET1:100. fx1, x2, x3g = fx2, x3, x1g.Theorem ENUMSET1:101. fx1, x2, x3g = fx3, x1, x2g.Theorem ENUMSET1:102. fx1, x2, x3g = fx3, x2, x1g.Theorem ENUMSET1:103. fx1, x2, x3, x4g = fx1, x2, x4, x3g.Theorem ENUMSET1:104. fx1, x2, x3, x4g = fx1, x3, x2, x4g.Theorem ENUMSET1:105. fx1, x2, x3, x4g = fx1, x3, x4, x2g.Theorem ENUMSET1:106. fx1, x2, x3, x4g = fx1, x4, x2, x3g.Theorem ENUMSET1:107. fx1, x2, x3, x4g = fx1, x4, x3, x2g.Theorem ENUMSET1:108. fx1, x2, x3, x4g = fx2, x1, x3, x4g.Theorem ENUMSET1:109. fx1, x2, x3, x4g = fx2, x1, x4, x3g.Theorem ENUMSET1:110. fx1, x2, x3, x4g = fx2, x3, x1, x4g.Theorem ENUMSET1:111. fx1, x2, x3, x4g = fx2, x3, x4, x1g.Theorem ENUMSET1:112. fx1, x2, x3, x4g = fx2, x4, x1, x3g.Theorem ENUMSET1:113. fx1, x2, x3, x4g = fx2, x4, x3, x1g.Theorem ENUMSET1:114. fx1, x2, x3, x4g = fx3, x1, x2, x4g.Theorem ENUMSET1:115. fx1, x2, x3, x4g = fx3, x1, x4, x2g.Theorem ENUMSET1:116. fx1, x2, x3, x4g = fx3, x2, x1, x4g.Theorem ENUMSET1:117. fx1, x2, x3, x4g = fx3, x2, x4, x1g.Theorem ENUMSET1:118. fx1, x2, x3, x4g = fx3, x4, x1, x2g.Theorem ENUMSET1:119. fx1, x2, x3, x4g = fx3, x4, x2, x1g.Theorem ENUMSET1:120. fx1, x2, x3, x4g = fx4, x1, x2, x3g.Theorem ENUMSET1:121. fx1, x2, x3, x4g = fx4, x1, x3, x2g.Theorem ENUMSET1:122. fx1, x2, x3, x4g = fx4, x2, x1, x3g.Theorem ENUMSET1:123. fx1, x2, x3, x4g = fx4, x2, x3, x1g.Theorem ENUMSET1:124. fx1, x2, x3, x4g = fx4, x3, x1, x2g.Theorem ENUMSET1:125. fx1, x2, x3, x4g = fx4, x3, x2, x1g.



Chapter 7SUBSET 1Properties of SubsetsbyZinaida Trybule 1Warsaw University (Bia lystok)Summary. The text inludes theorems onerning properties of subsets, and someoperations on sets. The funtions yielding improper subsets of a set, i.e. the emptyset and the set itself are introdued. Funtions and prediates introdued for setsare rede�ned. Some theorems about enumerated sets are proved.The symbols used in this artile are introdued in voabularies boole and sub op.The terminology and notation used in this artile have been introdued in the followingartiles: tarski, boole, and enumset1.reserve E, X for set.reserve x, y for Any.Theorem SUBSET 1:1. E 6= ; implies (x is Element of E i� x 2 E).Theorem SUBSET 1:2. x 2 E implies x is Element of E.Theorem SUBSET 1:3. X is Subset of E i� X � E.De�nitionlet E.fun ; E ! Subset of E means it = ;.1Supported by RPBP.III-24.C1. 34



35fun 
E ! Subset of E means it = E.Theorem SUBSET 1:4. ; is Subset of X.Theorem SUBSET 1:5. X is Subset of X.reserve A, B, C for Subset of E.Theorem SUBSET 1:6. x 2 A implies x is Element of E.Theorem SUBSET 1:7. (for x being Element of E holds x 2 A implies x 2 B)implies A � B.Theorem SUBSET 1:8. (for x being Element of E holds x 2 A i� x 2 B) implies A= B.Theorem SUBSET 1:9. x 2 A implies x 2 E.Theorem SUBSET 1:10. A 6= ; i� ex x being Element of E st x 2 A.De�nitionlet E.let A.fun A ! Subset of E means it = ErA.let B.rede�nefun A[B ! Subset of E.fun A\B ! Subset of E.fun ArB ! Subset of E.fun A�� B ! Subset of E.Theorem SUBSET 1:11. x 2 A\B implies x is Element of A & x is Element of B.Theorem SUBSET 1:12. x 2 A[B implies x is Element of A or x is Element of B.Theorem SUBSET 1:13. x 2 ArB implies x is Element of A.Theorem SUBSET 1:14. x 2 A�� B implies x is Element of A or x is Element of B.Theorem SUBSET 1:15. (for x being Element of E holds x 2 A i� x 2 B or x 2 C)implies A = B[C.Theorem SUBSET 1:16. (for x being Element of E holds x 2 A i� x 2 B & x 2 C)implies A = B\C.Theorem SUBSET 1:17. (for x being Element of E holds x 2 A i� x 2 B & not x2 C) implies A = BrC.Theorem SUBSET 1:18. (for x being Element of E holds x 2 A i� not (x 2 B i� x2 C)) implies A = B�� C.Theorem SUBSET 1:19. ; E = ;.Theorem SUBSET 1:20. 
E = E.Theorem SUBSET 1:21. ; E = (
E).



36 CHAPTER 7. SUBSET 1Theorem SUBSET 1:22. 
E = (; E).Theorem SUBSET 1:23. A = ErA.Theorem SUBSET 1:24. A = A.Theorem SUBSET 1:25. A[A = 
E & A[A = 
E.Theorem SUBSET 1:26. A\A = ; E & A\A = ; E.Theorem SUBSET 1:27. A\; E = ; E & ; E\A = ; E.Theorem SUBSET 1:28. A[
E = 
E & 
E[A = 
E.Theorem SUBSET 1:29. (A[B) = A\B.Theorem SUBSET 1:30. (A\B) = A[B.Theorem SUBSET 1:31. A � B i� B � A.Theorem SUBSET 1:32. ArB = A\B.Theorem SUBSET 1:33. (ArB) = A[B.Theorem SUBSET 1:34. (A�� B) = A\B[A\B.Theorem SUBSET 1:35. A � B implies B � A.Theorem SUBSET 1:36. A � B implies B � A.Theorem SUBSET 1:37. ; E � E.Theorem SUBSET 1:38. A � A i� A = ; E.Theorem SUBSET 1:39. A � A i� A = 
E.Theorem SUBSET 1:40. X � A & X � A implies X = ;.Theorem SUBSET 1:41. (A[B) � A & (A[B) � B.Theorem SUBSET 1:42. A � (A\B) & B � (A\B).Theorem SUBSET 1:43. A misses B i� A � B.Theorem SUBSET 1:44. A misses B i� A � B.Theorem SUBSET 1:45. A misses A.Theorem SUBSET 1:46. A misses B & A misses B implies A = B.Theorem SUBSET 1:47. A � B & C misses B implies A � C.Theorem SUBSET 1:48. (for a being Element of A holds a 2 B) implies A � B.Theorem SUBSET 1:49. (for x being Element of E holds x 2 A) implies E = A.Theorem SUBSET 1:50. E 6= ; implies for A, B holds A = B i� for x beingElement of E holds x 2 A i� not x 2 B.Theorem SUBSET 1:51. E 6= ; implies for A, B holds A = B i� for x beingElement of E holds not x 2 A i� x 2 B.Theorem SUBSET 1:52. E 6= ; implies for A, B holds A = B i� for x beingElement of E holds not (x 2 A i� x 2 B).Theorem SUBSET 1:53. x 2 A implies not x 2 A.



37reserve x1, x2, x3, x4, x5, x6, x7, x8 for Element of X.Theorem SUBSET 1:54. X 6= ; implies fx1g is Subset of X.Theorem SUBSET 1:55. X 6= ; implies fx1, x2g is Subset of X.Theorem SUBSET 1:56. X 6= ; implies fx1, x2, x3g is Subset of X.Theorem SUBSET 1:57. X 6= ; implies fx1, x2, x3, x4g is Subset of X.Theorem SUBSET 1:58. X 6= ; implies fx1, x2, x3, x4, x5g is Subset of X.Theorem SUBSET 1:59. X 6= ; implies fx1, x2, x3, x4, x5, x6g is Subset of X.Theorem SUBSET 1:60. X 6= ; implies fx1, x2, x3, x4, x5, x6, x7g is Subset of X.Theorem SUBSET 1:61. X 6= ; implies fx1, x2, x3, x4, x5, x6, x7, x8g is Subset ofX. reserve x1, x2, x3, x4, x5, x6, x7, x8 for Any.Theorem SUBSET 1:62. x1 2 X implies fx1g is Subset of X.Theorem SUBSET 1:63. x1 2 X & x2 2 X implies fx1, x2g is Subset of X.Theorem SUBSET 1:64. x1 2 X & x2 2 X & x3 2 X implies fx1, x2, x3g is Subsetof X.Theorem SUBSET 1:65. x1 2 X & x2 2 X & x3 2 X & x4 2 X implies fx1, x2, x3,x4g is Subset of X.Theorem SUBSET 1:66. x1 2 X & x2 2 X & x3 2 X & x4 2 X & x5 2 X impliesfx1, x2, x3, x4, x5g is Subset of X.Theorem SUBSET 1:67. x1 2 X & x2 2 X & x3 2 X & x4 2 X & x5 2 X & x6 2 Ximplies fx1, x2, x3, x4, x5, x6g is Subset of X.Theorem SUBSET 1:68. x1 2 X & x2 2 X & x3 2 X & x4 2 X & x5 2 X & x6 2 X& x7 2 X implies fx1, x2, x3, x4, x5, x6, x7g is Subset of X.Theorem SUBSET 1:69. x1 2 X & x2 2 X & x3 2 X & x4 2 X & x5 2 X & x6 2 X& x7 2 X & x8 2 X implies fx1, x2, x3, x4, x5, x6, x7, x8g is Subset of X.sheme Subset ExfA() ! set, P[Any℄g: ex X being Subset of A() st for x holds x2 X i� x 2 A() & P[x℄.



Chapter 8FUNCT 1Funtions and Their Basi PropertiesbyCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. The de�nitions of the mode Funtion and the graph of a funtion areintrodued. The graph of a funtion is de�ned to be idential with the funtion.The following onepts are also de�ned: the domain of a funtion, the range ofa funtion, the identity funtion, the omposition of funtions, the 1-1 funtion,the inverse funtion, the restrition of a funtion, the image and the inverse image.Certain basi fats about funtions and the notions de�ned in the artile are proved.The symbols used in this artile are introdued in the following voabularies: fam op,boole, real 1, fun rel, and fun. The artiles tarski and boole provide theterminology and notation for this artile.reserve X, X1, X2, Y, Y1, Y2 for set, p, x, x1, x2, y, y1, y2, z, z1, z2 for Any.De�nitionmode Funtion ! Any means ex F being set st it = F & (for p st p 2 F exx, y st [x, y℄ = p) & (for x, y1, y2 st [x, y1℄ 2 F & [x, y2℄ 2 F holds y1 = y2).reserve f, f1, f2, g, g1, g2, h for Funtion.De�nitionlet f.1Supported by RPBP.III-24.C1. 38



39fun graph f ! set means f = it.Theorem FUNCT 1:1. graph f = f.Theorem FUNCT 1:2. for F being set st (for p st p 2 F ex x, y st [x, y℄ = p) &(for x, y1, y2 st [x, y1℄ 2 F & [x, y2℄ 2 F holds y1 = y2) ex f being Funtion st graph f= F.Theorem FUNCT 1:3. p 2 graph f implies ex x, y st [x, y℄ = p.Theorem FUNCT 1:4. [x, y1℄ 2 graph f & [x, y2℄ 2 graph f implies y1 = y2.Theorem FUNCT 1:5. graph f = graph g implies f = g.sheme GraphFunfA() ! set, P[Any, Any℄g: ex f st for x, y holds [x, y℄ 2 graph fi� x 2 A() & P[x, y℄ provided A: for x, y1, y2 st P[x, y1℄ & P[x, y2℄ holds y1 = y2.De�nitionlet f. fun dom f ! set means for x holds x 2 it i� ex y st [x, y℄ 2 graph f.Theorem FUNCT 1:6. X = dom f i� for x holds x 2 X i� ex y st [x, y℄ 2 graph f.De�nitionlet f, x.assume x 2 dom f.fun f:x ! Any means [x, it℄ 2 graph f.Theorem FUNCT 1:7. x 2 dom f implies (y = f:x i� [x, y℄ 2 graph f).Theorem FUNCT 1:8. [x, y℄ 2 graph f i� x 2 dom f & y = f:x.Theorem FUNCT 1:9. X = dom f & X = dom g & (for x st x 2 X holds f:x = g:x)implies f = g.De�nitionlet f. fun rng f ! set means for y holds y 2 it i� ex x st x 2 dom f & y = f:x.Theorem FUNCT 1:10. Y = rng f i� for y holds y 2 Y i� ex x st x 2 dom f & y =f:x. Theorem FUNCT 1:11. y 2 rng f i� ex x st x 2 dom f & y = f:x.Theorem FUNCT 1:12. x 2 dom f implies f:x 2 rng f.Theorem FUNCT 1:13. dom f = ; i� rng f = ;.Theorem FUNCT 1:14. dom f = fxg implies rng f = ff:xg.sheme FunExfA() ! set, P[Any, Any℄g: ex f st dom f = A() & for x st x 2 A()holds P[x, f:x℄ provided A: for x, y1, y2 st x 2 A() & P[x, y1℄ & P[x, y2℄ holds y1 =y2 and B: for x st x 2 A() ex y st P[x, y℄.sheme LambdafA() ! set, F(Any) ! Anyg: ex f being Funtion st dom f = A() &for x st x 2 A() holds f:x = F(x).



40 CHAPTER 8. FUNCT 1Theorem FUNCT 1:15. X 6= ; implies for y ex f st dom f = X & rng f = fyg.Theorem FUNCT 1:16. (for f, g st dom f = X & dom g = X holds f = g) implies X= ;.Theorem FUNCT 1:17. dom f = dom g & rng f = fyg & rng g = fyg implies f = g.Theorem FUNCT 1:18. Y 6= ; or X = ; implies ex f st X = dom f & rng f � Y.Theorem FUNCT 1:19. (for y st y 2 Y ex x st x 2 dom f & y = f:x) implies Y �rng f.De�nitionlet f, g.fun g�f ! Funtion means (for x holds x 2 dom it i� x 2 dom f & f:x 2 domg) & (for x st x 2 dom it holds it:x = g:(f:x)).Theorem FUNCT 1:20. h = g�f i� (for x holds x 2 dom h i� x 2 dom f & f:x 2 domg) & (for x st x 2 dom h holds h:x = g:(f:x)).Theorem FUNCT 1:21. x 2 dom (g�f) i� x 2 dom f & f:x 2 dom g.Theorem FUNCT 1:22. x 2 dom (g�f) implies (g�f):x = g:(f:x).Theorem FUNCT 1:23. x 2 dom f & f:x 2 dom g implies (g�f):x = g:(f:x).Theorem FUNCT 1:24. dom (g�f) � dom f.Theorem FUNCT 1:25. z 2 rng (g�f) implies z 2 rng g.Theorem FUNCT 1:26. rng (g�f) � rng g.Theorem FUNCT 1:27. rng f � dom g i� dom (g�f) = dom f.Theorem FUNCT 1:28. dom g � rng f implies rng (g�f) = rng g.Theorem FUNCT 1:29. rng f = dom g implies dom (g�f) = dom f & rng (g�f) = rng g.Theorem FUNCT 1:30. h�(g�f) = (h�g)�f.Theorem FUNCT 1:31. rng f � dom g & x 2 dom f implies (g�f):x = g:(f:x).Theorem FUNCT 1:32. rng f = dom g & x 2 dom f implies (g�f):x = g:(f:x).Theorem FUNCT 1:33. rng f � Y & (for g, h st dom g = Y & dom h = Y & g�f = h�fholds g = h) implies Y = rng f.De�nitionlet X.fun Id X ! Funtion means dom it = X & for x st x 2 X holds it:x = x.Theorem FUNCT 1:34. f = Id X i� dom f = X & for x st x 2 X holds f:x = x.Theorem FUNCT 1:35. x 2 X implies (Id X):x = x.Theorem FUNCT 1:36. dom Id X = X & rng Id X = X.Theorem FUNCT 1:37. dom (f�(Id X)) = dom f\X.Theorem FUNCT 1:38. x 2 dom f\X implies f:x = (f�(Id X)):x.Theorem FUNCT 1:39. dom f � X implies f�(Id X) = f.



41Theorem FUNCT 1:40. x 2 dom ((Id Y)�f) i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:41. rng f � Y implies (Id Y)�f = f.Theorem FUNCT 1:42. f�(Id dom f) = f & (Id rng f)�f = f.Theorem FUNCT 1:43. (Id X)�(Id Y) = Id (X\Y).Theorem FUNCT 1:44. dom f = X & rng f = X & dom g = X & g�f = f implies g =Id X.De�nitionlet f. pred f is 1-1 means for x1, x2 st x1 2 dom f & x2 2 dom f & f:x1 = f:x2 holdsx1 = x2.Theorem FUNCT 1:45. f is 1-1 i� for x1, x2 st x1 2 dom f & x2 2 dom f & f:x1 =f:x2 holds x1 = x2.Theorem FUNCT 1:46. f is 1-1 & g is 1-1 implies g�f is 1-1.Theorem FUNCT 1:47. g�f is 1-1 & rng f � dom g implies f is 1-1.Theorem FUNCT 1:48. g�f is 1-1 & rng f = dom g implies f is 1-1 & g is 1-1.Theorem FUNCT 1:49. f is 1-1 i� (for g, h st rng g � dom f & rng h � dom f & domg = dom h & f�g = f�h holds g = h).Theorem FUNCT 1:50. dom f = X & dom g = X & rng g � X & f is 1-1 & f�g = fimplies g = Id X.Theorem FUNCT 1:51. rng (g�f) = rng g & g is 1-1 implies dom g � rng f.Theorem FUNCT 1:52. Id X is 1-1.Theorem FUNCT 1:53. (ex g st g�f = Id dom f) implies f is 1-1.De�nitionlet f.assume f is 1-1.fun f�1 ! Funtion means dom it = rng f & for y, x holds y 2 rng f & x =it:y i� x 2 dom f & y = f:x.Theorem FUNCT 1:54. f is 1-1 implies (g = f�1 i� dom g = rng f & for y, x holdsy 2 rng f & x = g:y i� x 2 dom f & y = f:x).Theorem FUNCT 1:55. f is 1-1 implies rng f = dom (f�1) & dom f = rng (f�1).Theorem FUNCT 1:56. f is 1-1 & x 2 dom f implies x = (f�1):(f:x) & x = (f�1�f):x.Theorem FUNCT 1:57. f is 1-1 & y 2 rng f implies y = f:((f�1):y) & y = (f�f�1):y.Theorem FUNCT 1:58. f is 1-1 implies dom (f�1�f) = dom f & rng (f�1�f) = dom f.Theorem FUNCT 1:59. f is 1-1 implies dom (f�f�1) = rng f & rng (f�f�1) = rng f.Theorem FUNCT 1:60. f is 1-1 & dom f = rng g & rng f = dom g & (for x, y st x 2dom f & y 2 dom g holds f:x = y i� g:y = x) implies g = f�1.



42 CHAPTER 8. FUNCT 1Theorem FUNCT 1:61. f is 1-1 implies f�1�f = Id dom f & f�f�1 = Id rng f.Theorem FUNCT 1:62. f is 1-1 implies f�1 is 1-1.Theorem FUNCT 1:63. f is 1-1 & rng f = dom g & g�f = Id dom f implies g = f�1.Theorem FUNCT 1:64. f is 1-1 & rng g = dom f & f�g = Id rng f implies g = f�1.Theorem FUNCT 1:65. f is 1-1 implies (f�1)�1 = f.Theorem FUNCT 1:66. f is 1-1 & g is 1-1 implies (g�f)�1 = f�1�g�1.Theorem FUNCT 1:67. (Id X)�1 = (Id X).De�nitionlet f, X.fun f�X ! Funtion means dom it = dom f\X & for x st x 2 dom it holdsit:x = f:x.Theorem FUNCT 1:68. g = f�X i� dom g = dom f\X & for x st x 2 dom g holdsg:x = f:x.Theorem FUNCT 1:69. dom (f�X) = dom f\X.Theorem FUNCT 1:70. x 2 dom (f�X) implies (f�X):x = f:x.Theorem FUNCT 1:71. x 2 dom f\X implies (f�X):x = f:x.Theorem FUNCT 1:72. x 2 dom f & x 2 X implies (f�X):x = f:x.Theorem FUNCT 1:73. x 2 dom f & x 2 X implies f:x 2 rng (f�X).Theorem FUNCT 1:74. X � dom f implies dom (f�X) = X.Theorem FUNCT 1:75. dom (f�X) � X.Theorem FUNCT 1:76. dom (f�X) � dom f & rng (f�X) � rng f.Theorem FUNCT 1:77. f�X = f�(Id X).Theorem FUNCT 1:78. dom f � X implies f�X = f.Theorem FUNCT 1:79. f�(dom f) = f.Theorem FUNCT 1:80. (f�X)�Y = f�(X\Y).Theorem FUNCT 1:81. (f�X)�X = f�X.Theorem FUNCT 1:82. X � Y implies (f�X)�Y = f�X & (f�Y)�X = f�X.Theorem FUNCT 1:83. (g�f)�X = g�(f�X).Theorem FUNCT 1:84. f is 1-1 implies f�X is 1-1.De�nitionlet Y, f.fun Y�f ! Funtion means (for x holds x 2 dom it i� x 2 dom f & f:x 2 Y)& (for x st x 2 dom it holds it:x = f:x).Theorem FUNCT 1:85. g = Y�f i� (for x holds x 2 dom g i� x 2 dom f & f:x 2 Y)& (for x st x 2 dom g holds g:x = f:x).



43Theorem FUNCT 1:86. x 2 dom (Y�f) i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:87. x 2 dom (Y�f) implies (Y�f):x = f:x.Theorem FUNCT 1:88. rng (Y�f) � Y.Theorem FUNCT 1:89. dom (Y�f) � dom f & rng (Y�f) � rng f.Theorem FUNCT 1:90. rng (Y�f) = rng f\Y.Theorem FUNCT 1:91. Y � rng f implies rng (Y�f) = Y.Theorem FUNCT 1:92. Y�f = (Id Y)�f.Theorem FUNCT 1:93. rng f � Y implies Y�f = f.Theorem FUNCT 1:94. (rng f)�f = f.Theorem FUNCT 1:95. Y�(X�f) = (Y\X)�f.Theorem FUNCT 1:96. Y�(Y�f) = Y�f.Theorem FUNCT 1:97. X � Y implies Y�(X�f) = X�f & X�(Y�f) = X�f.Theorem FUNCT 1:98. Y�(g�f) = (Y�g)�f.Theorem FUNCT 1:99. f is 1-1 implies Y�f is 1-1.Theorem FUNCT 1:100. (Y�f)�X = Y�(f�X).De�nitionlet f, X.fun f�X ! set means for y holds y 2 it i� ex x st x 2 dom f & x 2 X & y= f:x.Theorem FUNCT 1:101. Y = f�X i� for y holds y 2 Y i� ex x st x 2 dom f & x 2X & y = f:x.Theorem FUNCT 1:102. y 2 f�X i� ex x st x 2 dom f & x 2 X & y = f:x.Theorem FUNCT 1:103. f�X � rng f.Theorem FUNCT 1:104. f�(X) = f�(dom f\X).Theorem FUNCT 1:105. f�(dom f) = rng f.Theorem FUNCT 1:106. f�X � f�(dom f).Theorem FUNCT 1:107. rng (f�X) = f�X.Theorem FUNCT 1:108. f�X = ; i� dom f\X = ;.Theorem FUNCT 1:109. f�; = ;.Theorem FUNCT 1:110. X 6= ; & X � dom f implies f�X 6= ;.Theorem FUNCT 1:111. X1 � X2 implies f�X1 � f�X2.Theorem FUNCT 1:112. f�(X1[X2) = f�X1[f�X2.Theorem FUNCT 1:113. f�(X1\X2) � f�X1\f�X2.Theorem FUNCT 1:114. f�X1rf�X2 � f�(X1rX2).Theorem FUNCT 1:115. (g�f)�X = g�(f�X).



44 CHAPTER 8. FUNCT 1Theorem FUNCT 1:116. rng (g�f) = g�(rng f).Theorem FUNCT 1:117. x 2 dom f implies f�fxg = ff:xg.Theorem FUNCT 1:118. x1 2 dom f & x2 2 dom f implies f�fx1, x2g = ff:x1, f:x2g.Theorem FUNCT 1:119. (f�Y)�X � f�X.Theorem FUNCT 1:120. (Y�f)�X � f�X.Theorem FUNCT 1:121. f is 1-1 implies f�(X1\X2) = f�X1\f�X2.Theorem FUNCT 1:122. (for X1, X2 holds f�(X1\X2) = f�X1\f�X2) implies f is 1-1.Theorem FUNCT 1:123. f is 1-1 implies f�(X1rX2) = f�X1rf�X2.Theorem FUNCT 1:124. (for X1, X2 holds f�(X1rX2) = f�X1rf�X2) implies f is 1-1.Theorem FUNCT 1:125. X\Y = ; & f is 1-1 implies f�X\f�Y = ;.Theorem FUNCT 1:126. (Y�f)�X = Y\f�X.De�nitionlet f, Y.fun f�1Y ! set means for x holds x 2 it i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:127. X = f�1Y i� for x holds x 2 X i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:128. x 2 f�1Y i� x 2 dom f & f:x 2 Y.Theorem FUNCT 1:129. f�1Y � dom f.Theorem FUNCT 1:130. f�1Y = f�1(rng f\Y).Theorem FUNCT 1:131. f�1(rng f) = dom f.Theorem FUNCT 1:132. f�1; = ;.Theorem FUNCT 1:133. f�1Y = ; i� rng f\Y = ;.Theorem FUNCT 1:134. Y � rng f implies (f�1Y = ; i� Y = ;).Theorem FUNCT 1:135. Y1 � Y2 implies f�1Y1 � f�1Y2.Theorem FUNCT 1:136. f�1(Y1[Y2) = f�1Y1[f�1Y2.Theorem FUNCT 1:137. f�1(Y1\Y2) = f�1Y1\f�1Y2.Theorem FUNCT 1:138. f�1(Y1rY2) = f�1Y1rf�1Y2.Theorem FUNCT 1:139. (f�X)�1Y = X\(f�1Y).Theorem FUNCT 1:140. (g�f)�1Y = f�1(g�1Y).Theorem FUNCT 1:141. dom (g�f) = f�1(dom g).Theorem FUNCT 1:142. y 2 rng f i� f�1fyg 6= ;.Theorem FUNCT 1:143. (for y st y 2 Y holds f�1fyg 6= ;) implies Y � rng f.Theorem FUNCT 1:144. (for y st y 2 rng f ex x st f�1fyg = fxg) i� f is 1-1.Theorem FUNCT 1:145. f�(f�1Y) � Y.Theorem FUNCT 1:146. X � dom f implies X � f�1(f�X).Theorem FUNCT 1:147. Y � rng f implies f�(f�1Y) = Y.



45Theorem FUNCT 1:148. f�(f�1Y) = Y\f�(dom f).Theorem FUNCT 1:149. f�(X\f�1Y) � (f�X)\Y.Theorem FUNCT 1:150. f�(X\f�1Y) = (f�X)\Y.Theorem FUNCT 1:151. X\f�1Y � f�1(f�X\Y).Theorem FUNCT 1:152. f is 1-1 implies f�1(f�X) � X.Theorem FUNCT 1:153. (for X holds f�1(f�X) � X) implies f is 1-1.Theorem FUNCT 1:154. f is 1-1 implies f�X = (f�1)�1X.Theorem FUNCT 1:155. f is 1-1 implies f�1Y = (f�1)�Y.Theorem FUNCT 1:156. Y = rng f & dom g = Y & dom h = Y & g�f = h�f implies g= h.Theorem FUNCT 1:157. f�X1 � f�X2 & X1 � dom f & f is 1-1 implies X1 � X2.Theorem FUNCT 1:158. f�1Y1 � f�1Y2 & Y1 � rng f implies Y1 � Y2.Theorem FUNCT 1:159. f is 1-1 i� for y ex x st f�1fyg � fxg.Theorem FUNCT 1:160. rng f � dom g implies f�1X � (g�f)�1(g�X).



Chapter 9FUNCT 2Funtions from a Set to a Set.byCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. The artile is a ontinuation of Funtions and Their Basi Properties(FUNCT 1). We de�ne the following onepts: a funtion from a set X into a setY, denoted by \Funtion of X,Y", the set of all funtions from a set X into a setY, denoted by Funs(X,Y), and the permutation of a set (mode Permutation of X,where X is a set). Theorems and shemes inluded in the artile are reformulationsof the theorems of FUNCT 1 in the new terminology. Also some basi fats aboutfuntions of two variables are proved.The symbols used in this artile are introdued in the following voabularies: boole,fun rel, real 1, fun, and fun2. The terminology and notation used in this artilehave been introdued in the following artiles: tarski, boole, and funt 1.reserve P, Q, X, X1, X2, Y, Y1, Y2, Z for set.reserve p, q, x, x1, x2, y, y1, y2, z, z1, z2 for Any.De�nitionlet X, Y.assume Y = ; implies X = ;.mode Funtion of X, Y ! Funtion means X = dom it & rng it � Y.1Supported by RPBP.III-24.C1. 46



47Theorem FUNCT 2:1. (Y = ; implies X = ;) implies for f being Funtion holds fis Funtion of X, Y i� X = dom f & rng f � Y.Theorem FUNCT 2:2. for f being Funtion of X, Y st Y = ; implies X = ; holdsX = dom f & rng f � Y.Theorem FUNCT 2:3. for f being Funtion holds f is Funtion of dom f, rng f.Theorem FUNCT 2:4. for f being Funtion st rng f � Y holds f is Funtion of domf, Y.Theorem FUNCT 2:5. for f being Funtion st dom f = X & for x st x 2 X holds f:x2 Y holds f is Funtion of X, Y.Theorem FUNCT 2:6. for f being Funtion of X, Y st Y 6= ; & x 2 X holds f:x 2rng f.Theorem FUNCT 2:7. for f being Funtion of X, Y st Y 6= ; & x 2 X holds f:x 2 Y.Theorem FUNCT 2:8. for f being Funtion of X, Y st (Y = ; implies X = ;) & rngf � Z holds f is Funtion of X, Z.Theorem FUNCT 2:9. for f being Funtion of X, Y st (Y = ; implies X = ;) & Y� Z holds f is Funtion of X, Z.sheme FunEx1fX() ! set, Y() ! set, P[Any, Any℄g: ex f being Funtion of X(),Y() st for x st x 2 X() holds P[x, f:x℄ provided A1: for x st x 2 X() ex y st y 2 Y()& P[x, y℄ and A2: for x, y1, y2 st x 2 X() & P[x, y1℄ & P[x, y2℄ holds y1 = y2.sheme Lambda1fX() ! set, Y() ! set, F(Any) ! Anyg: ex f being Funtion ofX(), Y() st for x st x 2 X() holds f:x = F(x) provided A: for x st x 2 X() holds F(x)2 Y().De�nitionlet X, Y.fun Funs (X, Y) ! set means x 2 it i� ex f being Funtion st x = f & domf = X & rng f � Y.Theorem FUNCT 2:10. for F being set holds F = Funs (X, Y) i� for x holds x 2F i� ex f being Funtion st x = f & dom f = X & rng f � Y.Theorem FUNCT 2:11. for f being Funtion of X, Y st Y = ; implies X = ; holdsf 2 Funs (X, Y).Theorem FUNCT 2:12. for f being Funtion of X, X holds f 2 Funs (X, X).Theorem FUNCT 2:13. for f being Funtion of ;, X holds f 2 Funs (;, X).Theorem FUNCT 2:14. X 6= ; implies Funs (X, ;) = ;.Theorem FUNCT 2:15. Funs (X, Y) = ; implies X 6= ; & Y = ;.Theorem FUNCT 2:16. for f being Funtion of X, Y st Y 6= ; & for y st y 2 Y exx st x 2 X & y = f:x holds rng f = Y.Theorem FUNCT 2:17. for f being Funtion of X, Y st y 2 Y & rng f = Y ex x st x2 X & f:x = y.



48 CHAPTER 9. FUNCT 2Theorem FUNCT 2:18. for f1, f2 being Funtion of X, Y st Y 6= ; & for x st x 2 Xholds f1:x = f2:x holds f1 = f2.Theorem FUNCT 2:19. for f being Funtion of X, Y for g being Funtion of Y, Z st(Z = ; implies Y = ;) & (Y = ; implies X = ;) holds g�f is Funtion of X, Z.Theorem FUNCT 2:20. for f being Funtion of X, Y for g being Funtion of Y, Z stY 6= ; & Z 6= ; & rng f = Y & rng g = Z holds rng (g�f) = Z.Theorem FUNCT 2:21. for f being Funtion of X, Y for g being Funtion of Y, Z stY 6= ; & Z 6= ; & x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:22. for f being Funtion of X, Y st Y 6= ; holds rng f = Y i�for Z st Z 6= ; for g, h being Funtion of Y, Z st g�f = h�f holds g = h.Theorem FUNCT 2:23. for f being Funtion of X, Y st Y = ; implies X = ; holdsf�(Id X) = f & (Id Y)�f = f.Theorem FUNCT 2:24. for f being Funtion of X, Y for g being Funtion of Y, Xst Y 6= ; & f�g = Id Y holds rng f = Y.Theorem FUNCT 2:25. for f being Funtion of X, Y st Y = ; implies X = ; holdsf is 1-1 i� for x1, x2 st x1 2 X & x2 2 X & f:x1 = f:x2 holds x1 = x2.Theorem FUNCT 2:26. for f being Funtion of X, Y for g being Funtion of Y, Z st(Z = ; implies Y = ;) & (Y = ; implies X = ;) & g�f is 1-1 holds f is 1-1.Theorem FUNCT 2:27. for f being Funtion of X, Y st X 6= ; & Y 6= ; holds f is1-1 i� for Z for g, h being Funtion of Z, X st f�g = f�h holds g = h.Theorem FUNCT 2:28. for f being Funtion of X, Y for g being Funtion of Y, Z stZ 6= ; & Y 6= ; & rng (g�f) = Z & g is 1-1 holds rng f = Y.Theorem FUNCT 2:29. for f being Funtion of X, Y for g being Funtion of Y, Xst X 6= ; & Y 6= ; & g�f = Id X holds f is 1-1 & rng g = X.Theorem FUNCT 2:30. for f being Funtion of X, Y for g being Funtion of Y, Z st(Z = ; implies Y = ;) & g�f is 1-1 & rng f = Y holds f is 1-1 & g is 1-1.Theorem FUNCT 2:31. for f being Funtion of X, Y st f is 1-1 & (X = ; i� Y = ;)& rng f = Y holds f�1 is Funtion of Y, X.Theorem FUNCT 2:32. for f being Funtion of X, Y st Y 6= ; & f is 1-1 & x 2 Xholds (f�1):(f:x) = x.Theorem FUNCT 2:33. for f being Funtion of X, Y st rng f = Y & f is 1-1 & y 2 Yholds f:((f�1):y) = y.Theorem FUNCT 2:34. for f being Funtion of X, Y for g being Funtion of Y, Xst X 6= ; & Y 6= ; & rng f = Y & f is 1-1 & for y, x holds y 2 Y & g:y = x i� x 2 X &f:x = y holds g = f�1.Theorem FUNCT 2:35. for f being Funtion of X, Y st Y 6= ; & rng f = Y & f is 1-1holds f�1�f = Id X & f�f�1 = Id Y.Theorem FUNCT 2:36. for f being Funtion of X, Y for g being Funtion of Y, X



49st X 6= ; & Y 6= ; & rng f = Y & g�f = Id X & f is 1-1 holds g = f�1.Theorem FUNCT 2:37. for f being Funtion of X, Y st Y 6= ; & ex g being Funtionof Y, X st g�f = Id X holds f is 1-1.Theorem FUNCT 2:38. for f being Funtion of X, Y st (Y = ; implies X = ;) & Z� X holds f�Z is Funtion of Z, Y.Theorem FUNCT 2:39. for f being Funtion of X, Y st Y 6= ; & x 2 X & x 2 Zholds (f�Z):x = f:x.Theorem FUNCT 2:40. for f being Funtion of X, Y st (Y = ; implies X = ;) & X� Z holds f�Z = f.Theorem FUNCT 2:41. for f being Funtion of X, Y st Y 6= ; & x 2 X & f:x 2 Zholds (Z�f):x = f:x.Theorem FUNCT 2:42. for f being Funtion of X, Y st (Y = ; implies X = ;) & Y� Z holds Z�f = f.Theorem FUNCT 2:43. for f being Funtion of X, Y st Y 6= ; for y holds y 2 f�Pi� ex x st x 2 X & x 2 P & y = f:x.Theorem FUNCT 2:44. for f being Funtion of X, Y st Y = ; implies X = ; holdsf�P � Y.Theorem FUNCT 2:45. for f being Funtion of X, Y st Y = ; implies X = ; holdsf�X = rng f.Theorem FUNCT 2:46. for f being Funtion of X, Y st Y 6= ; for x holds x 2 f�1Qi� x 2 X & f:x 2 Q.Theorem FUNCT 2:47. for f being Funtion of X, Y st Y = ; implies X = ; holdsf�1Q � X.Theorem FUNCT 2:48. for f being Funtion of X, Y st Y = ; implies X = ; holdsf�1Y = X.Theorem FUNCT 2:49. for f being Funtion of X, Y st Y 6= ; holds (for y st y 2 Yholds f�1fyg 6= ;) i� rng f = Y.Theorem FUNCT 2:50. for f being Funtion of X, Y st (Y = ; implies X = ;) & P� X holds P � f�1(f�P).Theorem FUNCT 2:51. for f being Funtion of X, Y st Y = ; implies X = ; holdsf�1(f�X) = X.Theorem FUNCT 2:52. for f being Funtion of X, Y st (Y = ; implies X = ;) &rng f = Y holds f�(f�1Y) = Y.Theorem FUNCT 2:53. for f being Funtion of X, Y for g being Funtion of Y, Z st(Z = ; implies Y = ;) & (Y = ; implies X = ;) holds f�1Q � (g�f)�1(g�Q).Theorem FUNCT 2:54. for f being Funtion of ;, Y holds dom f = ; & rng f = ;.Theorem FUNCT 2:55. for f being Funtion st dom f = ; holds f is Funtion of ;,Y.



50 CHAPTER 9. FUNCT 2Theorem FUNCT 2:56. for f1 being Funtion of ;, Y1 for f2 being Funtion of ;,Y2 holds f1 = f2.Theorem FUNCT 2:57. for f being Funtion of ;, Y for g being Funtion of Y, Z stZ = ; implies Y = ; holds g�f is Funtion of ;, Z.Theorem FUNCT 2:58. for f being Funtion of ;, Y holds f is 1-1.Theorem FUNCT 2:59. for f being Funtion of ;, Y holds f�P = ;.Theorem FUNCT 2:60. for f being Funtion of ;, Y holds f�1Q = ;.Theorem FUNCT 2:61. for f being Funtion of fxg, Y st Y 6= ; holds f:x 2 Y.Theorem FUNCT 2:62. for f being Funtion of fxg, Y st Y 6= ; holds rng f = ff:xg.Theorem FUNCT 2:63. for f being Funtion of fxg, Y st Y 6= ; holds f is 1-1.Theorem FUNCT 2:64. for f being Funtion of fxg, Y st Y 6= ; holds f�P � ff:xg.Theorem FUNCT 2:65. for f being Funtion of X, fyg st x 2 X holds f:x = y.Theorem FUNCT 2:66. for f1, f2 being Funtion of X, fyg holds f1 = f2.De�nitionlet X.let f, g being Funtion of X, X.rede�nefun g�f ! Funtion of X, X.De�nitionlet X.rede�nefun Id X ! Funtion of X, X.Theorem FUNCT 2:67. for f being Funtion of X, X holds dom f = X & rng f � X.Theorem FUNCT 2:68. for f being Funtion st dom f = X & rng f � X holds f isFuntion of X, X.Theorem FUNCT 2:69. for f being Funtion of X, X st x 2 X holds f:x 2 X.Theorem FUNCT 2:70. for f, g being Funtion of X, X st x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:71. for f being Funtion of X, X for g being Funtion of X, Yst Y 6= ; & x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:72. for f being Funtion of X, Y for g being Funtion of Y, Yst Y 6= ; & x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:73. for f, g being Funtion of X, X st rng f = X & rng g = Xholds rng (g�f) = X.Theorem FUNCT 2:74. for f being Funtion of X, X holds f�(Id X) = f & (Id X)�f =f.



51Theorem FUNCT 2:75. for f, g being Funtion of X, X st g�f = f & rng f = X holdsg = Id X.Theorem FUNCT 2:76. for f, g being Funtion of X, X st f�g = f & f is 1-1 holds g= Id X.Theorem FUNCT 2:77. for f being Funtion of X, X holds f is 1-1 i� for x1, x2 stx1 2 X & x2 2 X & f:x1 = f:x2 holds x1 = x2.Theorem FUNCT 2:78. for f being Funtion of X, X holds f�P � X.De�nitionlet X.let f be Funtion of X, X.let P.rede�nefun f�P ! Subset of X.Theorem FUNCT 2:79. for f being Funtion of X, X holds f�X = rng f.Theorem FUNCT 2:80. for f being Funtion of X, X holds f�1Q � X.De�nitionlet X.let f be Funtion of X, X.let Q.rede�nefun f�1Q ! Subset of X.Theorem FUNCT 2:81. for f being Funtion of X, X st rng f = X holds f�(f�1X) =X. Theorem FUNCT 2:82. for f being Funtion of X, X holds f�1(f�X) = X.De�nitionlet X.mode Permutation of X ! Funtion of X, X means it is 1-1 & rng it = X.Theorem FUNCT 2:83. for f being Funtion of X, X holds f is Permutation of X i�f is 1-1 & rng f = X.Theorem FUNCT 2:84. for f being Permutation of X holds f is 1-1 & rng f = X.Theorem FUNCT 2:85. for f being Permutation of X for x1, x2 st x1 2 X & x2 2 X& f:x1 = f:x2 holds x1 = x2.De�nitionlet X.let f, g be Permutation of X.rede�nefun g�f ! Permutation of X.



52 CHAPTER 9. FUNCT 2De�nitionlet X.rede�nefun Id X ! Permutation of X.De�nitionlet X.let f be Permutation of X.rede�nefun f�1 ! Permutation of X.Theorem FUNCT 2:86. for f, g being Permutation of X st g�f = g holds f = Id X.Theorem FUNCT 2:87. for f, g being Permutation of X st g�f = Id X holds g = f�1.Theorem FUNCT 2:88. for f being Permutation of X holds (f�1)�f = Id X & f�(f�1)= Id X.Theorem FUNCT 2:89. for f being Permutation of X holds (f�1)�1 = f.Theorem FUNCT 2:90. for f, g being Permutation of X holds (g�f)�1 = f�1�g�1.Theorem FUNCT 2:91. for f being Permutation of X st P\Q = ; holds f�P\f�Q =;. Theorem FUNCT 2:92. for f being Permutation of X st P � X holds f�(f�1P) = P& f�1(f�P) = P.Theorem FUNCT 2:93. for f being Permutation of X holds f�P = (f�1)�1P & f�1P= (f�1)�P.reserve C, D, E for DOMAIN.De�nitionlet X, D, E.let f be Funtion of X, D.let g be Funtion of D, E.rede�nefun g�f ! Funtion of X, E.De�nitionlet X, D.rede�nemode Funtion of X, D means X = dom it & rng it � D.Theorem FUNCT 2:94. for f being Funtion of X, D holds dom f = X & rng f � D.Theorem FUNCT 2:95. for f being Funtion st dom f = X & rng f � D holds f isFuntion of X, D.Theorem FUNCT 2:96. for f being Funtion of X, D st x 2 X holds f:x 2 D.



53Theorem FUNCT 2:97. for f being Funtion of fxg, D holds f:x 2 D.Theorem FUNCT 2:98. for f1, f2 being Funtion of X, D st for x st x 2 X holdsf1:x = f2:x holds f1 = f2.Theorem FUNCT 2:99. for f being Funtion of X, D for g being Funtion of D, Est x 2 X holds (g�f):x = g:(f:x).Theorem FUNCT 2:100. for f being Funtion of X, D holds f�(Id X) = f & (Id D)�f= f.Theorem FUNCT 2:101. for f being Funtion of X, D holds f is 1-1 i� for x1, x2 stx1 2 X & x2 2 X & f:x1 = f:x2 holds x1 = x2.Theorem FUNCT 2:102. for f being Funtion of X, D for y holds y 2 f�P i� ex x stx 2 X & x 2 P & y = f:x.Theorem FUNCT 2:103. for f being Funtion of X, D holds f�P � D.De�nitionlet X, D.let f be Funtion of X, D.let P.rede�nefun f�P ! Subset of D.Theorem FUNCT 2:104. for f being Funtion of X, D holds f�X = rng f.Theorem FUNCT 2:105. for f being Funtion of X, D st f�X = D holds rng (f) = D.Theorem FUNCT 2:106. for f being Funtion of X, D for x holds x 2 f�1Q i� x 2X & f:x 2 Q.Theorem FUNCT 2:107. for f being Funtion of X, D holds f�1Q � X.De�nitionlet X, D.let f be Funtion of X, D.let Q.rede�nefun f�1Q ! Subset of X.Theorem FUNCT 2:108. for f being Funtion of X, D holds f�1D = X.Theorem FUNCT 2:109. for f being Funtion of X, D holds (for y st y 2 D holdsf�1fyg 6= ;) i� rng f = D.Theorem FUNCT 2:110. for f being Funtion of X, D holds f�1(f�X) = X.Theorem FUNCT 2:111. for f being Funtion of X, D st rng f = D holds f�(f�1D) =D. Theorem FUNCT 2:112. for f being Funtion of X, D for g being Funtion of D, Eholds f�1Q � (g�f)�1(g�Q).



54 CHAPTER 9. FUNCT 2reserve , 1, 2 for Element of C.reserve d, d1, d2 for Element of D.De�nitionlet C, D.let f be Funtion of C, D.let .rede�nefun f: ! Element of D.sheme FunExDfC() ! DOMAIN, D() ! DOMAIN, P[Any, Any℄g: ex f being Fun-tion of C(), D() st for x being Element of C() holds P[x, f:x℄ provided A1: for x beingElement of C() ex y being Element of D() st P[x, y℄ and A2: for x being (Element ofC()), y1, y2 being Element of D() st P[x, y1℄ & P[x, y2℄ holds y1 = y2.sheme LambdaDfC() ! DOMAIN, D() ! DOMAIN, F((Element of C())) ! Elementof D()g: ex f being Funtion of C(), D() st for x being Element of C() holds f:x = F(x).Theorem FUNCT 2:113. for f1, f2 being Funtion of C, D st for  holds f1: = f2:holds f1 = f2.Theorem FUNCT 2:114. (Id C): = .Theorem FUNCT 2:115. for f being Funtion of C, D for g being Funtion of D, Eholds (g�f): = g:(f:).Theorem FUNCT 2:116. for f being Funtion of C, D for d holds d 2 f�P i� ex  st 2 P & d = f:.Theorem FUNCT 2:117. for f being Funtion of C, D for  holds  2 f�1Q i� f: 2Q. Theorem FUNCT 2:118. for f1, f2 being Funtion of [[X, Y℄℄, Z st Z 6= ; & for x, yst x 2 X & y 2 Y holds f1:[x, y℄ = f2:[x, y℄ holds f1 = f2.Theorem FUNCT 2:119. for f being Funtion of [[X, Y℄℄, Z st x 2 X & y 2 Y & Z 6=; holds f:[x, y℄ 2 Z.sheme FunEx2fX() ! set, Y() ! set, Z() ! set, P[Any, Any, Any℄g: ex f beingFuntion of [[X(), Y()℄℄, Z() st for x, y st x 2 X() & y 2 Y() holds P[x, y, f:[x, y℄℄ providedA1: for x, y st x 2 X() & y 2 Y() ex z st z 2 Z() & P[x, y, z℄ and A2: for x, y, z1, z2st x 2 X() & y 2 Y() & P[x, y, z1℄ & P[x, y, z2℄ holds z1 = z2.sheme Lambda2fX() ! set, Y() ! set, Z() ! set, F(Any, Any) ! Anyg: ex f beingFuntion of [[X(), Y()℄℄, Z() st for x, y st x 2 X() & y 2 Y() holds f:[x, y℄ = F(x, y)provided A: for x, y st x 2 X() & y 2 Y() holds F(x, y) 2 Z().Theorem FUNCT 2:120. for f1, f2 being Funtion of [[C, D℄℄, E st for , d holds f1:[, d℄ = f2:[, d℄ holds f1 = f2.sheme FunEx2DfX() ! DOMAIN, Y() ! DOMAIN, Z() ! DOMAIN, P[Any, Any,Any℄g: ex f being Funtion of [[X(), Y()℄℄, Z() st for x being Element of X() for y being



55Element of Y() holds P[x, y, f:[x, y℄℄ provided A1: for x being Element of X() for ybeing Element of Y() ex z being Element of Z() st P[x, y, z℄ and A2: for x beingElement of X() for y being Element of Y() for z1, z2 being Element of Z() st P[x, y, z1℄& P[x, y, z2℄ holds z1 = z2.sheme Lambda2DfX() ! DOMAIN, Y() ! DOMAIN, Z() ! DOMAIN, F((Elementof X()), Element of Y()) ! Element of Z()g: ex f being Funtion of [[X(), Y()℄℄, Z() stfor x being Element of X() for y being Element of Y() holds f:[x, y℄ = F(x, y).



Chapter 10FUNCT 3Basi Funtions and Operations on FuntionsbyCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. We de�ne the following mappings: the harateristi funtion of asubset of a set, the inlusion funtion (injetion or embedding), the projetionsfrom a artesian produt onto its arguments and diagonal funtion (inlusion ofa set into its artesian square). Some operations on funtions are also de�ned:the produts of two funtions (the omplex funtion and the more general produt-funtion), the funtion indued on power sets by the image and inverse-image. Somesimple propositions related to the introdued notions are proved.The symbols used in this artile are introdued in the following voabularies: boole,binop, fun, fun rel, real 1, fun3, and fam op. The terminology and nota-tion used in this artile have been introdued in the following artiles: tarski, boole,funt 1, and funt 2.reserve p, q, x, x1, x2, y, y1, y2, z, z1, z2 for Any.reserve A, B, V, X, X1, X2, Y, Y1, Y2, Z, P for set.reserve C, C1, C2, D, D1, D2 for DOMAIN.Theorem FUNCT 3:1. A � Y implies Id A = (Id Y)�A.Theorem FUNCT 3:2. for f, g being Funtion st X � dom (g�f) holds f�X � dom g.1Supported by RPBP.III-24.C1. 56



57Theorem FUNCT 3:3. for f, g being Funtion st X � dom f & f�X � dom g holds X� dom (g�f).Theorem FUNCT 3:4. for f, g being Funtion st Y � rng (g�f) & g is 1-1 holds g�1Y� rng f.Theorem FUNCT 3:5. for f, g being Funtion st Y � rng g & g�1Y � rng f holds Y� rng (g�f).sheme FunEx 3fA() ! set, B() ! set, P[Any, Any, Any℄g: ex f being Funtion stdom f = [[A(), B()℄℄ & for x, y st x 2 A() & y 2 B() holds P[x, y, f:[x, y℄℄ provided A:for x, y, z1, z2 st x 2 A() & y 2 B() & P[x, y, z1℄ & P[x, y, z2℄ holds z1 = z2 and B: forx, y st x 2 A() & y 2 B() ex z st P[x, y, z℄.sheme Lambda 3fA() ! set, B() ! set, F(Any, Any) ! Anyg: ex f being Funtionst dom f = [[A(), B()℄℄ & for x, y st x 2 A() & y 2 B() holds f:[x, y℄ = F(x, y).Theorem FUNCT 3:6. for f, g being Funtion st dom f = [[X, Y℄℄ & dom g = [[X, Y℄℄& for x, y st x 2 X & y 2 Y holds f:[x, y℄ = g:[x, y℄ holds f = g.De�nitionlet f be Funtion.fun�f ! Funtionmeans dom it = bool dom f & for X st X 2 bool dom f holdsit:X = f�X.Theorem FUNCT 3:7. for f, g being Funtion holds g =�f i� dom g = bool dom f &for X st X 2 bool dom f holds g:X = f�X.Theorem FUNCT 3:8. for f being Funtion st X 2 dom (�f) holds (�f):X = f�X.Theorem FUNCT 3:9. for f being Funtion holds (�f):; = ;.Theorem FUNCT 3:10. for f being Funtion holds rng (�f) � bool rng f.Theorem FUNCT 3:11. for f being Funtion holds Y 2 (�f)�A i� ex X st X 2 dom(�f) & X 2 A & Y = (�f):X.Theorem FUNCT 3:12. for f being Funtion holds (�f)�A � bool rng f.Theorem FUNCT 3:13. for f being Funtion holds (�f)�1B � bool dom f.Theorem FUNCT 3:14. for f being Funtion of X, D holds (�f)�1B � bool X.Theorem FUNCT 3:15. for f being Funtion holds S((�f)�A) � f�(SA).Theorem FUNCT 3:16. for f being Funtion st A � bool dom f holds f�(SA) = S((�f)�A).Theorem FUNCT 3:17. for f being Funtion of X, D st A � bool X holds f�(SA) =S((�f)�A).Theorem FUNCT 3:18. for f being Funtion holds S((�f)�1B) � f�1(SB).Theorem FUNCT 3:19. for f being Funtion st B � bool rng f holds f�1(SB) =S((�f)�1B).Theorem FUNCT 3:20. for f, g being Funtion holds�(g�f) =�g��f.



58 CHAPTER 10. FUNCT 3Theorem FUNCT 3:21. for f being Funtion holds�f is Funtion of bool dom f, boolrng f.Theorem FUNCT 3:22. for f being Funtion of X, Y st Y = ; implies X = ; holds�fis Funtion of bool X, bool Y.De�nitionlet X, D.let f be Funtion of X, D.rede�nefun�f ! Funtion of bool X, bool D.De�nitionlet f be Funtion.fun�1f ! Funtionmeans dom it = bool rng f & for Y st Y 2 bool rng f holdsit:Y = f�1Y.Theorem FUNCT 3:23. for g, f being Funtion holds g =�1f i� dom g = bool rng f& for Y st Y 2 bool rng f holds g:Y = f�1Y.Theorem FUNCT 3:24. for f being Funtion st Y 2 dom (�1f) holds (�1f):Y = f�1Y.Theorem FUNCT 3:25. for f being Funtion holds rng (�1f) � bool dom f.Theorem FUNCT 3:26. for f being Funtion holds X 2 (�1f)�A i� ex Y st Y 2 dom(�1f) & Y 2 A & X = (�1f):Y.Theorem FUNCT 3:27. for f being Funtion holds (�1f)�B � bool dom f.Theorem FUNCT 3:28. for f being Funtion holds (�1f)�1A � bool rng f.Theorem FUNCT 3:29. for f being Funtion holds S((�1f)�B) � f�1(SB).Theorem FUNCT 3:30. for f being Funtion st B � bool rng f holds S((�1f)�B) =f�1(SB).Theorem FUNCT 3:31. for f being Funtion holds S((�1f)�1A) � f�(SA).Theorem FUNCT 3:32. for f being Funtion st A � bool dom f & f is 1-1 holdsS((�1f)�1A) = f�(SA).Theorem FUNCT 3:33. for f being Funtion holds (�1f)�B � (�f)�1B.Theorem FUNCT 3:34. for f being Funtion st f is 1-1 holds (�1f)�B = (�f)�1B.Theorem FUNCT 3:35. for f being Funtion, A be set st A � bool dom f holds(�1f)�1A � (�f)�A.Theorem FUNCT 3:36. for f being Funtion, A be set st f is 1-1 holds (�f)�A �(�1f)�1A.Theorem FUNCT 3:37. for f being Funtion, A be set st f is 1-1 & A � bool dom fholds (�1f)�1A = (�f)�A.Theorem FUNCT 3:38. for f, g being Funtion st g is 1-1 holds�1(g�f) =�1f��1g.



59Theorem FUNCT 3:39. for f being Funtion holds�1f is Funtion of bool rng f, booldom f.De�nitionlet A, X.fun �(A, X) ! Funtion means dom it = X & for x st x 2 X holds (x 2 Aimplies it:x = 1) & (not x 2 A implies it:x = 0).Theorem FUNCT 3:40. for f being Funtion holds f = �(A, X) i� dom f = X & forx st x 2 X holds (x 2 A implies f:x = 1) & (not x 2 A implies f:x = 0).Theorem FUNCT 3:41. A � X & x 2 A implies �(A, X):x = 1.Theorem FUNCT 3:42. x 2 X & �(A, X):x = 1 implies x 2 A.Theorem FUNCT 3:43. x 2 XrA implies �(A, X):x = 0.Theorem FUNCT 3:44. x 2 X & �(A, X):x = 0 implies not x 2 A.Theorem FUNCT 3:45. x 2 X implies �(;, X):x = 0.Theorem FUNCT 3:46. x 2 X implies �(X, X):x = 1.Theorem FUNCT 3:47. A � X & B � X & �(A, X) = �(B, X) implies A = B.Theorem FUNCT 3:48. rng �(A, X) � f0, 1g.Theorem FUNCT 3:49. for f being Funtion of X, f0, 1g holds f = �(f�1f1g, X).De�nitionlet A, X.rede�nefun �(A, X) ! Funtion of X, f0, 1g.Theorem FUNCT 3:50. for d being Element of D holds �(A, D):d = 1 i� d 2 A.Theorem FUNCT 3:51. for d being Element of D holds �(A, D):d = 0 i� not d 2A.De�nitionlet Y.let A be Subset of Y.fun inl (A) ! Funtion of A, Y means it = Id A.Theorem FUNCT 3:52. for A being Subset of Y holds inl A = Id A.Theorem FUNCT 3:53. for A being Subset of Y holds inl A = (Id Y)�A.Theorem FUNCT 3:54. for A being Subset of Y holds dom inl A = A & rng inl A= A.Theorem FUNCT 3:55. for A being Subset of Y st x 2 A holds (inl A):x = x.Theorem FUNCT 3:56. for A being Subset of Y st x 2 A holds inl (A):x 2 Y.De�nitionlet X, Y.



60 CHAPTER 10. FUNCT 3fun �1(X, Y) ! Funtion means dom it = [[X, Y℄℄ & for x, y st x 2 X & y 2Y holds it:[x, y℄ = x.fun �2(X, Y) ! Funtion means dom it = [[X, Y℄℄ & for x, y st x 2 X & y 2Y holds it:[x, y℄ = y.Theorem FUNCT 3:57. for f being Funtion holds f = �1(X, Y) i� dom f = [[X, Y℄℄& for x, y st x 2 X & y 2 Y holds f:[x, y℄ = x.Theorem FUNCT 3:58. for f being Funtion holds f = �2(X, Y) i� dom f = [[X, Y℄℄& for x, y st x 2 X & y 2 Y holds f:[x, y℄ = y.Theorem FUNCT 3:59. rng �1(X, Y) � X.Theorem FUNCT 3:60. Y 6= ; implies rng �1(X, Y) = X.Theorem FUNCT 3:61. rng �2(X, Y) � Y.Theorem FUNCT 3:62. X 6= ; implies rng �2(X, Y) = Y.De�nitionlet X, Y.rede�nefun �1(X, Y) ! Funtion of [[X, Y℄℄, X.fun �2(X, Y) ! Funtion of [[X, Y℄℄, Y.Theorem FUNCT 3:63. for d1 being Element of D1 for d2 being Element of D2holds �1(D1, D2):[d1, d2℄ = d1.Theorem FUNCT 3:64. for d1 being Element of D1 for d2 being Element of D2holds �2(D1, D2):[d1, d2℄ = d2.De�nitionlet X.fun Æ(X) ! Funtion means dom it = X & for x st x 2 X holds it:x = [x, x℄.Theorem FUNCT 3:65. for f being Funtion holds f = ÆX i� dom f = X & for x stx 2 X holds f:x = [x, x℄.Theorem FUNCT 3:66. rng ÆX � [[X, X℄℄.De�nitionlet X.rede�nefun Æ(X) ! Funtion of X, [[X, X℄℄.De�nitionlet f, g be Funtion.fun [(f, g)℄ ! Funtion means dom it = dom f\dom g & for x st x 2 dom itholds it:x = [f:x, g:x℄.Theorem FUNCT 3:67. for f, g, fg being Funtion holds fg = [(f, g)℄ i� dom fg = domf\dom g & for x st x 2 dom fg holds fg:x = [f:x, g:x℄.



61Theorem FUNCT 3:68. for f, g being Funtion st x 2 dom f\dom g holds [(f, g)℄:x =[f:x, g:x℄.Theorem FUNCT 3:69. for f, g being Funtion st dom f = X & dom g = X & x 2 Xholds [(f, g)℄:x = [f:x, g:x℄.Theorem FUNCT 3:70. for f, g being Funtion st dom f = X & dom g = X holdsdom [(f, g)℄ = X.Theorem FUNCT 3:71. for f, g being Funtion holds rng [(f, g)℄ � [[rng f, rng g℄℄.Theorem FUNCT 3:72. for f, g being Funtion st dom f = dom g & rng f � Y & rngg � Z holds �1(Y, Z)�[(f, g)℄ = f & �2(Y, Z)�[(f, g)℄ = g.Theorem FUNCT 3:73. [(�1(X, Y), �2(X, Y))℄ = Id [[X, Y℄℄.Theorem FUNCT 3:74. for f, g, h, k being Funtion st dom f = dom g & dom k =dom h & [(f, g)℄ = [(k, h)℄ holds f = k & g = h.Theorem FUNCT 3:75. for f, g, h being Funtion holds [(f�h, g�h)℄ = [(f, g)℄�h.Theorem FUNCT 3:76. for f, g being Funtion holds [(f, g)℄�A � [[f�A, g�A℄℄.Theorem FUNCT 3:77. for f, g being Funtion holds [(f, g)℄�1[[B, C℄℄ = f�1B\g�1C.Theorem FUNCT 3:78. for f being Funtion of X, Y for g being Funtion of X, Z st(Y = ; implies X = ;) & (Z = ; implies X = ;) holds [(f, g)℄ is Funtion of X, [[Y, Z℄℄.De�nitionlet X, D1, D2.let f1 be Funtion of X, D1.let f2 be Funtion of X, D2.rede�nefun [(f1, f2)℄ ! Funtion of X, [[D1, D2℄℄.Theorem FUNCT 3:79. for f1 being Funtion of C, D1 for f2 being Funtion of C,D2 for  being Element of C holds [(f1, f2)℄: = [f1:, f2:℄.Theorem FUNCT 3:80. for f being Funtion of X, Y for g being Funtion of X, Z st(Y = ; implies X = ;) & (Z = ; implies X = ;) holds rng [(f, g)℄ � [[Y, Z℄℄.Theorem FUNCT 3:81. for f being Funtion of X, Y for g being Funtion of X, Z st(Y = ; implies X = ;) & (Z = ; implies X = ;) holds �1(Y, Z)�[(f, g)℄ = f & �2(Y, Z)�[(f, g)℄ = g.Theorem FUNCT 3:82. for f being Funtion of X, D1 for g being Funtion of X, D2holds �1(D1, D2)�[(f, g)℄ = f & �2(D1, D2)�[(f, g)℄ = g.Theorem FUNCT 3:83. for f1, f2 being Funtion of X, Y for g1, g2 being Funtionof X, Z st (Y = ; implies X = ;) & (Z = ; implies X = ;) & [(f1, g1)℄ = [(f2, g2)℄ holdsf1 = f2 & g1 = g2.Theorem FUNCT 3:84. for f1, f2 being Funtion of X, D1 for g1, g2 being Funtionof X, D2 st [(f1, g1)℄ = [(f2, g2)℄ holds f1 = f2 & g1 = g2.



62 CHAPTER 10. FUNCT 3De�nitionlet f, g be Funtion.fun [[f, g℄℄ ! Funtion means dom it = [[dom f, dom g℄℄ & for x, y st x 2 domf & y 2 dom g holds it:[x, y℄ = [f:x, g:y℄.Theorem FUNCT 3:85. for f, g, fg being Funtion holds fg = [[f, g℄℄ i� dom fg = [[domf, dom g℄℄ & for x, y st x 2 dom f & y 2 dom g holds fg:[x, y℄ = [f:x, g:y℄.Theorem FUNCT 3:86. for f, g being Funtion, x, y st [x, y℄ 2 [[dom f, dom g℄℄ holds[[f, g℄℄:[x, y℄ = [f:x, g:y℄.Theorem FUNCT 3:87. for f, g being Funtion holds [[f, g℄℄ = [(f��1(dom f, dom g), g��2(dom f, dom g))℄.Theorem FUNCT 3:88. for f, g being Funtion holds rng [[f, g℄℄ = [[rng f, rng g℄℄.Theorem FUNCT 3:89. for f, g being Funtion st dom f = X & dom g = X holds [(f,g)℄ = [[f, g℄℄�(ÆX).Theorem FUNCT 3:90. [[Id X, Id Y℄℄ = Id [[X, Y℄℄.Theorem FUNCT 3:91. for f, g, h, k being Funtion holds [[f, h℄℄�[(g, k)℄ = [(f�g, h�k)℄.Theorem FUNCT 3:92. for f, g, h, k being Funtion holds [[f, h℄℄�[[g, k℄℄ = [[f�g, h�k℄℄.Theorem FUNCT 3:93. for f, g being Funtion holds [[f, g℄℄�[[B, C℄℄ = [[f�B, g�C℄℄.Theorem FUNCT 3:94. for f, g being Funtion holds [[f, g℄℄�1[[B, C℄℄ = [[f�1B, g�1C℄℄.Theorem FUNCT 3:95. for f being Funtion of X, Y for g being Funtion of V, Z st(Y = ; implies X = ;) & (Z = ; implies V = ;) holds [[f, g℄℄ is Funtion of [[X, V℄℄, [[Y,Z℄℄.De�nitionlet X1, X2, D1, D2.let f1 be Funtion of X1, D1.let f2 be Funtion of X2, D2.rede�nefun [[f1, f2℄℄ ! Funtion of [[X1, X2℄℄, [[D1, D2℄℄.Theorem FUNCT 3:96. for f1 being Funtion of C1, D1 for f2 being Funtion ofC2, D2 for 1 being Element of C1 for 2 being Element of C2 holds [[f1, f2℄℄:[1, 2℄ =[f1:1, f2:2℄.Theorem FUNCT 3:97. for f1 being Funtion of X1, Y1 for f2 being Funtion of X2,Y2 st (Y1 = ; implies X1 = ;) & (Y2 = ; implies X2 = ;) holds [[f1, f2℄℄ = [(f1��1(X1,X2), f2��2(X1, X2))℄.Theorem FUNCT 3:98. for f1 being Funtion of X1, D1 for f2 being Funtion of X2,D2 holds [[f1, f2℄℄ = [(f1��1(X1, X2), f2��2(X1, X2))℄.Theorem FUNCT 3:99. for f1 being Funtion of X, Y1 for f2 being Funtion of X,Y2 st (Y1 = ; implies X = ;) & (Y2 = ; implies X = ;) holds [(f1, f2)℄ = [[f1, f2℄℄�(ÆX).



63Theorem FUNCT 3:100. for f1 being Funtion of X, D1 for f2 being Funtion of X,D2 holds [(f1, f2)℄ = [[f1, f2℄℄�(ÆX).



Chapter 11BINOP 1 Binary Operations.byCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. In this paper we de�ne binary and unary operations on domains. Wealso de�ne the following prediates onerning the operations: is ommutative, isassoiative, is the unity of, and is distributive wrt. A number of shemes useful injustifying the existene of the operations are proved.The symbols used in this artile are introdued in the following voabularies: boole,binop, fun, fun rel, and oord. The terminology and notation used in this artilehave been introdued in the following artiles: tarski, boole, funt 1, and funt 2.De�nitionlet f be Funtion.let a, b be Any.fun f:(a, b) ! Any means it = f:[a, b℄.Theorem BINOP 1:1. for f being Funtion for a, b being Any holds f:(a, b) = f:[a,b℄. reserve A, B, C for DOMAIN.1Supported by RPBP.III-24.C1. 64



65De�nitionlet A, B, C.let f be Funtion of [[A, B℄℄, C.let a be Element of A.let b be Element of B.rede�nefun f:(a, b) ! Element of C.Theorem BINOP 1:2. for f1, f2 being Funtion of [[A, B℄℄, C st for a being Elementof A for b being Element of B holds f1:(a, b) = f2:(a, b) holds f1 = f2.De�nitionlet A.mode UnOp of A ! Funtion of A, A means not ontradition.mode BinOp of A ! Funtion of [[A, A℄℄, A means not ontradition.Theorem BINOP 1:3. for f being Funtion of A, A holds f is UnOp of A.reserve u, u0 for UnOp of A.Theorem BINOP 1:4. for f being Funtion of [[A, A℄℄, A holds f is BinOp of A.sheme UnOpExfA() ! DOMAIN, P[(Element of A()), Element of A()℄g: ex u beingUnOp of A() st for x being Element of A() holds P[x, u:x℄ provided A1: for x beingElement of A() ex y being Element of A() st P[x, y℄ and A2: for x, y1, y2 being Elementof A() st P[x, y1℄ & P[x, y2℄ holds y1 = y2.sheme UnOpLambdafA() ! DOMAIN, F((Element of A())) ! Element of A()g: exu being UnOp of A() st for x being Element of A() holds u:x = F(x).reserve o, o0 for BinOp of A.reserve a, a1, a2, b, b1, b2, , e, e1, e2 for Element of A.De�nitionlet A, o, a, b.rede�nefun o:(a, b) ! Element of A.sheme BinOpExfA() ! DOMAIN, P[(Element of A()), (Element of A()), Element ofA()℄g: ex o being BinOp of A() st for a, b being Element of A() holds P[a, b, o:(a, b)℄provided A1: for x, y being Element of A() ex z being Element of A() st P[x, y, z℄ andA2: for x, y being Element of A() for z1, z2 being Element of A() st P[x, y, z1℄ & P[x,y, z2℄ holds z1 = z2.sheme BinOpLambdafA() ! DOMAIN, O((Element of A()), Element of A()) !Element of A()g: ex o being BinOp of A() st for a, b being Element of A() holds o:(a,b) = O(a, b).



66 CHAPTER 11. BINOP 1De�nitionlet A, o.pred o is ommutative means for a, b holds o:(a, b) = o:(b, a).pred o is assoiative means for a, b,  holds o:(a, o:(b, )) = o:(o:(a, b), ).pred o is an idempotent means for a holds o:(a, a) = a.Theorem BINOP 1:5. o is ommutative i� for a, b holds o:(a, b) = o:(b, a).Theorem BINOP 1:6. o is assoiative i� for a, b,  holds o:(a, o:(b, )) = o:(o:(a, b),). Theorem BINOP 1:7. o is an idempotent i� for a holds o:(a, a) = a.De�nitionlet A, e, o.pred e is a left unity wrt o means for a holds o:(e, a) = a.pred e is a right unity wrt o means for a holds o:(a, e) = a.De�nitionlet A, e, o.pred e is a unity wrt o means e is a left unity wrt o & e is a right unity wrt o.Theorem BINOP 1:8. e is a left unity wrt o i� for a holds o:(e, a) = a.Theorem BINOP 1:9. e is a right unity wrt o i� for a holds o:(a, e) = a.Theorem BINOP 1:10. e is a unity wrt o i� e is a left unity wrt o & e is a right unity wrto. Theorem BINOP 1:11. e is a unity wrt o i� for a holds o:(e, a) = a & o:(a, e) = a.Theorem BINOP 1:12. o is ommutative implies (e is a unity wrt o i� for a holds o:(e, a) = a).Theorem BINOP 1:13. o is ommutative implies (e is a unity wrt o i� for a holds o:(a, e) = a).Theorem BINOP 1:14. o is ommutative implies (e is a unity wrt o i� e is a left unitywrt o).Theorem BINOP 1:15. o is ommutative implies (e is a unity wrt o i� e is a right unitywrt o).Theorem BINOP 1:16. o is ommutative implies (e is a left unity wrt o i� e is a rightunity wrt o).Theorem BINOP 1:17. e1 is a left unity wrt o & e2 is a right unity wrt o implies e1 =e2. Theorem BINOP 1:18. e1 is a unity wrt o & e2 is a unity wrt o implies e1 = e2.De�nitionlet A, o.



67assume ex e st e is a unity wrt o.fun the unity wrt o ! Element of A means it is a unity wrt o.Theorem BINOP 1:19. (ex e st e is a unity wrt o) implies for e holds e = the unitywrt o i� e is a unity wrt o.De�nitionlet A, o0, o.pred o0 is left distributive wrt o means for a, b,  holds o0:(a, o:(b, )) = o:(o0:(a, b), o0:(a, )).pred o0 is right distributive wrt o means for a, b,  holds o0:(o:(a, b), ) = o:(o0:(a, ), o0:(b, )).De�nitionlet A, o0, o.pred o0 is distributive wrt o means o0 is left distributive wrt o & o0 is right dis-tributive wrt o.Theorem BINOP 1:20. o0 is left distributive wrt o i� for a, b,  holds o0:(a, o:(b, ))= o:(o0:(a, b), o0:(a, )).Theorem BINOP 1:21. o0 is right distributive wrt o i� for a, b,  holds o0:(o:(a, b), )= o:(o0:(a, ), o0:(b, )).Theorem BINOP 1:22. o0 is distributive wrt o i� o0 is left distributive wrt o & o0 is rightdistributive wrt o.Theorem BINOP 1:23. o0 is distributive wrt o i� for a, b,  holds o0:(a, o:(b, )) = o:(o0:(a, b), o0:(a, )) & o0:(o:(a, b), ) = o:(o0:(a, ), o0:(b, )).Theorem BINOP 1:24. o0 is ommutative implies (o0 is distributive wrt o i� for a, b, holds o0:(a, o:(b, )) = o:(o0:(a, b), o0:(a, ))).Theorem BINOP 1:25. o0 is ommutative implies (o0 is distributive wrt o i� for a, b, holds o0:(o:(a, b), ) = o:(o0:(a, ), o0:(b, ))).Theorem BINOP 1:26. o0 is ommutative implies (o0 is distributive wrt o i� o0 is leftdistributive wrt o).Theorem BINOP 1:27. o0 is ommutative implies (o0 is distributive wrt o i� o0 is rightdistributive wrt o).Theorem BINOP 1:28. o0 is ommutative implies (o0 is right distributive wrt o i� o0 isleft distributive wrt o).De�nitionlet A, u, o.pred u is distributive wrt o means for a, b holds u:(o:(a, b)) = o:((u:a), (u:b)).Theorem BINOP 1:29. u is distributive wrt o i� for a, b holds u:(o:(a, b)) = o:((u:a),(u:b)).



Chapter 12RELAT 1Relations and Their Basi PropertiesbyEdmund Woronowiz 1Warsaw University (Bia lystok)Summary. We de�ne here: mode Relation as a set of pairs, the domain, theodomain, and the �eld of relation; the empty and the identity relations, the om-position of relations, the image and the inverse image of a set under a relation. Twoprediates, = and �, and three funtions, \, [,and r are rede�ned. Basi fatsabout the above mentioned notions are presented.The symbols used in this artile are introdued in the following voabularies: fam op,boole, real 1, fun rel, and relation. The artiles tarski and boole provide theterminology and notation for this artile.reserve A, B, X, X1, X2, Y, Y1, Y2 for set.reserve a, b, , d, x, y, z for Any.De�nitionmode Relation ! set means x 2 it implies ex y, z st x = [y, z℄.Theorem RELAT 1:1. for R being set st (for x st x 2 R holds ex y, z st x = [y, z℄)holds R is Relation.reserve P, P1, P2, Q, R, S for Relation.1Supported by RPBP.III-24.C1. 68



69Theorem RELAT 1:2. x 2 R implies ex y, z st x = [y, z℄.Theorem RELAT 1:3. A � R implies A is Relation.Theorem RELAT 1:4. f[x, y℄g is Relation.Theorem RELAT 1:5. f[a, b℄, [, d℄g is Relation.Theorem RELAT 1:6. [[X, Y℄℄ is Relation.sheme Rel ExistenefA() ! set, B() ! set, P[Any, Any℄g: ex R being Relation stfor x, y holds [x, y℄ 2 R i� x 2 A() & y 2 B() & P[x, y℄.De�nitionlet P, R.rede�nepred P = R means for a, b holds [a, b℄ 2 P i� [a, b℄ 2 R.Theorem RELAT 1:7. P = R i� for a, b holds [a, b℄ 2 P i� [a, b℄ 2 R.De�nitionlet P, R.rede�nefun P\R ! Relation.fun P[R ! Relation.fun PrR ! Relation.pred P � R means for a, b holds [a, b℄ 2 P implies [a, b℄ 2 R.Theorem RELAT 1:8. P � R i� for a, b holds [a, b℄ 2 P implies [a, b℄ 2 R.Theorem RELAT 1:9. X\R is Relation & R\X is Relation.Theorem RELAT 1:10. RrX is Relation.De�nitionlet R.fun dom R ! set means x 2 it i� ex y st [x, y℄ 2 R.Theorem RELAT 1:11. X = dom R i� for x holds x 2 X i� ex y st [x, y℄ 2 R.Theorem RELAT 1:12. x 2 dom R i� ex y st [x, y℄ 2 R.Theorem RELAT 1:13. dom (P[R) = dom P[dom R.Theorem RELAT 1:14. dom (P\R) � dom P\dom R.Theorem RELAT 1:15. dom Prdom R � dom (PrR).De�nitionlet R.fun rng R ! set means y 2 it i� ex x st [x, y℄ 2 R.Theorem RELAT 1:16. X = rng R i� for x holds x 2 X i� ex y st [y, x℄ 2 R.Theorem RELAT 1:17. x 2 rng R i� ex y st [y, x℄ 2 R.



70 CHAPTER 12. RELAT 1Theorem RELAT 1:18. x 2 dom R implies ex y st y 2 rng R.Theorem RELAT 1:19. y 2 rng R implies ex x st x 2 dom R.Theorem RELAT 1:20. [x, y℄ 2 R implies x 2 dom R & y 2 rng R.Theorem RELAT 1:21. R � [[dom R, rng R℄℄.Theorem RELAT 1:22. R\[[dom R, rng R℄℄ = R.Theorem RELAT 1:23. R = f[x, y℄g implies dom R = fxg & rng R = fyg.Theorem RELAT 1:24. R = f[a, b℄, [x, y℄g implies dom R = fa, xg & rng R = fb,yg. Theorem RELAT 1:25. P � R implies dom P � dom R & rng P � rng R.Theorem RELAT 1:26. rng (P[R) = rng P[rng R.Theorem RELAT 1:27. rng (P\R) � rng P\rng R.Theorem RELAT 1:28. rng Prrng R � rng (PrR).De�nitionlet R.fun �eld R ! set means it = dom R[rng R.Theorem RELAT 1:29. �eld R = dom R[rng R.Theorem RELAT 1:30. [a, b℄ 2 R implies a 2 �eld R & b 2 �eld R.Theorem RELAT 1:31. P � R implies �eld P � �eld R.Theorem RELAT 1:32. R = f[x, y℄g implies �eld R = fx, yg.Theorem RELAT 1:33. �eld (P[R) = �eld P[�eld R.Theorem RELAT 1:34. �eld (P\R) � �eld P\�eld R.De�nitionlet R.fun R^ ! Relation means [x, y℄ 2 it i� [y, x℄ 2 R.Theorem RELAT 1:35. R = P^ i� for x, y holds [x, y℄ 2 R i� [y, x℄ 2 P.Theorem RELAT 1:36. [x, y℄ 2 P^ i� [y, x℄ 2 P.Theorem RELAT 1:37. (R^)^ = R.Theorem RELAT 1:38. �eld R = �eld (R^).Theorem RELAT 1:39. (P\R)^ = P^\R^.Theorem RELAT 1:40. (P[R)^ = P^[R^.Theorem RELAT 1:41. (PrR)^ = P^rR^.De�nitionlet P, R.fun P�R ! Relation means [x, y℄ 2 it i� ex z st [x, z℄ 2 P & [z, y℄ 2 R.



71Theorem RELAT 1:42. Q = P�R i� for x, y holds [x, y℄ 2 Q i� ex z st [x, z℄ 2 P &[z, y℄ 2 R.Theorem RELAT 1:43. [x, y℄ 2 P�R i� ex z st [x, z℄ 2 P & [z, y℄ 2 R.Theorem RELAT 1:44. dom (P�R) � dom P.Theorem RELAT 1:45. rng (P�R) � rng R.Theorem RELAT 1:46. rng R � dom P implies dom (R�P) = dom R.Theorem RELAT 1:47. dom P � rng R implies rng (R�P) = rng P.Theorem RELAT 1:48. P � R implies Q�P � Q�R.Theorem RELAT 1:49. P � Q implies P�R � Q�R.Theorem RELAT 1:50. P � R & Q � S implies P�Q � R�S.Theorem RELAT 1:51. P�(R[Q) = (P�R)[(P�Q).Theorem RELAT 1:52. P�(R\Q) � (P�R)\(P�Q).Theorem RELAT 1:53. (P�R)r(P�Q) � P�(RrQ).Theorem RELAT 1:54. (P�R)^ = R^�P^.Theorem RELAT 1:55. (P�R)�Q = P�(R�Q).De�nitionfun ;! Relation means not [x, y℄ 2 it.Theorem RELAT 1:56. R = ;i� for x, y holds not [x, y℄ 2 R.Theorem RELAT 1:57. not [x, y℄ 2 ;.Theorem RELAT 1:58. ;� [[A, B℄℄.Theorem RELAT 1:59. ;� R.Theorem RELAT 1:60. dom ;= ; & rng ;= ;.Theorem RELAT 1:61. ;\R = ;& ;[R = R.Theorem RELAT 1:62. ;�R = ;& R�;= ;.Theorem RELAT 1:63. R�;= ;�R.Theorem RELAT 1:64. dom R = ; or rng R = ; implies R = ;.Theorem RELAT 1:65. dom R = ; i� rng R = ;.Theorem RELAT 1:66. ;^ = ;.Theorem RELAT 1:67. rng R\dom P = ; implies R�P = ;.De�nitionlet X.fun 4X ! Relation means [x, y℄ 2 it i� x 2 X & x = y.Theorem RELAT 1:68. P = 4X i� for x, y holds [x, y℄ 2 P i� x 2 X & x = y.Theorem RELAT 1:69. [x, y℄ 2 4X i� x 2 X & x = y.Theorem RELAT 1:70. x 2 X i� [x, x℄ 2 4X.



72 CHAPTER 12. RELAT 1Theorem RELAT 1:71. dom 4X = X & rng 4X = X.Theorem RELAT 1:72. (4X)^ = 4X.Theorem RELAT 1:73. (for x st x 2 X holds [x, x℄ 2 R) implies 4X � R.Theorem RELAT 1:74. [x, y℄ 2 (4X)�R i� x 2 X & [x, y℄ 2 R.Theorem RELAT 1:75. [x, y℄ 2 R�4Y i� y 2 Y & [x, y℄ 2 R.Theorem RELAT 1:76. R�(4X) � R & (4X)�R � R.Theorem RELAT 1:77. dom R � X implies (4X)�R = R.Theorem RELAT 1:78. (4dom R)�R = R.Theorem RELAT 1:79. rng R � Y implies R�(4Y) = R.Theorem RELAT 1:80. R�(4rng R) = R.Theorem RELAT 1:81. 4; = ;.Theorem RELAT 1:82. dom R = X & rng P2 � X & P2�R = 4(dom P1) & R�P1 =4X implies P1 = P2.Theorem RELAT 1:83. dom R = X & rng P2 = X & P2�R = 4(dom P1) & R�P1 =4X implies P1 = P2.De�nitionlet R, X.fun R�X ! Relation means [x, y℄ 2 it i� x 2 X & [x, y℄ 2 R.Theorem RELAT 1:84. P = R�X i� for x, y holds [x, y℄ 2 P i� x 2 X & [x, y℄ 2 R.Theorem RELAT 1:85. [x, y℄ 2 R�X i� x 2 X & [x, y℄ 2 R.Theorem RELAT 1:86. x 2 dom (R�X) i� x 2 X & x 2 dom R.Theorem RELAT 1:87. dom (R�X) � X.Theorem RELAT 1:88. R�X � R.Theorem RELAT 1:89. dom (R�X) � dom R.Theorem RELAT 1:90. dom (R�X) = dom R\X.Theorem RELAT 1:91. X � dom R implies dom (R�X) = X.Theorem RELAT 1:92. (R�X)�P � R�P.Theorem RELAT 1:93. P�(R�X) � P�R.Theorem RELAT 1:94. R�X = (4X)�R.Theorem RELAT 1:95. R�X = ;i� (dom R)\X = ;.Theorem RELAT 1:96. R�X = R\[[X, rng R℄℄.Theorem RELAT 1:97. dom R � X implies R�X = R.Theorem RELAT 1:98. R�dom R = R.Theorem RELAT 1:99. rng (R�X) � rng R.Theorem RELAT 1:100. (R�X)�Y = R�(X\Y).



73Theorem RELAT 1:101. (R�X)�X = R�X.Theorem RELAT 1:102. X � Y implies (R�X)�Y = R�X.Theorem RELAT 1:103. Y � X implies (R�X)�Y = R�Y.Theorem RELAT 1:104. X � Y implies R�X � R�Y.Theorem RELAT 1:105. P � R implies P�X � R�X.Theorem RELAT 1:106. P � R & X � Y implies P�X � R�Y.Theorem RELAT 1:107. R�(X[Y) = (R�X)[(R�Y).Theorem RELAT 1:108. R�(X\Y) = (R�X)\(R�Y).Theorem RELAT 1:109. R�(XrY) = R�XrR�Y.Theorem RELAT 1:110. R�; = ;.Theorem RELAT 1:111. ;�X = ;.Theorem RELAT 1:112. (P�R)�X = (P�X)�R.De�nitionlet Y, R.fun Y�R ! Relation means [x, y℄ 2 it i� y 2 Y & [x, y℄ 2 R.Theorem RELAT 1:113. P = Y�R i� for x, y holds [x, y℄ 2 P i� y 2 Y & [x, y℄ 2 R.Theorem RELAT 1:114. [x, y℄ 2 Y�R i� y 2 Y & [x, y℄ 2 R.Theorem RELAT 1:115. y 2 rng (Y�R) i� y 2 Y & y 2 rng R.Theorem RELAT 1:116. rng (Y�R) � Y.Theorem RELAT 1:117. Y�R � R.Theorem RELAT 1:118. rng (Y�R) � rng R.Theorem RELAT 1:119. rng (Y�R) = rng R\Y.Theorem RELAT 1:120. Y � rng R implies rng (Y�R) = Y.Theorem RELAT 1:121. (Y�R)�P � R�P.Theorem RELAT 1:122. P�(Y�R) � P�R.Theorem RELAT 1:123. Y�R = R�(4Y).Theorem RELAT 1:124. Y�R = R\[[dom R, Y℄℄.Theorem RELAT 1:125. rng R � Y implies Y�R = R.Theorem RELAT 1:126. rng R�R = R.Theorem RELAT 1:127. Y�(X�R) = (Y\X)�R.Theorem RELAT 1:128. Y�(Y�R) = Y�R.Theorem RELAT 1:129. X � Y implies Y�(X�R) = X�R.Theorem RELAT 1:130. Y � X implies Y�(X�R) = Y�R.Theorem RELAT 1:131. X � Y implies X�R � Y�R.Theorem RELAT 1:132. P1 � P2 implies Y�P1 � Y�P2.



74 CHAPTER 12. RELAT 1Theorem RELAT 1:133. P1 � P2 & Y1 � Y2 implies Y1�P1 � Y2�P2.Theorem RELAT 1:134. (X[Y)�R = (X�R)[(Y�R).Theorem RELAT 1:135. (X\Y)�R = X�R\Y�R.Theorem RELAT 1:136. (XrY)�R = X�RrY�R.Theorem RELAT 1:137. ;�R = ;.Theorem RELAT 1:138. Y�;= ;.Theorem RELAT 1:139. Y�(P�R) = P�(Y�R).Theorem RELAT 1:140. (Y�R)�X = Y�(R�X).De�nitionlet R, X.fun R�X ! set means y 2 it i� ex x st [x, y℄ 2 R & x 2 X.Theorem RELAT 1:141. Y = R�X i� for y holds y 2 Y i� ex x st [x, y℄ 2 R & x 2X. Theorem RELAT 1:142. y 2 R�X i� ex x st [x, y℄ 2 R & x 2 X.Theorem RELAT 1:143. y 2 R�X i� ex x st x 2 dom R & [x, y℄ 2 R & x 2 X.Theorem RELAT 1:144. R�X � rng R.Theorem RELAT 1:145. R�X = R�(dom R\X).Theorem RELAT 1:146. R�dom R = rng R.Theorem RELAT 1:147. R�X � R�(dom R).Theorem RELAT 1:148. rng (R�X) = R�X.Theorem RELAT 1:149. R�; = ;.Theorem RELAT 1:150. ;�X = ;.Theorem RELAT 1:151. R�X = ; i� dom R\X = ;.Theorem RELAT 1:152. X 6= ; & X � dom R implies R�X 6= ;.Theorem RELAT 1:153. R�(X[Y) = R�X[R�Y.Theorem RELAT 1:154. R�(X\Y) � R�X\R�Y.Theorem RELAT 1:155. R�XrR�Y � R�(XrY).Theorem RELAT 1:156. X � Y implies R�X � R�Y.Theorem RELAT 1:157. P � R implies P�X � R�X.Theorem RELAT 1:158. P � R & X � Y implies P�X � R�Y.Theorem RELAT 1:159. (P�R)�X = R�(P�X).Theorem RELAT 1:160. rng (P�R) = R�(rng P).Theorem RELAT 1:161. (R�X)�Y � R�Y.Theorem RELAT 1:162. R�X = ;i� (dom R)\X = ;.Theorem RELAT 1:163. (dom R)\X � (R^)�(R�X).



75De�nitionlet R, Y.fun R�1Y ! set means x 2 it i� ex y st [x, y℄ 2 R & y 2 Y.Theorem RELAT 1:164. X = R�1Y i� for x holds x 2 X i� ex y st [x, y℄ 2 R & y2 Y.Theorem RELAT 1:165. x 2 R�1Y i� ex y st [x, y℄ 2 R & y 2 Y.Theorem RELAT 1:166. x 2 R�1Y i� ex y st y 2 rng R & [x, y℄ 2 R & y 2 Y.Theorem RELAT 1:167. R�1Y � dom R.Theorem RELAT 1:168. R�1Y = R�1(rng R\Y).Theorem RELAT 1:169. R�1 rng R = dom R.Theorem RELAT 1:170. R�1Y � R�1 rng R.Theorem RELAT 1:171. R�1; = ;.Theorem RELAT 1:172. ;�1Y = ;.Theorem RELAT 1:173. R�1Y = ; i� rng R\Y = ;.Theorem RELAT 1:174. Y 6= ; & Y � rng R implies R�1Y 6= ;.Theorem RELAT 1:175. R�1(X[Y) = R�1X[R�1Y.Theorem RELAT 1:176. R�1(X\Y) � R�1Y\R�1Y.Theorem RELAT 1:177. R�1XrR�1Y � R�1(XrY).Theorem RELAT 1:178. X � Y implies R�1X � R�1Y.Theorem RELAT 1:179. P � R implies P�1Y � R�1Y.Theorem RELAT 1:180. P � R & X � Y implies P�1X � R�1Y.Theorem RELAT 1:181. (P�R)�1Y = P�1(R�1Y).Theorem RELAT 1:182. dom (P�R) = P�1(dom R).Theorem RELAT 1:183. (rng R)\Y � (R^)�1(R�1Y).



Chapter 13GRFUNC 1Graphs of Funtions.byCzes law Byli�nski 1Warsaw University (Bia lystok)Summary. The graph of a funtion is de�ned in Funtions and their Basi Prop-erties (FUNCT 1). In this paper the graph of a funtion is rede�ned as a Relation.Operations on funtions are interpreted as the orresponding operations on rela-tions. Some theorems about graphs of funtions are proved.The symbols used in this artile are introdued in the following voabularies: boole,real 1, fun rel, relation, and fun. The terminology and notation used in thisartile have been introdued in the following artiles: tarski, boole, funt 1, andrelat 1.reserve X, X1, X2, Y, Y1, Y2, Z, Z1, Z2 for set, p, x, x1, x2, y, y1, y2, z, z1, z2 forAny.reserve f, f1, f2, g, g1, g2, h, h1, h2 for Funtion.De�nitionlet f.rede�nefun graph f ! Relation.1Supported by RPBP.III-24.C1. 76



77Theorem GRFUNC 1:1. for R being Relation st for x, y1, y2 st [x, y1℄ 2 R & [x, y2℄2 R holds y1 = y2 holds ex f st graph f = R.Theorem GRFUNC 1:2. y 2 rng f i� ex x st [x, y℄ 2 graph f.Theorem GRFUNC 1:3. dom graph f = dom f & rng graph f = rng f.Theorem GRFUNC 1:4. graph f � [[dom f, rng f℄℄.Theorem GRFUNC 1:5. (for x, y holds [x, y℄ 2 graph f1 i� [x, y℄ 2 graph f2) impliesf1 = f2.Theorem GRFUNC 1:6. for G being set st G � graph f holds ex g st graph g = G.Theorem GRFUNC 1:7. graph f � graph g implies dom f � dom g & rng f � rng g.Theorem GRFUNC 1:8. graph f � graph g i� dom f � dom g & (for x st x 2 dom fholds f:x = g:x).Theorem GRFUNC 1:9. dom f = dom g & graph f � graph g implies f = g.Theorem GRFUNC 1:10. [x, z℄ 2 graph (g�f) i� ex y st [x, y℄ 2 graph f & [y, z℄ 2graph g.Theorem GRFUNC 1:11. (graph f)�(graph g) = graph (g�f).Theorem GRFUNC 1:12. [x, z℄ 2 graph (g�f) implies [x, f:x℄ 2 graph f & [f:x, z℄ 2graph g.Theorem GRFUNC 1:13. graph h � graph f implies graph (g�h) � graph (g�f) & graph(h�g) � graph (f�g).Theorem GRFUNC 1:14. graph g2 � graph g1 & graph f2 � graph f1 implies graph(g2�f2) � graph (g1�f1).Theorem GRFUNC 1:15. ex f st graph f = f[x, y℄g.Theorem GRFUNC 1:16. graph f = f[x, y℄g implies f:x = y.Theorem GRFUNC 1:17. graph f = f[x, y℄g implies dom f = fxg & rng f = fyg.Theorem GRFUNC 1:18. dom f = fxg implies graph f = f[x, f:x℄g.Theorem GRFUNC 1:19. (ex f st graph f = f[x1, y1℄, [x2, y2℄g) i� (x1 = x2 impliesy1 = y2).Theorem GRFUNC 1:20. ex f st graph f = ;.Theorem GRFUNC 1:21. graph f = ; implies dom f = ; & rng f = ;.Theorem GRFUNC 1:22. rng f = ; or dom f = ; implies graph f = ;.Theorem GRFUNC 1:23. rng f\dom g = ; implies graph (g�f) = ;.Theorem GRFUNC 1:24. graph g = ; implies graph (g�f) = ; & graph (f�g) = ;.Theorem GRFUNC 1:25. f is 1-1 i� for x1, x2, y st [x1, y℄ 2 graph f & [x2, y℄ 2 graphf holds x1 = x2.Theorem GRFUNC 1:26. graph g � graph f & f is 1-1 implies g is 1-1.Theorem GRFUNC 1:27. (ex g st graph g = graph f\X) & (ex g st graph g = X\graphf).



78 CHAPTER 13. GRFUNC 1Theorem GRFUNC 1:28. graph h = graph f\graph g implies dom h � dom f\dom g& rng h � rng f\rng g.Theorem GRFUNC 1:29. graph h = graph f\graph g & x 2 dom h implies h:x = f:x& h:x = g:x.Theorem GRFUNC 1:30. (f is 1-1 or g is 1-1) & graph h = graph f\graph g implies his 1-1.Theorem GRFUNC 1:31. dom f\dom g = ; implies ex h st graph h = graph f[graphg. Theorem GRFUNC 1:32. graph f � graph h & graph g � graph h implies ex h1 stgraph h1 = graph f[graph g.Theorem GRFUNC 1:33. graph h = graph (f)[graph (g) implies dom h = dom f[domg & rng h = rng f[rng g.Theorem GRFUNC 1:34. x 2 dom f & graph h = graph f[graph g implies h:x = f:x.Theorem GRFUNC 1:35. x 2 dom g & graph h = graph f[graph g implies h:x = g:x.Theorem GRFUNC 1:36. x 2 dom h & graph h = graph f[graph g implies h:x = f:xor h:x = g:x.Theorem GRFUNC 1:37. f is 1-1 & g is 1-1 & graph h = graph f[graph g & rng f\rngg = ; implies h is 1-1.Theorem GRFUNC 1:38. ex g st graph g = graph (f)rX.Theorem GRFUNC 1:39. [x, y℄ 2 graph Id (X) i� x 2 X & x = y.Theorem GRFUNC 1:40. graph Id X = 4X.Theorem GRFUNC 1:41. x 2 X i� [x, x℄ 2 graph Id (X).Theorem GRFUNC 1:42. [x, y℄ 2 graph (f�Id (X)) i� x 2 X & [x, y℄ 2 graph f.Theorem GRFUNC 1:43. [x, y℄ 2 graph (Id (Y)�f) i� [x, y℄ 2 graph f & y 2 Y.Theorem GRFUNC 1:44. graph (f�Id (X)) � graph f & graph (Id (X)�f) � graph (f).Theorem GRFUNC 1:45. graph Id ; = ;.Theorem GRFUNC 1:46. graph f = ; implies f is 1-1.Theorem GRFUNC 1:47. f is 1-1 implies for x, y holds [y, x℄ 2 graph (f�1) i� [x, y℄2 graph f.Theorem GRFUNC 1:48. f is 1-1 implies graph (f�1) = (graph f)^.Theorem GRFUNC 1:49. graph f = ; implies graph (f�1) = ;.Theorem GRFUNC 1:50. [x, y℄ 2 graph (f�X) i� x 2 X & [x, y℄ 2 graph f.Theorem GRFUNC 1:51. graph (f�X) = (graph f)�X.Theorem GRFUNC 1:52. x 2 dom f & x 2 X i� [x, f:x℄ 2 graph (f�X).Theorem GRFUNC 1:53. graph (f�X) � graph f.Theorem GRFUNC 1:54. graph ((f�X)�h) � graph (f�h) & graph (g�(f�X)) � graph(g�f).



79Theorem GRFUNC 1:55. graph (f�X) = graph (f)\[[X, rng f℄℄.Theorem GRFUNC 1:56. X � Y implies graph (f�X) � graph (f�Y).Theorem GRFUNC 1:57. graph f1 � graph f2 implies graph (f1�X) � graph (f2�X).Theorem GRFUNC 1:58. graph f1 � graph f2 & X1 � X2 implies graph (f1�X1) �graph (f2�X2).Theorem GRFUNC 1:59. graph (f�(X[Y)) = graph (f�X)[graph (f�Y).Theorem GRFUNC 1:60. graph (f�(X\Y)) = graph (f�X)\graph (f�Y).Theorem GRFUNC 1:61. graph (f�(XrY)) = graph (f�X)rgraph (f�Y).Theorem GRFUNC 1:62. graph (f�;) = ;.Theorem GRFUNC 1:63. graph f = ; implies graph (f�X) = ;.Theorem GRFUNC 1:64. graph g � graph f implies f�dom g = g.Theorem GRFUNC 1:65. [x, y℄ 2 graph (Y�f) i� y 2 Y & [x, y℄ 2 graph f.Theorem GRFUNC 1:66. graph (Y�f) = Y�(graph f).Theorem GRFUNC 1:67. x 2 dom f & f:x 2 Y i� [x, f:x℄ 2 graph (Y�f).Theorem GRFUNC 1:68. graph (Y�f) � graph (f).Theorem GRFUNC 1:69. graph ((Y�f)�h) � graph (f�h) & graph (g�(Y�f)) � graph(g�f).Theorem GRFUNC 1:70. graph (Y�f) = graph (f)\[[dom f, Y℄℄.Theorem GRFUNC 1:71. X � Y implies graph (X�f) � graph (Y�f).Theorem GRFUNC 1:72. graph f1 � graph f2 implies graph (Y�f1) � graph (Y�f2).Theorem GRFUNC 1:73. graph f1 � graph f2 & Y1 � Y2 implies graph (Y1�f1) �graph (Y2�f2).Theorem GRFUNC 1:74. graph ((X[Y)�f) = graph (X�f)[graph (Y�f).Theorem GRFUNC 1:75. graph ((X\Y)�f) = graph (X�f)\graph (Y�f).Theorem GRFUNC 1:76. graph ((XrY)�f) = graph (X�f)rgraph (Y�f).Theorem GRFUNC 1:77. graph (;�f) = ;.Theorem GRFUNC 1:78. graph f = ; implies graph (Y�f) = ;.Theorem GRFUNC 1:79. graph g � graph f & f is 1-1 implies rng g�f = g.Theorem GRFUNC 1:80. y 2 f�X i� ex x st [x, y℄ 2 graph f & x 2 X.Theorem GRFUNC 1:81. f�X = (graph f)�X.Theorem GRFUNC 1:82. graph f = ; implies f�X = ;.Theorem GRFUNC 1:83. graph f1 � graph f2 implies f1�X � f2�X.Theorem GRFUNC 1:84. graph f1 � graph f2 & X1 � X2 implies f1�X1 � f2�X2.Theorem GRFUNC 1:85. x 2 f�1Y i� ex y st [x, y℄ 2 graph f & y 2 Y.Theorem GRFUNC 1:86. f�1Y = (graph f)�1Y.



80 CHAPTER 13. GRFUNC 1Theorem GRFUNC 1:87. x 2 f�1Y i� [x, f:x℄ 2 graph f & f:x 2 Y.Theorem GRFUNC 1:88. graph f = ; implies f�1Y = ;.Theorem GRFUNC 1:89. graph f1 � graph f2 implies f1�1Y � f2�1Y.Theorem GRFUNC 1:90. graph f1 � graph f2 & Y1 � Y2 implies f1�1Y1 � f2�1Y2.



Chapter 14RELAT 2Properties of Binary RelationsbyEdmund Woronowiz 1Warsaw University (Bia lystok)Anna Zalewska 2Warsaw University (Bia lystok)Summary. The paper ontains de�nitions of some properties of binary relations:reexivity, irreexivity, symmetry, asymmetry, antisymmetry, onnetedness, strongonnetedness, and transitivity. Basi theorems relating the above mentioned no-tions are given.The symbols used in this artile are introdued in the following voabularies: boole,real 1, fun rel, relation, and rel rel. The terminology and notation used in thisartile have been introdued in the following artiles: tarski, boole, and relat 1.reserve X, Y for set.reserve a, b, , x, y, z for Any.reserve P, R for Relation.De�nitionlet R, X.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 81



82 CHAPTER 14. RELAT 2pred R is reexive in X means x 2 X implies [x, x℄ 2 R.pred R is irreexive in X means x 2 X implies not [x, x℄ 2 R.pred R is symmetri in X means x 2 X & y 2 X & [x, y℄ 2 R implies [y, x℄ 2R. pred R is antisymmetri in X means x 2 X & y 2 X & [x, y℄ 2 R & [y, x℄ 2 Rimplies x = y.pred R is asymmetri in X means x 2 X & y 2 X & [x, y℄ 2 R implies not [y,x℄ 2 R. pred R is onneted in X means x 2 X & y 2 X & x 6= y implies [x, y℄ 2 R or[y, x℄ 2 R.pred R is strongly onneted in X means x 2 X & y 2 X implies [x, y℄ 2 R or[y, x℄ 2 R.pred R is transitive in X means x 2 X & y 2 X & z 2 X & [x, y℄ 2 R & [y, z℄2 R implies [x, z℄ 2 R.Theorem RELAT 2:1. R is reexive in X i� for x st x 2 X holds [x, x℄ 2 R.Theorem RELAT 2:2. R is irreexive in X i� for x st x 2 X holds not [x, x℄ 2 R.Theorem RELAT 2:3. R is symmetri in X i� for x, y st x 2 X & y 2 X & [x, y℄ 2 Rholds [y, x℄ 2 R.Theorem RELAT 2:4. R is antisymmetri in X i� for x, y st x 2 X & y 2 X & [x, y℄2 R & [y, x℄ 2 R holds x = y.Theorem RELAT 2:5. R is asymmetri in X i� for x, y st x 2 X & y 2 X & [x, y℄ 2R holds not [y, x℄ 2 R.Theorem RELAT 2:6. R is onneted in X i� for x, y st x 2 X & y 2 X & x 6= yholds [x, y℄ 2 R or [y, x℄ 2 R.Theorem RELAT 2:7. R is strongly onneted in X i� for x, y st x 2 X & y 2 X holds[x, y℄ 2 R or [y, x℄ 2 R.Theorem RELAT 2:8. R is transitive in X i� for x, y, z st x 2 X & y 2 X & z 2 X &[x, y℄ 2 R & [y, z℄ 2 R holds [x, z℄ 2 R.De�nitionlet R.pred R is reexive means R is reexive in �eld R.pred R is irreexive means R is irreexive in �eld R.pred R is symmetri means R is symmetri in �eld R.pred R is antisymmetri means R is antisymmetri in �eld R.pred R is asymmetri means R is asymmetri in �eld R.pred R is onneted means R is onneted in �eld R.pred R is strongly onneted means R is strongly onneted in �eld R.



83pred R is transitive means R is transitive in �eld R.Theorem RELAT 2:9. R is reexive i� R is reexive in �eld R.Theorem RELAT 2:10. R is irreexive i� R is irreexive in �eld R.Theorem RELAT 2:11. R is symmetri i� R is symmetri in �eld R.Theorem RELAT 2:12. R is antisymmetri i� R is antisymmetri in �eld R.Theorem RELAT 2:13. R is asymmetri i� R is asymmetri in �eld R.Theorem RELAT 2:14. R is onneted i� R is onneted in �eld R.Theorem RELAT 2:15. R is strongly onneted i� R is strongly onneted in �eld R.Theorem RELAT 2:16. R is transitive i� R is transitive in �eld R.Theorem RELAT 2:17. R is reexive i� 4�eld R � R.Theorem RELAT 2:18. R is irreexive i� 4(�eld R)\R = ;.Theorem RELAT 2:19. R is antisymmetri in X i� Rr4X is asymmetri in X.Theorem RELAT 2:20. R is asymmetri in X implies R[4X is antisymmetri in X.Theorem RELAT 2:21. R is antisymmetri in X implies Rr4X is asymmetri in X.Theorem RELAT 2:22. R is symmetri & R is transitive implies R is reexive.Theorem RELAT 2:23. 4X is symmetri & 4X is transitive.Theorem RELAT 2:24. 4X is antisymmetri & 4X is reexive.Theorem RELAT 2:25. R is irreexive & R is transitive implies R is asymmetri.Theorem RELAT 2:26. R is asymmetri implies R is irreexive & R is antisymmetri.Theorem RELAT 2:27. R is reexive implies R^ is reexive.Theorem RELAT 2:28. R is irreexive implies R^ is irreexive.Theorem RELAT 2:29. R is reexive implies dom R = dom (R^) & rng R = rng (R^).Theorem RELAT 2:30. R is symmetri i� R = R^.Theorem RELAT 2:31. P is reexive & R is reexive implies P[R is reexive & P\Ris reexive.Theorem RELAT 2:32. P is irreexive & R is irreexive implies P[R is irreexive &P\R is irreexive.Theorem RELAT 2:33. P is irreexive implies PrR is irreexive.Theorem RELAT 2:34. R is symmetri implies R^ is symmetri.Theorem RELAT 2:35. P is symmetri & R is symmetri implies P[R is symmetri &P\R is symmetri & PrR is symmetri.Theorem RELAT 2:36. R is asymmetri implies R^ is asymmetri.Theorem RELAT 2:37. P is asymmetri & R is asymmetri implies P\R is asymmetri.Theorem RELAT 2:38. P is asymmetri implies PrR is asymmetri.Theorem RELAT 2:39. R is antisymmetri i� R\(R^) � 4(dom R).



84 CHAPTER 14. RELAT 2Theorem RELAT 2:40. R is antisymmetri implies R^ is antisymmetri.Theorem RELAT 2:41. P is antisymmetri implies P\R is antisymmetri & PrR isantisymmetri.Theorem RELAT 2:42. R is transitive implies R^ is transitive.Theorem RELAT 2:43. P is transitive & R is transitive implies P\R is transitive.Theorem RELAT 2:44. R is transitive i� R�R � R.Theorem RELAT 2:45. R is onneted i� [[�eld R, �eld R℄℄r4(�eld R) � R[R^.Theorem RELAT 2:46. R is strongly onneted implies R is onneted & R is reexive.Theorem RELAT 2:47. R is strongly onneted i� [[�eld R, �eld R℄℄ = R[R^.



Chapter 15RELSET 1Relations De�ned on SetsbyEdmund Woronowiz 1Warsaw University (Bia lystok)Summary. The artile inludes theorems onerning properties of relations de�nedas a subset of the Cartesian produt of two sets (mode Relation of X,Y where X,Yare sets). Some notions, introdued in RELAT 1 suh as domain, odomain, �eldof a relation, omposition of relations, image and inverse image of a set under arelation are rede�ned.The symbols used in this artile are introdued in the following voabularies: fam op,boole, real 1, fun rel, and relation. The terminology and notation used in thisartile have been introdued in the following artiles: tarski, boole, and relat 1.reserve A, B, X, X1, X2, Y, Y1, Y2, Z, W for set.reserve a, b, , d, x, y, z for Any.De�nitionlet X, Y.mode Relation of X, Y ! Relation means it � [[X, Y℄℄.Theorem RELSET 1:1. for R being Relation holds R � [[X, Y℄℄ i� R is Relation ofX, Y.1Supported by RPBP.III-24.C1. 85



86 CHAPTER 15. RELSET 1reserve P, P1, P2, Q, R for Relation of X, Y.Theorem RELSET 1:2. A � R implies A � [[X, Y℄℄.Theorem RELSET 1:3. A � [[X, Y℄℄ implies A is Relation of X, Y.Theorem RELSET 1:4. A � R implies A is Relation of X, Y.Theorem RELSET 1:5. [[X, Y℄℄ is Relation of X, Y.Theorem RELSET 1:6. a 2 R implies ex x, y st a = [x, y℄ & x 2 X & y 2 Y.Theorem RELSET 1:7. [x, y℄ 2 R implies x 2 X & y 2 Y.Theorem RELSET 1:8. x 2 X & y 2 Y implies f[x, y℄g is Relation of X, Y.Theorem RELSET 1:9. for R being Relation st dom R � X holds R is Relation ofX, rng R.Theorem RELSET 1:10. for R being Relation st rng R � Y holds R is Relation ofdom R, Y.Theorem RELSET 1:11. for R being Relation st dom R � X & rng R � Y holds Ris Relation of X, Y.Theorem RELSET 1:12. dom R � X & rng R � Y.Theorem RELSET 1:13. dom R � X1 implies R is Relation of X1, Y.Theorem RELSET 1:14. rng R � Y1 implies R is Relation of X, Y1.Theorem RELSET 1:15. X � X1 implies R is Relation of X1, Y.Theorem RELSET 1:16. Y � Y1 implies R is Relation of X, Y1.Theorem RELSET 1:17. X � X1 & Y � Y1 implies R is Relation of X1, Y1.De�nitionlet X, Y, P, R.rede�nefun P[R ! Relation of X, Y.fun P\R ! Relation of X, Y.fun PrR ! Relation of X, Y.Theorem RELSET 1:18. R\[[X, Y℄℄ = R.De�nitionlet X, Y, R.rede�nefun dom R ! Subset of X.fun rng R ! Subset of Y.Theorem RELSET 1:19. �eld R � X[Y.Theorem RELSET 1:20. for R being Relation holds R is Relation of dom R, rng R.Theorem RELSET 1:21. dom R � X1 & rng R � Y1 implies R is Relation of X1, Y1.Theorem RELSET 1:22. (for x st x 2 X ex y st [x, y℄ 2 R) i� dom R = X.



87Theorem RELSET 1:23. (for y st y 2 Y ex x st [x, y℄ 2 R) i� rng R = Y.De�nitionlet X, Y, R.rede�nefun R^ ! Relation of Y, X.De�nitionlet X, Y, Z.let P be Relation of X, Y.let R be Relation of Y, Z.rede�nefun P�R ! Relation of X, Z.Theorem RELSET 1:24. dom (R^) = rng R & rng (R^) = dom R.Theorem RELSET 1:25. ;is Relation of X, Y.Theorem RELSET 1:26. R is Relation of ;, Y implies R = ;.Theorem RELSET 1:27. R is Relation of X, ; implies R = ;.Theorem RELSET 1:28. 4X � [[X, X℄℄.Theorem RELSET 1:29. 4X is Relation of X, X.Theorem RELSET 1:30. 4A � R implies A � dom R & A � rng R.Theorem RELSET 1:31. 4X � R implies X = dom R & X � rng R.Theorem RELSET 1:32. 4Y � R implies Y � dom R & Y = rng R.De�nitionlet X, Y, R, A.rede�nefun R�A ! Relation of X, Y.De�nitionlet X, Y, B, R.rede�nefun B�R ! Relation of X, Y.Theorem RELSET 1:33. R�X1 is Relation of X1, Y.Theorem RELSET 1:34. X � X1 implies R�X1 = R.Theorem RELSET 1:35. Y1�R is Relation of X, Y1.Theorem RELSET 1:36. Y � Y1 implies Y1�R = R.De�nitionlet X, Y, R, A.rede�nefun R�A ! Subset of Y.



88 CHAPTER 15. RELSET 1fun R�1A ! Subset of X.Theorem RELSET 1:37. R�A � Y & R�1A � X.Theorem RELSET 1:38. R�X = rng R & R�1Y = dom R.Theorem RELSET 1:39. R�(R�1Y) = rng R & R�1(R�X) = dom R.sheme Rel On Set ExfA() ! set, B() ! set, P[Any, Any℄g: ex R being Relation ofA(), B() st for x, y holds [x, y℄ 2 R i� x 2 A() & y 2 B() & P[x, y℄.De�nitionlet X.mode Relation of X ! Relation of X, X means it � [[X, X℄℄.Theorem RELSET 1:40. for R being Relation of X, X holds R � [[X, X℄℄ i� R isRelation of X.reserve P, Q, R for Relation of X.Theorem RELSET 1:41. [[X, X℄℄ is Relation of X.Theorem RELSET 1:42. for R being Relation of X, X st dom R = X & rng R = Xholds R is Relation of X.Theorem RELSET 1:43. 4X is Relation of X.Theorem RELSET 1:44. 4X � R implies X = dom R & X = rng R.Theorem RELSET 1:45. R�(4X) = R & (4X)�R = R.reserve D, D1, D2, E, E1, F for DOMAIN.reserve P, P1, Q, R for Relation of D, E.reserve a, x, x1 for Element of D.reserve b, y, y1 for Element of E.reserve , z for Element of F.Theorem RELSET 1:46. 4D 6= ;.De�nitionlet D, E, R.rede�nefun dom R ! Element of bool D.fun rng R ! Element of bool E.Theorem RELSET 1:47. for x being Element of D holds x 2 dom R i� ex y beingElement of E st [x, y℄ 2 R.Theorem RELSET 1:48. for y being Element of E holds y 2 rng R i� ex x beingElement of D st [x, y℄ 2 R.Theorem RELSET 1:49. for x being Element of D holds x 2 dom R implies ex ybeing Element of E st y 2 rng R.



89Theorem RELSET 1:50. for y being Element of E holds y 2 rng R implies ex xbeing Element of D st x 2 dom R.Theorem RELSET 1:51. for P being (Relation of D, E), R being (Relation of E, F)for x being (Element of D), z being Element of F holds [x, z℄ 2 P�R i� ex y beingElement of E st [x, y℄ 2 P & [y, z℄ 2 R.De�nitionlet D, E, R, D1.rede�nefun R�D1 ! Element of bool E.fun R�1D1 ! Element of bool D.Theorem RELSET 1:52. y 2 R�D1 i� ex x being Element of D st [x, y℄ 2 R & x 2D1.Theorem RELSET 1:53. x 2 R�1D2 i� ex y being Element of E st [x, y℄ 2 R & y 2D2.sheme Rel On Dom ExfA() ! DOMAIN, B() ! DOMAIN, P[Any, Any℄g: ex Rbeing Relation of A(), B() st for x being (Element of A()), y being Element of B()holds [x, y℄ 2 R i� x 2 A() & y 2 B() & P[x, y℄.



Chapter 16WELLORD1The Well Ordering RelationsbyGrzegorz Banerek 1Warsaw University (Bia lystok)Summary. Some theorems about well ordering relations are proved. The goal ofthe artile is to prove that any two well ordering relations are either isomorphi orone of them is isomorphi to a segment of the other. The following onepts arede�ned: the segment of a relation indued by an element, well founded relations,well ordering relations, the restrition of a relation to a set, and the isomorphismof two relations. A number of simple fats is presented.The symbols used in this artile are introdued in the following voabularies: boole,fam op, real 1, fun rel, relation, rel rel, wellord, and fun. The terminologyand notation used in this artile have been introdued in the following artiles: tarski,boole, enumset1, relat 1, relat 2, and funt 1.reserve a, b, , d, e, x, y, z for Any, X, Y, Z for set.sheme ExtensionalityfA() ! set, B() ! set, P[Any℄g: A() = B() provided A: fora holds a 2 A() i� P[a℄ and B: for a holds a 2 B() i� P[a℄.reserve R, S, T for Relation.De�nitionlet R, a.1Supported by RPBP.III-24.C1. 90



91fun R-Seg(a) ! set means x 2 it i� x 6= a & [x, a℄ 2 R.Theorem WELLORD1:1. for R, Y, a holds Y = R-Seg(a) i� for b holds b 2 Y i�b 6= a & [b, a℄ 2 R.Theorem WELLORD1:2. x 2 �eld R or R-Seg(x) = ;.De�nitionlet R.pred R is well founded means for Y st Y � �eld R & Y 6= ; ex a st a 2 Y &R-Seg(a)\Y = ;.let X.pred R is well founded in X means for Y st Y � X & Y 6= ; ex a st a 2 Y &R-Seg(a)\Y = ;.Theorem WELLORD1:3. for R holds R is well founded i� for Y st Y � �eld R & Y6= ; ex a st a 2 Y & R-Seg(a)\Y = ;.Theorem WELLORD1:4. for R, X holds R is well founded in X i� for Y st Y � X &Y 6= ; ex a st a 2 Y & R-Seg(a)\Y = ;.Theorem WELLORD1:5. R is well founded i� R is well founded in �eld R.De�nitionlet R.pred R is well-ordering-relation means R is reexive & R is transitive & R isantisymmetri & R is onneted & R is well founded.let X.pred R well orders X means R is reexive in X & R is transitive in X & R isantisymmetri in X & R is onneted in X & R is well founded in X.Theorem WELLORD1:6. for R holds R is well-ordering-relation i� R is reexive & Ris transitive & R is antisymmetri & R is onneted & R is well founded.Theorem WELLORD1:7. for R, X holds R well orders X i� R is reexive in X & R istransitive in X & R is antisymmetri in X & R is onneted in X & R is well founded in X.Theorem WELLORD1:8. R well orders �eld R i� R is well-ordering-relation.Theorem WELLORD1:9. R well orders X implies for Y st Y � X & Y 6= ; ex a st a2 Y & for b st b 2 Y holds [a, b℄ 2 R.Theorem WELLORD1:10. R is well-ordering-relation implies for Y st Y � �eld R &Y 6= ; ex a st a 2 Y & for b st b 2 Y holds [a, b℄ 2 R.Theorem WELLORD1:11. for R st R is well-ordering-relation & �eld R 6= ; ex a st a2 �eld R & for b st b 2 �eld R holds [a, b℄ 2 R.Theorem WELLORD1:12. for R st R is well-ordering-relation & �eld R 6= ; for a st a2 �eld R holds (for b st b 2 �eld R holds [b, a℄ 2 R) or (ex b st b 2 �eld R & [a, b℄ 2R & for  st  2 �eld R & [a, ℄ 2 R holds  = a or [b, ℄ 2 R).



92 CHAPTER 16. WELLORD1reserve F, G, H for Funtion.Theorem WELLORD1:13. R-Seg(a) � �eld R.De�nitionlet R, Y.fun R�2Y ! Relation means it = R\[[Y, Y℄℄.Theorem WELLORD1:14. R�2Y = R\[[Y, Y℄℄.Theorem WELLORD1:15. R�2X � R & R�2X � [[X, X℄℄.Theorem WELLORD1:16. x 2 R�2X i� x 2 R & x 2 [[X, X℄℄.Theorem WELLORD1:17. R�2X = X�R�X.Theorem WELLORD1:18. R�2X = X�(R�X).Theorem WELLORD1:19. x 2 �eld (R�2X) implies x 2 �eld R & x 2 X.Theorem WELLORD1:20. �eld (R�2X) � �eld R & �eld (R�2X) � X.Theorem WELLORD1:21. (R�2X)-Seg(a) � R-Seg(a).Theorem WELLORD1:22. R is reexive implies R�2X is reexive.Theorem WELLORD1:23. R is onneted implies R�2Y is onneted.Theorem WELLORD1:24. R is transitive implies R�2Y is transitive.Theorem WELLORD1:25. R is antisymmetri implies R�2Y is antisymmetri.Theorem WELLORD1:26. (R�2X)�2Y = R�2(X\Y).Theorem WELLORD1:27. (R�2X)�2Y = (R�2Y)�2X.Theorem WELLORD1:28. (R�2Y)�2Y = R�2Y.Theorem WELLORD1:29. Z � Y implies (R�2Y)�2Z = R�2Z.Theorem WELLORD1:30. R�2�eld R = R.Theorem WELLORD1:31. R is well founded implies R�2X is well founded.Theorem WELLORD1:32. R is well-ordering-relation implies R�2Y is well-ordering-relation.Theorem WELLORD1:33. R is well-ordering-relation implies R-Seg(a) � R-Seg(b) orR-Seg(b) � R-Seg(a).Theorem WELLORD1:34. R is well-ordering-relation implies R�2(R-Seg(a)) is well-ordering-relation.Theorem WELLORD1:35. R is well-ordering-relation & a 2 �eld R & b 2 R-Seg(a)implies (R�2(R-Seg(a)))-Seg(b) = R-Seg(b).Theorem WELLORD1:36. R is well-ordering-relation & Y � �eld R implies (Y = �eldR or (ex a st a 2 �eld R & Y = R-Seg(a)) i� for a st a 2 Y for b st [b, a℄ 2 R holds b2 Y).Theorem WELLORD1:37. R is well-ordering-relation & a 2 �eld R & b 2 �eld R implies([a, b℄ 2 R i� R-Seg(a) � R-Seg(b)).



93Theorem WELLORD1:38. R is well-ordering-relation & a 2 �eld R & b 2 �eld R implies(R-Seg(a) � R-Seg(b) i� a = b or a 2 R-Seg(b)).Theorem WELLORD1:39. R is well-ordering-relation & X� �eld R implies �eld (R�2X)= X.Theorem WELLORD1:40. R is well-ordering-relation implies �eld (R�2R-Seg(a)) =R-Seg(a).Theorem WELLORD1:41. R is well-ordering-relation implies for Z st for a st a 2�eld R & R-Seg(a) � Z holds a 2 Z holds �eld R � Z.Theorem WELLORD1:42. R is well-ordering-relation & a 2 �eld R & b 2 �eld R & (for st  2 R-Seg(a) holds [, b℄ 2 R &  6= b) implies [a, b℄ 2 R.Theorem WELLORD1:43. R is well-ordering-relation & dom F = �eld R & rng F � �eldR & (for a, b st [a, b℄ 2 R & a 6= b holds [F:a, F:b℄ 2 R & F:a 6= F:b) implies for a sta 2 �eld R holds [a, F:a℄ 2 R.De�nitionlet R, S, F.pred F is isomorphism of R, S means dom F = �eld R & rng F = �eld S & F is1-1 & for a, b holds [a, b℄ 2 R i� a 2 �eld R & b 2 �eld R & [F:a, F:b℄ 2 S.Theorem WELLORD1:44. F is isomorphism of R, S i� dom F = �eld R & rng F = �eldS & F is 1-1 & for a, b holds [a, b℄ 2 R i� a 2 �eld R & b 2 �eld R & [F:a, F:b℄ 2 S.Theorem WELLORD1:45. F is isomorphism of R, S implies for a, b st [a, b℄ 2 R &a 6= b holds [F:a, F:b℄ 2 S & F:a 6= F:b.De�nitionlet R, S.pred R, S are isomorphi means ex F st F is isomorphism of R, S.Theorem WELLORD1:46. R, S are isomorphi i� ex F st F is isomorphism of R, S.Theorem WELLORD1:47. Id (�eld R) is isomorphism of R, R.Theorem WELLORD1:48. R, R are isomorphi.Theorem WELLORD1:49. F is isomorphism of R, S implies F�1 is isomorphism of S,R. Theorem WELLORD1:50. R, S are isomorphi implies S, R are isomorphi.Theorem WELLORD1:51. F is isomorphism of R, S & G is isomorphism of S, T impliesG�F is isomorphism of R, T.Theorem WELLORD1:52. R, S are isomorphi & S, T are isomorphi implies R, T areisomorphi.Theorem WELLORD1:53. F is isomorphism of R, S implies (R is reexive impliesS is reexive) & (R is transitive implies S is transitive) & (R is onneted implies S isonneted) & (R is antisymmetri implies S is antisymmetri) & (R is well founded impliesS is well founded).



94 CHAPTER 16. WELLORD1Theorem WELLORD1:54. R is well-ordering-relation & F is isomorphism of R, S impliesS is well-ordering-relation.Theorem WELLORD1:55. R is well-ordering-relation implies for F, G st F is isomor-phism of R, S & G is isomorphism of R, S holds F = G.De�nitionlet R, S.assume R is well-ordering-relation & R, S are isomorphi.fun anonial isomorphism of (R, S) ! Funtion means it is isomorphism of R,S. Theorem WELLORD1:56. R is well-ordering-relation & R, S are isomorphi implies (F= anonial isomorphism of (R, S) i� F is isomorphism of R, S).Theorem WELLORD1:57. R is well-ordering-relation implies for a st a 2 �eld R holdsnot R, R�2(R-Seg(a)) are isomorphi.Theorem WELLORD1:58. R is well-ordering-relation & a 2 �eld R & b 2 �eld R & a6= b implies not R�2(R-Seg(a)), R�2(R-Seg(b)) are isomorphi.Theorem WELLORD1:59. R is well-ordering-relation & Z � �eld R & F is isomorphismof R, S implies F�Z is isomorphism of R�2Z, S�2(F�Z) & R�2Z, S�2(F�Z) are isomorphi.Theorem WELLORD1:60. R is well-ordering-relation & F is isomorphism of R, S impliesfor a st a 2 �eld R ex b st b 2 �eld S & F�(R-Seg(a)) = S-Seg(b).Theorem WELLORD1:61. R is well-ordering-relation & F is isomorphism of R, S impliesfor a st a 2 �eld R ex b st b 2 �eld S & R�2(R-Seg(a)), S�2(S-Seg(b)) are isomorphi.Theorem WELLORD1:62. R is well-ordering-relation & S is well-ordering-relation & a 2�eld R & b 2 �eld S &  2 �eld S & R, S�2(S-Seg(b)) are isomorphi & R�2(R-Seg(a)), S�2(S-Seg()) are isomorphi implies S-Seg() � S-Seg(b) & [, b℄ 2 S.Theorem WELLORD1:63. R is well-ordering-relation & S is well-ordering-relation im-plies R, S are isomorphi or (ex a st a 2 �eld R & R�2(R-Seg(a)), S are isomorphi) or(ex a st a 2 �eld S & R, S�2(S-Seg(a)) are isomorphi).Theorem WELLORD1:64. Y � �eld R & R is well-ordering-relation implies R, R�2Yare isomorphi or ex a st a 2 �eld R & R�2(R-Seg(a)), R�2Y are isomorphi.



Chapter 17SETFAM 1Families of SetsbyBeata Padlewska 1Warsaw University (Bia lystok)Summary. The artile ontains de�nitions of the following onepts: family ofsets, family of subsets of a set, the intersetion of a family of sets. Funtions \, [,and r are rede�ned for families of subsets of a set. Some properties of these notionsare presented.The symbols used in this artile are introdued in the following voabularies: boole,fam op, sub op, and sfamily. The terminology and notation used in this artile havebeen introdued in the following artiles: tarski, boole, enumset1, and subset 1.reserve X, X1, X2, X3, Y, Z, Z1, Z2, D for set, x, y, z for Any.De�nitionlet X.fun TX ! set means for x holds x 2 it i� (for Y holds Y 2 X implies x2 Y) if X 6= ; otherwise it = ;.Theorem SETFAM 1:1. X 6= ; implies for x holds x 2 TX i� for Y st Y 2 X holdsx 2 Y.Theorem SETFAM 1:2. T; = ;.1Supported by RPBP.III-24.C1. 95



96 CHAPTER 17. SETFAM 1Theorem SETFAM 1:3. TX � SX.Theorem SETFAM 1:4. Z 2 X implies TX � Z.Theorem SETFAM 1:5. ; 2 X implies TX = ;.Theorem SETFAM 1:6. X 6= ; & (for Z1 st Z1 2 X holds Z � Z1) implies Z � TX.Theorem SETFAM 1:7. X 6= ; & X � Y implies TY � TX.Theorem SETFAM 1:8. X 2 Y & X � Z implies TY � Z.Theorem SETFAM 1:9. X 2 Y & X\Z = ; implies TY\Z = ;.Theorem SETFAM 1:10. X 6= ; & Y 6= ; implies T(X[Y) = TX\TY.Theorem SETFAM 1:11. Tfxg = x.Theorem SETFAM 1:12. TfX, Yg = X\Y.De�nitionmode Set-Family ! set means not ontradition.reserve SFX, SFY, SFZ for Set-Family.Theorem SETFAM 1:13. x is Set-Family.Theorem SETFAM 1:14. SFX = SFY i� (for X holds X 2 SFX i� X 2 SFY).De�nitionlet SFX, SFY.pred SFX is �ner than SFY means for X st X 2 SFX ex Y st Y 2 SFY & X� Y. pred SFX is oarser than SFY means for Y st Y 2 SFY ex X st X 2 SFX &X � Y.Theorem SETFAM 1:15. SFX is �ner than SFY i� for X st X 2 SFX ex Y st Y 2SFY & X � Y.Theorem SETFAM 1:16. SFX is oarser than SFY i� for Y st Y 2 SFY ex X st X 2SFX & X � Y.Theorem SETFAM 1:17. SFX � SFY implies SFX is �ner than SFY.Theorem SETFAM 1:18. SFX is �ner than SFY implies SSFX � SSFY.Theorem SETFAM 1:19. SFY 6= ; & SFX is oarser than SFY implies TSFX �TSFY.De�nitionrede�nefun ; ! Set-Family.let x. fun fxg ! Set-Family.let y. fun fx, yg ! Set-Family.



97Theorem SETFAM 1:20. ; is �ner than SFX.Theorem SETFAM 1:21. SFX is �ner than ; implies SFX = ;.Theorem SETFAM 1:22. SFX is �ner than SFX.Theorem SETFAM 1:23. SFX is �ner than SFY & SFY is �ner than SFZ implies SFXis �ner than SFZ.Theorem SETFAM 1:24. SFX is �ner than fYg implies for X st X 2 SFX holds X� Y.Theorem SETFAM 1:25. SFX is �ner than fX, Yg implies for Z st Z 2 SFX holdsZ � X or Z � Y.De�nitionlet SFX, SFY.fun d(SFX, SFY) ! Set-Family means Z 2 it i� ex X, Y st X 2 SFX & Y 2SFY & Z = X[Y.fun e(SFX, SFY) ! Set-Family means Z 2 it i� ex X, Y st X 2 SFX & Y 2SFY & Z = X\Y.fun rr(SFX, SFY) ! Set-Family means Z 2 it i� ex X, Y st X 2 SFX & Y2 SFY & Z = XrY.Theorem SETFAM 1:26. Z 2 d(SFX, SFY) i� ex X, Y st X 2 SFX & Y 2 SFY & Z= X[Y.Theorem SETFAM 1:27. Z 2 e(SFX, SFY) i� ex X, Y st X 2 SFX & Y 2 SFY & Z= X\Y.Theorem SETFAM 1:28. Z 2 rr(SFX, SFY) i� ex X, Y st X 2 SFX & Y 2 SFY &Z = XrY.Theorem SETFAM 1:29. SFX is �ner than d(SFX, SFX).Theorem SETFAM 1:30. e(SFX, SFX) is �ner than SFX.Theorem SETFAM 1:31. rr(SFX, SFX) is �ner than SFX.Theorem SETFAM 1:32. d(SFX, SFY) = d(SFY, SFX).Theorem SETFAM 1:33. e(SFX, SFY) = e(SFY, SFX).Theorem SETFAM 1:34. SFX\SFY 6= ; implies TSFX\TSFY = Te(SFX, SFY).Theorem SETFAM 1:35. SFY 6= ; implies X[TSFY = Td(fXg, SFY).Theorem SETFAM 1:36. X\SSFY = Se(fXg, SFY).Theorem SETFAM 1:37. SFY 6= ; implies XrSSFY = Trr(fXg, SFY).Theorem SETFAM 1:38. SFY 6= ; implies XrTSFY = Srr(fXg, SFY).Theorem SETFAM 1:39. Se(SFX, SFY) � SSFX\SSFY.Theorem SETFAM 1:40. SFX 6= ; & SFY 6= ; implies TSFX[TSFY � Td(SFX,SFY).



98 CHAPTER 17. SETFAM 1Theorem SETFAM 1:41. SFX 6= ; & SFY 6= ; implies Trr(SFX, SFY) � TSFXrTSFY.De�nitionlet D be set.mode Subset-Family of D ! Subset of bool D means not ontradition.Theorem SETFAM 1:42. for F being Subset of bool D holds F is Subset-Family ofD. reserve F, G for Subset-Family of D.reserve P, Q for Subset of D.De�nitionlet D, F, G.rede�nefun F[G ! Subset-Family of D.fun F\G ! Subset-Family of D.fun FrG ! Subset-Family of D.Theorem SETFAM 1:43. X 2 F implies X is Subset of D.De�nitionlet D, F.rede�nefun SF ! Subset of D.De�nitionlet D, F.rede�nefun TF ! Subset of D.Theorem SETFAM 1:44. F = G i� (for P holds P 2 F i� P 2 G).sheme SubFamExfA() ! set, P[Subset of A()℄g: ex F being Subset-Family of A()st for B being Subset of A() holds B 2 F i� P[B℄.De�nitionlet D, F.fun F ! Subset-Family of D means for P being Subset of D holds P 2 iti� P 2 F.Theorem SETFAM 1:45. for P holds P 2 F i� P 2 F.Theorem SETFAM 1:46. F 6= ; implies F 6= ;.Theorem SETFAM 1:47. F 6= ; implies 
DrSF = T(F).Theorem SETFAM 1:48. F 6= ; implies SF = 
DrTF.



Chapter 18MCART 1Tuples, Projetions and Cartesian ProdutsbyAndrzej Trybule 1Warsaw University (Bia lystok)Summary. The purpose of this artile is to de�ne projetions of ordered pairs,and to introdue triples and quadruples, and their projetions. The theorems inthis paper may be roughly divided into two groups: theorems desribing basiproperties of introdued onepts and theorems related to the regularity, analogousto those proved for ordered pairs in Some Basi Properties of Sets by Cz. Byli�nski(ZFMISC 1). Cartesian produts of subsets are rede�ned as subsets of Cartesianproduts.The symbols used in this artile are introdued in the following voabularies: fam op,boole, and oord. The terminology and notation used in this artile have been in-trodued in the following artiles: tarski, boole, enumset1, subset 1, funt 1, andordinal1.reserve v, x, x1, x2, x3, x4, y, y1, y2, y3, y4, z, z1, z2 for Any, X, X1, X2, X3, X4,X5, X6, Y, Y1, Y2, Y3, Y4, Y5, Z, Z1, Z2, Z3, Z4, Z5 for set.Theorem MCART 1:1. X 6= ; implies ex Y st Y 2 X & Y misses X.Theorem MCART 1:2. X 6= ; implies ex Y st Y 2 X & for Y1 st Y1 2 Y holds Y1misses X.1Supported by RPBP.III-24.C1. 99



100 CHAPTER 18. MCART 1Theorem MCART 1:3. X 6= ; implies ex Y st Y 2 X & for Y1, Y2 st Y1 2 Y2 &Y2 2 Y holds Y1 misses X.Theorem MCART 1:4. X 6= ; implies ex Y st Y 2 X & for Y1, Y2, Y3 st Y1 2 Y2& Y2 2 Y3 & Y3 2 Y holds Y1 misses X.Theorem MCART 1:5. X 6= ; implies ex Y st Y 2 X & for Y1, Y2, Y3, Y4 st Y1 2Y2 & Y2 2 Y3 & Y3 2 Y4 & Y4 2 Y holds Y1 misses X.Theorem MCART 1:6. X 6= ; implies ex Y st Y 2 X & for Y1, Y2, Y3, Y4, Y5 stY1 2 Y2 & Y2 2 Y3 & Y3 2 Y4 & Y4 2 Y5 & Y5 2 Y holds Y1 misses X.De�nitionlet x.given x1, x2 being Any suh that x = [x1, x2℄.fun x1 means x = [y1, y2℄ implies it = y1.fun x2 means x = [y1, y2℄ implies it = y2.Theorem MCART 1:7. [x, y℄1 = x & [x, y℄2 = y.Theorem MCART 1:8. (ex x, y st z = [x, y℄) implies [z1, z2℄ = z.Theorem MCART 1:9. X 6= ; implies ex v st v 2 X & not ex x, y st (x 2 X or y 2X) & v = [x, y℄.Theorem MCART 1:10. z 2 [[X, Y℄℄ implies z1 2 X & z2 2 Y.Theorem MCART 1:11. (ex x, y st z = [x, y℄) & z1 2 X & z2 2 Y implies z 2 [[X,Y℄℄. Theorem MCART 1:12. z 2 [[fxg, Y℄℄ implies z1 = x & z2 2 Y.Theorem MCART 1:13. z 2 [[X, fyg℄℄ implies z1 2 X & z2 = y.Theorem MCART 1:14. z 2 [[fxg, fyg℄℄ implies z1 = x & z2 = y.Theorem MCART 1:15. z 2 [[fx1, x2g, Y℄℄ implies (z1 = x1 or z1 = x2) & z2 2 Y.Theorem MCART 1:16. z 2 [[X, fy1, y2g℄℄ implies z1 2 X & (z2 = y1 or z2 = y2).Theorem MCART 1:17. z 2 [[fx1, x2g, fyg℄℄ implies (z1 = x1 or z1 = x2) & z2 = y.Theorem MCART 1:18. z 2 [[fxg, fy1, y2g℄℄ implies z1 = x & (z2 = y1 or z2 = y2).Theorem MCART 1:19. z 2 [[fx1, x2g, fy1, y2g℄℄ implies (z1 = x1 or z1 = x2) & (z2= y1 or z2 = y2).Theorem MCART 1:20. (ex y, z st x = [y, z℄) implies x 6= x1 & x 6= x2.reserve xx, xx1, xx2 for Element of X.reserve yy, yy1, yy2 for Element of Y.Theorem MCART 1:21. X 6= ; & Y 6= ; implies [xx, yy℄ 2 [[X, Y℄℄.Theorem MCART 1:22. X 6= ; & Y 6= ; implies [xx, yy℄ is Element of [[X, Y℄℄.Theorem MCART 1:23. x 2 [[X, Y℄℄ implies x = [x1, x2℄.



101Theorem MCART 1:24. X 6= ; & Y 6= ; implies for x being Element of [[X, Y℄℄ holdsx = [x1, x2℄.Theorem MCART 1:25. [[fx1, x2g, fy1, y2g℄℄ = f[x1, y1℄, [x1, y2℄, [x2, y1℄, [x2, y2℄g.Theorem MCART 1:26. X 6= ; & Y 6= ; implies for x being Element of [[X, Y℄℄ holdsx 6= x1 & x 6= x2.De�nitionlet x1, x2, x3.fun [x1, x2, x3℄ means it = [[x1, x2℄, x3℄.Theorem MCART 1:27. [x1, x2, x3℄ = [[x1, x2℄, x3℄.Theorem MCART 1:28. [x1, x2, x3℄ = [y1, y2, y3℄ implies x1 = y1 & x2 = y2 & x3= y3.Theorem MCART 1:29. X 6= ; implies ex v st v 2 X & not ex x, y, z st (x 2 X ory 2 X) & v = [x, y, z℄.De�nitionlet x1, x2, x3, x4.fun [x1, x2, x3, x4℄ means it = [[x1, x2, x3℄, x4℄.Theorem MCART 1:30. [x1, x2, x3, x4℄ = [[x1, x2, x3℄, x4℄.Theorem MCART 1:31. [x1, x2, x3, x4℄ = [[[x1, x2℄, x3℄, x4℄.Theorem MCART 1:32. [x1, x2, x3, x4℄ = [[x1, x2℄, x3, x4℄.Theorem MCART 1:33. [x1, x2, x3, x4℄ = [y1, y2, y3, y4℄ implies x1 = y1 & x2 =y2 & x3 = y3 & x4 = y4.Theorem MCART 1:34. X 6= ; implies ex v st v 2 X & not ex x1, x2, x3, x4 st (x12 X or x2 2 X) & v = [x1, x2, x3, x4℄.Theorem MCART 1:35. X1 6= ; & X2 6= ; & X3 6= ; i� [[X1, X2, X3℄℄ 6= ;.reserve xx1 for (Element of X1), xx2 for (Element of X2), xx3 for (Element of X3).Theorem MCART 1:36. X1 6= ; & X2 6= ; & X3 6= ; implies ([[X1, X2, X3℄℄ = [[Y1,Y2, Y3℄℄ implies X1 = Y1 & X2 = Y2 & X3 = Y3).Theorem MCART 1:37. [[X1, X2, X3℄℄ 6= ; & [[X1, X2, X3℄℄ = [[Y1, Y2, Y3℄℄ impliesX1 = Y1 & X2 = Y2 & X3 = Y3.Theorem MCART 1:38. [[X, X, X℄℄ = [[Y, Y, Y℄℄ implies X = Y.Theorem MCART 1:39. [[fx1g, fx2g, fx3g℄℄ = f[x1, x2, x3℄g.Theorem MCART 1:40. [[fx1, y1g, fx2g, fx3g℄℄ = f[x1, x2, x3℄, [y1, x2, x3℄g.Theorem MCART 1:41. [[fx1g, fx2, y2g, fx3g℄℄ = f[x1, x2, x3℄, [x1, y2, x3℄g.Theorem MCART 1:42. [[fx1g, fx2g, fx3, y3g℄℄ = f[x1, x2, x3℄, [x1, x2, y3℄g.Theorem MCART 1:43. [[fx1, y1g, fx2, y2g, fx3g℄℄ = f[x1, x2, x3℄, [y1, x2, x3℄, [x1,y2, x3℄, [y1, y2, x3℄g.



102 CHAPTER 18. MCART 1Theorem MCART 1:44. [[fx1, y1g, fx2g, fx3, y3g℄℄ = f[x1, x2, x3℄, [y1, x2, x3℄, [x1,x2, y3℄, [y1, x2, y3℄g.Theorem MCART 1:45. [[fx1g, fx2, y2g, fx3, y3g℄℄ = f[x1, x2, x3℄, [x1, y2, x3℄, [x1,x2, y3℄, [x1, y2, y3℄g.Theorem MCART 1:46. [[fx1, y1g, fx2, y2g, fx3, y3g℄℄ = f[x1, x2, x3℄, [x1, y2, x3℄,[x1, x2, y3℄, [x1, y2, y3℄, [y1, x2, x3℄, [y1, y2, x3℄, [y1, x2, y3℄, [y1, y2, y3℄g.De�nitionlet X1, X2, X3.assume X1 6= ; & X2 6= ; & X3 6= ;.let x be Element of [[X1, X2, X3℄℄.fun x1 ! Element of X1 means x = [x1, x2, x3℄ implies it = x1.fun x2 ! Element of X2 means x = [x1, x2, x3℄ implies it = x2.fun x3 ! Element of X3 means x = [x1, x2, x3℄ implies it = x3.Theorem MCART 1:47. X1 6= ; & X2 6= ; & X3 6= ; implies for x being Element of[[X1, X2, X3℄℄ for x1, x2, x3 st x = [x1, x2, x3℄ holds x1 = x1 & x2 = x2 & x3 = x3.Theorem MCART 1:48. X1 6= ; & X2 6= ; & X3 6= ; implies for x being Element of[[X1, X2, X3℄℄ holds x = [x1, x2, x3℄.Theorem MCART 1:49. X � [[X, Y, Z℄℄ or X � [[Y, Z, X℄℄ or X � [[Z, X, Y℄℄ impliesX = ;.Theorem MCART 1:50. X1 6= ; & X2 6= ; & X3 6= ; implies for x being Element of[[X1, X2, X3℄℄ holds x1 = (x qua Any)11 & x2 = (x qua Any)12 & x3 = (x qua Any)2.Theorem MCART 1:51. X1 6= ; & X2 6= ; & X3 6= ; implies for x being Element of[[X1, X2, X3℄℄ holds x 6= x1 & x 6= x2 & x 6= x3.Theorem MCART 1:52. [[X1, X2, X3℄℄ meets [[Y1, Y2, Y3℄℄ implies X1 meets Y1 & X2meets Y2 & X3 meets Y3.Theorem MCART 1:53. [[X1, X2, X3, X4℄℄ = [[[[[[X1, X2℄℄, X3℄℄, X4℄℄.Theorem MCART 1:54. [[[[X1, X2℄℄, X3, X4℄℄ = [[X1, X2, X3, X4℄℄.Theorem MCART 1:55. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; i� [[X1, X2, X3, X4℄℄6= ;.Theorem MCART 1:56. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies ([[X1, X2,X3, X4℄℄ = [[Y1, Y2, Y3, Y4℄℄ implies X1 = Y1 & X2 = Y2 & X3 = Y3 & X4 = Y4).Theorem MCART 1:57. [[X1, X2, X3, X4℄℄ 6= ; & [[X1, X2, X3, X4℄℄ = [[Y1, Y2, Y3,Y4℄℄ implies X1 = Y1 & X2 = Y2 & X3 = Y3 & X4 = Y4.Theorem MCART 1:58. [[X, X, X, X℄℄ = [[Y, Y, Y, Y℄℄ implies X = Y.reserve xx4 for Element of X4.De�nitionlet X1, X2, X3, X4.



103assume X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ;.let x be Element of [[X1, X2, X3, X4℄℄.fun x1 ! Element of X1 means x = [x1, x2, x3, x4℄ implies it = x1.fun x2 ! Element of X2 means x = [x1, x2, x3, x4℄ implies it = x2.fun x3 ! Element of X3 means x = [x1, x2, x3, x4℄ implies it = x3.fun x4 ! Element of X4 means x = [x1, x2, x3, x4℄ implies it = x4.Theorem MCART 1:59. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x beingElement of [[X1, X2, X3, X4℄℄ for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds x1 = x1 &x2 = x2 & x3 = x3 & x4 = x4.Theorem MCART 1:60. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x beingElement of [[X1, X2, X3, X4℄℄ holds x = [x1, x2, x3, x4℄.Theorem MCART 1:61. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x beingElement of [[X1, X2, X3, X4℄℄ holds x1 = (x qua Any)111 & x2 = (x qua Any)112 & x3 =(x qua Any)12 & x4 = (x qua Any)2.Theorem MCART 1:62. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x beingElement of [[X1, X2, X3, X4℄℄ holds x 6= x1 & x 6= x2 & x 6= x3 & x 6= x4.Theorem MCART 1:63. X1 � [[X1, X2, X3, X4℄℄ or X1 � [[X2, X3, X4, X1℄℄ or X1 �[[X3, X4, X1, X2℄℄ or X1 � [[X4, X1, X2, X3℄℄ implies X1 = ;.Theorem MCART 1:64. [[X1, X2, X3, X4℄℄ meets [[Y1, Y2, Y3, Y4℄℄ implies X1 meetsY1 & X2 meets Y2 & X3 meets Y3 & X4 meets Y4.Theorem MCART 1:65. [[fx1g, fx2g, fx3g, fx4g℄℄ = f[x1, x2, x3, x4℄g.Theorem MCART 1:66. [[X, Y℄℄ 6= ; implies for x being Element of [[X, Y℄℄ holds x6= x1 & x 6= x2.Theorem MCART 1:67. x 2 [[X, Y℄℄ implies x 6= x1 & x 6= x2.reserve A1 for (Subset of X1), A2 for (Subset of X2), A3 for (Subset of X3), A4 forSubset of X4.reserve x for Element of [[X1, X2, X3℄℄.Theorem MCART 1:68. X1 6= ; & X2 6= ; & X3 6= ; implies for x1, x2, x3 st x =[x1, x2, x3℄ holds x1 = x1 & x2 = x2 & x3 = x3.Theorem MCART 1:69. X1 6= ; & X2 6= ; & X3 6= ; & (for xx1, xx2, xx3 st x =[xx1, xx2, xx3℄ holds y1 = xx1) implies y1 = x1.Theorem MCART 1:70. X1 6= ; & X2 6= ; & X3 6= ; & (for xx1, xx2, xx3 st x =[xx1, xx2, xx3℄ holds y2 = xx2) implies y2 = x2.Theorem MCART 1:71. X1 6= ; & X2 6= ; & X3 6= ; & (for xx1, xx2, xx3 st x =[xx1, xx2, xx3℄ holds y3 = xx3) implies y3 = x3.Theorem MCART 1:72. z 2 [[X1, X2, X3℄℄ implies ex x1, x2, x3 st x1 2 X1 & x2 2X2 & x3 2 X3 & z = [x1, x2, x3℄.



104 CHAPTER 18. MCART 1Theorem MCART 1:73. [x1, x2, x3℄ 2 [[X1, X2, X3℄℄ i� x1 2 X1 & x2 2 X2 & x3 2X3.Theorem MCART 1:74. (for z holds z 2 Z i� ex x1, x2, x3 st x1 2 X1 & x2 2 X2 &x3 2 X3 & z = [x1, x2, x3℄) implies Z = [[X1, X2, X3℄℄.Theorem MCART 1:75. X1 6= ; & X2 6= ; & X3 6= ; & Y1 6= ; & Y2 6= ; & Y3 6= ;implies for x being (Element of [[X1, X2, X3℄℄), y being Element of [[Y1, Y2, Y3℄℄ holdsx = y implies x1 = y1 & x2 = y2 & x3 = y3.Theorem MCART 1:76. for x being Element of [[X1, X2, X3℄℄ st x 2 [[A1, A2, A3℄℄holds x1 2 A1 & x2 2 A2 & x3 2 A3.Theorem MCART 1:77. X1 � Y1 & X2 � Y2 & X3 � Y3 implies [[X1, X2, X3℄℄ �[[Y1, Y2, Y3℄℄.reserve x for Element of [[X1, X2, X3, X4℄℄.Theorem MCART 1:78. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; implies for x1, x2,x3, x4 st x = [x1, x2, x3, x4℄ holds x1 = x1 & x2 = x2 & x3 = x3 & x4 = x4.Theorem MCART 1:79. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & (for xx1, xx2, xx3,xx4 st x = [xx1, xx2, xx3, xx4℄ holds y1 = xx1) implies y1 = x1.Theorem MCART 1:80. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & (for xx1, xx2, xx3,xx4 st x = [xx1, xx2, xx3, xx4℄ holds y2 = xx2) implies y2 = x2.Theorem MCART 1:81. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & (for xx1, xx2, xx3,xx4 st x = [xx1, xx2, xx3, xx4℄ holds y3 = xx3) implies y3 = x3.Theorem MCART 1:82. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & (for xx1, xx2, xx3,xx4 st x = [xx1, xx2, xx3, xx4℄ holds y4 = xx4) implies y4 = x4.Theorem MCART 1:83. z 2 [[X1, X2, X3, X4℄℄ implies ex x1, x2, x3, x4 st x1 2 X1& x2 2 X2 & x3 2 X3 & x4 2 X4 & z = [x1, x2, x3, x4℄.Theorem MCART 1:84. [x1, x2, x3, x4℄ 2 [[X1, X2, X3, X4℄℄ i� x1 2 X1 & x2 2 X2 &x3 2 X3 & x4 2 X4.Theorem MCART 1:85. (for z holds z 2 Z i� ex x1, x2, x3, x4 st x1 2 X1 & x2 2X2 & x3 2 X3 & x4 2 X4 & z = [x1, x2, x3, x4℄) implies Z = [[X1, X2, X3, X4℄℄.Theorem MCART 1:86. X1 6= ; & X2 6= ; & X3 6= ; & X4 6= ; & Y1 6= ; & Y2 6= ; &Y3 6= ; & Y4 6= ; implies for x being (Element of [[X1, X2, X3, X4℄℄), y being Elementof [[Y1, Y2, Y3, Y4℄℄ holds x = y implies x1 = y1 & x2 = y2 & x3 = y3 & x4 = y4.Theorem MCART 1:87. for x being Element of [[X1, X2, X3, X4℄℄ st x 2 [[A1, A2,A3, A4℄℄ holds x1 2 A1 & x2 2 A2 & x3 2 A3 & x4 2 A4.Theorem MCART 1:88. X1 � Y1 & X2 � Y2 & X3 � Y3 & X4 � Y4 implies [[X1,X2, X3, X4℄℄ � [[Y1, Y2, Y3, Y4℄℄.De�nitionlet X1, X2, A1, A2.



105rede�nefun [[A1, A2℄℄ ! Subset of [[X1, X2℄℄.De�nitionlet X1, X2, X3, A1, A2, A3.rede�nefun [[A1, A2, A3℄℄ ! Subset of [[X1, X2, X3℄℄.De�nitionlet X1, X2, X3, X4, A1, A2, A3, A4.rede�nefun [[A1, A2, A3, A4℄℄ ! Subset of [[X1, X2, X3, X4℄℄.



Chapter 19REAL 1Basi Properties of Real NumbersbyKrzysztof Hryniewieki 1Warsaw UniversitySummary. Basi fats of arithmetis of real numbers are presented: de�nitionsand properties of the omplement element, the inverse element, subtration anddivision; some basi properties of the set REAL (e.g. density), and the sheme ofseparation for sets of reals.The symbols used in this artile are introdued in voabularies real 1 and boole.The artiles tarski and boole provide the terminology and notation for this artile.reserve x, y, z, t for Real.reserve a, b, , d for Element of REAL.reserve r for Any.De�nitionlet x, y.rede�nefun x+y ! Real.fun x�y ! Real.Theorem REAL 1:1. r is Real i� r 2 REAL.1Supported by RPBP.III-24.C1. 106



107Theorem REAL 1:2. x+y = y+x.Theorem REAL 1:3. x+(y+z) = (x+y)+z.Theorem REAL 1:4. x+0 = x & 0+x = x.Theorem REAL 1:5. x�y = y�x.Theorem REAL 1:6. x�(y�z) = (x�y)�z.Theorem REAL 1:7. x�1 = x & 1�x = x.Theorem REAL 1:8. (x+y)�z = x�z+y�z & z�(x+y) = z�x+z�y.Theorem REAL 1:9. (z 6= 0 & x 6= y) implies (x�z 6= y�z & z�x 6= y�z & z�x 6= z�y &x�z 6= z�y).Theorem REAL 1:10. (z+x = z+y or x+z = y+z or z+x = y+z or x+z = z+y)implies x = y.Theorem REAL 1:11. x 6= y i� x+z 6= y+z.Theorem REAL 1:12. (z 6= 0 & (x�z = y�z or z�x = z�y or x�z = z�y or z�x = y�z))implies x = y.De�nitionlet x. fun�x ! Real means x+it = 0.assume x 6= 0.fun x�1 ! Real means x�it = 1.De�nitionlet x, y.fun x�y ! Real means it = x+(�y).assume y 6= 0.fun x=y ! Real means it = x�y�1.Theorem REAL 1:13. x+�x = 0 &�x+x = 0.Theorem REAL 1:14. x�y = x+�y.Theorem REAL 1:15. x 6= 0 implies x�x�1 = 1 & x�1�x = 1.Theorem REAL 1:16. y 6= 0 implies (x=y = x�y�1 & x=y = y�1�x).Theorem REAL 1:17. x+y�z = x+(y�z).Theorem REAL 1:18. �(�x) = x.Theorem REAL 1:19. 0�x =�x.Theorem REAL 1:20. x�0 = 0 & 0�x = 0.Theorem REAL 1:21. (�x)�y =�(x�y) & x�(�y) =�(x�y) & (�x)�y = x�(�y).Theorem REAL 1:22. x 6= 0 i��x 6= 0.Theorem REAL 1:23. x�y = 0 i� (x = 0 or y = 0).



108 CHAPTER 19. REAL 1Theorem REAL 1:24. x 6= 0 & y 6= 0 implies x�1�y�1 = (x�y)�1.Theorem REAL 1:25. x�0 = x.Theorem REAL 1:26. �0 = 0.Theorem REAL 1:27. x�(y+z) = x�y�z.Theorem REAL 1:28. x�(y�z) = x�y+z.Theorem REAL 1:29. x�(y�z) = x�y�x�z & (y�z)�x = y�x�z�x.Theorem REAL 1:30. x+z = y implies (x = y�z & z = y�x).Theorem REAL 1:31. x 6= 0 implies x�1 6= 0.Theorem REAL 1:32. x 6= 0 implies x�1�1 = x.Theorem REAL 1:33. x 6= 0 implies (1=x = x�1 & 1=x�1 = x).Theorem REAL 1:34. x 6= 0 implies x�(1=x) = 1 & (1=x)�x = 1.Theorem REAL 1:35. (y 6= 0 & t 6= 0) implies (x=y)�(z=t) = (x�z)=(y�t).Theorem REAL 1:36. x�x = 0.Theorem REAL 1:37. x 6= 0 implies x=x = 1.Theorem REAL 1:38. y 6= 0 & z 6= 0 implies x=y = (x�z)=(y�z).Theorem REAL 1:39. y 6= 0 implies (�x=y = (�x)=y & x=(�y) =�x=y).Theorem REAL 1:40. z 6= 0 implies (x=z+y=z = (x+y)=z) & (x=z�y=z = (x�y)=z).Theorem REAL 1:41. y 6= 0 & t 6= 0 implies (x=y+z=t = (x�t+z�y)=(y�t)) & (x=y�z=t= (x�t�z�y)=(y�t)).Theorem REAL 1:42. y 6= 0 & z 6= 0 implies x=(y=z) = (x�z)=y.Theorem REAL 1:43. y 6= 0 implies x=y�y = x.Theorem REAL 1:44. for x, y ex z st (x = y+z & x = z+y).Theorem REAL 1:45. for x, y st y 6= 0 ex z st (x = y�z & x = z�y).Theorem REAL 1:46. x 6 y & y 6 x implies x = y.Theorem REAL 1:47. x 6 y & y 6 z implies x 6 z.Theorem REAL 1:48. x 6 y or y 6 x.Theorem REAL 1:49. x 6 y implies (x+z 6 y+z & x�z 6 y�z).Theorem REAL 1:50. x 6 y i��y 6�x.Theorem REAL 1:51. x 6 y & 0 6 z implies (x�z 6 y�z & z�x 6 z�y & z�x 6 y�z &x�z 6 z�y).Theorem REAL 1:52. x 6 y & z 6 0 implies (y�z 6 x�z & z�y 6 z�x & y�z 6 z�x &z�y 6 x�z).Theorem REAL 1:53. x 6 y i� x+z 6 y+z.Theorem REAL 1:54. x 6 y i� x�z 6 y�z.



109Theorem REAL 1:55. (x 6 y & z 6 t) implies (x+z 6 y+t & x+z 6 t+y & z+x 6t+y & z+x 6 y+t).Theorem REAL 1:56. x 6 x.De�nitionlet x, y.pred x < y means x 6 y & x 6= y.Theorem REAL 1:57. x < y i� (x 6 y & x 6= y).Theorem REAL 1:58. ((x 6 y & y < z) or (x < y & y 6 z) or (x < y & y < z))implies x < z.Theorem REAL 1:59. x < y implies (x+z < y+z & x�z < y�z & z+x < z+y & x+z< z+y & z+x < y+z).Theorem REAL 1:60. (x+z < y+z or z+x < z+y or x+z < z+y or z+x < y+z orx�z < y�z) implies x < y.Theorem REAL 1:61. x 6= y implies x < y or y < x.Theorem REAL 1:62. not x < y i� y 6 x.Theorem REAL 1:63. x < y or y < x or x = y.Theorem REAL 1:64. x < y implies not y < x.Theorem REAL 1:65. 0 < 1.Theorem REAL 1:66. x < 0 i� 0 <�x.Theorem REAL 1:67. ((x < y & z 6 t) or (x 6 y & z < t) or (x < y & z < t))implies (x+z < y+t & z+x < y+t & z+x < t+y & x+z < t+y).Theorem REAL 1:68. x < y i��y <�x.Theorem REAL 1:69. for x, y st 0 < x holds y < y+x.Theorem REAL 1:70. 0 < z & x < y implies (x�z < y�z & z�x < z�y & x�z < z�y &z�x < y�z).Theorem REAL 1:71. z < 0 & x < y implies (y�z < x�z & z�y < z�x & y�z < z�x &z�y < x�z).Theorem REAL 1:72. 0 < z implies 0 < z�1.Theorem REAL 1:73. 0 < z implies (x < y i� x=z < y=z).Theorem REAL 1:74. z < 0 implies (x < y i� y=z < x=z).Theorem REAL 1:75. x < y implies ex z st x < z & z < y.Theorem REAL 1:76. for x ex y st x < y.Theorem REAL 1:77. for x ex y st y < x.Theorem REAL 1:78. for X, Y being Subset of REAL st (ex x st x 2 X) & (ex x stx 2 Y) & for x, y st x 2 X & y 2 Y holds x 6 y ex z st for x, y st x 2 X & y 2 Yholds x 6 z & z 6 y.



110 CHAPTER 19. REAL 1sheme SepRealfP[Real℄g: ex X being set of Real st for x holds x 2 X i� P[x℄.Theorem REAL 1:79. y =�x i� x+y = 0.Theorem REAL 1:80. for x, y st x 6= 0 holds y = x�1 i� x�y = 1.Theorem REAL 1:81. for x, y st x 6= 0 & y 6= 0 holds (x=y)�1 = y=x.Theorem REAL 1:82. for x, y, z, t st y 6= 0 & z 6= 0 & t 6= 0 holds (x=y)=(z=t) =(x�t)=(y�z).Theorem REAL 1:83. �(x�y) = y�x.Theorem REAL 1:84. (x+y 6 z i� x 6 z�y).Theorem REAL 1:85. (x+y 6 z i� y 6 z�x).Theorem REAL 1:86. (x 6 y+z i� x�y 6 z).Theorem REAL 1:87. (x 6 y+z i� x�z 6 y).Theorem REAL 1:88. (x+y < z i� x < z�y).Theorem REAL 1:89. (x+y < z i� y < z�x).Theorem REAL 1:90. (x < z+y i� x�z < y).Theorem REAL 1:91. (x < y+z i� x�z < y).Theorem REAL 1:92. ((x 6 y & z 6 t) implies x�t 6 y�z) & (((x < y & z 6 t) or(x 6 y & z < t) or (x < y & z < t)) implies x�t < y�z).Theorem REAL 1:93. 0 6 x�x.



Chapter 20ORDINAL1The Ordinal NumbersTrans�nite Indution and De�ning by Trans�nite IndutionbyGrzegorz Banerek 1Warsaw University (Bia lystok)Summary. We introdue some onsequenes of the regularity axiom, the suessorof a set, 2-transitivity and 2-onnetedness, the de�nition and basi properties ofordinal numbers and sets of ordinals, trans�nite sequenes, trans�nite indution,and shemes of de�ning by trans�nite indution.The symbols used in this artile are introdued in the following voabularies: boole,fam op, real 1, fun rel, fun, and ordinal. The terminology and notation usedin this artile have been introdued in the following artiles: tarski, boole, enumset1,and funt 1.reserve X, Y, Z, A, B, C, X1, X2, X3, X4, X5, X6 for set, x, y, z, a, b,  for Any.Theorem ORDINAL1:1. not X 2 X.Theorem ORDINAL1:2. not (X 2 Y & Y 2 X).Theorem ORDINAL1:3. not (X 2 Y & Y 2 Z & Z 2 X).Theorem ORDINAL1:4. not (X1 2 X2 & X2 2 X3 & X3 2 X4 & X4 2 X1).Theorem ORDINAL1:5. not (X1 2 X2 & X2 2 X3 & X3 2 X4 & X4 2 X5 & X5 2X1).1Supported by RPBP.III-24.C1. 111



112 CHAPTER 20. ORDINAL1Theorem ORDINAL1:6. not (X1 2 X2 & X2 2 X3 & X3 2 X4 & X4 2 X5 & X5 2X6 & X6 2 X1).Theorem ORDINAL1:7. Y 2 X implies not X � Y.sheme ComprehensionfA() ! set, P[set℄g: ex B st for Z being set holds Z 2 B i�Z 2 A() & P[Z℄.Theorem ORDINAL1:8. (for X holds X 2 A i� X 2 B) implies A = B.De�nitionlet X.fun su X ! set means it = X[fXg.Theorem ORDINAL1:9. su X = X[fXg.Theorem ORDINAL1:10. X 2 su X.Theorem ORDINAL1:11. su X 6= ;.Theorem ORDINAL1:12. su X = su Y implies X = Y.Theorem ORDINAL1:13. x 2 su X i� x 2 X or x = X.Theorem ORDINAL1:14. X 6= su X.reserve a, b, , d for Any, X, Y, Z, x, y, z for set.De�nitionlet X.pred X is 2-transitive means for x st x 2 X holds x � X.pred X is 2-onneted means for x, y st x 2 X & y 2 X holds x 2 y or x = yor y 2 x.Theorem ORDINAL1:15. X is 2-transitive i� for x st x 2 X holds x � X.Theorem ORDINAL1:16. X is 2-onneted i� for x, y st x 2 X & y 2 X holds x 2 yor x = y or y 2 x.De�nitionmode Ordinal ! set means it is 2-transitive & it is 2-onneted.reserve A, B, C, D for Ordinal.Theorem ORDINAL1:17. X is Ordinal i� X is 2-transitive & X is 2-onneted.Theorem ORDINAL1:18. x 2 A implies x � A.Theorem ORDINAL1:19. A 2 B & B 2 C implies A 2 C.Theorem ORDINAL1:20. x 2 A & y 2 A implies x 2 y or x = y or y 2 x.Theorem ORDINAL1:21. for x, A being Ordinal st x � A & x 6= A holds x 2 A.Theorem ORDINAL1:22. A � B & B 2 C implies A 2 C.Theorem ORDINAL1:23. a 2 A implies a is Ordinal.Theorem ORDINAL1:24. A 2 B or A = B or B 2 A.



113Theorem ORDINAL1:25. A � B or B � A.Theorem ORDINAL1:26. A � B or B 2 A.Theorem ORDINAL1:27. ; is Ordinal.De�nitionfun 0 ! Ordinal means it = ;.Theorem ORDINAL1:28. 0 = ;.Theorem ORDINAL1:29. x is Ordinal implies su x is Ordinal.Theorem ORDINAL1:30. x is Ordinal implies Sx is Ordinal.De�nitionlet A.rede�nefun su A ! Ordinal.fun SA ! Ordinal.Theorem ORDINAL1:31. (for x st x 2 X holds x is Ordinal & x � X) implies X isOrdinal.Theorem ORDINAL1:32. X � A & X 6= ; implies ex C st C 2 X & for B st B 2 Xholds C � B.Theorem ORDINAL1:33. A 2 B i� su A � B.Theorem ORDINAL1:34. A 2 su C i� A � C.sheme Ordinal MinfP[Ordinal℄g: ex A st P[A℄ & for B st P[B℄ holds A � B pro-vided A: ex A st P[A℄.sheme Trans�nite IndfP[Ordinal℄g: for A holds P[A℄ provided A: for A st for Cst C 2 A holds P[C℄ holds P[A℄.Theorem ORDINAL1:35. for X st for a st a 2 X holds a is Ordinal holds SX isOrdinal.Theorem ORDINAL1:36. for X st for a st a 2 X holds a is Ordinal ex A st X � A.Theorem ORDINAL1:37. not ex X st for x holds x 2 X i� x is Ordinal.Theorem ORDINAL1:38. not ex X st for A holds A 2 X.Theorem ORDINAL1:39. for X ex A st not A 2 X & for B st not B 2 X holds A� B.De�nitionlet A.pred A is limit ordinal means A = SA.Theorem ORDINAL1:40. A is limit ordinal i� A = SA.Theorem ORDINAL1:41. for A holds A is limit ordinal i� for C st C 2 A holds suC 2 A.



114 CHAPTER 20. ORDINAL1Theorem ORDINAL1:42. not A is limit ordinal i� ex B st A = su B.reserve F, G, H for Funtion.De�nitionmode trans�nite sequene ! Funtion means ex A st dom it = A.De�nitionlet Z.mode trans�nite sequene of Z ! trans�nite sequene means rng it � Z.Theorem ORDINAL1:43. F is trans�nite sequene i� ex A st dom F = A.Theorem ORDINAL1:44. F is trans�nite sequene of Z i� F is trans�nite sequene &rng F � Z.Theorem ORDINAL1:45. ; is trans�nite sequene of Z.reserve L, L1, L2 for trans�nite sequene.Theorem ORDINAL1:46. dom F is Ordinal implies F is trans�nite sequene of rng F.De�nitionlet L.rede�nefun dom L ! Ordinal.Theorem ORDINAL1:47. X � Y implies for L being trans�nite sequene of X holdsL is trans�nite sequene of Y.De�nitionlet L, A.rede�nefun L�A ! trans�nite sequene of rng L.Theorem ORDINAL1:48. for L being trans�nite sequene of X for A holds L�A istrans�nite sequene of X.Theorem ORDINAL1:49. (for a st a 2 X holds a is trans�nite sequene) & (for L1,L2 st L1 2 X & L2 2 X holds graph L1 � graph L2 or graph L2 � graph L1) impliesSX is trans�nite sequene.sheme TS UniqfA() ! Ordinal, H(trans�nite sequene) ! Any, L1() ! trans�nitesequene, L2() ! trans�nite sequeneg: L1() = L2() provided B: dom L1() = A() & forB, L st B 2 A() & L = L1()�B holds L1():B = H(L) and C: dom L2() = A() & for B, Lst B 2 A() & L = L2()�B holds L2():B = H(L).sheme TS ExistfA() ! Ordinal, H(trans�nite sequene) ! Anyg: ex L st dom L =A() & for B, L1 st B 2 A() & L1 = L�B holds L:B = H(L1).sheme Fun TSfL() ! trans�nite sequene, F(Ordinal)! Any, H(trans�nite sequene)! Anyg: for B st B 2 dom L() holds L():B = H(L()�B) provided A: for A, a holds a



115= F(A) i� ex L st a = H(L) & dom L = A & for B st B 2 A holds L:B = H(L�B) andB: for A st A 2 dom L() holds L():A = F(A).



Chapter 21NAT 1The Fundamental Properties of Natural NumbersbyGrzegorz Banerek 1Warsaw University (Bia lystok)Summary. Some fundamental properties of addition, multipliation, order rela-tions, exat division, the remainder, divisibility, the least ommon multiple, thegreatest ommon divisor are presented. A proof of Eulid algorithm is also given.The symbols used in this artile are introdued in the following voabularies: boole,real 1, and nat 1. The terminology and notation used in this artile have been intro-dued in the following artiles: tarski, boole, and real 1.reserve x, y, z for Real, k, l, m, n, u, w, v for Nat, X, Y, Z for set of Real.Theorem NAT 1:1. x is Nat implies x+1 is Nat.Theorem NAT 1:2. for X st 0 2 X & for x st x 2 X holds x+1 2 X for k holds k 2X. Theorem NAT 1:3. k+n = n+k.Theorem NAT 1:4. k+m+n = k+(m+n).Theorem NAT 1:5. k+0 = k & 0+k = k.Theorem NAT 1:6. k�n = n�k.1Supported by RPBP.III-24.C1. 116



117Theorem NAT 1:7. k�(m�n) = (k�m)�n.Theorem NAT 1:8. k�1 = k & 1�k = k.Theorem NAT 1:9. k�(n+m) = k�n+k�m & (n+m)�k = n�k+m�k.Theorem NAT 1:10. k+m = n+m or k+m = m+n or m+k = m+n implies k = n.Theorem NAT 1:11. k�0 = 0 & 0�k = 0.De�nitionlet n, k.rede�nefun n+k ! Nat.sheme IndfP[Nat℄g: for k holds P[k℄ provided A: P[0℄ and B: for k st P[k℄ holdsP[k+1℄.De�nitionlet n, k.rede�nefun n�k ! Nat.Theorem NAT 1:12. k 6 n & n 6 k implies k = n.Theorem NAT 1:13. k 6 n & n 6 m implies k 6 m.Theorem NAT 1:14. k 6 n or n 6 k.Theorem NAT 1:15. k 6 k.Theorem NAT 1:16. k 6 n implies k+m 6 n+m & k+m 6 m+n & m+k 6 m+n &m+k 6 n+m.Theorem NAT 1:17. k+m 6 n+m or k+m 6 m+n or m+k 6 m+n or m+k 6 n+mimplies k 6 n.Theorem NAT 1:18. for k holds 0 6 k.Theorem NAT 1:19. 0 6= k implies 0 < k.Theorem NAT 1:20. k 6 n implies k�m 6 n�m & k�m 6 m�n & m�k 6 n�m & m�k 6m�n.Theorem NAT 1:21. 0 6= k+1.Theorem NAT 1:22. k = 0 or ex n st k = n+1.Theorem NAT 1:23. k+n = 0 implies k = 0 & n = 0.Theorem NAT 1:24. k 6= 0 & (n�k = m�k or n�k = k�m or k�n = k�m) implies n = m.Theorem NAT 1:25. k�n = 0 implies k = 0 or n = 0.sheme Def by IndfN() ! Nat, F(Nat, Nat) ! Nat, P[Nat, Nat℄g: (for k ex n st P[k,n℄) & for k, n, m st P[k, n℄ & P[k, m℄ holds n = m provided A: for k, n holds P[k, n℄i� k = 0 & n = N() or ex m, l st k = m+1 & P[m, l℄ & n = F(k, l).Theorem NAT 1:26. for k, n st k 6 n+1 holds k 6 n or k = n+1.



118 CHAPTER 21. NAT 1Theorem NAT 1:27. for n, k st n 6 k & k 6 n+1 holds n = k or k = n+1.Theorem NAT 1:28. for k, n st k 6 n ex m st n = k+m.Theorem NAT 1:29. n = k+m implies k 6 n.Theorem NAT 1:30. k < n i� k 6 n & k 6= n.Theorem NAT 1:31. not k < 0.sheme Comp IndfP[Nat℄g: for k holds P[k℄ provided A: for k st for n st n < kholds P[n℄ holds P[k℄.sheme MinfP[Nat℄g: ex k st P[k℄ & for n st P[n℄ holds k 6 n provided A: ex kst P[k℄.sheme MaxfP[Nat℄, N() ! Natg: ex k st P[k℄ & for n st P[n℄ holds n 6 k providedA: for k st P[k℄ holds k 6 N() and B: ex k st P[k℄.Theorem NAT 1:32. not (k < n & n < k).Theorem NAT 1:33. k < n & n < m implies k < m.Theorem NAT 1:34. k < n or k = n or n < k.Theorem NAT 1:35. not k < k.Theorem NAT 1:36. k < n implies k+m < n+m & k+m < m+n & m+k < m+n &m+k < n+m.Theorem NAT 1:37. k 6 n implies k 6 n+m.Theorem NAT 1:38. k < n+1 i� k 6 n.Theorem NAT 1:39. k 6 n & n < m or k < n & n 6 m or k < n & n < m implies k< m.Theorem NAT 1:40. k�n = 1 implies k = 1 & n = 1.Theorem NAT 1:41. k+1 6 n i� k < n.sheme RegrfP[Nat℄g: P[0℄ provided A: ex k st P[k℄ and B: for k st k 6= 0 & P[k℄ex n st n < k & P[n℄.reserve k1, t, t1 for Nat.Theorem NAT 1:42. for m st 0 < m for n ex k, t st n = (m�k)+t & t < m.Theorem NAT 1:43. for n, m, k, k1, t, t1 st n = m�k+t & t < m & n = m�k1+t1 &t1 < m holds k = k1 & t = t1.De�nitionlet k, l be Nat.fun k�l ! Nat means (ex t st k = l�it+t & t < l) or it = 0 & l = 0.fun k mod l ! Nat means (ex t st k = l�t+it & it < l) or it = 0 & l = 0.Theorem NAT 1:44. for k, l, n being Nat holds n = k�l i� (ex t st k = l�n+t & t< l) or n = 0 & l = 0.



119Theorem NAT 1:45. for k, l, n being Nat holds n = k mod l i� (ex t st k = l�t+n& n < l) or n = 0 & l = 0.Theorem NAT 1:46. for m, n st 0 < m holds n mod m < m.Theorem NAT 1:47. for n, m st 0 < m holds n = m�(n�m)+(n mod m).De�nitionlet k, l be Nat.pred k j l means ex t st l = k�t.Theorem NAT 1:48. for k, l being Nat holds k j l i� ex t st l = k�t.Theorem NAT 1:49. for n, m holds m j n i� n = m�(n�m).Theorem NAT 1:50. for n holds n j n.Theorem NAT 1:51. for n, m, l st n j m & m j l holds n j l.Theorem NAT 1:52. for n, m st n j m & m j n holds n = m.Theorem NAT 1:53. k j 0 & 1 j k.Theorem NAT 1:54. for n, m st 0 < m & n j m holds n 6 m.Theorem NAT 1:55. for n, m, l st n j m & n j l holds n j m+l.Theorem NAT 1:56. n j k implies n j k�m.Theorem NAT 1:57. for n, m, l st n j m & n j m+l holds n j l.Theorem NAT 1:58. n j m & n j k implies n j m mod k.De�nitionlet k, n.fun k lm n ! Nat means k j it & n j it & for m st k j m & n j m holds it jm.De�nitionlet k, n.fun k gd n ! Nat means it j k & it j n & for m st m j k & m j n holds m jit. sheme EuklidesfQ(Nat) ! Nat, a() ! Nat, b() ! Natg: ex n st Q(n) = a() gd b()& Q(n+1) = 0 provided A: 0 < b() & b() < a() and B: Q(0) = a() & Q(1) = b() andC: for n holds Q(n+2) = Q(n) mod Q(n+1).



Chapter 22FINSEQ 1Segments of Natural Numbers and FiniteSequenesbyGrzegorz Banerek 1Warsaw University (Bia lystok)Krzysztof Hryniewieki 2Warsaw UniversitySummary. We de�ne the notion of an initial segment of natural numbers andprove a number of their properties. Using this notion we introdue �nite sequenes,subsequenes, the empty sequene, a sequene of a domain, and the operation ofonatenation of two sequenes.The symbols used in this artile are introdued in the following voabularies: finseq,fun rel, fun, boole, real 1, and nat 1. The terminology and notation used in thisartile have been introdued in the following artiles: tarski, boole, funt 1, real 1,and nat 1.reserve k, l, m, n, k1, k2 for Nat, X, Y, Z for set, x, y, z, y1, y2 for Any, f, g, h forFuntion.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 120



121De�nitionlet n. fun Seg n ! set of Nat means it = fk: 1 6 k & k 6 ng.Theorem FINSEQ 1:1. Seg n = fk: 1 6 k & k 6 ng.Theorem FINSEQ 1:2. x 2 Seg n implies x is Nat.Theorem FINSEQ 1:3. k 2 Seg n i� 1 6 k & k 6 n.Theorem FINSEQ 1:4. Seg 0 = ; & Seg 1 = f1g & Seg 2 = f1, 2g.Theorem FINSEQ 1:5. n = 0 or n 2 Seg n.Theorem FINSEQ 1:6. n+1 2 Seg (n+1).Theorem FINSEQ 1:7. n 6 m i� Seg n � Seg m.Theorem FINSEQ 1:8. Seg n = Seg m implies n = m.Theorem FINSEQ 1:9. k 6 n implies Seg k = Seg k\Seg n & Seg k = Seg n\Seg k.Theorem FINSEQ 1:10. (Seg k = Seg k\Seg n or Seg k = Seg n\Seg k) implies k 6n. Theorem FINSEQ 1:11. Seg n[fn+1g = Seg (n+1).De�nitionmode FinSequene ! Funtion means ex n st dom it = Seg n.reserve p, q, r, s, t, v for FinSequene.De�nitionlet p. fun len p ! Nat means Seg it = dom p.Theorem FINSEQ 1:12. for f being Funtion holds f is FinSequene i� ex n st domf = Seg n.Theorem FINSEQ 1:13. k = len p i� Seg k = dom p.Theorem FINSEQ 1:14. ; is FinSequene.Theorem FINSEQ 1:15. (ex k st dom f � Seg k) implies ex p st graph f � graph p.sheme SeqExfA() ! Nat, P[Any, Any℄g: ex p st dom p = Seg A() & for k st k 2Seg A() holds P[k, p:k℄ provided A: for k, y1, y2 st k 2 Seg A() & P[k, y1℄ & P[k, y2℄holds y1 = y2 and B: for k st k 2 Seg A() ex x st P[k, x℄.sheme SeqLambdafA() ! Nat, F(Any) ! Anyg: ex p being FinSequene st len p= A() & for k st k 2 Seg A() holds p:k = F(k).Theorem FINSEQ 1:16. z 2 graph p implies ex k st (k 2 dom p & z = [k, p:k℄).Theorem FINSEQ 1:17. X = dom p & X = dom q & (for k st k 2 X holds p:k = q:k)implies p = q.Theorem FINSEQ 1:18. for p, q st (len p = len q) & for k st 1 6 k & k 6 len p holdsp:k = q:k holds p = q.



122 CHAPTER 22. FINSEQ 1Theorem FINSEQ 1:19. p�(Seg n) is FinSequene.Theorem FINSEQ 1:20. (rng p � dom f) implies (f�p is FinSequene).Theorem FINSEQ 1:21. k 6 len p & q = p�(Seg k) implies len q = k & dom q = Segk.De�nitionlet D be DOMAIN.mode FinSequene of D ! FinSequene means rng it � D.reserve D, D1, D2 for DOMAIN.Theorem FINSEQ 1:22. p is FinSequene of D i� rng p � D.Theorem FINSEQ 1:23. for D, k for p being FinSequene of D holds p�(Seg k) isFinSequene of D.Theorem FINSEQ 1:24. ex p being FinSequene of D st len p = k.De�nitionfun " ! FinSequene means len it = 0.Theorem FINSEQ 1:25. p = " i� len p = 0.Theorem FINSEQ 1:26. p = " i� dom p = ;.Theorem FINSEQ 1:27. p = " i� rng p = ;.Theorem FINSEQ 1:28. graph " = ;.Theorem FINSEQ 1:29. for D holds " is FinSequene of D.De�nitionlet D be DOMAIN.fun "(D) ! FinSequene of D means it = ".Theorem FINSEQ 1:30. p = "(D) i� dom p = ;.Theorem FINSEQ 1:31. "(D) = ".Theorem FINSEQ 1:32. p = "(D) i� len p = 0.Theorem FINSEQ 1:33. p = "(D) i� rng p = ;.De�nitionlet p, q.fun p_q ! FinSequene means dom it = Seg (len p+len q) & (for k st k 2dom p holds it:k = p:k) & (for k st k 2 dom q holds it:(len p+k) = q:k).Theorem FINSEQ 1:34. r = p_q i� (dom r = Seg (len p+len q) & (for k st k 2 domp holds r:k = p:k) & (for k st k 2 dom q holds r:(len p+k) = q:k)).Theorem FINSEQ 1:35. len (p_q) = len p+len q.Theorem FINSEQ 1:36. for k st len p+1 6 k & k 6 len p+len q holds (p_q):k = q:(k�len p).Theorem FINSEQ 1:37. len p < k & k 6 len (p_q) implies (p_q):k = q:(k�len p).



123Theorem FINSEQ 1:38. k 2 dom (p_q) implies (k 2 dom p or (ex n st n 2 dom q& k = len p+n)).Theorem FINSEQ 1:39. dom p � dom (p_q).Theorem FINSEQ 1:40. x 2 dom q implies ex k st k = x & len p+k 2 dom (p_q).Theorem FINSEQ 1:41. k 2 dom q implies len p+k 2 dom (p_q).Theorem FINSEQ 1:42. rng p � rng (p_q).Theorem FINSEQ 1:43. rng q � rng (p_q).Theorem FINSEQ 1:44. rng (p_q) = rng p[rng q.Theorem FINSEQ 1:45. p_q_r = p_(q_r).Theorem FINSEQ 1:46. p_r = q_r or r_p = r_q implies p = q.Theorem FINSEQ 1:47. p_" = p & "_p = p.Theorem FINSEQ 1:48. p_q = " implies p = " & q = ".De�nitionlet D.let p, q be FinSequene of D.rede�nefun p_q ! FinSequene of D.Theorem FINSEQ 1:49. for p, q being FinSequene of D holds p_q is FinSequeneof D.De�nitionlet x. fun hxi ! FinSequene means dom it = Seg 1 & it:1 = x.Theorem FINSEQ 1:50. p_q is FinSequene of D implies p is FinSequene of D & qis FinSequene of D.De�nitionlet x, y.fun hx, yi ! FinSequene means it = hxi_hyi.let z. fun hx, y, zi ! FinSequene means it = hxi_hyi_hzi.Theorem FINSEQ 1:51. p = hxi i� dom p = Seg 1 & p:1 = x.Theorem FINSEQ 1:52. graph hxi = f[1, x℄g.Theorem FINSEQ 1:53. hx, yi = hxi_hyi.Theorem FINSEQ 1:54. hx, y, zi = hxi_hyi_hzi.Theorem FINSEQ 1:55. p = hxi i� dom p = Seg 1 & rng p = fxg.Theorem FINSEQ 1:56. p = hxi i� len p = 1 & rng p = fxg.



124 CHAPTER 22. FINSEQ 1Theorem FINSEQ 1:57. p = hxi i� len p = 1 & p:1 = x.Theorem FINSEQ 1:58. (hxi_p):1 = x.Theorem FINSEQ 1:59. (p_hxi):(len p+1) = x.Theorem FINSEQ 1:60. hx, y, zi = hxi_hy, zi & hx, y, zi = hx, yi_hzi.Theorem FINSEQ 1:61. p = hx, yi i� len p = 2 & p:1 = x & p:2 = y.Theorem FINSEQ 1:62. p = hx, y, zi i� len p = 3 & p:1 = x & p:2 = y & p:3 = z.Theorem FINSEQ 1:63. for p st p 6= " holds ex q, x st p = q_hxi.De�nitionlet D.let x be Element of D.rede�nefun hxi ! FinSequene of D.De�nitionlet D.let S be SUBDOMAIN of D.let x be Element of S.rede�nefun hxi ! FinSequene of S.De�nitionlet S be SUBDOMAIN of REAL.let x be Element of S.rede�nefun hxi ! FinSequene of S.sheme IndSeqfP[FinSequene℄g: for p holds P[p℄ provided A: P["℄ and B: for p,x st P[p℄ holds P[p_hxi℄.Theorem FINSEQ 1:64. for p, q, r, s being FinSequene st p_q = r_s & len p 6 lenr ex t being FinSequene st p_t = r.De�nitionlet D.fun D? ! DOMAIN means x 2 it i� x is FinSequene of D.Theorem FINSEQ 1:65. x 2 D? i� x is FinSequene of D.Theorem FINSEQ 1:66. " 2 D?.sheme SepSeqfD() ! DOMAIN, P[FinSequene℄g: ex X st (for x holds x 2 X i�ex p st (p 2 D()? & P[p℄ & x = p)).De�nitionmode FinSubsequene ! Funtion means ex k st dom it � Seg k.



125Theorem FINSEQ 1:67. f is FinSubsequene i� ex k st dom f � Seg k.Theorem FINSEQ 1:68. for p being FinSequene holds p is FinSubsequene.Theorem FINSEQ 1:69. for p, X holds (p�X is FinSubsequene & X�p is FinSubse-quene).reserve p0, q0 for FinSubsequene.De�nitionlet X.given k suh that X � Seg k.fun Sgm X ! FinSequene of NAT means rng it = X & for l, m, k1, k2 st (16 l & l < m & m 6 len it & k1 = it:l & k2 = it:m) holds k1 < k2.Theorem FINSEQ 1:70. (ex k st X � Seg k) implies for p being FinSequene ofNAT holds (p = Sgm X i� rng p = X & for l, m, k1, k2 st (1 6 l & l < m & m 6 len p& k1 = p:l & k2 = p:m) holds k1 < k2).Theorem FINSEQ 1:71. rng Sgm dom p0 = dom p0.De�nitionlet p0.fun Seq p0 ! FinSequene means it = p0�Sgm (dom p0).Theorem FINSEQ 1:72. for X st ex k st X � Seg k holds Sgm X = " i� X = ;.



Chapter 23FINSET 1 Finite SetsbyAgata Darmohwa l1Warsaw University (Bia lystok)Summary. The artile ontains the de�nition of a �nite set based on the notionof �nite sequene. Some theorems about properties of �nite sets and �nite familiesof sets are proved.The symbols used in this artile are introdued in the following voabularies: finseq,boole, fam op, oord, fun, fun rel, finite, nat 1, real 1, and sfamily. Theterminology and notation used in this artile have been introdued in the following artiles:tarski, boole, enumset1, subset 1, funt 1, ordinal1, mart 1, real 1, nat 1,finseq 1, and setfam 1.De�nitionlet A be set.pred A is �nite means ex p being FinSequene st rng p = A.reserve A, B, C, D, X, Y, Y1, Y2, Z for set.reserve p, q for FinSequene.reserve x, y, z, x1, x2, x3, x4, x5, x6, x7, x8, y1, y2 for Any.reserve f, g for Funtion.1Supported by RPBP.III-24.C1. 126



127reserve n for Nat.Theorem FINSET 1:1. A is �nite i� ex p being FinSequene st rng p = A.Theorem FINSET 1:2. for p being FinSequene holds rng p is �nite.Theorem FINSET 1:3. Seg n is �nite.Theorem FINSET 1:4. ; is �nite.Theorem FINSET 1:5. fxg is �nite.Theorem FINSET 1:6. fx, yg is �nite.Theorem FINSET 1:7. fx, y, zg is �nite.Theorem FINSET 1:8. fx1, x2, x3, x4g is �nite.Theorem FINSET 1:9. fx1, x2, x3, x4, x5g is �nite.Theorem FINSET 1:10. fx1, x2, x3, x4, x5, x6g is �nite.Theorem FINSET 1:11. fx1, x2, x3, x4, x5, x6, x7g is �nite.Theorem FINSET 1:12. fx1, x2, x3, x4, x5, x6, x7, x8g is �nite.Theorem FINSET 1:13. A � B & B is �nite implies A is �nite.Theorem FINSET 1:14. A is �nite & B is �nite implies A[B is �nite.Theorem FINSET 1:15. A is �nite implies A\B is �nite & B\A is �nite.Theorem FINSET 1:16. A is �nite implies ArB is �nite.Theorem FINSET 1:17. A is �nite implies f�A is �nite.Theorem FINSET 1:18. A is �nite implies for X being Subset-Family of A st X 6= ;ex x being set st x 2 X & for B being set st B 2 X holds x � B implies B = x.sheme FinitefA() ! set, P[set℄g: P[A()℄ provided A: A() is �nite and B: P[;℄ andC: for x, B being set st x 2 A() & B � A() & P[B℄ holds P[B[fxg℄.Theorem FINSET 1:19. A is �nite & B is �nite implies [[A, B℄℄ is �nite.Theorem FINSET 1:20. A is �nite & B is �nite & C is �nite implies [[A, B, C℄℄ is �nite.Theorem FINSET 1:21. A is �nite & B is �nite & C is �nite & D is �nite implies [[A,B, C, D℄℄ is �nite.Theorem FINSET 1:22. B 6= ; & [[A, B℄℄ is �nite implies A is �nite.Theorem FINSET 1:23. A 6= ; & [[A, B℄℄ is �nite implies B is �nite.Theorem FINSET 1:24. A is �nite i� bool A is �nite.Theorem FINSET 1:25. A is �nite & (for X st X 2 A holds X is �nite) i� SA is �nite.Theorem FINSET 1:26. dom f is �nite implies rng f is �nite.Theorem FINSET 1:27. Y � rng f & f�1Y is �nite implies Y is �nite.



Chapter 24DOMAIN 1Domains and Their Cartesian ProdutsbyAndrzej Trybule 1Warsaw University (Bia lystok)Summary. The artile inludes: theorems related to domains, theorems relatedto Cartesian produts presented earlier in various artiles and simpli�ed here bysubstituting domains for sets and omitting the assumption that the sets involvedmust not be empty. Several shemes and theorems related to Fr�nkel operator aregiven. We also rede�ne subset yielding funtions suh as the pair of elements of aset and the union of two subsets of a set.The symbols used in this artile are introdued in the following voabularies: boole,oord, and sub op. The terminology and notation used in this artile have been intro-dued in the following artiles: tarski, boole, enumset1, subset 1, funt 1, ordi-nal1, and mart 1.reserve a, b, , d for Any, A, B, C for set.reserve D, X1, X2, X3, X4, Y1, Y2, Y3, Y4 for DOMAIN.reserve x1, y1, z1 for (Element of X1), x2, y2, z2 for (Element of X2), x3, y3, z3 for(Element of X3), x4, y4, z4 for (Element of X4).Theorem DOMAIN 1:1. A is DOMAIN i� A 6= ;.Theorem DOMAIN 1:2. D 6= ;.1Supported by RPBP.III-24.C1. 128



129Theorem DOMAIN 1:3. a is Element of D implies a 2 D.reserve A1, B1 for Subset of X1.Theorem DOMAIN 1:4. A1 = B1 i� for x1 holds x1 2 A1 i� not x1 2 B1.Theorem DOMAIN 1:5. A1 = B1 i� for x1 holds not x1 2 A1 i� x1 2 B1.Theorem DOMAIN 1:6. A1 = B1 i� for x1 holds not (x1 2 A1 i� x1 2 B1).Theorem DOMAIN 1:7. [x1, x2℄ 2 [[X1, X2℄℄.Theorem DOMAIN 1:8. [x1, x2℄ is Element of [[X1, X2℄℄.Theorem DOMAIN 1:9. a 2 [[X1, X2℄℄ implies ex x1, x2 st a = [x1, x2℄.reserve x for Element of [[X1, X2℄℄.Theorem DOMAIN 1:10. x = [x1, x2℄.Theorem DOMAIN 1:11. x 6= x1 & x 6= x2.Theorem DOMAIN 1:12. for x, y being Element of [[X1, X2℄℄ st x1 = y1 & x2 = y2holds x = y.Theorem DOMAIN 1:13. [[A, D℄℄ � [[B, D℄℄ or [[D, A℄℄ � [[D, B℄℄ implies A � B.Theorem DOMAIN 1:14. [[X1, X2℄℄ = [[A, B℄℄ implies X1 = A & X2 = B.De�nitionlet X1, X2, x1, x2.rede�nefun [x1, x2℄ ! Element of [[X1, X2℄℄.De�nitionlet X1, X2.let x be Element of [[X1, X2℄℄.rede�nefun x1 ! Element of X1.fun x2 ! Element of X2.Theorem DOMAIN 1:15. a 2 [[X1, X2, X3℄℄ i� ex x1, x2, x3 st a = [x1, x2, x3℄.Theorem DOMAIN 1:16. (for a holds a 2 D i� ex x1, x2, x3 st a = [x1, x2, x3℄)implies D = [[X1, X2, X3℄℄.Theorem DOMAIN 1:17. D = [[X1, X2, X3℄℄ i� for a holds a 2 D i� ex x1, x2, x3 sta = [x1, x2, x3℄.Theorem DOMAIN 1:18. [[X1, X2, X3℄℄ = [[Y1, Y2, Y3℄℄ implies X1 = Y1 & X2 = Y2& X3 = Y3.reserve x, y for Element of [[X1, X2, X3℄℄.Theorem DOMAIN 1:19. x = [a, b, ℄ implies x1 = a & x2 = b & x3 = .Theorem DOMAIN 1:20. x = [x1, x2, x3℄.



130 CHAPTER 24. DOMAIN 1Theorem DOMAIN 1:21. x1 = (x qua Any)11 & x2 = (x qua Any)12 & x3 = (x quaAny)2.Theorem DOMAIN 1:22. x 6= x1 & x 6= x2 & x 6= x3.Theorem DOMAIN 1:23. [x1, x2, x3℄ 2 [[X1, X2, X3℄℄.De�nitionlet X1, X2, X3, x1, x2, x3.rede�nefun [x1, x2, x3℄ ! Element of [[X1, X2, X3℄℄.De�nitionlet X1, X2, X3.let x be Element of [[X1, X2, X3℄℄.rede�nefun x1 ! Element of X1.fun x2 ! Element of X2.fun x3 ! Element of X3.Theorem DOMAIN 1:24. a = x1 i� for x1, x2, x3 st x = [x1, x2, x3℄ holds a = x1.Theorem DOMAIN 1:25. b = x2 i� for x1, x2, x3 st x = [x1, x2, x3℄ holds b = x2.Theorem DOMAIN 1:26.  = x3 i� for x1, x2, x3 st x = [x1, x2, x3℄ holds  = x3.Theorem DOMAIN 1:27. [x1, x2, x3℄ = x.Theorem DOMAIN 1:28. x1 = y1 & x2 = y2 & x3 = y3 implies x = y.Theorem DOMAIN 1:29. [x1, x2, x3℄1 = x1 & [x1, x2, x3℄2 = x2 & [x1, x2, x3℄3 = x3.Theorem DOMAIN 1:30. for x being (Element of [[X1, X2, X3℄℄), y being Element of[[Y1, Y2, Y3℄℄ holds x = y implies x1 = y1 & x2 = y2 & x3 = y3.Theorem DOMAIN 1:31. a 2 [[X1, X2, X3, X4℄℄ i� ex x1, x2, x3, x4 st a = [x1, x2,x3, x4℄.Theorem DOMAIN 1:32. (for a holds a 2 D i� ex x1, x2, x3, x4 st a = [x1, x2, x3,x4℄) implies D = [[X1, X2, X3, X4℄℄.Theorem DOMAIN 1:33. D = [[X1, X2, X3, X4℄℄ i� for a holds a 2 D i� ex x1, x2,x3, x4 st a = [x1, x2, x3, x4℄.reserve x, y for Element of [[X1, X2, X3, X4℄℄.Theorem DOMAIN 1:34. [[X1, X2, X3, X4℄℄ = [[Y1, Y2, Y3, Y4℄℄ implies X1 = Y1 &X2 = Y2 & X3 = Y3 & X4 = Y4.Theorem DOMAIN 1:35. x = [a, b, , d℄ implies x1 = a & x2 = b & x3 =  & x4 =d. Theorem DOMAIN 1:36. x = [x1, x2, x3, x4℄.Theorem DOMAIN 1:37. x1 = (x qua Any)111 & x2 = (x qua Any)112 & x3 = (x quaAny)12 & x4 = (x qua Any)2.



131Theorem DOMAIN 1:38. x 6= x1 & x 6= x2 & x 6= x3 & x 6= x4.Theorem DOMAIN 1:39. [x1, x2, x3, x4℄ 2 [[X1, X2, X3, X4℄℄.De�nitionlet X1, X2, X3, X4, x1, x2, x3, x4.rede�nefun [x1, x2, x3, x4℄ ! Element of [[X1, X2, X3, X4℄℄.De�nitionlet X1, X2, X3, X4.let x be Element of [[X1, X2, X3, X4℄℄.rede�nefun x1 ! Element of X1.fun x2 ! Element of X2.fun x3 ! Element of X3.fun x4 ! Element of X4.Theorem DOMAIN 1:40. a = x1 i� for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds a= x1.Theorem DOMAIN 1:41. b = x2 i� for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds b= x2.Theorem DOMAIN 1:42.  = x3 i� for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds = x3.Theorem DOMAIN 1:43. d = x4 i� for x1, x2, x3, x4 st x = [x1, x2, x3, x4℄ holds d= x4.Theorem DOMAIN 1:44. for x being Element of [[X1, X2, X3, X4℄℄ holds [x1, x2, x3,x4℄ = x.Theorem DOMAIN 1:45. for x, y being Element of [[X1, X2, X3, X4℄℄ st x1 = y1 &x2 = y2 & x3 = y3 & x4 = y4 holds x = y.Theorem DOMAIN 1:46. [x1, x2, x3, x4℄1 = x1 & [x1, x2, x3, x4℄2 = x2 & [x1, x2, x3,x4℄3 = x3 & [x1, x2, x3, x4℄4 = x4.Theorem DOMAIN 1:47. for x being (Element of [[X1, X2, X3, X4℄℄), y being Elementof [[Y1, Y2, Y3, Y4℄℄ holds x = y implies x1 = y1 & x2 = y2 & x3 = y3 & x4 = y4.reserve A2 for (Subset of X2), A3 for (Subset of X3), A4 for Subset of X4.sheme Fraenkel1fP[Any℄g: for X1 holds fx1: P[x1℄g is Subset of X1.sheme Fraenkel2fP[Any, Any℄g: for X1, X2 holds f[x1, x2℄: P[x1, x2℄g is Subset of[[X1, X2℄℄.sheme Fraenkel3fP[Any, Any, Any℄g: for X1, X2, X3 holds f[x1, x2, x3℄: P[x1, x2,x3℄g is Subset of [[X1, X2, X3℄℄.



132 CHAPTER 24. DOMAIN 1sheme Fraenkel4fP[Any, Any, Any, Any℄g: for X1, X2, X3, X4 holds f[x1, x2, x3,x4℄: P[x1, x2, x3, x4℄g is Subset of [[X1, X2, X3, X4℄℄.sheme Fraenkel5fP[Any℄, Q[Any℄g: for X1 st for x1 holds P[x1℄ implies Q[x1℄holds fy1: P[y1℄g � fz1: Q[z1℄g.sheme Fraenkel6fP[Any℄, Q[Any℄g: for X1 st for x1 holds P[x1℄ i� Q[x1℄ holdsfy1: P[y1℄g = fz1: Q[z1℄g.Theorem DOMAIN 1:48. X1 = fx1: not ontraditiong.Theorem DOMAIN 1:49. [[X1, X2℄℄ = f[x1, x2℄: not ontraditiong.Theorem DOMAIN 1:50. [[X1, X2, X3℄℄ = f[x1, x2, x3℄: not ontraditiong.Theorem DOMAIN 1:51. [[X1, X2, X3, X4℄℄ = f[x1, x2, x3, x4℄: not ontraditiong.Theorem DOMAIN 1:52. A1 = fx1: x1 2 A1g.De�nitionlet X1, X2, A1, A2.rede�nefun [[A1, A2℄℄ ! Subset of [[X1, X2℄℄.Theorem DOMAIN 1:53. [[A1, A2℄℄ = f[x1, x2℄: x1 2 A1 & x2 2 A2g.De�nitionlet X1, X2, X3, A1, A2, A3.rede�nefun [[A1, A2, A3℄℄ ! Subset of [[X1, X2, X3℄℄.Theorem DOMAIN 1:54. [[A1, A2, A3℄℄ = f[x1, x2, x3℄: x1 2 A1 & x2 2 A2 & x3 2A3g.De�nitionlet X1, X2, X3, X4, A1, A2, A3, A4.rede�nefun [[A1, A2, A3, A4℄℄ ! Subset of [[X1, X2, X3, X4℄℄.Theorem DOMAIN 1:55. [[A1, A2, A3, A4℄℄ = f[x1, x2, x3, x4℄: x1 2 A1 & x2 2 A2& x3 2 A3 & x4 2 A4g.Theorem DOMAIN 1:56. ; X1 = fx1: ontraditiong.Theorem DOMAIN 1:57. A1 = fx1: not x1 2 A1g.Theorem DOMAIN 1:58. A1\B1 = fx1: x1 2 A1 & x1 2 B1g.Theorem DOMAIN 1:59. A1[B1 = fx1: x1 2 A1 or x1 2 B1g.Theorem DOMAIN 1:60. A1rB1 = fx1: x1 2 A1 & not x1 2 B1g.Theorem DOMAIN 1:61. A1�� B1 = fx1: x1 2 A1 & not x1 2 B1 or not x1 2 A1 &x1 2 B1g.Theorem DOMAIN 1:62. A1�� B1 = fx1: not x1 2 A1 i� x1 2 B1g.



133Theorem DOMAIN 1:63. A1�� B1 = fx1: x1 2 A1 i� not x1 2 B1g.Theorem DOMAIN 1:64. A1�� B1 = fx1: not (x1 2 A1 i� x1 2 B1)g.reserve x1, x2, x3, x4, x5, x6, x7, x8 for Element of D.Theorem DOMAIN 1:65. fx1g is Subset of D.Theorem DOMAIN 1:66. fx1, x2g is Subset of D.Theorem DOMAIN 1:67. fx1, x2, x3g is Subset of D.Theorem DOMAIN 1:68. fx1, x2, x3, x4g is Subset of D.Theorem DOMAIN 1:69. fx1, x2, x3, x4, x5g is Subset of D.Theorem DOMAIN 1:70. fx1, x2, x3, x4, x5, x6g is Subset of D.Theorem DOMAIN 1:71. fx1, x2, x3, x4, x5, x6, x7g is Subset of D.Theorem DOMAIN 1:72. fx1, x2, x3, x4, x5, x6, x7, x8g is Subset of D.De�nitionlet D.rede�nelet x1 be Element of D.fun fx1g ! Subset of D.let x2 be Element of D.fun fx1, x2g ! Subset of D.let x3 be Element of D.fun fx1, x2, x3g ! Subset of D.let x4 be Element of D.fun fx1, x2, x3, x4g ! Subset of D.let x5 be Element of D.fun fx1, x2, x3, x4, x5g ! Subset of D.let x6 be Element of D.fun fx1, x2, x3, x4, x5, x6g ! Subset of D.let x7 be Element of D.fun fx1, x2, x3, x4, x5, x6, x7g ! Subset of D.let x8 be Element of D.fun fx1, x2, x3, x4, x5, x6, x7, x8g ! Subset of D.De�nitionlet X1, A1.rede�nefun A1 ! Subset of X1.let B1.



134 CHAPTER 24. DOMAIN 1fun A1[B1 ! Subset of X1.fun A1\B1 ! Subset of X1.fun A1rB1 ! Subset of X1.fun A1�� B1 ! Subset of X1.



Chapter 25FINSUB 1Boolean DomainsbyAndrzej Trybule 1Warsaw University (Bia lystok)Agata Darmohwa l2Warsaw University (Bia lystok)Summary. BOOLE DOMAIN is a SET DOMAIN that is losed under union anddi�erene. This ondition is equivalent to being losed under symmetri di�ereneand one of the following operations: union, intersetion or di�erene. We introduethe set of all �nite subsets of a set A, denoted by Fin A. The mode Finite Subsetof a set A is introdued with the mother type: Element of Fin A. In onsequene,\Finite Subset of ..." is an elementary type, therefore one may use suh types as\set of Finite Subset of A", \[(Finite Subset of A), Finite Subset of A℄", and so on.The artile begins with some auxiliary theorems that belong really to BOOLEor ORDINAL1 but are missing there. Moreover, bool A is rede�ned as a SETDOMAIN, for an arbitrary set A.The symbols used in this artile are introdued in the following voabularies: boole,finite, and booledom. The terminology and notation used in this artile have beenintrodued in the following artiles: tarski, boole, funt 1, real 1, nat 1, finseq 1,enumset1, subset 1, ordinal1, mart 1, setfam 1, finset 1, and domain 1.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 135



136 CHAPTER 25. FINSUB 1reserve X, Y for set.Theorem FINSUB 1:1. X misses Y implies XrY = X & YrX = Y.Theorem FINSUB 1:2. X misses Y implies (X[Y)rY = X & (X[Y)rX = Y.Theorem FINSUB 1:3. X[Y = X�� (YrX).Theorem FINSUB 1:4. X[Y = X�� Y�� X\Y.Theorem FINSUB 1:5. XrY = X�� (X\Y).Theorem FINSUB 1:6. X\Y = X�� Y�� (X[Y).Theorem FINSUB 1:7. (for x being set st x 2 X holds x 2 Y) implies X � Y.De�nitionlet X.rede�nefun bool X ! SET DOMAIN.Theorem FINSUB 1:8. for Y being Element of bool X holds Y � X.De�nitionmode BOOLE DOMAIN! SET DOMAIN means for X, Y being Element of itholds X[Y 2 it & XrY 2 it.Theorem FINSUB 1:9. for A being SET DOMAIN holds A is BOOLE DOMAIN i�for X, Y being Element of A holds X[Y 2 A & XrY 2 A.reserve A for BOOLE DOMAIN.Theorem FINSUB 1:10. X 2 A & Y 2 A implies X[Y 2 A & XrY 2 A.Theorem FINSUB 1:11. X is Element of A & Y is Element of A implies X[Y isElement of A.Theorem FINSUB 1:12. X is Element of A & Y is Element of A implies XrY isElement of A.De�nitionlet A.let X, Y be Element of A.rede�nefun X[Y ! Element of A.fun XrY ! Element of A.Theorem FINSUB 1:13. X is Element of A & Y is Element of A implies X\Y isElement of A.Theorem FINSUB 1:14. X is Element of A & Y is Element of A implies X�� Y isElement of A.Theorem FINSUB 1:15. for A being SET DOMAIN st for X, Y being Element of Aholds X�� Y 2 A & XrY 2 A holds A is BOOLE DOMAIN.



137Theorem FINSUB 1:16. for A being SET DOMAIN st for X, Y being Element of Aholds X�� Y 2 A & X\Y 2 A holds A is BOOLE DOMAIN.Theorem FINSUB 1:17. for A being SET DOMAIN st for X, Y being Element of Aholds X�� Y 2 A & X[Y 2 A holds A is BOOLE DOMAIN.De�nitionlet A.let X, Y be Element of A.rede�nefun X\Y ! Element of A.fun X�� Y ! Element of A.Theorem FINSUB 1:18. ; 2 A.Theorem FINSUB 1:19. ; is Element of A.Theorem FINSUB 1:20. bool A is BOOLE DOMAIN.Theorem FINSUB 1:21. for A, B being BOOLE DOMAIN holds A\B is BOOLEDOMAIN.reserve A, B, P for set.reserve x, y for Any.De�nitionlet A.fun Fin A ! BOOLE DOMAIN means for X being set holds X 2 it i� X �A & X is �nite.Theorem FINSUB 1:22. B 2 Fin A i� B � A & B is �nite.Theorem FINSUB 1:23. A � B implies Fin A � Fin B.Theorem FINSUB 1:24. Fin (A\B) = Fin A\Fin B.Theorem FINSUB 1:25. Fin A[Fin B � Fin (A[B).Theorem FINSUB 1:26. Fin A � bool A.Theorem FINSUB 1:27. A is �nite implies Fin A = bool A.Theorem FINSUB 1:28. Fin ; = f;g.De�nitionlet A.mode Finite Subset of A ! Element of Fin A means not ontradition.Theorem FINSUB 1:29. for X being Element of Fin A holds X is Finite Subset of A.De�nitionlet A.let X, Y be Finite Subset of A.



138 CHAPTER 25. FINSUB 1rede�nefun X[Y ! Finite Subset of A.fun X\Y ! Finite Subset of A.fun XrY ! Finite Subset of A.fun X�� Y ! Finite Subset of A.Theorem FINSUB 1:30. for X being Finite Subset of A holds X is �nite.Theorem FINSUB 1:31. for X being Finite Subset of A holds X � A.Theorem FINSUB 1:32. for X being Finite Subset of A holds X is Subset of A.Theorem FINSUB 1:33. ; is Finite Subset of A.Theorem FINSUB 1:34. A is �nite implies for X being Subset of A holds X is FiniteSubset of A.



Chapter 26INCSP 1 Axioms of InidenybyWojieh A. Trybule 1Warsaw UniversitySummary. This text is a translation into Mizar of a small part of Foundationsof Geometry by K. Borsuk and W. Szmielew related to the axioms of inideny.(Remark: The fourth axiom of inideny is weakened in this text. In the souretext it has the form: for any plane there exist three non-ollinear points in theplane and in this text: for any plane there exists one point in the plane. Theoriginal axiom is proved in the text.) The artile inludes: theorems onerningollinearity of points and oplanarity of points and lines, basi theorems onerninglines and planes, fundamental existene theorems, theorems onerning intersetionof lines and planes.The symbols used in this artile are introdued in the following voabularies: insp 1,boole, and relation. The terminology and notation used in this artile have beenintrodued in the following artiles: tarski, boole, enumset1, subset 1, relat 1,mart 1, domain 1, and relset 1.strut InStrut hhPoints, Lines, Planes ! DOMAIN, In1 ! (Relation of the Points,the Lines), In2 ! (Relation of the Points, the Planes), In3 ! Relation of the Lines, thePlanesii.1Supported by RPBP.III-24.C1. 139



140 CHAPTER 26. INCSP 1De�nitionlet S be InStrut.mode POINT of S ! Element of the Points of S means not ontradition.mode LINE of S ! Element of the Lines of S means not ontradition.mode PLANE of S ! Element of the Planes of S means not ontradition.reserve S for InStrut.reserve A for Element of the Points of S.reserve L for Element of the Lines of S.reserve P for Element of the Planes of S.Theorem INCSP 1:1. A is POINT of S.Theorem INCSP 1:2. L is LINE of S.Theorem INCSP 1:3. P is PLANE of S.reserve A, B, C, D, E for POINT of S.reserve K, L, L1, L2 for LINE of S.reserve P, P1, P2, Q for PLANE of S.reserve F, G for Subset of the Points of S.De�nitionlet S.let A be (POINT of S), L be LINE of S.pred A on L means [A, L℄ 2 the In1 of S.De�nitionlet S.let A be (POINT of S), P be PLANE of S.pred A on P means [A, P℄ 2 the In2 of S.De�nitionlet S.let L be (LINE of S), P be PLANE of S.pred L on P means [L, P℄ 2 the In3 of S.De�nitionlet S.let F be (set of POINT of S), L be LINE of S.pred F on L means for A being POINT of S st A 2 F holds A on L.De�nitionlet S.let F be (set of POINT of S), P be PLANE of S.



141pred F on P means for A st A 2 F holds A on P.De�nitionlet S.let F be set of POINT of S.pred F is ollinear means ex L st F on L.De�nitionlet S.let F be set of POINT of S.pred F is oplanar means ex P st F on P.Theorem INCSP 1:4. A on L i� [A, L℄ 2 the In1 of S.Theorem INCSP 1:5. A on P i� [A, P℄ 2 the In2 of S.Theorem INCSP 1:6. L on P i� [L, P℄ 2 the In3 of S.Theorem INCSP 1:7. F on L i� for A st A 2 F holds A on L.Theorem INCSP 1:8. F on P i� for A st A 2 F holds A on P.Theorem INCSP 1:9. F is ollinear i� ex L st F on L.Theorem INCSP 1:10. F is oplanar i� ex P st F on P.Theorem INCSP 1:11. fA, Bg on L i� A on L & B on L.Theorem INCSP 1:12. fA, B, Cg on L i� A on L & B on L & C on L.Theorem INCSP 1:13. fA, Bg on P i� A on P & B on P.Theorem INCSP 1:14. fA, B, Cg on P i� A on P & B on P & C on P.Theorem INCSP 1:15. fA, B, C, Dg on P i� A on P & B on P & C on P & D on P.Theorem INCSP 1:16. G � F & F on L implies G on L.Theorem INCSP 1:17. G � F & F on P implies G on P.Theorem INCSP 1:18. F on L & A on L i� F[fAg on L.Theorem INCSP 1:19. F on P & A on P i� F[fAg on P.Theorem INCSP 1:20. F[G on L i� F on L & G on L.Theorem INCSP 1:21. F[G on P i� F on P & G on P.Theorem INCSP 1:22. G � F & F is ollinear implies G is ollinear.Theorem INCSP 1:23. G � F & F is oplanar implies G is oplanar.De�nitionmode InSpae ! InStrut means (for L being LINE of it ex A, B beingPOINT of it st A 6= B & fA, Bg on L) & (for A, B being POINT of it ex L being LINEof it st fA, Bg on L) & (for A, B being (POINT of it), K, L being LINE of it st A 6= B& fA, Bg on K & fA, Bg on L holds K = L) & (for P being PLANE of it ex A beingPOINT of it st A on P) & (for A, B, C being POINT of it ex P being PLANE of it stfA, B, Cg on P) & (for A, B, C being (POINT of it), P, Q being PLANE of it st not



142 CHAPTER 26. INCSP 1fA, B, Cg is ollinear & fA, B, Cg on P & fA, B, Cg on Q holds P = Q) & (for L being(LINE of it), P being PLANE of it st ex A, B being POINT of it st A 6= B & fA, Bgon L & fA, Bg on P holds L on P) & (for A being (POINT of it), P, Q being PLANEof it st A on P & A on Q ex B being POINT of it st A 6= B & B on P & B on Q) & (exA, B, C, D being POINT of it st not fA, B, C, Dg is oplanar) & (for A being (POINTof it), L being (LINE of it), P being PLANE of it st A on L & L on P holds A on P).Theorem INCSP 1:24. (for L being LINE of S ex A, B being POINT of S st A 6= B& fA, Bg on L) & (for A, B being POINT of S ex L being LINE of S st fA, Bg on L)& (for A, B being (POINT of S), K, L being LINE of S st A 6= B & fA, Bg on K & fA,Bg on L holds K = L) & (for P being PLANE of S ex A being POINT of S st A on P)& (for A, B, C being POINT of S ex P being PLANE of S st fA, B, Cg on P) & (for A,B, C being (POINT of S), P, Q being PLANE of S st not fA, B, Cg is ollinear & fA, B,Cg on P & fA, B, Cg on Q holds P = Q) & (for L being (LINE of S), P being PLANEof S st ex A, B being POINT of S st A 6= B & fA, Bg on L & fA, Bg on P holds L onP) & (for A being (POINT of S), P, Q being PLANE of S st A on P & A on Q ex Bbeing POINT of S st A 6= B & B on P & B on Q) & (ex A, B, C, D being POINT of Sst not fA, B, C, Dg is oplanar) & (for A being (POINT of S), L being (LINE of S), Pbeing PLANE of S st A on L & L on P holds A on P) implies S is InSpae.reserve S for InSpae.reserve A, B, C, D, E for POINT of S.reserve K, L, L1, L2 for LINE of S.reserve P, P1, P2, Q for PLANE of S.reserve F for Subset of the Points of S.Theorem INCSP 1:25. ex A, B st A 6= B & fA, Bg on L.Theorem INCSP 1:26. ex L st fA, Bg on L.Theorem INCSP 1:27. A 6= B & fA, Bg on K & fA, Bg on L implies K = L.Theorem INCSP 1:28. ex A st A on P.Theorem INCSP 1:29. ex P st fA, B, Cg on P.Theorem INCSP 1:30. not fA, B, Cg is ollinear & fA, B, Cg on P & fA, B, Cg on Qimplies P = Q.Theorem INCSP 1:31. (ex A, B st A 6= B & fA, Bg on L & fA, Bg on P) implies Lon P.Theorem INCSP 1:32. A on P & A on Q implies (ex B st A 6= B & B on P & B onQ).Theorem INCSP 1:33. ex A, B, C, D st not fA, B, C, Dg is oplanar.Theorem INCSP 1:34. A on L & L on P implies A on P.Theorem INCSP 1:35. F on L & L on P implies F on P.Theorem INCSP 1:36. fA, A, Bg is ollinear.



143Theorem INCSP 1:37. fA, A, B, Cg is oplanar.Theorem INCSP 1:38. fA, B, Cg is ollinear implies fA, B, C, Dg is oplanar.Theorem INCSP 1:39. A 6= B & fA, Bg on L & not C on L implies not fA, B, Cgis ollinear.Theorem INCSP 1:40. not fA, B, Cg is ollinear & fA, B, Cg on P & not D on Pimplies not fA, B, C, Dg is oplanar.Theorem INCSP 1:41. not (ex P st K on P & L on P) implies K 6= L.Theorem INCSP 1:42. not (ex P st L on P & L1 on P & L2 on P) & (ex A st A onL & A on L1 & A on L2) implies L 6= L1.Theorem INCSP 1:43. L1 on P & L2 on P & not L on P & L1 6= L2 implies not (exQ st L on Q & L1 on Q & L2 on Q).Theorem INCSP 1:44. ex P st A on P & L on P.Theorem INCSP 1:45. (ex A st A on K & A on L) implies (ex P st K on P & L onP). Theorem INCSP 1:46. A 6= B implies ex L st for K holds fA, Bg on K i� K = L.Theorem INCSP 1:47. not fA, B, Cg is ollinear implies ex P st for Q holds fA, B,Cg on Q i� P = Q.Theorem INCSP 1:48. not A on L implies ex P st for Q holds A on Q & L on Qi� P = Q.Theorem INCSP 1:49. K 6= L & (ex A st A on K & A on L) implies ex P st for Qholds K on Q & L on Q i� P = Q.De�nitionlet S.let A, B.assume A 6= B.fun Line (A, B) ! LINE of S means fA, Bg on it.De�nitionlet S.let A, B, C.assume not fA, B, Cg is ollinear.fun Plane (A, B, C) ! PLANE of S means fA, B, Cg on it.De�nitionlet S.let A, L.assume not A on L.fun Plane (A, L) ! PLANE of S means A on it & L on it.



144 CHAPTER 26. INCSP 1De�nitionlet S.let K, L.assume that K 6= L and (ex A st A on K & A on L).fun Plane (K, L) ! PLANE of S means K on it & L on it.Theorem INCSP 1:50. A 6= B implies fA, Bg on Line (A, B).Theorem INCSP 1:51. A 6= B & fA, Bg on K implies K = Line (A, B).Theorem INCSP 1:52. not fA, B, Cg is ollinear implies fA, B, Cg on Plane (A, B,C). Theorem INCSP 1:53. not fA, B, Cg is ollinear & fA, B, Cg on Q implies Q = Plane(A, B, C).Theorem INCSP 1:54. not A on L implies A on Plane (A, L) & L on Plane (A, L).Theorem INCSP 1:55. not A on L & A on Q & L on Q implies Q = Plane (A, L).Theorem INCSP 1:56. K 6= L & (ex A st A on K & A on L) implies K on Plane (K,L) & L on Plane (K, L).Theorem INCSP 1:57. A 6= B implies Line (A, B) = Line (B, A).Theorem INCSP 1:58. not fA, B, Cg is ollinear implies Plane (A, B, C) = Plane (A,C, B).Theorem INCSP 1:59. not fA, B, Cg is ollinear implies Plane (A, B, C) = Plane (B,A, C).Theorem INCSP 1:60. not fA, B, Cg is ollinear implies Plane (A, B, C) = Plane (B,C, A).Theorem INCSP 1:61. not fA, B, Cg is ollinear implies Plane (A, B, C) = Plane (C,A, B).Theorem INCSP 1:62. not fA, B, Cg is ollinear implies Plane (A, B, C) = Plane (C,B, A).Theorem INCSP 1:63. K 6= L & (ex A st A on K & A on L) & K on Q & L on Qimplies Q = Plane (K, L).Theorem INCSP 1:64. K 6= L & (ex A st A on K & A on L) implies Plane (K, L) =Plane (L, K).Theorem INCSP 1:65. A 6= B & C on Line (A, B) implies fA, B, Cg is ollinear.Theorem INCSP 1:66. A 6= B & A 6= C & fA, B, Cg is ollinear implies Line (A, B)= Line (A, C).Theorem INCSP 1:67. not fA, B, Cg is ollinear implies Plane (A, B, C) = Plane (C,Line (A, B)).Theorem INCSP 1:68. not fA, B, Cg is ollinear & D on Plane (A, B, C) implies fA,B, C, Dg is oplanar.



145Theorem INCSP 1:69. not C on L & fA, Bg on L & A 6= B implies Plane (C, L) =Plane (A, B, C).Theorem INCSP 1:70. not fA, B, Cg is ollinear implies Plane (A, B, C) = Plane(Line (A, B), Line (A, C)).Theorem INCSP 1:71. ex A, B, C st fA, B, Cg on P & not fA, B, Cg is ollinear.Theorem INCSP 1:72. ex A, B, C, D st A on P & not fA, B, C, Dg is oplanar.Theorem INCSP 1:73. ex B st A 6= B & B on L.Theorem INCSP 1:74. A 6= B implies ex C st C on P & not fA, B, Cg is ollinear.Theorem INCSP 1:75. not fA, B, Cg is ollinear implies ex D st not fA, B, C, Dgis oplanar.Theorem INCSP 1:76. ex B, C st fB, Cg on P & not fA, B, Cg is ollinear.Theorem INCSP 1:77. A 6= B implies (ex C, D st not fA, B, C, Dg is oplanar).Theorem INCSP 1:78. ex B, C, D st not fA, B, C, Dg is oplanar.Theorem INCSP 1:79. ex L st not A on L & L on P.Theorem INCSP 1:80. A on P implies (ex L, L1, L2 st L1 6= L2 & L1 on P & L2 onP & not L on P & A on L & A on L1 & A on L2).Theorem INCSP 1:81. ex L, L1, L2 st A on L & A on L1 & A on L2 & not (ex P stL on P & L1 on P & L2 on P).Theorem INCSP 1:82. ex P st A on P & not L on P.Theorem INCSP 1:83. ex A st A on P & not A on L.Theorem INCSP 1:84. ex K st not (ex P st L on P & K on P).Theorem INCSP 1:85. ex P, Q st P 6= Q & L on P & L on Q.Theorem INCSP 1:86. K 6= L & fA, Bg on K & fA, Bg on L implies A = B.Theorem INCSP 1:87. not L on P & fA, Bg on L & fA, Bg on P implies A = B.Theorem INCSP 1:88. P 6= Q implies not (ex A st A on P & A on Q) or (ex L stfor B holds B on P & B on Q i� B on L).



Chapter 27LATTICESIntrodution to Lattie TheorybyStanis law _Zukowski 1Warsaw University (Bia lystok)Summary. A lattie is de�ned as an algebra on a nonempty set with binaryoperations join and meet whih are ommutative and assoiative, and satisfy theabsorption identities. The following kinds of latties are onsidered: distributive,modular, bounded (with zero and unit elements), omplemented, and Boolean (withomplement). The artile inludes also theorems whih immediately follow fromde�nitions.The symbols used in this artile are introdued in the following voabularies: boole,oord, fun, sub op, binop, fun rel, booledom, and latties. The terminologyand notation used in this artile have been introdued in the following artiles: tarski,boole, enumset1, subset 1, funt 1, mart 1, domain 1, funt 2, binop 1, fin-set 1, and finsub 1.sheme BooleDomBinOpLambdafA() ! BOOLE DOMAIN, O((Element of A()), Ele-ment of A()) ! Element of A()g: ex o being BinOp of A() st for a, b being Element ofA() holds o:(a, b) = O(a, b).strut LattStr hhL arrier ! DOMAIN, L join, L meet ! BinOp of the L arrierii.reserve G for LattStr.1Supported by RPBP.III-24.C1. 146



147reserve p, q, r for Element of the L arrier of G.De�nitionlet G, p, q.fun ptq ! Element of the L arrier of G means it = (the L join of G):(p, q).fun puq ! Element of the L arrier of G means it = (the L meet of G):(p,q). Theorem LATTICES:1. ptq = (the L join of G):(p, q).Theorem LATTICES:2. puq = (the L meet of G):(p, q).De�nitionlet G, p, q.pred p v q means ptq = q.Theorem LATTICES:3. p v q i� ptq = q.De�nitionmode Lattie ! LattStr means (for a, b being Element of the L arrier of itholds atb = bta) & (for a, b,  being Element of the L arrier of it holds at(bt) =(atb)t) & (for a, b being Element of the L arrier of it holds (aub)tb = b) & (for a,b being Element of the L arrier of it holds aub = bua) & (for a, b,  being Element ofthe L arrier of it holds au(bu) = (aub)u) & (for a, b being Element of the L arrierof it holds au(atb) = a).Theorem LATTICES:4. (for p, q holds ptq = qtp) & (for p, q, r holds pt(qtr) =(ptq)tr) & (for p, q holds (puq)tq = q) & (for p, q holds puq = qup) & (for p, q, rholds pu(qur) = (puq)ur) & (for p, q holds pu(ptq) = p) implies G is Lattie.reserve L for Lattie.reserve a, b, , 1, 2 for Element of the L arrier of L.Theorem LATTICES:5. atb = bta.Theorem LATTICES:6. aub = bua.Theorem LATTICES:7. at(bt) = (atb)t.Theorem LATTICES:8. au(bu) = (aub)u.Theorem LATTICES:9. (aub)tb = b & bt(aub) = b & bt(bua) = b & (bua)tb =b. Theorem LATTICES:10. au(atb) = a & (atb)ua = a & (bta)ua = a & au(bta) =a.De�nitionmode D Lattie ! Lattie means for a, b,  being Element of the L arrier ofit holds au(bt) = (aub)t(au).Theorem LATTICES:11. (for a, b,  holds au(bt) = (aub)t(au)) implies L is DLattie.



148 CHAPTER 27. LATTICESDe�nitionmode M Lattie ! Lattie means for a, b,  being Element of the L arrier ofit st a v  holds at(bu) = (atb)u.Theorem LATTICES:12. (for a, b,  st a v  holds at(bu) = (atb)u) implies Lis M Lattie.De�nitionmode 0 Lattie ! Lattie means ex  being Element of the L arrier of it stfor a being Element of the L arrier of it holds ua = .Theorem LATTICES:13. (ex  st for a holds ua = ) implies L is 0 Lattie.De�nitionmode 1 Lattie ! Lattie means ex  being Element of the L arrier of it stfor a being Element of the L arrier of it holds ta = .Theorem LATTICES:14. (ex  st for a holds ta = ) implies L is 1 Lattie.De�nitionmode 01 Lattie ! Lattie means it is 0 Lattie & it is 1 Lattie.Theorem LATTICES:15. (L is 0 Lattie & L is 1 Lattie) implies L is 01 Lattie.De�nitionlet L.assume ex  st for a holds ua = .fun ?L ! Element of the L arrier of L means itua = it.De�nitionlet L be 0 Lattie.rede�nefun ?L ! Element of the L arrier of L.De�nitionlet L.assume ex  st for a holds ta = .fun >L ! Element of the L arrier of L means itta = it.De�nitionlet L be 1 Lattie.rede�nefun >L ! Element of the L arrier of L.De�nitionlet L be 01 Lattie.rede�nefun ?L ! Element of the L arrier of L.



149fun >L ! Element of the L arrier of L.De�nitionlet L, a, b.assume L is 01 Lattie.pred a is a omplement b means atb = >L & aub = ?L.De�nitionmode C Lattie ! 01 Lattie means for b being Element of the L arrier of itex a being Element of the L arrier of it st a is a omplement b.De�nitionmode B Lattie ! C Lattie means it is D Lattie.Theorem LATTICES:16. atb = b i� aub = a.Theorem LATTICES:17. ata = a.Theorem LATTICES:18. aua = a.Theorem LATTICES:19. for L holds (for a, b,  holds au(bt) = (aub)t(au)) i�(for a, b,  holds at(bu) = (atb)u(at)).Theorem LATTICES:20. a v b i� atb = b.Theorem LATTICES:21. a v b i� aub = a.Theorem LATTICES:22. a v atb.Theorem LATTICES:23. aub v a.Theorem LATTICES:24. a v a.Theorem LATTICES:25. a v b & b v  implies a v .Theorem LATTICES:26. a v b & b v a implies a = b.Theorem LATTICES:27. a v b implies au v bu.Theorem LATTICES:28. a v b implies ua v ub.Theorem LATTICES:29. (for a, b,  holds (aub)t(bu)t(ua) = (atb)u(bt)u(ta)) implies L is D Lattie.reserve L for D Lattie.reserve a, b,  for Element of the L arrier of L.Theorem LATTICES:30. for L holds (for a, b,  holds au(bt) = (aub)t(au)) &(for a, b,  holds (bt)ua = (bua)t(ua)).Theorem LATTICES:31. for L holds (for a, b,  holds at(bu) = (atb)u(at)) &(for a, b,  holds (bu)ta = (bta)u(ta)).Theorem LATTICES:32. ua = ub & ta = tb implies a = b.Theorem LATTICES:33. au = bu & at = bt implies a = b.Theorem LATTICES:34. (atb)u(bt)u(ta) = (aub)t(bu)t(ua).



150 CHAPTER 27. LATTICESTheorem LATTICES:35. L is M Lattie.reserve L for M Lattie.reserve a, b,  for Element of the L arrier of L.Theorem LATTICES:36. a v  implies at(bu) = (atb)u.Theorem LATTICES:37.  v a implies au(bt) = (aub)t.reserve L for 0 Lattie.reserve a, b,  for Element of the L arrier of L.Theorem LATTICES:38. ex  st for a holds ua = .Theorem LATTICES:39. ?Lta = a & at?L = a.Theorem LATTICES:40. ?Lua = ?L & au?L = ?L.Theorem LATTICES:41. ?L v a.reserve L for 1 Lattie.reserve a, b,  for Element of the L arrier of L.Theorem LATTICES:42. ex  st for a holds ta = .Theorem LATTICES:43. >Lua = a & au>L = a.Theorem LATTICES:44. >Lta = >L & at>L = >L.Theorem LATTICES:45. a v >L.reserve L for C Lattie.reserve a, b,  for Element of the L arrier of L.Theorem LATTICES:46. ex a st a is a omplement b.reserve L for Lattie.reserve a, b,  for Element of the L arrier of L.De�nitionlet L.let x be Element of the L arrier of L.assume L is B Lattie.fun x ! Element of the L arrier of L means it is a omplement x.De�nitionlet L be B Lattie.let x be Element of the L arrier of L.rede�nefun x ! Element of the L arrier of L.reserve L for B Lattie.reserve a, b,  for Element of the L arrier of L.Theorem LATTICES:47. aua = ?L & aua = ?L.



151Theorem LATTICES:48. ata = >L & ata = >L.Theorem LATTICES:49. a = a.Theorem LATTICES:50. (aub) = atb.Theorem LATTICES:51. (atb) = aub.Theorem LATTICES:52. bua = ?L i� b v a.Theorem LATTICES:53. a v b implies b v a.



Chapter 28PRE TOPCTopologial Spaes and Continuous FuntionsbyBeata Padlewska 1Warsaw University (Bia lystok)Agata Darmohwa l2Warsaw University (Bia lystok)Summary. The artile ontains a de�nition of topologial spae. The followingnotions are de�ned: point of topologial spae, subset of topologial spae, subspaeof topologial spae, and ontinuous funtion.The symbols used in this artile are introdued in the following voabularies: boole,fun, fun rel, real 1, sub op, fam op, sfamily, and topon. The terminologyand notation used in this artile have been introdued in the following artiles: tarski,boole, enumset1, subset 1, funt 1, ordinal1, mart 1, domain 1, funt 2, andsetfam 1.strut TopStrut hharrier ! DOMAIN, topology ! Subset-Family of the arrierii.reserve T for TopStrut.reserve p, q for Subset of the arrier of T.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 152



153reserve x for Any.De�nitionmode TopSpae ! TopStrut means ; 2 the topology of it & the arrier of it2 the topology of it & (for a being Subset-Family of the arrier of it st a � the topologyof it holds Sa 2 the topology of it) & (for a, b being Subset of the arrier of it st a 2the topology of it & b 2 the topology of it holds a\b 2 the topology of it).Theorem PRE TOPC:1. (; 2 the topology of T & the arrier of T 2 the topology ofT & (for a being Subset-Family of the arrier of T st a � the topology of T holds Sa 2the topology of T) & (for p, q being Subset of the arrier of T st p 2 the topology ofT & q 2 the topology of T holds p\q 2 the topology of T)) implies T is TopSpae.reserve T, S, GX, GY for TopSpae.De�nitionlet T.mode Point of T ! Element of the arrier of T means not ontradition.Theorem PRE TOPC:2. for x being Element of the arrier of T holds x is Point ofT.De�nitionlet T.mode Subset of T ! set of Point of T means not ontradition.Theorem PRE TOPC:3. for P being Subset of the arrier of T holds P is Subset ofT. reserve P, Q, R for Subset of T.reserve p, q, r for Point of T.De�nitionlet T.mode Subset-Family of T ! Subset-Family of the arrier of T means not on-tradition.Theorem PRE TOPC:4. for F being Subset-Family of the arrier of T holds F isSubset-Family of T.reserve F for Subset-Family of T.sheme SubFamEx1fA() ! TopSpae, P[Subset of A()℄g: ex F being Subset-Familyof A() st for B being Subset of A() holds B 2 F i� P[B℄.Theorem PRE TOPC:5. ; 2 the topology of T.Theorem PRE TOPC:6. the arrier of T 2 the topology of T.Theorem PRE TOPC:7. for a being Subset-Family of T st a � the topology of Tholds Sa 2 the topology of T.



154 CHAPTER 28. PRE TOPCTheorem PRE TOPC:8. P 2 the topology of T & Q 2 the topology of T impliesP\Q 2 the topology of T.De�nitionlet T.fun ;(T) ! Subset of T means it = ; the arrier of T.fun 
(T) ! Subset of T means it = 
the arrier of T.Theorem PRE TOPC:9. ; T = ; the arrier of T.Theorem PRE TOPC:10. 
T = 
the arrier of T.Theorem PRE TOPC:11. ;(T) = ;.Theorem PRE TOPC:12. 
(T) = the arrier of T.De�nitionlet T, P.fun P ! Subset of T means it = P.De�nitionlet T, P, Q.rede�nefun P[Q ! Subset of T.fun P\Q ! Subset of T.fun PrQ ! Subset of T.fun P�� Q ! Subset of T.Theorem PRE TOPC:13. p 2 
(T).Theorem PRE TOPC:14. P � 
(T).Theorem PRE TOPC:15. P\
(T) = P.Theorem PRE TOPC:16. for A being set holds A � 
(T) implies A is Subset ofT. Theorem PRE TOPC:17. P = 
(T)rP.Theorem PRE TOPC:18. P[P = 
(T).Theorem PRE TOPC:19. P � Q i� Q � P.Theorem PRE TOPC:20. P = P.Theorem PRE TOPC:21. P � Q i� P\Q = ;.Theorem PRE TOPC:22. 
(T)r(
(T)rP) = P.Theorem PRE TOPC:23. P 6= 
(T) i� 
(T)rP 6= ;.Theorem PRE TOPC:24. 
(T)rP = Q implies 
(T) = P[Q.Theorem PRE TOPC:25. 
(T) = P[Q & P\Q = ; implies Q = 
(T)rP.Theorem PRE TOPC:26. P\P = ;(T).



155Theorem PRE TOPC:27. 
(T) = (; T).Theorem PRE TOPC:28. PrQ = P\Q.Theorem PRE TOPC:29. P = Q implies 
(T)rP = 
(T)rQ.De�nitionlet T, P.pred P is open means P 2 the topology of T.Theorem PRE TOPC:30. P is open i� P 2 the topology of T.De�nitionlet T, P.pred P is losed means 
(T)rP is open.Theorem PRE TOPC:31. P is losed i� 
(T)rP is open.De�nitionlet T, P.pred P is open losed means P is open & P is losed.Theorem PRE TOPC:32. P is open losed i� P is open & P is losed.De�nitionlet T, F.rede�nefun SF ! Subset of T.De�nitionlet T, F.rede�nefun TF ! Subset of T.De�nitionlet T, F.pred F is a over of T means 
(T) = SF.Theorem PRE TOPC:33. F is a over of T i� 
(T) = SF.De�nitionlet T.mode SubSpae of T ! TopSpae means 
(it) � 
(T) & for P being Subsetof it holds P 2 the topology of it i� ex Q being Subset of T st Q 2 the topology of T& P = Q\
(it).Theorem PRE TOPC:34. (
(S) � 
(T) & for P being Subset of S holds P 2 thetopology of S i� ex Q being Subset of T st Q 2 the topology of T & P = Q\
(S))implies S is SubSpae of T.



156 CHAPTER 28. PRE TOPCTheorem PRE TOPC:35. for V being SubSpae of T holds 
(V) � 
(T) & for Pbeing Subset of V holds P 2 the topology of V i� ex Q being Subset of T st Q 2 thetopology of T & P = Q\
(V).De�nitionlet T, P.assume P 6= ;(T).fun T�P ! SubSpae of T means 
(it) = P & ;(it) = ;.Theorem PRE TOPC:36. P 6= ;(T) implies 
(T�P) = P & ;(T�P) = ;.De�nitionlet T, S.mode map of T, S ! Funtion of (the arrier of T), (the arrier of S) meansnot ontradition.Theorem PRE TOPC:37. for f being Funtion of the arrier of T, the arrier of Sholds f is map of T, S.reserve f, g for map of T, S.reserve P1, Q1, R1 for Subset of S.De�nitionlet T, S, f, P.rede�nefun f�P ! (Subset of S).De�nitionlet T, S, f, P1.rede�nefun f�1P1 ! (Subset of T).De�nitionlet T, S, f.pred f is ontinuous means for P1 holds P1 is losed implies f�1P1 is losed.Theorem PRE TOPC:38. f is ontinuous i� (for P1 holds P1 is losed implies f�1P1is losed).sheme TopAbstrfA() ! TopSpae, P[Point of A()℄g: ex P being Subset of A() stfor x being Point of A() holds x 2 P i� P[x℄.Theorem PRE TOPC:39. for X0 being SubSpae of GX for A being Subset of X0holds A is Subset of GX.Theorem PRE TOPC:40. for A being (Subset of GX), x being Any st x 2 A holdsx is Point of GX.Theorem PRE TOPC:41. for A being Subset of GX st A 6= ;(GX) ex x being Pointof GX st x 2 A.



157Theorem PRE TOPC:42. 
(GX) is losed.Theorem PRE TOPC:43. for X0 being (SubSpae of GX), B being Subset of X0holds B is losed i� ex C being Subset of GX st C is losed & C\(
(X0)) = B.Theorem PRE TOPC:44. for F being Subset-Family of GX st F 6= ; & for A beingSubset of GX st A 2 F holds A is losed holds TF is losed.De�nitionlet GX be TopSpae, A be Subset of GX.fun Cl A ! Subset of GX means for p being Point of GX holds p 2 it i�for G being Subset of GX st G is open holds p 2 G implies A\G 6= ;(GX).Theorem PRE TOPC:45. for A being (Subset of GX), p being Point of GX holdsp 2 Cl A i� for C being Subset of GX st C is losed holds (A � C implies p 2 C).Theorem PRE TOPC:46. for A being (Subset of GX) ex F being Subset-Family ofGX st (for C being Subset of GX holds C 2 F i� C is losed & A � C) & Cl A = TF.Theorem PRE TOPC:47. for X0 being (SubSpae of GX), A being (Subset of GX),A1 being Subset of X0 st A = A1 holds Cl A1 = (Cl A)\(
(X0)).Theorem PRE TOPC:48. for A being Subset of GX holds A � Cl A.Theorem PRE TOPC:49. for A, B being Subset of GX st A � B holds Cl A � Cl B.Theorem PRE TOPC:50. for A, B being Subset of GX holds Cl (A[B) = Cl A[ClB. Theorem PRE TOPC:51. for A, B being Subset of GX holds Cl (A\B) � (Cl A)\ClB. Theorem PRE TOPC:52. for A being Subset of GX holds A is losed i� Cl A = A.Theorem PRE TOPC:53. for A being Subset of GX holds A is open i� Cl (
(GX)rA) = 
(GX)rA.Theorem PRE TOPC:54. for A being (Subset of GX), p being Point of GX holds p2 Cl A i� for G being Subset of GX st G is open holds p 2 G implies A\G 6= ;(GX).



Chapter 29TOPS 1Subsets of a Topologial SpaebyMiros law Wysoki 1Warsaw University (Bia lystok)Agata Darmohwa l2Warsaw University (Bia lystok)Summary. The artile ontains some theorems about open and losed sets. Thefollowing topologial operations on sets are de�ned: losure, interior and frontier.The following notions are introdued: dense set, boundary set, nowheredense setand set being domain (losed domain and open domain), and some basi fatsonerning them are proved.The symbols used in this artile are introdued in the following voabularies: boole,fun, fun rel, rel rel, real 1, sub op, fam op, sfamily, topon, and top1. Theterminology and notation used in this artile have been introdued in the following arti-les: tarski, boole, enumset1, subset 1, funt 1, ordinal1, mart 1, domain 1,funt 2, setfam 1, and pre top.reserve TS for TopSpae.reserve x for Any.1Supported by RPBP.III-24.C1.2Supported by RPBP.III-24.C1. 158



159reserve X, Y, Z for set.reserve P, Q, G for Subset of TS.reserve p for Point of TS.Theorem TOPS 1:1. x 2 P implies x is Point of TS.Theorem TOPS 1:2. P[
TS = 
TS & 
TS[P = 
TS.Theorem TOPS 1:3. P\
TS = P & 
TS\P = P.Theorem TOPS 1:4. P\; TS = ; TS & ; TS\P = ; TS.Theorem TOPS 1:5. P = 
TSrP.Theorem TOPS 1:6. P = (P qua Subset of the arrier of TS).Theorem TOPS 1:7. p 2 P i� not p 2 P.Theorem TOPS 1:8. (
TS) = ; TS.Theorem TOPS 1:9. 
TS = (; TS).Theorem TOPS 1:10. (P) = P.Theorem TOPS 1:11. P[P = 
TS & P[P = 
TS.Theorem TOPS 1:12. P\P = ; TS & P\P = ; TS.Theorem TOPS 1:13. (P[Q) = (P)\(Q).Theorem TOPS 1:14. (P\Q) = (P)[(Q).Theorem TOPS 1:15. P � Q i� Q � P.Theorem TOPS 1:16. PrQ = P\Q.Theorem TOPS 1:17. (PrQ) = P[Q.Theorem TOPS 1:18. P � Q implies Q � P.Theorem TOPS 1:19. P � Q implies Q � P.Theorem TOPS 1:20. P � Q i� P\Q = ;.Theorem TOPS 1:21. P = Q implies P = Q.Theorem TOPS 1:22. ; TS is losed.Theorem TOPS 1:23. Cl (; TS) = ; TS.Theorem TOPS 1:24. P � Cl P.Theorem TOPS 1:25. P � Q implies Cl P � Cl Q.Theorem TOPS 1:26. Cl (Cl P) = Cl P.Theorem TOPS 1:27. Cl (
TS) = 
TS.Theorem TOPS 1:28. 
TS is losed.Theorem TOPS 1:29. P is losed i� P is open.Theorem TOPS 1:30. P is open i� P is losed.Theorem TOPS 1:31. Q is losed & P � Q implies Cl P � Q.Theorem TOPS 1:32. Cl PrCl Q � Cl (PrQ).



160 CHAPTER 29. TOPS 1Theorem TOPS 1:33. Cl (P\Q) � Cl P\Cl Q.Theorem TOPS 1:34. P is losed & Q is losed implies Cl (P\Q) = Cl P\Cl Q.Theorem TOPS 1:35. P is losed & Q is losed implies P\Q is losed.Theorem TOPS 1:36. P is losed & Q is losed implies P[Q is losed.Theorem TOPS 1:37. P is open & Q is open implies P[Q is open.Theorem TOPS 1:38. P is open & Q is open implies P\Q is open.Theorem TOPS 1:39. p 2 Cl P i� for G st G is open holds (p 2 G implies P\G 6=;). Theorem TOPS 1:40. Q is open implies Q\Cl P � Cl (Q\P).Theorem TOPS 1:41. Q is open implies Cl (Q\Cl P) = Cl (Q\P).De�nitionlet TS, P.fun Int P ! Subset of TS means it = (Cl (P)).Theorem TOPS 1:42. Int P = (Cl P).Theorem TOPS 1:43. Int (
TS) = 
TS.Theorem TOPS 1:44. Int P � P.Theorem TOPS 1:45. Int (Int P) = Int P.Theorem TOPS 1:46. Int P\Int Q = Int (P\Q).Theorem TOPS 1:47. Int (; TS) = ; TS.Theorem TOPS 1:48. P � Q implies Int P � Int Q.Theorem TOPS 1:49. Int P[Int Q � Int (P[Q).Theorem TOPS 1:50. Int (PrQ) � Int PrInt Q.Theorem TOPS 1:51. Int P is open.Theorem TOPS 1:52. ; TS is open.Theorem TOPS 1:53. 
TS is open.Theorem TOPS 1:54. x 2 Int P i� ex Q st Q is open & Q � P & x 2 Q.Theorem TOPS 1:55. P is open i� Int P = P.Theorem TOPS 1:56. Q is open & Q � P implies Q � Int P.Theorem TOPS 1:57. P is open i� (for x holds x 2 P i� ex Q st Q is open & Q � P& x 2 Q).Theorem TOPS 1:58. Cl (Int P) = Cl (Int (Cl (Int P))).Theorem TOPS 1:59. P is open implies Cl (Int (Cl P)) = Cl P.De�nitionlet TS, P.fun Fr P ! Subset of TS means it = Cl P\Cl (P).



161Theorem TOPS 1:60. Fr P = Cl P\Cl (P).Theorem TOPS 1:61. p 2 Fr P i� (for Q st Q is open & p 2 Q holds (P\Q 6= ; &P\Q 6= ;)).Theorem TOPS 1:62. Fr P = Fr (P).Theorem TOPS 1:63. Fr P � Cl P.Theorem TOPS 1:64. Fr P = Cl (P)\P[(Cl PrP).Theorem TOPS 1:65. Cl P = P[Fr P.Theorem TOPS 1:66. Fr (P\Q) � Fr P[Fr Q.Theorem TOPS 1:67. Fr (P[Q) � Fr P[Fr Q.Theorem TOPS 1:68. Fr (Fr P) � Fr P.Theorem TOPS 1:69. P is losed implies Fr P � P.Theorem TOPS 1:70. Fr P[Fr Q = Fr (P[Q)[Fr (P\Q)[(Fr P\Fr Q).Theorem TOPS 1:71. Fr (Int P) � Fr P.Theorem TOPS 1:72. Fr (Cl P) � Fr P.Theorem TOPS 1:73. Int P\Fr P = ;.Theorem TOPS 1:74. Int P = PrFr P.Theorem TOPS 1:75. Fr (Fr (Fr P)) = Fr (Fr P).Theorem TOPS 1:76. P is open i� Fr P = Cl PrP.Theorem TOPS 1:77. P is losed i� Fr P = PrInt P.De�nitionlet TS, P.pred P is dense means Cl P = 
TS.Theorem TOPS 1:78. P is dense i� Cl P = 
TS.Theorem TOPS 1:79. P is dense & P � Q implies Q is dense.Theorem TOPS 1:80. P is dense i� (for Q st Q 6= ; & Q is open holds P\Q 6= ;).Theorem TOPS 1:81. P is dense implies (for Q holds Q is open implies Cl Q = Cl(Q\P)).Theorem TOPS 1:82. P is dense & Q is dense & Q is open implies P\Q is dense.De�nitionlet TS, P.pred P is boundary means P is dense.Theorem TOPS 1:83. P is boundary i� P is dense.Theorem TOPS 1:84. P is boundary i� Int P = ;.Theorem TOPS 1:85. P is boundary & Q is boundary & Q is losed implies P[Q isboundary.



162 CHAPTER 29. TOPS 1Theorem TOPS 1:86. P is boundary i� (for Q st Q � P & Q is open holds Q = ;).Theorem TOPS 1:87. P is losed implies (P is boundary i� for Q st Q 6= ; & Q isopen ex G st G � Q & G 6= ; & G is open & P\G = ;).Theorem TOPS 1:88. P is boundary i� P � Fr P.De�nitionlet TS, P.pred P is nowheredense means Cl P is boundary.Theorem TOPS 1:89. P is nowheredense i� Cl P is boundary.Theorem TOPS 1:90. P is nowheredense & Q is nowheredense implies P[Q is nowhere-dense.Theorem TOPS 1:91. P is nowheredense implies P is dense.Theorem TOPS 1:92. P is nowheredense implies P is boundary.Theorem TOPS 1:93. Q is boundary & Q is losed implies Q is nowheredense.Theorem TOPS 1:94. P is losed implies (P is nowheredense i� P = Fr P).Theorem TOPS 1:95. P is open implies Fr P is nowheredense.Theorem TOPS 1:96. P is losed implies Fr P is nowheredense.Theorem TOPS 1:97. P is open & P is nowheredense implies P = ;.De�nitionlet TS, P.pred P is domain means Int (Cl P) � P & P � Cl (Int P).pred P is losed domain means P = Cl (Int P).pred P is open domain means P = Int (Cl P).Theorem TOPS 1:98. P is domain i� Int (Cl P) � P & P � Cl (Int P).Theorem TOPS 1:99. P is losed domain i� P = Cl (Int P).Theorem TOPS 1:100. P is open domain i� P = Int (Cl P).Theorem TOPS 1:101. P is open domain i� P is losed domain.Theorem TOPS 1:102. P is losed domain implies Fr (Int P) = Fr P.Theorem TOPS 1:103. P is losed domain implies Fr P � Cl (Int P).Theorem TOPS 1:104. P is open domain implies Fr P = Fr (Cl P) & Fr (Cl P) = ClPrP.Theorem TOPS 1:105. P is open & P is losed implies (P is losed domain i� P isopen domain).Theorem TOPS 1:106. P is losed & P is domain i� P is losed domain.Theorem TOPS 1:107. P is open & P is domain i� P is open domain.Theorem TOPS 1:108. P is losed domain & Q is losed domain implies P[Q is loseddomain.



163Theorem TOPS 1:109. P is open domain & Q is open domain implies P\Q is opendomain.Theorem TOPS 1:110. P is domain implies Int (Fr P) = ;.Theorem TOPS 1:111. P is domain implies Int P is domain & Cl P is domain.



Chapter 30CONNSP 1Conneted SpaesbyBeata Padlewska 1Warsaw University (Bia lystok)Summary. The following notions are de�ned: separated sets, onneted spaes,onneted sets, omponents of a topologial spae, the omponent of a point. Thede�nition of the boundary of a set is also inluded. The singleton of a point of atopologial spae is rede�ned as a subset of the spae. Some theorems about thesenotions are proved.The symbols used in this artile are introdued in the following voabularies: boole,real 1, fun, fun rel, rel rel, sub op, fam op, sfamily, and topon. The ter-minology and notation used in this artile have been introdued in the following artiles:tarski, boole, enumset1, funt 1, subset 1, setfam 1, ordinal1, mart 1, do-main 1, funt 2, pre top, and tops 1.reserve GX, GY for TopSpae.reserve A, A1, B, B1, C for Subset of GX.De�nitionlet GX be TopSpae, A, B be Subset of GX.pred A, B are separated means Cl A\B = ;(GX) & A\Cl B = ;(GX).1Supported by RPBP.III-24.C1. 164



165Theorem CONNSP 1:1. A, B are separated implies B, A are separated.Theorem CONNSP 1:2. A, B are separated implies A\B = ;(GX).Theorem CONNSP 1:3. 
(GX) = A[B & A is losed & B is losed & A\B = ;(GX)implies A, B are separated.Theorem CONNSP 1:4. 
(GX) = A[B & A is open & B is open & A\B = ;(GX)implies A, B are separated.Theorem CONNSP 1:5. 
(GX) = A[B & A, B are separated implies A is open losed& B is open losed.Theorem CONNSP 1:6. for X0 being (SubSpae of GX), P1, Q1 being (Subset ofGX), P, Q being Subset of X0 st P = P1 & Q = Q1 holds P, Q are separated impliesP1, Q1 are separated.Theorem CONNSP 1:7. for X0 being (SubSpae of GX), P, Q being (Subset of GX),P1, Q1 being Subset of X0 st P = P1 & Q = Q1 & P[Q � 
(X0) holds P, Q are separatedimplies P1, Q1 are separated.Theorem CONNSP 1:8. A, B are separated & A1 � A & B1 � B implies A1, B1 areseparated.Theorem CONNSP 1:9. A, B are separated & A, C are separated implies A, B[C areseparated.Theorem CONNSP 1:10. (A is losed & B is losed) or (A is open & B is open) impliesArB, BrA are separated.De�nitionlet GX be TopSpae.pred GX is onneted means for A, B being Subset of GX st 
(GX) = A[B& A, B are separated holds A = ;(GX) or B = ;(GX).Theorem CONNSP 1:11. GX is onneted i� for A, B being Subset of GX st 
(GX)= A[B & A 6= ;(GX) & B 6= ;(GX) & A is losed & B is losed holds A\B 6= ;(GX).Theorem CONNSP 1:12. GX is onneted i� for A, B being Subset of GX st 
(GX)= A[B & A 6= ;(GX) & B 6= ;(GX) & A is open & B is open holds A\B 6= ;(GX).Theorem CONNSP 1:13. GX is onneted i� for A being Subset of GX st A 6= ;(GX)& A 6= 
(GX) holds (Cl A)\Cl (
(GX)rA) 6= ;(GX).Theorem CONNSP 1:14. GX is onneted i� for A being Subset of GX st A is openlosed holds A = ;(GX) or A = 
(GX).Theorem CONNSP 1:15. for F being map of GX, GY st F is ontinuous & F�(
(GX))= 
(GY) & GX is onneted holds GY is onneted.De�nitionlet GX be TopSpae, A be Subset of GX.pred A is onneted means GX�A is onneted.



166 CHAPTER 30. CONNSP 1Theorem CONNSP 1:16. A 6= ;(GX) implies (A is onneted i� for P, Q beingSubset of GX st A = P[Q & P, Q are separated holds P = ;(GX) or Q = ;(GX)).Theorem CONNSP 1:17. A is onneted & A � B[C & B, C are separated implies A� B or A � C.Theorem CONNSP 1:18. A is onneted & B is onneted & not A, B are separatedimplies A[B is onneted.Theorem CONNSP 1:19. C 6= ;(GX) & C is onneted & C � A & A � Cl C impliesA is onneted.Theorem CONNSP 1:20. A 6= ;(GX) & A is onneted implies Cl A is onneted.Theorem CONNSP 1:21. GX is onneted & A 6= ;(GX) & A is onneted & 
(GX)rA = B[C & B, C are separated implies A[B is onneted & A[C is onneted.Theorem CONNSP 1:22. 
(GX)rA = B[C & B, C are separated & A is losed impliesA[B is losed & A[C is losed.Theorem CONNSP 1:23. C is onneted & C\A 6= ;(GX) & CrA 6= ;(GX) impliesC\Fr A 6= ;(GX).Theorem CONNSP 1:24. for X0 being (SubSpae of GX), A being (Subset of GX),B being Subset of X0 st A 6= ;(GX) & A = B holds A is onneted i� B is onneted.Theorem CONNSP 1:25. A\B 6= ;(GX) & A is losed & B is losed implies (A[B isonneted & A\B is onneted implies A is onneted & B is onneted).Theorem CONNSP 1:26. for F being Subset-Family of GX st (for A being Subsetof GX st A 2 F holds A is onneted) & (ex A being Subset of GX st A 6= ;(GX) &A 2 F & (for B being Subset of GX st B 2 F & B 6= A holds not A, B are separated))holds SF is onneted.Theorem CONNSP 1:27. for F being Subset-Family of GX st (for A being Subsetof GX st A 2 F holds A is onneted) & TF 6= ;(GX) holds SF is onneted.Theorem CONNSP 1:28. 
(GX) is onneted i� GX is onneted.De�nitionlet GX be TopSpae, x be Point of GX.rede�nefun fxg ! Subset of GX.Theorem CONNSP 1:29. for x being Point of GX holds fxg is onneted.De�nitionlet GX be TopSpae, x, y be Point of GX.pred x, y are joined means ex C being Subset of GX st C is onneted & x 2C & y 2 C.Theorem CONNSP 1:30. (ex x being Point of GX st for y being Point of GX holdsx, y are joined) implies GX is onneted.



167Theorem CONNSP 1:31. (ex x being Point of GX st for y being Point of GX holdsx, y are joined) i� (for x, y being Point of GX holds x, y are joined).Theorem CONNSP 1:32. (for x, y being Point of GX holds x, y are joined) impliesGX is onneted.Theorem CONNSP 1:33. for x being (Point of GX), F being Subset-Family of GXst for A being Subset of GX holds A 2 F i� A is onneted & x 2 A holds F 6= ;.De�nitionlet GX be TopSpae, A be Subset of GX.pred A is a omponent of GX means A is onneted & for B being Subset ofGX st B is onneted holds A � B implies A = B.Theorem CONNSP 1:34. A is a omponent of GX implies A 6= ;(GX).Theorem CONNSP 1:35. A is a omponent of GX implies A is losed.Theorem CONNSP 1:36. A is a omponent of GX & B is a omponent of GX impliesA = B or (A 6= B implies A, B are separated).Theorem CONNSP 1:37. A is a omponent of GX & B is a omponent of GX impliesA = B or (A 6= B implies A\B = ;(GX)).Theorem CONNSP 1:38. C is onneted implies for S being Subset of GX st S is aomponent of GX holds C\S = ;(GX) or C � S.De�nitionlet GX be TopSpae, A, B be Subset of GX.pred B is a omponent of A means ex B1 being Subset of GX�A st B1 = B &B1 is a omponent of (GX�A).Theorem CONNSP 1:39. GX is onneted & A 6= 
(GX) & A 6= ;(GX) & A isonneted & C is a omponent of (
(GX)rA) implies (
(GX)rC) is onneted.De�nitionlet GX be TopSpae, x be Point of GX.fun skl x ! Subset of GX means ex F being Subset-Family of GX st (for Abeing Subset of GX holds A 2 F i� A is onneted & x 2 A) & SF = it.reserve x, y for Point of GX.Theorem CONNSP 1:40. x 2 skl x.Theorem CONNSP 1:41. skl x is onneted.Theorem CONNSP 1:42. C is onneted implies (skl x � C implies C = skl x).Theorem CONNSP 1:43. A is a omponent of GX i� ex x being Point of GX st A =skl x.Theorem CONNSP 1:44. A is a omponent of GX & x 2 A implies A = skl x.Theorem CONNSP 1:45. for S being Subset of GX st S = skl x holds (for p beingPoint of GX st p 6= x & p 2 S holds skl p = S).



168 CHAPTER 30. CONNSP 1Theorem CONNSP 1:46. for F being Subset-Family of GX st for A being Subset ofGX holds A 2 F i� A is a omponent of GX holds F is a over of GX.Theorem CONNSP 1:47. A, B are separated i� Cl A\B = ;(GX) & A\Cl B = ;(GX).Theorem CONNSP 1:48. GX is onneted i� for A, B being Subset of GX st 
(GX)= A[B & A, B are separated holds A = ;(GX) or B = ;(GX).Theorem CONNSP 1:49. A is onneted i� GX�A is onneted.Theorem CONNSP 1:50. A is a omponent of GX i� A is onneted & for B beingSubset of GX st B is onneted holds A � B implies A = B.Theorem CONNSP 1:51. B is a omponent of A i� ex B1 being Subset of GX�A stB1 = B & B1 is a omponent of (GX�A).Theorem CONNSP 1:52. B = skl x i� ex F being Subset-Family of GX st (for Abeing Subset of GX holds A 2 F i� A is onneted & x 2 A) & SF = B.



Chapter 31SCHEMS 1Some Basi Properties of Quanti�ersbyStanis law T. Czuba 1Warsaw University (Bia lystok)Summary. A number of shemes orresponding to simple tautologies of quanti�eralulus are presented.This artile is written in plain Mizar; no additional voabularies or signatures arereferened.reserve a, b, , d for Any.sheme Shemat0fP[Any℄g: ex a st P[a℄ provided A: for a holds P[a℄.sheme Shemat1afP[Any℄, T[℄g: (for a holds P[a℄) & T[℄ provided A: for a holds(P[a℄ & T[℄).sheme Shemat1bfP[Any℄, T[℄g: for a holds (P[a℄ & T[℄) provided A: (for a holdsP[a℄) & T[℄.sheme Shemat2afP[Any℄, T[℄g: (ex a st P[a℄) or T[℄ provided A: ex a st (P[a℄ orT[℄).sheme Shemat2bfP[Any℄, T[℄g: ex a st (P[a℄ or T[℄) provided A: (ex a st P[a℄)or T[℄.1Supported by RPBP.III-24.C1. 169



170 CHAPTER 31. SCHEMS 1sheme Shemat3fS[Any, Any℄g: for b ex a st S[a, b℄ provided A: ex a st for bholds S[a, b℄.sheme Shemat4afP[Any℄, Q[Any℄g: (ex a st P[a℄) or (ex a st Q[a℄) provided A:ex a st (P[a℄ or Q[a℄).sheme Shemat4bfP[Any℄, Q[Any℄g: ex a st (P[a℄ or Q[a℄) provided A: (ex a stP[a℄) or (ex a st Q[a℄).sheme Shemat5fP[Any℄, Q[Any℄g: (ex a st P[a℄) & (ex a st Q[a℄) provided A: exa st (P[a℄ & Q[a℄).sheme Shemat6afP[Any℄, Q[Any℄g: (for a holds P[a℄) & (for a holds Q[a℄) pro-vided A: for a holds (P[a℄ & Q[a℄).sheme Shemat6bfP[Any℄, Q[Any℄g: for a holds (P[a℄ & Q[a℄) provided A: (for aholds P[a℄) & (for a holds Q[a℄).sheme Shemat7fP[Any℄, Q[Any℄g: for a holds (P[a℄ or Q[a℄) provided A: (for aholds P[a℄) or (for a holds Q[a℄).sheme Shemat8fP[Any℄, Q[Any℄g: (for a holds P[a℄) implies (for a holds Q[a℄)provided A: for a holds P[a℄ implies Q[a℄.sheme Shemat9fP[Any℄, Q[Any℄g: (for a holds P[a℄) i� (for a holds Q[a℄) pro-vided A: for a holds (P[a℄ i� Q[a℄).sheme Shemat10afT[℄g: T[℄ provided A: for a holds T[℄.sheme Shemat10bfT[℄g: for a holds T[℄ provided A: T[℄.sheme Shemat11afP[Any℄, T[℄g: (for a holds P[a℄) or T[℄ provided A: for a holds(P[a℄ or T[℄).sheme Shemat11bfP[Any℄, T[℄g: for a holds (P[a℄ or T[℄) provided A: (for aholds P[a℄) or T[℄.sheme Shemat12afP[Any℄, T[℄g: ex a st (T[℄ & P[a℄) provided A: T[℄ & (ex a stP[a℄).sheme Shemat12bfP[Any℄, T[℄g: T[℄ & (ex a st P[a℄) provided A: ex a st (T[℄ &P[a℄).sheme Shemat13afP[Any℄, T[℄g: for a holds (T[℄ implies P[a℄) provided A: T[℄implies (for a holds P[a℄).sheme Shemat13bfP[Any℄, T[℄g: T[℄ implies (for a holds P[a℄) provided A: fora holds (T[℄ implies P[a℄).sheme Shemat14fP[Any℄, T[℄g: ex a st (T[℄ implies P[a℄) provided A: T[℄ implies(ex a st P[a℄).sheme Shemat15fP[Any℄, T[℄g: for a holds (P[a℄ implies T[℄) provided A: (ex ast P[a℄) implies T[℄.sheme Shemat16fP[Any℄, T[℄g: ex a st (P[a℄ implies T[℄) provided A: (for aholds P[a℄) implies T[℄.



171sheme Shemat17fP[Any℄, T[℄g: (for a holds P[a℄) implies T[℄ provided A: for aholds (P[a℄ implies T[℄).sheme Shemat18afP[Any℄, Q[Any℄g: ex a st (for b holds (P[a℄ or Q[b℄)) providedA: (ex a st P[a℄) or (for b holds Q[b℄).sheme Shemat18bfP[Any℄, Q[Any℄g: (ex a st P[a℄) or (for b holds Q[b℄) providedA: ex a st (for b holds (P[a℄ or Q[b℄)).sheme Shemat19afP[Any℄, Q[Any℄g: for b holds (ex a st (P[a℄ or Q[b℄)) providedA: (ex a st P[a℄) or (for b holds Q[b℄).sheme Shemat19bfP[Any℄, Q[Any℄g: (ex a st P[a℄) or (for b holds Q[b℄) providedA: for b holds (ex a st (P[a℄ or Q[b℄)).sheme Shemat20afP[Any℄, Q[Any℄g: for b ex a st (P[a℄ or Q[b℄) provided A: exa st (for b holds (P[a℄ or Q[b℄)).sheme Shemat20bfP[Any℄, Q[Any℄g: ex a st (for b holds (P[a℄ or Q[b℄)) providedA: for b ex a st (P[a℄ or Q[b℄).sheme Shemat21afP[Any℄, Q[Any℄g: ex a st for b holds P[a℄ & Q[b℄ provided A:(ex a st P[a℄) & (for b holds Q[b℄).sheme Shemat21bfP[Any℄, Q[Any℄g: (ex a st P[a℄) & (for b holds Q[b℄) providedA: ex a st for b holds P[a℄ & Q[b℄.sheme Shemat22afP[Any℄, Q[Any℄g: for b ex a st (P[a℄ & Q[b℄) provided A: (exa st P[a℄) & (for b holds Q[b℄).sheme Shemat22bfP[Any℄, Q[Any℄g: (ex a st P[a℄) & (for b holds Q[b℄) providedA: for b ex a st (P[a℄ & Q[b℄).sheme Shemat23afP[Any℄, Q[Any℄g: for b ex a st P[a℄ & Q[b℄ provided A: ex ast for b holds P[a℄ & Q[b℄.sheme Shemat23bfP[Any℄, Q[Any℄g: ex a st for b holds (P[a℄ & Q[b℄) providedA: for b ex a st (P[a℄ & Q[b℄).sheme Shemat24afS[Any, Any℄, Q[Any℄g: for a ex b st (S[a, b℄ implies Q[a℄)provided A: for a holds ((for b holds S[a, b℄) implies Q[a℄).sheme Shemat24bfS[Any, Any℄, Q[Any℄g: for a holds ((for b holds S[a, b℄) impliesQ[a℄) provided A: for a ex b st (S[a, b℄ implies Q[a℄).sheme Shemat25afS[Any, Any℄, Q[Any℄g: for a, b holds (S[a, b℄ implies Q[a℄)provided A: for a holds ((ex b st S[a, b℄) implies Q[a℄).sheme Shemat25bfS[Any, Any℄, Q[Any℄g: for a holds ((ex b st S[a, b℄) impliesQ[a℄) provided A: for a, b holds (S[a, b℄ implies Q[a℄).sheme Shemat26fS[Any, Any℄g: ex a st for b holds S[a, b℄ provided A: for a, bholds S[a, b℄.sheme Shemat27fS[Any, Any℄g: for a holds S[a, a℄ provided A: for a, b holdsS[a, b℄.



172 CHAPTER 31. SCHEMS 1sheme Shemat28fS[Any, Any℄g: ex b st for a holds S[a, b℄ provided A: for a, bholds S[a, b℄.sheme Shemat29fS[Any, Any℄g: for b ex a st S[a, b℄ provided A: ex a st for bholds S[a, b℄.sheme Shemat30fS[Any, Any℄g: ex a st S[a, a℄ provided A: ex a st for b holdsS[a, b℄.sheme Shemat31fS[Any, Any℄g: for a ex b st S[b, a℄ provided A: for a holds S[a,a℄. sheme Shemat32fS[Any, Any℄g: ex a st S[a, a℄ provided A: for a holds S[a, a℄.sheme Shemat33fS[Any, Any℄g: for a ex b st S[a, b℄ provided A: for a holds S[a,a℄. sheme Shemat34fS[Any, Any℄g: ex b st S[b, b℄ provided A: ex b st for a holdsS[a, b℄.sheme Shemat35fS[Any, Any℄g: for a ex b st S[a, b℄ provided A: ex b st for aholds S[a, b℄.sheme Shemat36fS[Any, Any℄g: ex a, b st S[a, b℄ provided A: for b ex a st S[a,b℄. sheme Shemat37fS[Any, Any℄g: ex a, b st S[a, b℄ provided A: ex a st S[a, a℄.sheme Shemat38fS[Any, Any℄g: ex a, b st S[a, b℄ provided A: for a ex b st S[a,b℄.



Chapter 32ZF LANGA Model of ZF Set Theory LanguagebyGrzegorz Banerek 1Warsaw University (Bia lystok)Summary. The goal of this artile is to onstrut a language of the ZF set theoryand to develop a notational and oneptual base whih failitates a onvenient usageof the language.The symbols used in this artile are introdued in the following voabularies: finseq,zf lang, fun rel, fun, boole, real 1, and nat 1. The terminology and nota-tion used in this artile have been introdued in the following artiles: tarski, boole,funt 1, real 1, nat 1, and finseq 1.reserve k, l, m, n for Nat, X, Y, Z for set, D, D1, D2 for DOMAIN, a, b, , d forAny.reserve p, q, r, p0, q0 for FinSequene of NAT.De�nitionfun VAR ! SUBDOMAIN of NAT means it = fk: 5 6 kg.Theorem ZF LANG:1. VAR = fk: 5 6 kg.De�nitionmode Variable ! Element of VAR means not ontradition.1Supported by RPBP.III-24.C1. 173



174 CHAPTER 32. ZF LANGTheorem ZF LANG:2. a is Variable i� a is Element of VAR.De�nitionlet n. fun �n ! Variable means it = 5+n.Theorem ZF LANG:3. �n = 5+n.reserve x, y, z, t, s for Variable.De�nitionlet x.rede�nefun hxi ! FinSequene of NAT.De�nitionlet x, y.fun x`='y ! FinSequene of NAT means it = h0i_hxi_hyi.fun x`2'y ! FinSequene of NAT means it = h1i_hxi_hyi.Theorem ZF LANG:4. x`='y = h0i_hxi_hyi.Theorem ZF LANG:5. x`2'y = h1i_hxi_hyi.Theorem ZF LANG:6. x`='y = z`='t implies x = z & y = t.Theorem ZF LANG:7. x`2'y = z`2't implies x = z & y = t.De�nitionlet p. fun :p ! FinSequene of NAT means it = h2i_p.let q. fun p^q ! FinSequene of NAT means it = h3i_p_q.Theorem ZF LANG:8. :p = h2i_p.Theorem ZF LANG:9. p^q = h3i_p_q.Theorem ZF LANG:10. :p = :q implies p = q.De�nitionlet x, p.fun 8(x, p) ! FinSequene of NAT means it = h4i_hxi_p.Theorem ZF LANG:11. 8(x, p) = h4i_hxi_p.Theorem ZF LANG:12. 8(x, p) = 8(y, q) implies x = y & p = q.De�nitionfun WFF ! DOMAIN means (for a st a 2 it holds a is FinSequene of NAT)& (for x, y holds x`='y 2 it & x`2'y 2 it) & (for p st p 2 it holds :p 2 it) & (for p,q st p 2 it & q 2 it holds p^q 2 it) & (for x, p st p 2 it holds 8(x, p) 2 it) & for Dst (for a st a 2 D holds a is FinSequene of NAT) & (for x, y holds x`='y 2 D & x`2'y



1752 D) & (for p st p 2 D holds :p 2 D) & (for p, q st p 2 D & q 2 D holds p^q 2 D)& (for x, p st p 2 D holds 8(x, p) 2 D) holds it � D.Theorem ZF LANG:13. (for a st a 2 WFF holds a is FinSequene of NAT) & (for x,y holds x`='y 2 WFF & x`2'y 2 WFF) & (for p st p 2 WFF holds :p 2 WFF) & (forp, q st p 2 WFF & q 2 WFF holds p^q 2 WFF) & (for x, p st p 2 WFF holds 8(x, p)2 WFF) & for D st (for a st a 2 D holds a is FinSequene of NAT) & (for x, y holdsx`='y 2 D & x`2'y 2 D) & (for p st p 2 D holds :p 2 D) & (for p, q st p 2 D & q 2D holds p^q 2 D) & (for x, p st p 2 D holds 8(x, p) 2 D) holds WFF � D.De�nitionmode ZF-formula ! FinSequene of NAT means it is Element of WFF.Theorem ZF LANG:14. a is ZF-formula i� a 2 WFF.Theorem ZF LANG:15. a is ZF-formula i� a is Element of WFF.reserve F, F1, G, G1, H, H1 for ZF-formula.De�nitionlet x, y.rede�nefun x`='y ! ZF-formula.fun x`2'y ! ZF-formula.De�nitionlet H.rede�nefun :H ! ZF-formula.let G.fun H^G ! ZF-formula.De�nitionlet x, H.rede�nefun 8(x, H) ! ZF-formula.De�nitionlet H.pred H is equality means ex x, y st H = x`='y.pred H is membership means ex x, y st H = x`2'y.pred H is negative means ex H1 st H = :H1.pred H is onjuntive means ex F, G st H = F^G.pred H is universal means ex x, H1 st H = 8(x, H1).



176 CHAPTER 32. ZF LANGTheorem ZF LANG:16. (H is equality i� ex x, y st H = x`='y) & (H is membershipi� ex x, y st H = x`2'y) & (H is negative i� ex H1 st H = :H1) & (H is onjuntive i�ex F, G st H = F^G) & (H is universal i� ex x, H1 st H = 8(x, H1)).De�nitionlet H.pred H is atomi means H is equality or H is membership.Theorem ZF LANG:17. H is atomi i� H is equality or H is membership.De�nitionlet F, G.fun F_G ! ZF-formula means it = :(:F^:G).fun F)G ! ZF-formula means it = :(F^:G).Theorem ZF LANG:18. F_G = :(:F^:G).Theorem ZF LANG:19. F)G = :(F^:G).De�nitionlet F, G.fun F,G ! ZF-formula means it = (F)G)^(G)F).Theorem ZF LANG:20. F,G = (F)G)^(G)F).De�nitionlet x, H.fun 9(x, H) ! ZF-formula means it = :8(x, :H).Theorem ZF LANG:21. 9(x, H) = :8(x, :H).De�nitionlet H.pred H is disjuntive means ex F, G st H = F_G.pred H is onditional means ex F, G st H = F)G.pred H is bionditional means ex F, G st H = F,G.pred H is existential means ex x, H1 st H = 9(x, H1).Theorem ZF LANG:22. (H is disjuntive i� ex F, G st H = F_G) & (H is onditionali� ex F, G st H = F)G) & (H is bionditional i� ex F, G st H = F,G) & (H is existentiali� ex x, H1 st H = 9(x, H1)).De�nitionlet x, y, H.fun 8(x, y, H) ! ZF-formula means it = 8(x, 8(y, H)).fun 9(x, y, H) ! ZF-formula means it = 9(x, 9(y, H)).Theorem ZF LANG:23. 8(x, y, H) = 8(x, 8(y, H)) & 9(x, y, H) = 9(x, 9(y, H)).



177De�nitionlet x, y, z, H.fun 8(x, y, z, H) ! ZF-formula means it = 8(x, 8(y, z, H)).fun 9(x, y, z, H) ! ZF-formula means it = 9(x, 9(y, z, H)).Theorem ZF LANG:24. 8(x, y, z, H) = 8(x, 8(y, z, H)) & 9(x, y, z, H) = 9(x, 9(y, z,H)).Theorem ZF LANG:25. H is equality or H is membership or H is negative or H isonjuntive or H is universal.Theorem ZF LANG:26. H is atomi or H is negative or H is onjuntive or H is universal.Theorem ZF LANG:27. H is atomi implies len H = 3.Theorem ZF LANG:28. H is atomi or ex H1 st len H1+1 6 len H.Theorem ZF LANG:29. 3 6 len H.Theorem ZF LANG:30. len H = 3 implies H is atomi.reserve p, q, r for ZF-formula.Theorem ZF LANG:31. for x, y holds (x`='y):1 = 0 & (x`2'y):1 = 1.Theorem ZF LANG:32. for H holds (:H):1 = 2.Theorem ZF LANG:33. for F, G holds (F^G):1 = 3.Theorem ZF LANG:34. for x, H holds 8(x, H):1 = 4.Theorem ZF LANG:35. H is equality implies H:1 = 0.Theorem ZF LANG:36. H is membership implies H:1 = 1.Theorem ZF LANG:37. H is negative implies H:1 = 2.Theorem ZF LANG:38. H is onjuntive implies H:1 = 3.Theorem ZF LANG:39. H is universal implies H:1 = 4.Theorem ZF LANG:40. H is equality & H:1 = 0 or H is membership & H:1 = 1 or His negative & H:1 = 2 or H is onjuntive & H:1 = 3 or H is universal & H:1 = 4.Theorem ZF LANG:41. H:1 = 0 implies H is equality.Theorem ZF LANG:42. H:1 = 1 implies H is membership.Theorem ZF LANG:43. H:1 = 2 implies H is negative.Theorem ZF LANG:44. H:1 = 3 implies H is onjuntive.Theorem ZF LANG:45. H:1 = 4 implies H is universal.reserve sq, sq0 for FinSequene.Theorem ZF LANG:46. H = F_sq implies H = F.Theorem ZF LANG:47. H^G = H1^G1 implies H = H1 & G = G1.Theorem ZF LANG:48. F_G = F1_G1 implies F = F1 & G = G1.Theorem ZF LANG:49. F)G = F1)G1 implies F = F1 & G = G1.



178 CHAPTER 32. ZF LANGTheorem ZF LANG:50. F,G = F1,G1 implies F = F1 & G = G1.Theorem ZF LANG:51. 9(x, H) = 9(y, G) implies x = y & H = G.De�nitionlet H.assume H is atomi.fun V ar1H ! Variable means it = H:2.fun V ar2H ! Variable means it = H:3.Theorem ZF LANG:52. H is atomi implies V ar1H = H:2 & V ar2H = H:3.Theorem ZF LANG:53. H is equality implies H = (V ar1H)`='V ar2H.Theorem ZF LANG:54. H is membership implies H = (V ar1H)`2'V ar2H.De�nitionlet H.assume H is negative.fun the argument of H ! ZF-formula means :it = H.Theorem ZF LANG:55. H is negative implies H = :the argument of H.De�nitionlet H.assume H is onjuntive or H is disjuntive.fun the left argument of H ! ZF-formula means ex H1 st it^H1 = H if H isonjuntive otherwise ex H1 st it_H1 = H.fun the right argument of H ! ZF-formula means ex H1 st H1^it = H if H isonjuntive otherwise ex H1 st H1_it = H.Theorem ZF LANG:56. H is onjuntive implies (F = the left argument of H i� ex Gst F^G = H) & (F = the right argument of H i� ex G st G^F = H).Theorem ZF LANG:57. H is disjuntive implies (F = the left argument of H i� ex Gst F_G = H) & (F = the right argument of H i� ex G st G_F = H).Theorem ZF LANG:58. H is onjuntive implies H = (the left argument of H)^theright argument of H.Theorem ZF LANG:59. H is disjuntive implies H = (the left argument of H)_the rightargument of H.De�nitionlet H.assume H is universal or H is existential.fun bound in H ! Variable means ex H1 st 8(it, H1) = H if H is universalotherwise ex H1 st 9(it, H1) = H.



179fun the sope of H ! ZF-formula means ex x st 8(x, it) = H if H is universalotherwise ex x st 9(x, it) = H.Theorem ZF LANG:60. H is universal implies (x = bound in H i� ex H1 st 8(x, H1)= H) & (H1 = the sope of H i� ex x st 8(x, H1) = H).Theorem ZF LANG:61. H is existential implies (x = bound in H i� ex H1 st 9(x, H1)= H) & (H1 = the sope of H i� ex x st 9(x, H1) = H).Theorem ZF LANG:62. H is universal implies H = 8(bound in H, the sope of H).Theorem ZF LANG:63. H is existential implies H = 9(bound in H, the sope of H).De�nitionlet H.assume H is onditional.fun the anteedent of H ! ZF-formula means ex H1 st H = it)H1.fun the onsequent of H ! ZF-formula means ex H1 st H = H1)it.Theorem ZF LANG:64. H is onditional implies (F = the anteedent of H i� ex G stH = F)G) & (F = the onsequent of H i� ex G st H = G)F).Theorem ZF LANG:65. H is onditional implies H = (the anteedent of H))theonsequent of H.De�nitionlet H.assume H is bionditional.fun the left side of H ! ZF-formula means ex H1 st H = it,H1.fun the right side of H ! ZF-formula means ex H1 st H = H1,it.Theorem ZF LANG:66. H is bionditional implies (F = the left side of H i� ex G stH = F,G) & (F = the right side of H i� ex G st H = G,F).Theorem ZF LANG:67. H is bionditional implies H = (the left side of H),the rightside of H.De�nitionlet H, F.pred H is immediate onstituent of F means F = :H or (ex H1 st F = H^H1or F = H1^H) or ex x st F = 8(x, H).Theorem ZF LANG:68. H is immediate onstituent of F i� F = :H or (ex H1 st F =H^H1 or F = H1^H) or ex x st F = 8(x, H).Theorem ZF LANG:69. not H is immediate onstituent of x`='y.Theorem ZF LANG:70. not H is immediate onstituent of x`2'y.Theorem ZF LANG:71. F is immediate onstituent of :H i� F = H.Theorem ZF LANG:72. F is immediate onstituent of G^H i� F = G or F = H.



180 CHAPTER 32. ZF LANGTheorem ZF LANG:73. F is immediate onstituent of 8(x, H) i� F = H.Theorem ZF LANG:74. H is atomi implies not F is immediate onstituent of H.Theorem ZF LANG:75. H is negative implies (F is immediate onstituent of H i� F =the argument of H).Theorem ZF LANG:76. H is onjuntive implies (F is immediate onstituent of H i�F = the left argument of H or F = the right argument of H).Theorem ZF LANG:77. H is universal implies (F is immediate onstituent of H i� F= the sope of H).reserve L, L0 for FinSequene, f for Funtion.De�nitionlet H, F.pred H is subformula of F means ex n, L st 1 6 n & len L = n & L:1 = H &L:n = F & for k st 1 6 k & k < n ex H1, F1 st L:k = H1 & L:(k+1) = F1 & H1 isimmediate onstituent of F1.Theorem ZF LANG:78. H is subformula of F i� ex n, L st 1 6 n & len L = n & L:1= H & L:n = F & for k st 1 6 k & k < n ex H1, F1 st L:k = H1 & L:(k+1) = F1 & H1is immediate onstituent of F1.Theorem ZF LANG:79. H is subformula of H.De�nitionlet H, F.pred H is proper subformula of F means H is subformula of F & H 6= F.Theorem ZF LANG:80. H is proper subformula of F i� H is subformula of F & H 6= F.Theorem ZF LANG:81. H is immediate onstituent of F implies len H < len F.Theorem ZF LANG:82. H is immediate onstituent of F implies H is proper subformulaof F.Theorem ZF LANG:83. H is proper subformula of F implies len H < len F.Theorem ZF LANG:84. H is proper subformula of F implies ex G st G is immediateonstituent of F.reserve j, j1, j2 for Nat.Theorem ZF LANG:85. F is proper subformula of G & G is proper subformula of Himplies F is proper subformula of H.Theorem ZF LANG:86. F is subformula of G & G is subformula of H implies F issubformula of H.Theorem ZF LANG:87. G is subformula of H & H is subformula of G implies G = H.Theorem ZF LANG:88. not F is proper subformula of x`='y.Theorem ZF LANG:89. not F is proper subformula of x`2'y.Theorem ZF LANG:90. F is proper subformula of :H implies F is subformula of H.



181Theorem ZF LANG:91. F is proper subformula of G^H implies F is subformula of Gor F is subformula of H.Theorem ZF LANG:92. F is proper subformula of 8(x, H) implies F is subformula ofH. Theorem ZF LANG:93. H is atomi implies not F is proper subformula of H.Theorem ZF LANG:94. H is negative implies the argument of H is proper subformulaof H.Theorem ZF LANG:95. H is onjuntive implies the left argument of H is propersubformula of H & the right argument of H is proper subformula of H.Theorem ZF LANG:96. H is universal implies the sope of H is proper subformula ofH. Theorem ZF LANG:97. H is subformula of x`='y i� H = x`='y.Theorem ZF LANG:98. H is subformula of x`2'y i� H = x`2'y.De�nitionlet H.fun Subformulae H ! set means a 2 it i� ex F st F = a & F is subformula ofH. Theorem ZF LANG:99. a 2 Subformulae H i� ex F st F = a & F is subformula of H.Theorem ZF LANG:100. G 2 Subformulae H implies G is subformula of H.Theorem ZF LANG:101. F is subformula of H implies Subformulae F � SubformulaeH. Theorem ZF LANG:102. Subformulae x`='y = fx`='yg.Theorem ZF LANG:103. Subformulae x`2'y = fx`2'yg.Theorem ZF LANG:104. Subformulae :H = Subformulae H[f:Hg.Theorem ZF LANG:105. Subformulae (H^F) = Subformulae H[Subformulae F[fH^Fg.Theorem ZF LANG:106. Subformulae 8(x, H) = Subformulae H[f8(x, H)g.Theorem ZF LANG:107. H is atomi i� Subformulae H = fHg.Theorem ZF LANG:108. H is negative implies Subformulae H = Subformulae theargument of H[fHg.Theorem ZF LANG:109. H is onjuntive implies Subformulae H = Subformulae theleft argument of H[Subformulae the right argument of H[fHg.Theorem ZF LANG:110. H is universal implies Subformulae H = Subformulae the sopeof H[fHg.Theorem ZF LANG:111. (H is immediate onstituent of G or H is proper subformula ofG or H is subformula of G) & G 2 Subformulae F implies H 2 Subformulae F.sheme ZF IndfP[ZF-formula℄g: for H holds P[H℄ provided A: for H st H is atomiholds P[H℄ and B: for H st H is negative & P[the argument of H℄ holds P[H℄ and C: for



182 CHAPTER 32. ZF LANGH st H is onjuntive & P[the left argument of H℄ & P[the right argument of H℄ holds P[H℄and D: for H st H is universal & P[the sope of H℄ holds P[H℄.sheme ZF CompIndfP[ZF-formula℄g: for H holds P[H℄ provided A: for H st forF st F is proper subformula of H holds P[F℄ holds P[H℄.



Chapter 33ZF MODELModels and Satis�abilityDe�ning by Strutural Indution and Free Variables in ZF-formulaebyGrzegorz Banerek 1Warsaw University (Bia lystok)Summary. The artile inludes shemes of de�ning by strutural indution, andde�nitions and theorems related to: the set of variables whih have free ourrenesin a ZF-formula, the set of all valuations of variables in a model, the set of allvaluations whih satisfy a ZF-formula in a model, the satis�ability of a ZF-formulain a model by a valuation, the validity of a ZF-formula in a model, the axioms ofZF-language, the model of the ZF set theory.The symbols used in this artile are introdued in the following voabularies: finseq,zf lang, zf sat, zf axiom, ordinal, fun rel, fun, fam op, boole, real 1, andnat 1. The terminology and notation used in this artile have been introdued in the fol-lowing artiles: tarski, boole, funt 1, real 1, nat 1, finseq 1, zf lang, funt 2,enumset1, and ordinal1.reserve F, G, H, H0 for ZF-formula, f, g, h for Funtion, x, y, z, t for Variable, a, b, ,d for Any, A, X, Y, Z for set, D for DOMAIN.sheme ZFsh exfF1(Variable, Variable)! Any, F2(Variable, Variable)! Any, F3(Any)! Any, F4(Any, Any) ! Any, F5(Variable, Any) ! Any, H() ! ZF-formulag: ex a, A st1Supported by RPBP.III-24.C1. 183



184 CHAPTER 33. ZF MODEL(for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y, F2(x, y)℄ 2 A) & [H(), a℄ 2 A & for H, ast [H, a℄ 2 A holds (H is equality implies a = F1(V ar1H, V ar2H)) & (H is membershipimplies a = F2(V ar1H, V ar2H)) & (H is negative implies ex b st a = F3(b) & [theargument of H, b℄ 2 A) & (H is onjuntive implies ex b,  st (a = F4(b, ) & [the leftargument of H, b℄ 2 A) & [the right argument of H, ℄ 2 A) & (H is universal implies exb, x st x = bound in H & a = F5(x, b) & [the sope of H, b℄ 2 A).sheme ZFsh uniqfF1(Variable, Variable)! Any, F2(Variable, Variable)! Any, F3(Any)! Any, F4(Any, Any) ! Any, F5(Variable, Any) ! Any, H() ! ZF-formula, a() ! Any, b()! Anyg: a() = b() provided A: ex A st (for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y,F2(x, y)℄ 2 A) & [H(), a()℄ 2 A & for H, a st [H, a℄ 2 A holds (H is equality impliesa = F1(V ar1H, V ar2H)) & (H is membership implies a = F2(V ar1H, V ar2H)) & (H isnegative implies ex b st a = F3(b) & [the argument of H, b℄ 2 A) & (H is onjuntiveimplies ex b,  st a = F4(b, ) & [the left argument of H, b℄ 2 A & [the right argument ofH, ℄ 2 A) & (H is universal implies ex b, x st x = bound in H & a = F5(x, b) & [the sopeof H, b℄ 2 A) and B: ex A st (for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y, F2(x, y)℄ 2A) & [H(), b()℄ 2 A & for H, a st [H, a℄ 2 A holds (H is equality implies a = F1(V ar1H,V ar2H)) & (H is membership implies a = F2(V ar1H, V ar2H)) & (H is negative impliesex b st a = F3(b) & [the argument of H, b℄ 2 A) & (H is onjuntive implies ex b,  st a= F4(b, ) & [the left argument of H, b℄ 2 A & [the right argument of H, ℄ 2 A) & (H isuniversal implies ex b, x st x = bound in H & a = F5(x, b) & [the sope of H, b℄ 2 A).sheme ZFsh resultfF1(Variable, Variable) ! Any, F2(Variable, Variable) ! Any,F3(Any) ! Any, F4(Any, Any) ! Any, F5(Variable, Any) ! Any, H() ! ZF-formula,f(ZF-formula) ! Anyg: (H() is equality implies f(H()) = F1(V ar1H(), V ar2H())) & (H()is membership implies f(H()) = F2(V ar1H(), V ar2H())) & (H() is negative implies f(H())= F3(f(the argument of H()))) & (H() is onjuntive implies for a, b st a = f(the leftargument of H()) & b = f(the right argument of H()) holds f(H()) = F4(a, b)) & (H() isuniversal implies f(H()) = F5(bound in H(), f(the sope of H()))) provided A: for H0, aholds a = f(H0) i� ex A st (for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y, F2(x, y)℄ 2A) & [H0, a℄ 2 A & for H, a st [H, a℄ 2 A holds (H is equality implies a = F1(V ar1H,V ar2H)) & (H is membership implies a = F2(V ar1H, V ar2H)) & (H is negative impliesex b st a = F3(b) & [the argument of H, b℄ 2 A) & (H is onjuntive implies ex b,  st a= F4(b, ) & [the left argument of H, b℄ 2 A & [the right argument of H, ℄ 2 A) & (H isuniversal implies ex b, x st x = bound in H & a = F5(x, b) & [the sope of H, b℄ 2 A).sheme ZFsh propertyfF1(Variable, Variable) ! Any, F2(Variable, Variable) ! Any,F3(Any) ! Any, F4(Any, Any) ! Any, F5(Variable, Any) ! Any, H() ! ZF-formula, f(ZF-formula) ! Any, P[Any℄g: P[f(H())℄ provided A: for H0, a holds a = f(H0) i� ex A st(for x, y holds [x`='y, F1(x, y)℄ 2 A & [x`2'y, F2(x, y)℄ 2 A) & [H0, a℄ 2 A & for H, ast [H, a℄ 2 A holds (H is equality implies a = F1(V ar1H, V ar2H)) & (H is membershipimplies a = F2(V ar1H, V ar2H)) & (H is negative implies ex b st a = F3(b) & [theargument of H, b℄ 2 A) & (H is onjuntive implies ex b,  st a = F4(b, ) & [the leftargument of H, b℄ 2 A & [the right argument of H, ℄ 2 A) & (H is universal implies ex b,



185x st x = bound in H & a = F5(x, b) & [the sope of H, b℄ 2 A) and B: for x, y holdsP[F1(x, y)℄ & P[F2(x, y)℄ and C: for a st P[a℄ holds P[F3(a)℄ and D: for a, b st P[a℄ &P[b℄ holds P[F4(a, b)℄ and E: for a, x st P[a℄ holds P[F5(x, a)℄.De�nitionlet H.fun Free H ! Anymeans ex A st (for x, y holds [x`='y, fx, yg℄ 2 A & [x`2'y,fx, yg℄ 2 A) & [H, it℄ 2 A & for H0, a st [H0, a℄ 2 A holds (H0 is equality implies a =fV ar1H0, V ar2H0g) & (H0 is membership implies a = fV ar1H0, V ar2H0g) & (H0 is negativeimplies ex b st a = b & [the argument of H0, b℄ 2 A) & (H0 is onjuntive implies ex b, st a = Sfb, g & [the left argument of H0, b℄ 2 A & [the right argument of H0, ℄ 2 A) &(H0 is universal implies ex b, x st x = bound in H0 & a = (Sfbg)rfxg & [the sope of H0,b℄ 2 A).De�nitionlet H.rede�nefun Free H ! set of Variable.Theorem ZF MODEL:1. for H holds (H is equality implies Free H = fV ar1H,V ar2Hg) & (H is membership implies Free H = fV ar1H, V ar2Hg) & (H is negative im-plies Free H = Free the argument of H) & (H is onjuntive implies Free H = Free the leftargument of H[Free the right argument of H) & (H is universal implies Free H = (Free thesope of H)rfbound in Hg).De�nitionlet D be SET DOMAIN.fun VAL D ! DOMAIN means a 2 it i� a is Funtion of VAR, D.De�nitionlet D1 be SET DOMAIN, f be Funtion of VAR, D1.let x.rede�nefun f:x ! Element of D1.reserve E for SET DOMAIN, f, g, h for (Funtion of VAR, E), v1, v2, v3, v4, v5, u1,u2, u3, u4, u5 for (Element of VAL E), S, T for Subset of [[WFF, VAL E℄℄.De�nitionlet H, E.fun St (H, E) ! Any means ex A st (for x, y holds [x`='y, fv1: for f st f =v1 holds f:x = f:yg℄ 2 A & [x`2'y, fv2: for f st f = v2 holds f:x 2 f:yg℄ 2 A) & [H, it℄ 2A & for H0, a st [H0, a℄ 2 A holds (H0 is equality implies a = fv3: for f st f = v3 holdsf:(V ar1H0) = f:(V ar2H0)g) & (H0 is membership implies a = fv4: for f st f = v4 holdsf:(V ar1H0) 2 f:(V ar2H0)g) & (H0 is negative implies ex b st a = (VAL E)rSfbg & [the



186 CHAPTER 33. ZF MODELargument of H0, b℄ 2 A) & (H0 is onjuntive implies ex b,  st a = (Sfbg)\Sfg & [theleft argument of H0, b℄ 2 A & [the right argument of H0, ℄ 2 A) & (H0 is universal impliesex b, x st x = bound in H0 & a = fv5: for X, f st X = b & f = v5 holds f 2 X & for gst for y st g:y 6= f:y holds x = y holds g 2 Xg & [the sope of H0, b℄ 2 A).De�nitionlet H, E.rede�nefun St (H, E) ! Subset of VAL E.Theorem ZF MODEL:2. for x, y, f holds f:x = f:y i� f 2 St (x`='y, E).Theorem ZF MODEL:3. for x, y, f holds f:x 2 f:y i� f 2 St (x`2'y, E).Theorem ZF MODEL:4. for H, f holds not f 2 St (H, E) i� f 2 St (:H, E).Theorem ZF MODEL:5. for H, H0, f holds f 2 St (H, E) & f 2 St (H0, E) i� f 2 St(H^H0, E).Theorem ZF MODEL:6. for x, H, f holds (f 2 St (H, E) & for g st for y st g:y 6= f:yholds x = y holds g 2 St (H, E)) i� f 2 St (8(x, H), E).Theorem ZF MODEL:7. H is equality implies for f holds f:(V ar1H) = f:(V ar2H) i�f 2 St (H, E).Theorem ZF MODEL:8. H is membership implies for f holds f:(V ar1H) 2 f:(V ar2H)i� f 2 St (H, E).Theorem ZF MODEL:9. H is negative implies for f holds not f 2 St (the argumentof H, E) i� f 2 St (H, E).Theorem ZF MODEL:10. H is onjuntive implies for f holds f 2 St (the left argumentof H, E) & f 2 St (the right argument of H, E) i� f 2 St (H, E).Theorem ZF MODEL:11. H is universal implies for f holds (f 2 St (the sope of H,E) & for g st for y st g:y 6= f:y holds bound in H = y holds g 2 St (the sope of H, E))i� f 2 St (H, E).De�nitionlet D be SET DOMAIN.let f be Funtion of VAR, D.let H.pred D, f j= H means f 2 St (H, D).Theorem ZF MODEL:12. for E, f, x, y holds E, f j= x`='y i� f:x = f:y.Theorem ZF MODEL:13. for E, f, x, y holds E, f j= x`2'y i� f:x 2 f:y.Theorem ZF MODEL:14. for E, f, H holds E, f j= H i� not E, f j= :H.Theorem ZF MODEL:15. for E, f, H, H0 holds E, f j= H^H0 i� E, f j= H & E, f j=H0.



187Theorem ZF MODEL:16. for E, f, H, x holds E, f j= 8(x, H) i� for g st for y st g:y6= f:y holds x = y holds E, g j= H.Theorem ZF MODEL:17. for E, f, H, H0 holds E, f j= H_H0 i� E, f j= H or E, f j=H0. Theorem ZF MODEL:18. for E, f, H, H0 holds E, f j= H)H0 i� (E, f j= H impliesE, f j= H0).Theorem ZF MODEL:19. for E, f, H, H0 holds E, f j= H,H0 i� (E, f j= H i� E, f j=H0).Theorem ZF MODEL:20. for E, f, H, x holds E, f j= 9(x, H) i� ex g st (for y st g:y6= f:y holds x = y) & E, g j= H.Theorem ZF MODEL:21. for E, f, x for e being Element of E ex g st g:x = e & forz st z 6= x holds g:z = f:z.Theorem ZF MODEL:22. E, f j= 8(x, y, H) i� for g st for z st g:z 6= f:z holds x = zor y = z holds E, g j= H.Theorem ZF MODEL:23. E, f j= 9(x, y, H) i� ex g st (for z st g:z 6= f:z holds x = zor y = z) & E, g j= H.De�nitionlet E, H.pred E j= H means for f holds E, f j= H.Theorem ZF MODEL:24. E j= H i� for f holds E, f j= H.Theorem ZF MODEL:25. E j= 8(x, H) i� E j= H.De�nitionfun the axiom of extensionality ! ZF-formula means it = 8(�0, �1, 8(�2, �2`2'�0,�2`2'�1))�0`='�1).fun the axiom of pairs ! ZF-formula means it = 8(�0, �1, 9(�2, 8(�3, �3`2'�2,(�3`='�0_�3`='�1)))).fun the axiom of unions ! ZF-formula means it = 8(�0, 9(�1, 8(�2, �2`2'�1,9(�3, �2`2'�3^�3`2'�0)))).fun the axiom of in�nity ! ZF-formula means it = 9(�0, �1, �1`2'�0^8(�2,�2`2'�0)9(�3, �3`2'�0^:�3`='�2^8(�4, �4`2'�2)�4`2'�3)))).fun the axiom of power sets ! ZF-formula means it = 8(�0, 9(�1, 8(�2, �2`2'�1,8(�3, �3`2'�2)�3`2'�0)))).De�nitionlet H be ZF-formula.assume f�0, �1, �2g misses Free H.fun the axiom of substitution for H ! ZF-formula means it = 8(�3, 9(�0, 8(�4,H,�4`='�0))))8(�1, 9(�2, 8(�4, �4`2'�2,9(�3, �3`2'�1^H)))).



188 CHAPTER 33. ZF MODELTheorem ZF MODEL:26. the axiom of extensionality = 8(�0, �1, 8(�2, �2`2'�0,�2`2'�1))�0`='�1).Theorem ZF MODEL:27. the axiom of pairs = 8(�0, �1, 9(�2, 8(�3, �3`2'�2,(�3`='�0_�3`='�1)))).Theorem ZF MODEL:28. the axiom of unions = 8(�0, 9(�1, 8(�2, �2`2'�1,9(�3, �2`2'�3^�3`2'�0)))).Theorem ZF MODEL:29. the axiom of in�nity = 9(�0, �1, �1`2'�0^8(�2, �2`2'�0)9(�3, �3`2'�0^:�3`='�2^8(�4, �4`2'�2)�4`2'�3)))).Theorem ZF MODEL:30. the axiom of power sets = 8(�0, 9(�1, 8(�2, �2`2'�1,8(�3,�3`2'�2)�3`2'�0)))).Theorem ZF MODEL:31. f�0, �1, �2g misses Free H implies the axiom of substitutionfor H = 8(�3, 9(�0, 8(�4, H,�4`='�0))))8(�1, 9(�2, 8(�4, �4`2'�2,9(�3, �3`2'�1^H)))).De�nitionlet E.pred E is a model of ZF means E is 2-transitive & E j= the axiom of pairs & Ej= the axiom of unions & E j= the axiom of in�nity & E j= the axiom of power sets & for Hst f�0, �1, �2g misses Free H holds E j= the axiom of substitution for H.Theorem ZF MODEL:32. E is a model of ZF i� E is 2-transitive & E j= the axiom ofpairs & E j= the axiom of unions & E j= the axiom of in�nity & E j= the axiom of power sets& for H st f�0, �1, �2g misses Free H holds E j= the axiom of substitution for H.



Chapter 34ZF COLLAThe Contration LemmabyGrzegorz Banerek 1Warsaw University (Bia lystok)Summary. The artile inludes the proof of the ontration lemma whih laimsthat every lass in whih the axiom of extensionality is valid is isomorphi with atransitive lass. In this artile the isomorphism (wrt membership relation) of twosets is de�ned. It is based on Construtible sets by A. Mostowski.The symbols used in this artile are introdued in the following voabularies: fin-seq, zf lang, zf sat, zf axiom, ollaps, ordinal, fun rel, fun, boole, fam op,real 1, and nat 1. The terminology and notation used in this artile have been intro-dued in the following artiles: tarski, boole, funt 1, real 1, nat 1, finseq 1,zf lang, funt 2, enumset1, ordinal1, and zf model.reserve X, Y, Z for set, v, w, x, y, z for Any, E for SET DOMAIN, A, B, C forOrdinal, L, L1 for trans�nite sequene, f, f1, f2, g, h for Funtion, d, d1, d2, d0 for Elementof E.De�nitionlet E, A.1Supported by RPBP.III-24.C1. 189



190 CHAPTER 34. ZF COLLAfun M�(E, A) ! set means ex L st it = fd: for d1 st d1 2 d ex B st B 2dom L & d1 2 SfL:Bgg & dom L = A & for B st B 2 A holds L:B = fd1: for d st d 2d1 ex C st C 2 dom (L�B) & d 2 SfL�B:Cgg.De�nitionlet f, X, Y.pred f is 2-isomorphism of X, Y means dom f = X & rng f = Y & f is 1-1 & forx, y st x 2 X & y 2 X holds (ex Z st Z = y & x 2 Z) i� (ex Z st f:y = Z & f:x 2 Z).De�nitionlet X, Y.pred X, Y are 2-isomorphi means ex f st f is 2-isomorphism of X, Y.reserve f, g, h for (Funtion of VAR, E), u, v, w for (Element of E), x, y, z for Variable,a, b,  for Any.Theorem ZF COLLA:1. E j= the axiom of extensionality implies for u, v st for wholds w 2 u i� w 2 v holds u = v.Theorem ZF COLLA:2. E j= the axiom of extensionality implies ex X st X is 2-transitive & E, X are 2-isomorphi.



Appendix ABuilt-in ConeptsThis artile is written in plain Mizar; no additional voabularies or signatures are referened.De�nitionmode Any.De�nitionmode set ! Any.De�nitionlet x, y be Any.pred x = y.De�nitionlet x be Any, X be set.pred x 2 X.De�nitionlet X be set.mode Element of X.De�nitionmode DOMAIN ! set.De�nitionlet X be DOMAIN.rede�nemode Element of X.De�nitionlet X1, X2 be set.fun [[X1, X2℄℄ ! set. 191



192 APPENDIX A. BUILT-IN CONCEPTSlet X3 be set.fun [[X1, X2, X3℄℄ ! set.let X4 be set.fun [[X1, X2, X3, X4℄℄ ! set.De�nitionlet X1, X2 be DOMAIN.rede�nefun [[X1, X2℄℄ ! DOMAIN.let X3 be DOMAIN.fun [[X1, X2, X3℄℄ ! DOMAIN.let X4 be DOMAIN.fun [[X1, X2, X3, X4℄℄ ! DOMAIN.De�nitionlet X1, X2 be DOMAIN.mode TUPLE of X1, X2 ! Element of [[X1, X2℄℄ means not ontradition.let X3 be DOMAIN.mode TUPLE of X1, X2, X3 ! Element of [[X1, X2, X3℄℄ means not ontra-dition.let X4 be DOMAIN.mode TUPLE of X1, X2, X3, X4 ! Element of [[X1, X2, X3, X4℄℄ means notontradition.De�nitionlet X be set.mode Subset of X ! set.fun bool X ! set.De�nitionmode SET DOMAIN ! DOMAIN.De�nitionlet D be DOMAIN.rede�nefun bool D ! SET DOMAIN.De�nitionlet D be SET DOMAIN.rede�nemode Element of D ! set.



193De�nitionlet X be DOMAIN.rede�nemode Subset of X ! Element of bool X means not ontradition.De�nitionlet X be DOMAIN.mode SUBDOMAIN of X ! DOMAIN.De�nitionfun REAL ! DOMAIN.De�nitionfun NAT ! SUBDOMAIN of REAL.De�nitionlet x, y be Element of REAL.fun x+y ! Element of REAL.fun x�y ! Element of REAL.pred x 6 y.De�nitionmode Real ! Element of REAL means not ontradition.De�nitionlet D be DOMAIN, X be SUBDOMAIN of D.rede�nemode Element of X ! Element of D.De�nitionlet X be SUBDOMAIN of REAL.rede�nemode Element of X ! Real.De�nitionmode Nat ! Element of NAT means not ontradition.



Appendix BThe Grammar of Mizar AbstratsAbstrat = "environ" Environment "begin" Text-Proper .Environment = { Diretive } .Diretive ="voabulary" Voabulary-File-Name ";" |"signature" Signature-File-Name ";" .Text-Proper = { Text-Item } .Text-Item =Reservation | Definition-Blok |Struture-Definition |Theorem | Sheme .Theorem = Compat-Statement .Reservation ="reserve" Reservation-Segment{ "," Reservation-Segment } ";" .Reservation-Segment = Reserved-Identifiers-List "for" Type .Reserved-Identifiers-List = Identifier { "," Identifier } .Definition-Blok ="definition" Definitions [ "redefine" Redefinitions ℄"end" ";".Definitions = { Definition-Item } .Redefinitions = { Definition-Item } .Definition-Item =Generalization |Assumption |Mode-Definition |Funtion-Definition |Prediate-Definition . 194



195Mode-Definition ="mode" Mode-Pattern [ Speifiation ℄[ "means" Definiens ℄ ";" .Mode-Pattern = Mode-Symbol [ "of" Loi ℄ .Funtion-Definition ="fun" Funtion-Pattern [ Speifiation ℄[ "means" Definiens ℄ ";" .Funtion-Pattern =[ Funtion-Loi ℄ Funtion-Symbol [ Funtion-Loi ℄ |Left-Funtion-Braket Loi Right-Funtion-Braket |"{" Loi "}" |"[" Loi "℄".Prediate-Definition ="pred" Prediate-Pattern [ "means" Definiens ℄ ";" .Prediate-Pattern =[ Loi ℄ Prediate-Symbol [ Loi ℄ |Lous "=" Lous.Struture-Definition ="strut" Struture-Symbol "(#" Seletor-List "#)" ";".Seletor-List = Seletor-Segment { "," Seletor-Segment }.Seletor-Segment =Seletor-Symbol { "," Seletor-Symbol } Speifiation .Funtion-Loi = Lous |"(" Loi ")".Loi = Lous { "," Lous }.Lous = Variable-Identifier.Speifiation = "->" Type .Definiens = Simple-Definiens | Compound-Definiens .Simple-Definiens = Sentene .Compound-Definiens = Partial-Definiens-List [ "otherwise" Sentene ℄ .Partial-Definiens-List =Partial-Definiens { "," Partial-Definiens } .Partial-Definiens = Sentene "if" Sentene .Sheme ="sheme" Sheme-Identifier "{" Sheme-Parameter-List "}" ":"



196 APPENDIX B. THE GRAMMAR OF MIZAR ABSTRACTSSheme-Conlusion"provided" Sheme-Premise { "and" Sheme-Premise }Justifiation ";" .Sheme-Conlusion = Sentene.Sheme-Premise = Proposition .Sheme-Parameter-List = Sheme-Parameter { "," Sheme-Parameter } .Sheme-Parameter =Loal-Funtion-Pattern Speifiation |Loal-Prediate-Pattern .Loal-Funtion-Pattern =Funtion-Identifier "(" [ Type-List ℄ ")" .Loal-Prediate-Pattern =Prediate-Identifier "[" [ Type-List ℄ "℄" .Generalization = "let" Fixed-Variables .Assumption =Single-Assumption |Colletive-Assumption |Existential-Assumption .Single-Assumption = "assume" Sentene ";" .Colletive-Assumption = "assume" Conditions ";" .Existential-Assumption = "given" Fixed-Variables ";" .Compat-Statement = Sentene ";" .Fixed-Variables = Qualified-Variables [ "suh" Conditions ℄ .Conditions = "that" Sentene { "and" Sentene } .Proposition = [ Label-Identifier ":" ℄ Sentene .Sentene = Formula .Formula =Atomi-Formula |Quantified-Formula |Formula "&" Formula |Formula "or" Formula |Formula "implies" Formula |Formula "iff" Formula |"not" Formula |"ontradition" .Quantified-Formula ="for" Qualified-Variables [ "st" Formula ℄



197( "holds" Formula | Quantified-Formula ) |"ex" Qualified-Variables "st" Formula .Atomi-Formula =[ Term-List ℄ Prediate-Symbol [ Term-List ℄ |Term ( "<>" | "=" ) Term |Prediate-Identifier "[" [ Term-List ℄ "℄" |Term "is" Type .Qualified-Variables =Impliitly-Qualified-Variables |Expliitly-Qualified-Variables |Expliitly-Qualified-Variables ","Impliitly-Qualified-Variables .Expliitly-Qualified-Variables =Qualified-Segment { "," Qualified-Segment } .Qualified-Segment = Variable-List Qualifiation .Impliitly-Qualified-Variables = Variable-List .Variable-List =Variable-Identifier {"," Variable-Identifier } .Qualifiation = ("being" | "be" ) Type .Type = "(" Type ")" |Mode-Symbol [ "of" Term-List ℄ |Struture-Symbol |"set" [ "of" Type ℄ |"[" Type-List "℄" .Type-List = Type { "," Type } .Term = "(" Term ")" |[ Argument-List ℄ Funtion-Symbol [ Argument-List ℄ |Left-Funtion-Braket Term-List Right-Funtion-Braket |Funtion-Identifier "(" [ Term-List ℄ ")" |"the" Seletor-Symbol "of" Term |"the" Seletor-Symbol |Struture-Symbol "," Term-List "." |Variable-Identifier |"[" Term-List "℄" |"{" Term-List "}" |"{" Term ":" Sentene "}" |Numeral |"it" |



198 APPENDIX B. THE GRAMMAR OF MIZAR ABSTRACTSTerm "qua" Type .Term-List = Term { "," Term } .Argument-List = Term | "(" Term-List ")" .Variable-Identifier = Identifier .Funtion-Identifier = Identifier .Prediate-Identifier = Identifier .Sheme-Identifier = Identifier .Label-Identifier = Identifier .Voabulary-File-Name = File-Name .Signature-File-Name = File-Name .Definitions-File-Name = File-Name .Theorems-File-Name = File-Name .Shemes-File-Name = File-Name .File-Name = Identifier .Struture-Symbol = Symbol .Seletor-Symbol = Symbol .Prediate-Symbol = Symbol .Funtion-Symbol = Symbol .Mode-Symbol = Symbol .Left-Funtion-Braket = Symbol .Right-Funtion-Braket = Symbol .



Appendix CVoabulariesddd stands for a harater from extended ASCII with ode ddd > 127 .Voabulary bin opBinOp BinOpUnOp UnOpthe unity wrt the unity wrtis assoiative is assoiativeis ommutative is ommutativeis a unity wrt is a unity wrtis a left unity wrt is a left unity wrtis a right unity wrt is a right unity wrtis an idempotent is an idempotentis distributive wrt is distributive wrtis left distributive wrt is left distributive wrtis right distributive wrt is right distributive wrtVoabulary booleU [\ r= �237 ;239 \246 ��meets meetsmisses misses199



200 APPENDIX C. VOCABULARIESVoabulary booledomBOOLE DOMAIN BOOLE DOMAINVoabulary ollapsM 230 M�is 238 -isomorphism of is 2-isomorphism ofare 238 -isomorphi are 2-isomorphiVoabulary oord`1 1`2 2`3 3`4 4Voabulary equi rel247 �Voabulary fam opmeet Tunion SVoabulary finiteFin Finis finite is �niteFinite Subset Finite SubsetVoabulary finseqFinSequene FinSequeneFinSubsequene FinSubsequeneSeg Seglen len^ _Seq SeqSgm Sgm



201* ?< 237 > "<* h*> iVoabulary fungraph graphid Id. :Funtion Funtionis one-to-one is 1-1Voabulary fun2Funs FunsPermutation PermutationVoabulary fun3pr1 �1pr2 �2delta Æinl inlhi �<: [(:> )℄Voabulary fun reldom domrng rng| �248 �Voabulary hiddenAny AnyElement ElementDOMAIN DOMAINTUPLE TUPLE



202 APPENDIX C. VOCABULARIESSubset SubsetSUBDOMAIN SUBDOMAINReal RealNat Natbool boolREAL REALset setNAT NATSET DOMAIN SET DOMAIN[: [[:℄ ℄℄+ +238 2243 6249 �Voabulary insp 1InStrut InStrutPoints PointsLines LinesPlanes PlanesIn1 In1In2 In2In3 In3on onis ollinear is ollinearis oplanar is oplanarPOINT POINTLINE LINEPLANE PLANEInSpae InSpaeLine LinePlane PlaneVoabulary lattiesLattie LattieD Lattie D LattieM Lattie M Lattie0 Lattie 0 Lattie1 Lattie 1 Lattie



20301 Lattie 01 LattieC Lattie C LattieB Lattie B Lattie243 243 vis omp is a omplement192 217 t218 191 u193 ?194 >LattStr LattStrL arrier L arrierL join L joinL meet L meetVoabulary nat 1179 jmod moddiv �lm lmhf gdVoabulary ordinalsu suzero 0is 238 -transitive is 2-transitiveis 238 -onneted is 2-onnetedis limit ordinal is limit ordinalOrdinal OrdinalT-Sequene trans�nite sequeneVoabulary real 1- �" �1/ =< <Voabulary rel rel



204 APPENDIX C. VOCABULARIESis reflexive in is reexive inis irreflexive in is irreexive inis symmetri in is symmetri inis antisymmetri in is antisymmetri inis asymmetri in is asymmetri inis onneted in is onneted inis strongly onneted in is strongly onneted inis transitive in is transitive inis reflexive is reexiveis irreflexive is irreexiveis symmetri is symmetriis antisymmetri is antisymmetriis asymmetri is asymmetriis onneted is onnetedis strongly onneted is strongly onnetedis transitive is transitiveVoabulary relationRelation Relationempty ;field �elddiagonal 4~ ^Voabulary sfamilySet-Family Set-FamilySubset-Family Subset-Familyis finer than is �ner thanis oarser than is oarser thanUNION dINTERSECTION eDIFFERENCE rrVoabulary sub op234 
` Voabulary top1



205Int Intis domain is domainis losed domain is losed domainis open domain is open domainis dense is denseis nowheredense is nowheredenseis boundary is boundaryVoabulary toponCl ClFr Frskl sklarrier arriertopology topologyTopStrut TopStrutis open is openis losed is losedis open losed is open losedare separated are separatedis ontinuous is ontinuousare joined are joinedis a omponent of is a omponent ofis a over of is a over ofTopSpae TopSpaePoint PointSubSpae SubSpaemap mapVoabulary wellordis well founded in is well founded inis well founded is well foundedwell orders well ordersis well-ordering-relation is well-ordering-relationare isomorphi are isomorphiis isomorphism of is isomorphism of-Seg -Seg| 253 �2anonial isomorphism of anonial isomorphism ofVoabulary zf axiom



206 APPENDIX C. VOCABULARIESthe axiom of extensionality the axiom of extensionalitythe axiom of pairs the axiom of pairsthe axiom of unions the axiom of unionsthe axiom of infinity the axiom of in�nitythe axiom of power sets the axiom of power setsthe axiom of substitution for the axiom of substitution forVoabulary zf langVariable VariableZF-formula ZF-formula'=' `='' 238 ' `2'170 :'&' ^All 8'or' _205 > )< 205 > ,Ex 9WFF WFFVAR VARx. �Subformulae SubformulaeVar1 V ar1Var2 V ar2the argument of the argument ofthe left argument of the left argument ofthe right argument of the right argument ofthe sope of the sope ofbound in bound inthe anteedent of the anteedent ofthe onsequent of the onsequent ofthe left side of the left side ofthe right side of the right side ofis immediate onstituent of is immediate onstituent ofis subformula of is subformula ofis proper subformula of is proper subformula ofis equality is equalityis membership is membershipis atomi is atomiis negative is negative



207is onjuntive is onjuntiveis universal is universalis disjuntive is disjuntiveis onditional is onditionalis bionditional is bionditionalis existential is existentialVoabulary zf satFree FreeVAL VALSt St199 196 j=is a model of ZF is a model of ZF
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