A Collection of T_EXed Mizar Abstracts¹

Piotr Rudnicki²

Andrzej Trybulec³

Dept. of Computing Science The University of Alberta Edmonton, Alberta Canada T6J 2H1 Institute of Mathematics Warsaw University 15-276 Białystok Poland

June 19, 1989

¹This text has been distributed as a Technical Report TR 89-18. An attempt to reconstruct the electronic version of the text in November 2001 from 1989 sources resulted in a slightly different layout of pages.

²Supported in part by NSERC Grant No. OGP 9207.

³Supported in part by grant RPBP.III-24.B1 from The Polish Ministry of National Education and NSERC Grant No. OGP 9207. This work has been done while the author visited The University of Alberta in Spring 1989.

Abstract

We report our work on increasing readability of mathematical texts used as input to theorem verifiers such as Mizar. Even though the source Mizar text is written in extended ASCII (256 characters), it lacks the power of symbolic expression needed for mathematical texts. In our work, the source Mizar texts were automatically translated into T_EX input. The translation was done at a primitive level and was restricted to the lexical structure of the source texts. We briefly describe the technology of T_EX ing and attach T_EX ed abstracts of 31 Mizar articles written by 12 authors. The results of the experiments are encouraging and the work on T_EX ing full Mizar articles will be continued. The main conclusion of our work is that the quality typesetting of Mizar texts requires full syntactic analysis including treatment of some contextual dependeces.

Contents

1	Introduction 1						
	Motivation	1					
	1.2	The PC Mizar system	2				
		1.2.1 A bit of history	2				
		1.2.2 The overall structure	3				
	1.3	The lexical context of an article	4				
		1.3.1 The structure of a Mizar article	5				
		1.3.2 Mizar abstracts	6				
		1.3.3 Mizar library	$\overline{7}$				
	1.4	The technology of T_EXing	$\overline{7}$				
		1.4.1 Preprocessing	$\overline{7}$				
		1.4.2 Lexical analysis	8				
		1.4.3 Syntax changes	8				
		1.4.4 Lexem categories and horizontal spacing	9				
		1.4.5 Mishaps	10				
	1.5	Conclusions	11				
2	TARSKI						
3	AXIOMS						
4	BOOLE						
5	ZFMISC_1						
6	ENUMSET1						
7	SUBSET_1						
8	FUNCT_1						
9	FUNCT_2						

CONTENTS 10 FUNCT_3 11 BINOP_1 **12 RELAT_1** 13 GRFUNC_1 14 RELAT_2 15 RELSET_1 16 WELLORD1

 $\mathbf{56}$

 $\mathbf{64}$

68

 $\mathbf{76}$

81

85

90

17 SETFAM_1 95 18 MCART_1 99 19 REAL_1 106

20 ORDINAL1 111 21 NAT_1 116

22 FINSEQ_1 12023 FINSET_1 126

24 DOMAIN_1 12825 FINSUB_1 13526 INCSP_1 139

27 LATTICES 14628 PRE_TOPC 152

29 TOPS_1 15830 CONNSP_1 16431 SCHEMS_1 16932 ZF_LANG 173

CC	DNTENTS	iii
33	ZF_MODEL	183
34	ZF_COLLA	189
\mathbf{A}	Built-in Concepts	191
в	The Grammar of Mizar Abstracts	194
\mathbf{C}	Vocabularies	199

Chapter 1

Introduction

1.1 Motivation

The idea that an automatic device should check our logical derivations is by no means new. It can be traced back not only to Pascal and Leibnitz, but to Ramon Llull. In recent years, several projects have aimed at providing computer assistance for doing mathematics. Among the better known there are: Nuprl [1], THEAX [7], AUTOMATH [2], EKL [3], QUIP [12]. The specific goals of these projects vary, however, they have one common feature: the human writes mathematical texts and the machine verifies their correctness.

The input to any of such systems is an ASCII (or some other code) file. As such it can be printed or seen at a display monitor. However, the input texts are meant to be readable for the computer (taking into account current input devices) and they are visually far from what one would call a mathematical text (even if their semantic contents fully justifies the name). In consequence, the human readers are reluctant to read the texts, although their authors did not mean only computers as potential readers. We report our work on increasing readability of mathematical texts used as input to theorem verifiers.

The system we have experimented with is Mizar [13]. The Mizar input text is written in extended ASCII. The following is an example of a theorem in such a text:

```
:: FUNCT_1:159
   f is_one-to-one iff for y ex x st f"{y} c= {x}
;
```

Our goal was to make this text better looking by processing it automatically. Here is what we have obtained:

Theorem FUNCT_1:159. f is 1-1 iff for y ex x st $f^{-1}{y} \subseteq {x}$.

The printouts included in this report have been obtained using $T_EX[4]$ and $I\!AT_EX[5]$. However, we wanted that neither the author of the Mizar text nor the reader of the text ever sees the T_EX input. The T_EX input generated automatically in our experiment for the above example is as follows:

```
Theorem FUNCT\_1:159. f
{\sf is 1-1}
{\bf iff}
{\bf for}
y
{\bf ex}
x
{\bf st}
f$^{-1}$\{y\}
$\subseteq$
\{x\}\vspace{1mm}.
```

We have prepared a set of software tools that convert the Mizar source text into the T_EX input. Our experiment was limited in the sense that we generate the T_EX input after doing only the lexical analysis of the Mizar text.

Our original goal was to obtain a readable printout of these Mizar texts that we needed to look through to write our new article (not included in this collection). Working with $T_{\rm E}X$ was such a fun that we have ended up processing all Mizar articles available to us. We hope that the contents of this report will be useful as a reference for other Mizar users.

1.2 The PC Mizar system

1.2.1 A bit of history

The project Mizar started in 1975 in Poland under the leadership of Andrzej Trybulec. Its original goal was to design and implement a software environment to assist the process of preparing mathematical papers.

After several years of experiments, a language called Mizar 2 had been designed (by A. Trybulec) and implemented on ICL 1900 (by Cz. Byliński, H. Oryszczyszyn, P. Rudnicki, and A. Trybulec, 1981). The system was later ported to other computers (mainframe IBM and also to UNIX). It has included the following features: structured types, type hierarchy, comprehensive definitional facilities, built-in fragments of arithmetics, and built-in variant of set theory. Among other works with Mizar 2, there was an attempt to prove properties of programs in it [11].

The Mizar team effort in the following years resulted in developing other Mizar languages and their implementations but their character was experimental (Mizar 3, Mizar HPF); the systems were not distributed outside the Mizar group in Białystok. There was one exception. A subset of Mizar, named Mizar MSE, was implemented (by R. Matuszewski, P. Rudnicki, and A. Trybulec) in 1982 and has been widely used since then. The system is meant for teaching elementary logic with stress on the practical aspects of constructing proofs. The Mizar MSE language encompasses many sorted predicate calculus with equality. However, the language does not support functional notation. There are numerous implementations of Mizar MSE, see [15, 14, 6, 10, 9, 8]

In 1986 Mizar 4 was implemented as a redesign of Mizar 2 and distributed to several dozen users. Each Mizar 4 article included the preliminaries part where the author could state some axioms that were not checked for validity. In 1988 the design process of the language was completed (by A. Trybulec) and this language is named simply Mizar. While articles in Mizar 4 must be self-contained, Mizar allows for cross-references among articles. Moreover, an author of a Mizar text is not allowed to introduce new axioms. Only the predefined axioms can be used, everything else must be proved.

Recently, the main effort in the Mizar project has been in building the library of Mizar articles.

1.2.2 The overall structure

In this subsection we give a brief overview of PC Mizar, further subsections elaborate on some aspects that are relevant to this report. PC Mizar is a Mizar processor implemented on IBM PCs under DOS (by Cz. Byliński, A. Trybulec, and S. Żukowski from Warsaw University in Białystok).

The central concept of Mizar is a *Mizar article*. Such an article can be viewed as an extremely detailed mathematical text written in a fixed formal notation. The source text of a Mizar article is prepared as a text file (its name has obligatory extension .miz). There are rather few interesting things that one can prove in a short Mizar article without making references to other articles. Usually, we base our work on the achievements of others.

The power of the Mizar system is in automatic processing of cross-references among articles. This is done by maintaining a Mizar library. The library consists of files that are automatically created from source Mizar articles and it also includes vocabulary files. The vocabulary files (extensions .voc and .pri) exist separately from library articles. They contain declarations of symbols that can be included into the lexical environment of an article.

The Mizar processor is a program that verifies the correctness of Mizar articles. To verify an article, the program must run in the appropriate software environment. Namely, it must have access to all the vocabulary and library files referenced from the given article. PC Mizar assumes certain organization of directories in which the vocabulary and library files are kept (we will not discuss it here).

Five library files are created in the process of including an article into the Mizar library. These are:

- format file (extension .nfr) that, for each constructor (e.g. function) introduced in the article, gives certain information that is used during parsing.
- signature file (extension .sgn) that, for each constructor, specifies types of its arguments and some additional information, e.g. the type of the result of a function.

- *definitions file* (extension .def) for each definition from the article, the definiens is stored in this file, the definiendum is stored in the signature file.
- theorems file (extension .the) stores the theorems proved in the article (without proofs).
- schemes file (extension .sch) stores the schemes proved in the article (without proofs).

The environment part of each article (between environ and begin) must declare all other PC Mizar units that are referenced from the article.

1.3 The lexical context of an article

The set of symbols that can be used in a Mizar article is not fixed externally. The author of an article indicates which tokens are taken into account while tokenizing the article. By a *lexicon* of an article we mean the set of such tokens. The lexicon of an article consists of the *basic lexicon* and some *additional lexicons*. Additional lexicons are not associated with any single Mizar article, they can be shared by many articles.

The basic lexicon includes the following tokens:

• Reserved words:

and	as	assume	be
begin	being	by	case
cases	coherence	compatibility	consider
consistency	contradiction	correctness	definition
definitions	end	environ	ex
existence	for	from	func
given	hence	holds	if
iff	implies	is	it
let	means	mode	not
now	of	or	otherwise
per	pred	proof	provided
qua	reconsider	redefine	reserve
scheme	schemes	signature	set
st	struct	such	take
that	the	then	theorem
theorems	thesis	thus	uniqueness
vocabulary			

• Special symbols:

] , ; () Γ { } (# #) = \$1 \$2 \$3 \$4 & -> <> \$5 \$6 \$7 \$8

For (# and #) there are synonymous characters with decimal codes 174 and 175 whose usual graphical representation resembles \ll and \gg , respectively.

- Numerals are strings of decimal digits.
- *Identifiers* are strings of letters, digits, underscore (_), and apostrophe (') that are not reserved words, symbols, numerals.

The additional lexicons are defined in the *vocabulary* files. An additional lexicon is a set of symbols which are strings of arbitrary characters excluding control characters, space, and double colon. Each line of such a file introduces a symbol. Symbol are grouped into the following classes: mode symbol, function symbol, left or right function bracket, structure symbol, selector symbol, and predicate symbol.

If an additional lexicon defines a symbol represented by a string of characters that otherwise forms an identifier, the symbol overrides the identifier.

The symbols introduced in vocabulary HIDDEN are put into the lexicon of every Mizar article. Symbols from other vocabularies are put into the lexicon of an article with the help of the vocabulary directive.

1.3.1 The structure of a Mizar article

Each Mizar article is written as a text file. The general structure of such an article is as follows:

environ

Environment

begin

Text-Proper

The *Text-Proper* contains new facts with their proofs and definitions of new concepts. The *Environment* declares the items in the Mizar library that can be referenced from the *Text-Proper*. This part consist of a sequence of directives. There is one format of vocabulary directives:

vocabulary Vocabulary-File-Name;

This directive adds the symbols introduced in the *Vocabulary-File-Name* to the article's lexicon. We say that this directive declares the vocabulary in the article.

There are four kinds of library directives

signature Signature-File-Name;

definitions Definitions-File-Name; theorems Theorems-File-Name; schemes Schemes-File-Name;

The directive **signature** informs the Mizar processor that the article is permitted to use the notation introduced in article *Signature-File-Name*.miz. The directive is needed to parse the *Text-Proper*. The remaining three directives allow us to use definitions, theorems, and schemes (e.g. induction scheme) that are defined or proved in another article.

The Text-Proper is a sequence of Text-Items, and there are the following kinds of them:

- *Reservation* is used to reserve identifiers for a type. If a variable has an identifier reserved for a type, and no explicit type is stated for the variable, then the variable type defaults to the type for which its identifier was reserved.
- Definition-Block is used to define (or redefine) constructors. There are three sorts of constructors: term constructors (functions), formula constructors (predicates), and type constructors (modes).
- *Structure-Definition* introduces new structures. A structure is an entity that consists of a number of fields that are accessed by selectors.
- *Theorem* announces a proposition that can be referenced from other articles.
- Scheme also announces a proposition, visible from outside. It contrast to theorem, scheme is expressed in terms of second-order variables.
- Auxiliary-Item introduces objects that are local to the article in which they occur and are not exported to the library files (e.g. lemmas, definitions of local predicates).

The goal of writing an article is to prove some theorems and/or define some new concepts such that the concepts can be referenced by other authors. Before the theorems and definitions are included into the library they must be proved valid and correct. The Mizar article contains proofs of the theorems and justifications of the correctness of the definitions.

1.3.2 Mizar abstracts

Mizar input texts tend to be lengthy as they contain complete proofs in a rather demanding formalism. New articles strongly depend on already existing ones. Therefore, there was a need to provide the authors with a quick reference to the already collected articles. The solution consisted in automatically creating an *abstract* for each Mizar article. An abstract of an article includes all the items that can be referenced from other articles. Therefore, there is no need to examine the entire article to make a reference to a single theorem. Grammar of PC Mizar abstracts is given in appendix B. The environment of an abstract contains only the directives for accessing vocabularies and signatures. Figure 1.1 presents an example of such an environment.

environ

```
vocabulary Boole;
vocabulary Fam_op;
vocabulary Sub_op;
vocabulary Sfamily;
signature Tarski;
signature Boole;
signature Enumset1;
signature Subset_1;
```

begin

Figure 1.1: Sample environment.

1.3.3 Mizar library

The Mizar group at the Warsaw University (Institute of Mathematics in Białystok) started collecting Mizar articles and organizing them into a library that is distributed to other Mizar users. This report contains the abstracts of the articles in the library as of May 10, 1989. The articles were authored by 12 people.

The person responsible for the library (E. Woronowicz) requires that authors of contributed articles supply an additional file that describes the bibliographic data of the article, a file with extension .bib. These files have been processed by us to obtain the title, authors' names, and the summary. They are printed at the beginning of each abstract.

1.4 The technology of T_EXing

In our experiment, we have tried to produce a quality output on a laser printer doing only lexical analysis of the source of Mizar abstracts.

1.4.1 Preprocessing

The T_EXing of Mizar abstracts was done under UNIX BSD 4.3. The Mizar source files, in extended ASCII IBM Set II, were transferred from IBM PC to UNIX (using kermit).

The version of lex that we used recognized only first 128 characters of the code. Therefore, we had to do something with the remaining 128 characters. In Mizar PC all these characters can be used in user-defined vocabularies. Every character with code greater than 127 was translated into its 3 digit decimal representation prepended with a backslash.

1.4.2 Lexical analysis

We used lex for analysis of Mizar abstracts and the generation of T_EX input. Our first attempt to write one lex program that would handle all the symbols from vocabularies failed. We have exceeded the capacity of an internal parameter of lex that cannot be controlled from outside (number of positions in a state). An attempt to have just a small number of lex programs that could process all the abstracts failed because of the prohibitively high running time of lex (more than 15 minutes which was too much for us). But this solution had to be abandoned for another and much more serious reason. Namely, if a vocabulary is declared in an article then no symbol from the vocabulary can be used as an identifier, even if it has the syntax of an identifier. E.g. if vocabulary Boole is declared in an article then capital U cannot be used as an identifier in the article. (The symbol was meant to denote set union.) However, in articles that do not use the vocabulary, U is a legal identifier. Therefore, depending on the vocabularies declared in an article U is printed either as \cup or as U.

Because of all that, we needed a separate lex program for each of the articles. Therefore, we prepared a separate set of lex rules for each vocabulary, each kept in a separate file and prepared by hand. The lex program for an article is obtained by the catenation of a common beginning part, the files containing rules for vocabularies used in the article, and a common ending part containing rules for Mizar defined symbols. All Mizar reserved words are printed in **boldface**.

1.4.3 Syntax changes

The environment section of an abstract is automatically converted to a different form. The way how it is done can be easily guessed from the text in figure 1.2 that is the printed version of the environment part listed in figure 1.1:

The symbols used in this article are introduced in the following vocabularies: BOOLE, FAM_OP, SUB_OP, and SFAMILY. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, and SUBSET_1.

Figure 1.2: T_EXed environment.

Some other changes were minor.

• Semicolon was replaced by a period.

1.4. THE TECHNOLOGY OF T_EXING

- Each theorem starts with the word 'Theorem' followed by a pattern of library reference to it.
- The definition starts with the word 'Definition' and the matching **end** is not printed, indentation is used to improve readability.

1.4.4 Lexem categories and horizontal spacing

For the horizontal spacing all tokens have been classified into 8 groups.

- 1. Left delimiters: special symbols ({ [(# and vocabulary symbols classified as Left-Function-Bracket,
- 2. Right delimiters: special symbols) }] #) and vocabulary symbols classified as *Right-Function-Bracket*,
- 3. Punctuation marks: special symbols ; , :.
- 4. Identifiers.
- 5. Identifier-like symbols: Mizar reserved words and vocabulary symbols that are printed as sequences of letters and possibly some other characters (e.g. the function symbol the_left_argument_of).
- 6. Binary operations: function symbols used in infix notation and printed as one symbol.
- 7. Prefix operations: function symbols used in prefix notation and printed as one symbol.
- 8. Postfix operations: function symbols used in postfix notation and printed as one symbol.

For every pair of symbols, we defined the spacing between them depending on their classes. The array in figure 1.3 specifies the spacing rules. The class 0 in the array denotes a special class: beginning of a line, no previous symbol. The meaning of the entries in the array is as follows:

- 0 no spacing, linebreak not allowed,
- 1 a regular space,
- 2 no spacing, linebreak allowed (linebreak[0]).

/* 0 1 2345 6 7 8 */ SPACES [9] $[9] = {$ int /* 0 */ { $0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \},$ /* 1 */ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0/* 2 */ 0, 2, 0, 0, 2, 1, 2, 2, 0{ /* 3 */ { $0, 1, 2, 0, 1, 1, 0, 1, 0 \},$ /* 4 */ $\{0, 0, 0, 0, 1, 1, 0, 0, 0\},\$ /* 5 */ $\{0, 1, 0, 0, 1, 1, 0, 1, 0\},\$ /* 6 */ $0, 2, 0, 0, 0, 0, 0, 2, 0 \},$ { /* 7 */ /* 8 */ $\{0, 0, 0, 0, 0, 1, 2, 0, 0\}$ };

Figure 1.3: Spacing rules.

1.4.5 Mishaps

In our experiment the analysis of Mizar source texts was limited to lexical analysis only. Mizar vocabularies classify all symbols introduced in them into classes specified in section 1.3. This classification alone is not sufficient to solve some problems, e.g. is a given symbol a symbol of a prefix or an infix operation? Moreover, the same function symbol can be used in the same article as a postfix, prefix, or infix operation. However, without doing syntactic analysis we have no way of guessing which of the three is used in a specific case. Fortunately, the authors of the papers in question did not use this possibility, with some exceptions. E.g. in chapter 10 the author uses the symbol ", which is T_EXed as superscript $^{-1}$, as a function symbol for three different functions as follows.

- (infix notation) inverse image of a set under a mapping, e.g. $f^{-1}X$,
- (postfix notation) inverse of a bijective mapping: e.g. f^{-1} ,
- (prefix notation) the function induced by a function f on the power set of its range that assigns to a set its inverse image under f: $^{-1}$ f.

Originally, the symbol " has been introduced in vocabulary REAL_1 while preparing article REAL_1 and was used as a postfix function to denote the inverse of a real number.

Despite that we used the set of amssymbols in LAT_EX, the symbol for symmetric difference (-) had to be typeset by hand.

There is also one thing to mention about Polish characters available in T_EX . Namely, there is Polish 4 as a separate object; some Polish letters can be obtained using accents. However, some Polish letters cannot be constructed using the available features, e.g. e which was obtained by hand and only poorly resembles the actual character (we did not have time to design a new font).

1.5 Conclusions

We feel that our limited experiment was encouraging. The T_EXed texts are much easier to read than the Mizar sources and at the same time visually close enough to the sources. We did not expect that doing only lexical analysis we can obtain the text that looks so well. We also feel that obtaining a better output would require a considerably bigger effort.

The following remarks will be considered in the future work on typesetting of Mizar articles and their abstracts:

- The quality typesetting of Mizar texts requires full syntactic analysis. Moreover, we feel that pure context-free parsing is insufficient, and contextual dependencies must be taken into account. Only in this case we will be able to benefit from the power of the T_FX math-mode.
- The authors of Mizar vocabularies should prepare the $T_{\rm E} X$ version of symbols they introduce.
- It seems useful to prepare a set of TEX macros that are specialized for Mizar texts.
- In the future, pre-editing and post-editing during the typesetting seems the only way to solve certain problems.

Acknowledgements

Our thanks are to Włodek Dobosiewicz and Paweł Gburzyński for many helpful comments while writing this report.

Chapter 2

TARSKI

Tarski Grothendieck Set Theory

by

Andrzej Trybulec¹

Warsaw University (Białystok)

Summary. This is the first part of the axiomatics of the Mizar system. It includes the axioms of the Tarski-Grothendieck set theory. They are: the axiom stating that everything is a set, the extensionality axiom, the definitional axiom of the singleton, the definitional axiom of the pair, the definitional axiom of the union of a family of sets, the definitional axiom of the boolean (the power set) of a set, the regularity axiom, the definitional axiom of the ordered pair, the Tarski's axiom A (the existence of arbitrary large strongly inaccessible cardinals). Also, the definition of equinumerosity is introduced.

The symbols used in this article are introduced in the following vocabularies: EQUI_REL, BOOLE, and FAM_OP.

 $\textbf{reserve} \ x, \ y, \ z, \ u \ \textbf{for} \ \mathsf{Any}, \ N, \ M, \ X, \ Y, \ Z \ \textbf{for} \ \textbf{set}.$

Theorem TARSKI:1. $\mathbf x$ is set.

Theorem TARSKI:2. (for x holds $x \in X$ iff $x \in Y$) implies X = Y.

Definition

let y.

func $\{y\} \rightarrow set means x \in it iff x = y.$

¹Supported by RPBP.III-24.B1.

let z.

```
func \{y, z\} \rightarrow set means x \in it iff x = y or x = z.
   Theorem TARSKI:3. X = \{y\} iff for x holds x \in X iff x = y.
   Theorem TARSKI:4. X = \{y, z\} iff for x holds x \in X iff x = y or x = z.
Definition
   let X, Y.
          pred X \subseteq Y means x \in X implies x \in Y.
Definition
   let X.
          func \bigcup X \rightarrow set means x \in it iff ex Y st x \in Y \& Y \in X.
   Theorem TARSKI:5. X = \bigcup Y iff for x holds x \in X iff ex Z st x \in Z \& Z \in Y.
   Theorem TARSKI:6. X = bool Y iff for Z holds Z \in X iff Z \subseteq Y.
   Theorem TARSKI:7. x \in X implies ex Y st Y \in X & not ex x st x \in X & x \in Y.
   scheme Fraenkel{A() \rightarrow set, P[Any, Any]}: ex X st for x holds x \in X iff ex y st y
\in A() & P[y, x] provided for x, y, z st P[x, y] & P[x, z] holds y = z.
Definition
   let x, y.
          func [x, y] means it = {{x, y}, {x}}.
   Theorem TARSKI:8. [x, y] = \{\{x, y\}, \{x\}\}.
```

Definition

let X, Y.

 $\begin{array}{l} \mathbf{pred}\;X\approx Y\;\mathbf{means\;ex}\;Z\;\mathbf{st}\;(\mathbf{for}\;x\;\mathbf{st}\;x\in X\;\mathbf{ex}\;y\;\mathbf{st}\;y\in Y\;\&\;[x,\;y]\in Z)\;\&\;(\mathbf{for}\;y\;\mathbf{st}\;y\in Y\;\mathbf{ex}\;x\;\mathbf{st}\;x\in X\;\&\;[x,\;y]\in Z)\;\&\;(\mathbf{for}\;x,\;y,\;z,\;u\;\mathbf{st}\;[x,\;y]\in Z\;\&\;[z,\;u]\in Z\;\mathbf{holds}\;x\\ =z\;\mathbf{iff}\;y=u. \end{array}$

Theorem TARSKI:9. ex M st $N \in M$ & (for X, Y holds $X \in M$ & $Y \subseteq X$ implies $Y \in M$) & (for X holds $X \in M$ implies bool $X \in M$) & (for X holds $X \subseteq M$ implies $X \approx M$ or $X \in M$).

Chapter 3

AXIOMS

Axioms about Built-in Concepts

by

Andrzej Trybulec¹

Warsaw University (Białystok)

Summary. This abstract contains the second part of the axiomatics of the Mizar system (the first part is in abstract TARSKI). The axioms listed here characterize the Mizar built-in concepts that are introduced in abstract HIDDEN which is automatically attached to every Mizar article. We give definitional axioms of the following concepts: element, subset, Cartesian product, domain (non empty subset), subdomain (non empty subset of a domain), set domain (domain consisting of sets). Axioms of strong arithmetics of real numbers are also included.

The symbols used in this article are introduced in vocabulary BOOLE. The terminology and notation used here have been introduced in article TARSKI.

reserve x, y, z for Any, X, X1, X2, X3, X4, Y for set. Theorem AXIOMS:1. (ex x st $x \in X$) implies (x is Element of X iff $x \in X$). Theorem AXIOMS:2. X is Subset of Y iff $X \subseteq Y$. Theorem AXIOMS:3. $z \in [X, Y]$ iff ex x, y st $x \in X \& y \in Y \& z = [x, y]$. Theorem AXIOMS:4. X is DOMAIN iff ex x st $x \in X$. Theorem AXIOMS:5. [X1, X2, X3] = [[X1, X2], X3].

¹Supported by RPBP.III-24.B1.

Theorem AXIOMS:6. [X1, X2, X3, X4] = [[X1, X2, X3], X4].

reserve D1, D2, D3, D4 for DOMAIN.

Theorem AXIOMS:7. for X being Element of [D1, D2] holds X is TUPLE of D1, D2.

Theorem AXIOMS:8. for X being Element of [D1, D2, D3] holds X is TUPLE of D1, D2, D3.

Theorem AXIOMS:9. for X being Element of [D1, D2, D3, D4] holds X is TUPLE of D1, D2, D3, D4.

reserve D for DOMAIN.

Theorem AXIOMS:10. D1 is SUBDOMAIN of D2 iff $D1 \subseteq D2$.

Theorem AXIOMS:11. D is SET DOMAIN.

reserve x, y, z for Element of REAL.

Theorem AXIOMS:12. x+y = y+x.

Theorem AXIOMS:13. x+(y+z) = (x+y)+z.

Theorem AXIOMS:14. x+0 = x.

Theorem AXIOMS:15. $x \cdot y = y \cdot x$.

Theorem AXIOMS:16. $\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$.

Theorem AXIOMS:17. $x \cdot 1 = x$.

Theorem AXIOMS:18. $x \cdot (y+z) = x \cdot y + x \cdot z$.

Theorem AXIOMS:19. ex y st x+y = 0.

Theorem AXIOMS:20. $x \neq 0$ implies ex y st $x \cdot y = 1$.

Theorem AXIOMS:21. $x \leq y \& y \leq x$ implies x = y.

Theorem AXIOMS:22. $x \leq y \& y \leq z$ implies $x \leq z$.

Theorem AXIOMS:23. $x \leq y$ or $y \leq x$.

Theorem AXIOMS:24. $x \leq y$ implies $x+z \leq y+z$.

Theorem AXIOMS:25. $x \leq y \& 0 \leq z$ implies $x \cdot z \leq y \cdot z$.

Theorem AXIOMS:26. for X, Y being Subset of REAL st (ex x st $x \in X$) & (ex x st $x \in Y$) & for x, y st $x \in X$ & $y \in Y$ holds $x \leq y$ ex z st for x, y st $x \in X$ & $y \in Y$ holds $x \leq z$ & $z \leq y$.

Theorem AXIOMS:27. x is Real.

Theorem AXIOMS:28. $x \in NAT$ implies $x+1 \in NAT$.

Theorem AXIOMS:29. for A being set of Real st $0 \in A$ & for x st $x \in A$ holds $x+1 \in A$ holds NAT $\subseteq A$.

Theorem AXIOMS:30. $x \in NAT$ implies x is Nat.

Chapter 4

BOOLE

Boolean Properties of Sets

by

Zinaida Trybulec¹ Warsaw University (Białystok) Halina Święczkowska² Warsaw University (Białystok)

Summary. The text includes a number of theorems about Boolean operations on sets: union, intersection, difference, symmetric difference; and relations on sets: meets (having non-empty intersection), misses (being disjoint) and \subseteq (inclusion).

The symbols used in this article are introduced in vocabularies FAM_OP and BOOLE. The terminology and notation used here have been introduced in article TARSKI.

reserve x, y, z for Any, X, Y, Z, V for set.

scheme Separation{A() \rightarrow set, P[Any]}: ex X st for x holds $x \in X$ iff $x \in A()$ & P[x].

Definition

func $\emptyset \to \text{set means not ex } x \text{ st } x \in \text{it.}$

let X, Y.

¹Supported by RPBP.III-24.C1.

²Supported by RPBP.III-24.C1.

```
func X \cup Y \rightarrow set means x \in it iff x \in X or x \in Y.
          func X \cap Y \rightarrow set means x \in it iff x \in X \& x \in Y.
          func X \setminus Y \rightarrow set means x \in it iff x \in X \& not x \in Y.
          pred X meets Y means ex x st x \in X \& x \in Y.
          pred X misses Y means for x holds x \in X implies not x \in Y.
Definition
   let X, Y.
          func X - Y \rightarrow \text{set means it} = (X \setminus Y) \cup (Y \setminus X).
   Theorem BOOLE:1. Z = \emptyset iff not ex x st x \in Z.
   Theorem BOOLE:2. Z = X \cup Y iff for x holds x \in Z iff x \in X or x \in Y.
   Theorem BOOLE:3. Z = X \cap Y iff for x holds x \in Z iff x \in X \& x \in Y.
   Theorem BOOLE:4. Z = X \setminus Y iff for x holds x \in Z iff x \in X & not x \in Y.
   Theorem BOOLE:5. X \subseteq Y iff for x holds x \in X implies x \in Y.
   Theorem BOOLE:6. X meets Y iff ex x st x \in X \& x \in Y.
   Theorem BOOLE:7. X misses Y iff for x holds x \in X implies not x \in Y.
Definition
   let X, Y.
   redefine
          pred X = Y means X \subseteq Y \& Y \subseteq X.
   Theorem BOOLE:8. x \in X \cup Y iff x \in X or x \in Y.
   Theorem BOOLE:9. x \in X \cap Y iff x \in X \& x \in Y.
   Theorem BOOLE:10. x \in X \setminus Y iff x \in X \& not x \in Y.
   Theorem BOOLE:11. x \in X \& X \subseteq Y implies x \in Y.
   Theorem BOOLE:12. x \in X \& X misses Y implies not x \in Y.
   Theorem BOOLE:13. x \in X \& x \in Y implies X meets Y.
   Theorem BOOLE:14. x \in X implies X \neq \emptyset.
   Theorem BOOLE:15. X meets Y implies ex x st x \in X \& x \in Y.
   Theorem BOOLE:16. (for x st x \in X holds x \in Y) implies X \subseteq Y.
   Theorem BOOLE:17. (for x st x \in X holds not x \in Y) implies X misses Y.
   Theorem BOOLE:18. (for x holds x \in X iff x \in Y or x \in Z) implies X = Y \cup Z.
   Theorem BOOLE:19. (for x holds x \in X iff x \in Y & x \in Z) implies X = Y \cap Z.
   Theorem BOOLE:20. (for x holds x \in X iff x \in Y & not x \in Z) implies X = Y \setminus Z.
   Theorem BOOLE:21. not (ex x st x \in X) implies X = \emptyset.
   Theorem BOOLE:22. (for x holds x \in X iff x \in Y) implies X = Y.
   Theorem BOOLE:23. x \in X - Y iff not (x \in X \text{ iff } x \in Y).
```

Theorem BOOLE:24. $x \in X \& x \in Y$ implies $X \cap Y \neq \emptyset$. Theorem BOOLE:25. (for x holds not $x \in X$ iff $(x \in Y \text{ iff } x \in Z)$) implies X =Y∸Z. Theorem BOOLE:26. $X \subset X$. Theorem BOOLE:27. $\emptyset \subset X$. Theorem BOOLE:28. $X \subseteq Y \& Y \subseteq X$ implies X = Y. Theorem BOOLE:29. $X \subseteq Y \& Y \subseteq Z$ implies $X \subseteq Z$. Theorem BOOLE:30. $X \subseteq \emptyset$ implies $X = \emptyset$. Theorem BOOLE:31. $X \subset X \cup Y \& Y \subset X \cup Y$. Theorem BOOLE:32. $X \subseteq Z \& Y \subseteq Z$ implies $X \cup Y \subseteq Z$. Theorem BOOLE:33. $X \subseteq Y$ implies $X \cup Z \subseteq Y \cup Z \& Z \cup X \subseteq Z \cup Y$. Theorem BOOLE:34. $X \subseteq Y \& Z \subseteq V$ implies $X \cup Z \subseteq Y \cup V$. Theorem BOOLE:35. $X \subseteq Y$ implies $X \cup Y = Y \& Y \cup X = Y$. Theorem BOOLE:36. $X \cup Y = Y$ or $Y \cup X = Y$ implies $X \subseteq Y$. Theorem BOOLE:37. $X \cap Y \subseteq X \& X \cap Y \subseteq Y$. Theorem BOOLE:38. $X \cap Y \subset X \cup Z$. Theorem BOOLE:39. $Z \subseteq X \& Z \subseteq Y$ implies $Z \subseteq X \cap Y$. Theorem BOOLE:40. $X \subseteq Y$ implies $X \cap Z \subseteq Y \cap Z \& Z \cap X \subseteq Z \cap Y$. Theorem BOOLE:41. $X \subseteq Y \& Z \subseteq V$ implies $X \cap Z \subseteq Y \cap V$. Theorem BOOLE:42. $X \subseteq Y$ implies $X \cap Y = X \& Y \cap X = X$. Theorem BOOLE:43. $X \cap Y = X$ or $Y \cap X = X$ implies $X \subset Y$. Theorem BOOLE:44. $X \subset Z$ implies $X \cup Y \cap Z = (X \cup Y) \cap Z$. Theorem BOOLE:45. $X \setminus Y = \emptyset$ iff $X \subset Y$. Theorem BOOLE:46. $X \subset Y$ implies $X \setminus Z \subset Y \setminus Z$. Theorem BOOLE:47. $X \subseteq Y$ implies $Z \setminus Y \subseteq Z \setminus X$. Theorem BOOLE:48. $X \subseteq Y \& Z \subseteq V$ implies $X \setminus V \subseteq Y \setminus Z$. Theorem BOOLE:49. $X \setminus Y \subset X$. Theorem BOOLE:50. $X \subseteq Y \setminus X$ implies $X = \emptyset$. Theorem BOOLE:51. $X \subseteq Y \& X \subseteq Z \& Y \cap Z = \emptyset$ implies $X = \emptyset$. Theorem BOOLE:52. $X \subseteq Y \cup Z$ implies $X \setminus Y \subseteq Z \& X \setminus Z \subseteq Y$. Theorem BOOLE:53. $(X \cap Y) \cup (X \cap Z) = X$ implies $X \subset Y \cup Z$. Theorem BOOLE:54. $X \subseteq Y$ implies $Y = X \cup (Y \setminus X) \& Y = (Y \setminus X) \cup X$. Theorem BOOLE:55. $X \subseteq Y \& Y \cap Z = \emptyset$ implies $X \cap Z = \emptyset$. Theorem BOOLE:56. $X = Y \cup Z$ iff $Y \subset X \& Z \subset X \&$ for V st $Y \subset V \& Z \subset V$ holds $X \subset V.$

18

Theorem BOOLE:57. $X = Y \cap Z$ iff $X \subset Y$ & $X \subset Z$ & for V st $V \subset Y$ & $V \subset Z$ holds $V \subseteq X$. Theorem BOOLE:58. $X \setminus Y \subset X - Y$. Theorem BOOLE:59. $X \cup Y = \emptyset$ iff $X = \emptyset \& Y = \emptyset$. Theorem BOOLE:60. $X \cup \emptyset = X \& \emptyset \cup X = X$. Theorem BOOLE:61. $X \cap \emptyset = \emptyset \& \emptyset \cap X = \emptyset$. Theorem BOOLE:62. $X \cup X = X$. Theorem BOOLE:63. $X \cup Y = Y \cup X$. Theorem BOOLE:64. $(X \cup Y) \cup Z = X \cup (Y \cup Z)$. Theorem BOOLE:65. $X \cap X = X$. Theorem BOOLE:66. $X \cap Y = Y \cap X$. Theorem BOOLE:67. $(X \cap Y) \cap Z = X \cap (Y \cap Z)$. Theorem BOOLE:68. $X \cap (X \cup Y) = X \& (X \cup Y) \cap X = X \& X \cap (Y \cup X) = X \& (Y \cup X)$ $\cap \mathbf{X} = \mathbf{X}.$ Theorem BOOLE:69. $X \cup (X \cap Y) = X \& (X \cap Y) \cup X = X \& X \cup (Y \cap X) = X \& (Y \cap X)$ $\cup X = X.$ Theorem BOOLE:70. $X \cap (Y \cup Z) = X \cap Y \cup X \cap Z \& (Y \cup Z) \cap X = Y \cap X \cup Z \cap X$. Theorem BOOLE:71. $X \cup Y \cap Z = (X \cup Y) \cap (X \cup Z)$ & $Y \cap Z \cup X = (Y \cup X) \cap (Z \cup X)$. Theorem BOOLE:72. $(X \cap Y) \cup (Y \cap Z) \cup (Z \cap X) = (X \cup Y) \cap (Y \cup Z) \cap (Z \cup X)$. Theorem BOOLE:73. $X \setminus X = \emptyset$. Theorem BOOLE:74. $X \setminus \emptyset = X$. Theorem BOOLE:75. $\emptyset \setminus X = \emptyset$. Theorem BOOLE:76. $X \setminus (X \cup Y) = \emptyset \& X \setminus (Y \cup X) = \emptyset$. Theorem BOOLE:77. $X \setminus X \cap Y = X \setminus Y \& X \setminus Y \cap X = X \setminus Y$. Theorem BOOLE:78. $(X \setminus Y) \cap Y = \emptyset \& Y \cap (X \setminus Y) = \emptyset$. Theorem BOOLE:79. $X \cup (Y \setminus X) = X \cup Y \& (Y \setminus X) \cup X = Y \cup X$. Theorem BOOLE:80. $X \cap Y \cup (X \setminus Y) = X \& (X \setminus Y) \cup X \cap Y = X$. Theorem BOOLE:81. $X \setminus (Y \setminus Z) = (X \setminus Y) \cup X \cap Z$. Theorem BOOLE:82. $X \setminus (X \setminus Y) = X \cap Y$. Theorem BOOLE:83. $(X \cup Y) \setminus Y = X \setminus Y$. Theorem BOOLE:84. $X \cap Y = \emptyset$ iff $X \setminus Y = X$. Theorem BOOLE:85. $X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z)$. Theorem BOOLE:86. $X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z)$. Theorem BOOLE:87. $(X \cup Y) \setminus (X \cap Y) = (X \setminus Y) \cup (Y \setminus X)$. Theorem BOOLE:88. $(X \setminus Y) \setminus Z = X \setminus (Y \cup Z)$.

Theorem BOOLE:89. $(X \cup Y) \setminus Z = (X \setminus Z) \cup (Y \setminus Z)$. Theorem BOOLE:90. $X \setminus Y = Y \setminus X$ implies X = Y. Theorem BOOLE:91. $X - Y = (X \setminus Y) \cup (Y \setminus X)$. Theorem BOOLE:92. $X \div \emptyset = X \& \emptyset \div X = X$. Theorem BOOLE:93. $X - X = \emptyset$. Theorem BOOLE:94. X - Y = Y - X. Theorem BOOLE:95. $X \cup Y = (X - Y) \cup X \cap Y$. Theorem BOOLE:96. $X - Y = (X \cup Y) \setminus X \cap Y$. Theorem BOOLE:97. $(X - Y) \setminus Z = (X \setminus (Y \cup Z)) \cup (Y \setminus (X \cup Z)).$ Theorem BOOLE:98. $X \setminus (Y - Z) = X \setminus (Y \cup Z) \cup X \cap Y \cap Z$. Theorem BOOLE:99. (X - Y) - Z = X - (Y - Z). Theorem BOOLE:100. X meets $Y \cup Z$ iff X meets Y or X meets Z. Theorem BOOLE:101. X meets Y & Y \subseteq Z implies X meets Z. Theorem BOOLE:102. X meets $Y \cap Z$ implies X meets Y & X meets Z. Theorem BOOLE:103. X meets Y implies Y meets X. Theorem BOOLE:104. **not** (X meets \emptyset **or** \emptyset meets X). Theorem BOOLE:105. X misses Y iff not X meets Y. Theorem BOOLE:106. X misses $Y \cup Z$ iff X misses Y & X misses Z. Theorem BOOLE:107. X misses Z & $Y \subseteq Z$ implies X misses Y. Theorem BOOLE:108. X misses Y or X misses Z implies X misses $Y \cap Z$. Theorem BOOLE:109. X misses $\emptyset \& \emptyset$ misses X. Theorem BOOLE:110. X meets X iff $X \neq \emptyset$. Theorem BOOLE:111. $X \cap Y$ misses $X \setminus Y$. Theorem BOOLE:112. $X \cap Y$ misses X - Y. Theorem BOOLE:113. X meets $Y \setminus Z$ implies X meets Y. Theorem BOOLE:114. $X \subseteq Y \& X \subseteq Z \& Y$ misses Z implies $X = \emptyset$. Theorem BOOLE:115. $X \setminus Y \subset Z \& Y \setminus X \subset Z$ implies $X - Y \subset Z$. Theorem BOOLE:116. $X \cap (Y \setminus Z) = (X \cap Y) \setminus Z$. Theorem BOOLE:117. $X \cap (Y \setminus Z) = X \cap Y \setminus X \cap Z$ & $(Y \setminus Z) \cap X = Y \cap X \setminus Z \cap X$. Theorem BOOLE:118. X misses Y iff $X \cap Y = \emptyset$. Theorem BOOLE:119. X meets Y iff $X \cap Y \neq \emptyset$. Theorem BOOLE:120. $X \subseteq (Y \cup Z) \& X \cap Z = \emptyset$ implies $X \subseteq Y$. Theorem BOOLE:121. $Y \subset X \& X \cap Y = \emptyset$ implies $Y = \emptyset$. Theorem BOOLE:122. X misses Y implies Y misses X.

Chapter 5

\mathbf{ZFMISC}_{-1}

Some Basic Properties of Sets

by

Czesław Byliński¹

Warsaw University (Białystok)

Summary. In this article some basic theorems about singletons, pairs, power sets, unions of families of sets, and the cartesian product of two sets are proved.

The symbols used in this article are introduced in vocabularies BOOLE and FAM_OP. The articles TARSKI and BOOLE provide the terminology and notation for this article.

Theorem ZFMISC_1:1. bool $\emptyset = \{\emptyset\}$. Theorem ZFMISC_1:2. $\bigcup \emptyset = \emptyset$. reserve v, x, x1, x2, y, y1, y2, z for Any. reserve A, B, X, X1, X2, Y, Y1, Y2, Z for set. Theorem ZFMISC_1:3. $\{x\} \neq \emptyset$. Theorem ZFMISC_1:4. $\{x, y\} \neq \emptyset$. Theorem ZFMISC_1:5. $\{x\} = \{x, x\}$. Theorem ZFMISC_1:6. $\{x\} = \{y\}$ implies x = y. Theorem ZFMISC_1:7. $\{x1, x2\} = \{x2, x1\}$. Theorem ZFMISC_1:8. $\{x\} = \{y1, y2\}$ implies x = y1 & x = y2.

¹Supported by RPBP.III-24.C1.

```
Theorem ZFMISC_1:9. \{x\} = \{y1, y2\} implies y1 = y2.
            Theorem ZFMISC_1:10. \{x1, x2\} = \{y1, y2\} implies (x1 = y1 \text{ or } x1 = y2) \& (x2 = y1) \& (x2 = y2) \& (x2 = y2)
y1 or x^2 = y^2).
            Theorem ZFMISC_1:11. \{x1, x2\} = \{x1\} \cup \{x2\}.
            Theorem ZFMISC_1:12. \{x\} \subseteq \{x, y\} \& \{y\} \subseteq \{x, y\}.
            Theorem ZFMISC_1:13. \{x\} \cup \{y\} = \{x\} or \{x\} \cup \{y\} = \{y\} implies x = y.
            Theorem ZFMISC_1:14. \{x\} \cup \{x, y\} = \{x, y\} \& \{x, y\} \cup \{x\} = \{x, y\}.
            Theorem ZFMISC_1:15. \{y\} \cup \{x, y\} = \{x, y\} \& \{x, y\} \cup \{y\} = \{x, y\}.
            Theorem ZFMISC_1:16. \{x\} \cap \{y\} = \emptyset or \{y\} \cap \{x\} = \emptyset implies x \neq y.
            Theorem ZFMISC_1:17. x \neq y implies \{x\} \cap \{y\} = \emptyset \& \{y\} \cap \{x\} = \emptyset.
            Theorem ZFMISC_1:18. \{x\} \cap \{y\} = \{x\} or \{x\} \cap \{y\} = \{y\} implies x = y.
            Theorem ZFMISC_1:19. \{x\} \cap \{x, y\} = \{x\} \& \{y\} \cap \{x, y\} = \{y\} \& \{x, y\} \cap \{x\} = \{x\}
\& \{x, y\} \cap \{y\} = \{y\}.
            Theorem ZFMISC_1:20. \{x\} \setminus \{y\} = \{x\} iff x \neq y.
            Theorem ZFMISC_1:21. \{x\} \setminus \{y\} = \emptyset implies x = y.
            Theorem ZFMISC_1:22. \{x\} \setminus \{x, y\} = \emptyset \& \{y\} \setminus \{x, y\} = \emptyset.
            Theorem ZFMISC_1:23. x \neq y implies \{x, y\} \setminus \{y\} = \{x\} \& \{x, y\} \setminus \{x\} = \{y\}.
            Theorem ZFMISC_1:24. \{x\} \subseteq \{y\} implies \{x\} = \{y\}.
            Theorem ZFMISC_1:25. \{z\} \subseteq \{x, y\} implies z = x or z = y.
            Theorem ZFMISC_1:26. \{x, y\} \subseteq \{z\} implies x = z \& y = z.
            Theorem ZFMISC_1:27. \{x, y\} \subseteq \{z\} implies \{x, y\} = \{z\}.
            Theorem ZFMISC_1:28. \{x1, x2\} \subseteq \{y1, y2\} implies (x1 = y1 \text{ or } x1 = y2) \& (x2 = y1) \& (x2 = y2) \& (x2 = y2)
y1 or x^2 = y^2).
            Theorem ZFMISC_1:29. x \neq y implies \{x\} \doteq \{y\} = \{x, y\}.
            Theorem ZFMISC_1:30. bool \{x\} = \{\emptyset, \{x\}\}.
            Theorem ZFMISC_1:31. \bigcup \{x\} = x.
            Theorem ZFMISC_1:32. \bigcup \{ \{x\}, \{y\} \} = \{x, y\}.
            Theorem ZFMISC_1:33. [x1, x2] = [y1, y2] implies x1 = y1 \& x2 = y2.
            Theorem ZFMISC_1:34. [x, y] \in [[{x1}, {y1}]] iff x = x1 \& y = y1.
            Theorem ZFMISC_1:35. [[\{x\}, \{y\}]] = \{[x, y]\}.
            Theorem ZFMISC_1:36. [[\{x\}, \{y, z\}]] = \{[x, y], [x, z]\} \& [[\{x, y\}, \{z\}]] = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, z], [y, z]\} \& [[x, y], [z]]\} = \{[x, y], [y, z]\} \& [[x, y], [z]]\} = \{[x, y], [y, z]\} \& [[x, y], [z]]\} \& [[x, y], [z]]\} 
z]}.
            Theorem ZFMISC_1:37. \{x\} \subseteq X iff x \in X.
            Theorem ZFMISC_1:38. \{x1, x2\} \subseteq Z iff x1 \in Z \& x2 \in Z.
            Theorem ZFMISC_1:39. Y \subset \{x\} iff Y = \emptyset or Y = \{x\}.
```

22

Theorem ZFMISC_1:40. $Y \subseteq X \& \text{ not } x \in Y \text{ implies } Y \subseteq X \setminus \{x\}.$ Theorem ZFMISC_1:41. $X \neq \{x\}$ & $x \in X$ implies ex y st $y \in X$ & $y \neq x$. Theorem ZFMISC_1:42. $Z \subseteq \{x1, x2\}$ iff $Z = \emptyset$ or $Z = \{x1\}$ or $Z = \{x2\}$ or $Z = \{x1\}$ x2}. Theorem ZFMISC_1:43. $\{z\} = X \cup Y$ implies $X = \{z\} \& Y = \{z\}$ or $X = \emptyset \& Y =$ $\{z\} \text{ or } X = \{z\} \& Y = \emptyset.$ Theorem ZFMISC_1:44. $\{z\} = X \cup Y \& X \neq Y \text{ implies } X = \emptyset \text{ or } Y = \emptyset.$ Theorem ZFMISC_1:45. $\{x\} \cup X = X$ or $X \cup \{x\} = X$ implies $x \in X$. Theorem ZFMISC_1:46. $x \in X$ implies $\{x\} \cup X = X \& X \cup \{x\} = X$. Theorem ZFMISC_1:47. $\{x, y\} \cup Z = Z$ or $Z \cup \{x, y\} = Z$ implies $x \in Z \& y \in Z$. Theorem ZFMISC_1:48. $x \in Z \& y \in Z$ implies $\{x, y\} \cup Z = Z \& Z \cup \{x, y\} = Z$. Theorem ZFMISC_1:49. $\{x\} \cup X \neq \emptyset \& X \cup \{x\} \neq \emptyset$. Theorem ZFMISC_1:50. $\{x, y\} \cup X \neq \emptyset \& X \cup \{x, y\} \neq \emptyset$. Theorem ZFMISC_1:51. $X \cap \{x\} = \{x\}$ or $\{x\} \cap X = \{x\}$ implies $x \in X$. Theorem ZFMISC_1:52. $x \in X$ implies $X \cap \{x\} = \{x\} \& \{x\} \cap X = \{x\}$. Theorem ZFMISC_1:53. $x \in Z \& y \in Z$ implies $\{x, y\} \cap Z = \{x, y\} \& \{x, y\} = Z \cap \{x, y\}$ y}. Theorem ZFMISC_1:54. $\{x\} \cap X = \emptyset$ or $X \cap \{x\} = \emptyset$ implies not $x \in X$. Theorem ZFMISC_1:55. $\{x, y\} \cap Z = \emptyset$ or $Z \cap \{x, y\} = \emptyset$ implies not $x \in Z$ & not y $\in \mathbb{Z}$. Theorem ZFMISC_1:56. not $x \in X$ implies $\{x\} \cap X = \emptyset \& X \cap \{x\} = \emptyset$. Theorem ZFMISC_1:57. not $x \in Z$ & not $y \in Z$ implies $\{x, y\} \cap Z = \emptyset$ & $Z \cap \{x, y\} =$ Ø. Theorem ZFMISC_1:58. $\{x\} \cap X = \emptyset$ or $\{x\} \cap X = \{x\} \& X \cap \{x\} = \{x\}$. Theorem ZFMISC_1:59. $\{x, y\} \cap X = \{x\}$ or $X \cap \{x, y\} = \{x\}$ implies not $y \in X$ or $\mathbf{x} = \mathbf{y}$. Theorem ZFMISC_1:60. $x \in X \& (not \ y \in X \text{ or } x = y) \text{ implies } \{x, y\} \cap X = \{x\} \&$ $X \cap \{x, y\} = \{x\}.$ Theorem ZFMISC_1:61. $\{x, y\} \cap X = \{y\}$ or $X \cap \{x, y\} = \{y\}$ implies not $x \in X$ or $\mathbf{x} = \mathbf{y}$. Theorem ZFMISC_1:62. $y \in X \& (not x \in X or x = y) \text{ implies } \{x, y\} \cap X = \{y\} \&$ $X \cap \{x, y\} = \{y\}.$ Theorem ZFMISC_1:63. $\{x, y\} \cap X = \{x, y\}$ or $X \cap \{x, y\} = \{x, y\}$ implies $x \in X \&$ $y \in X$. Theorem ZFMISC_1:64. $z \in X \setminus \{x\}$ iff $z \in X \& z \neq x$. Theorem ZFMISC_1:65. $X \setminus \{x\} = X$ iff not $x \in X$. Theorem ZFMISC_1:66. $X \setminus \{x\} = \emptyset$ implies $X = \emptyset$ or $X = \{x\}$.

Theorem ZFMISC_1:67. $\{x\} \setminus X = \{x\}$ iff not $x \in X$. Theorem ZFMISC_1:68. $\{x\} \setminus X = \emptyset$ iff $x \in X$. Theorem ZFMISC_1:69. $\{x\} \setminus X = \emptyset$ or $\{x\} \setminus X = \{x\}$. Theorem ZFMISC_1:70. $\{x, y\} \setminus X = \{x\}$ iff not $x \in X$ & $(y \in X \text{ or } x = y)$. Theorem ZFMISC_1:71. $\{x, y\} \setminus X = \{y\}$ iff $(x \in X \text{ or } x = y) \& \text{ not } y \in X$. Theorem ZFMISC_1:72. $\{x, y\} \setminus X = \{x, y\}$ iff not $x \in X$ & not $y \in X$. Theorem ZFMISC_1:73. $\{x, y\} \setminus X = \emptyset$ iff $x \in X \& y \in X$. Theorem ZFMISC_1:74. $\{x, y\} \setminus X = \emptyset$ or $\{x, y\} \setminus X = \{x\}$ or $\{x, y\} \setminus X = \{y\}$ or $\{y\} \setminus X = \{y\}$ or $\{y\}$ or $\{y\} \setminus X = \{y\}$ or $\{y\}$ or or \{y\} or $\{y\}$ or $\{y\}$ $\mathbf{y} \mathbf{x} = \{\mathbf{x}, \mathbf{y}\}.$ Theorem ZFMISC_1:75. $X \setminus \{x, y\} = \emptyset$ iff $X = \emptyset$ or $X = \{x\}$ or $X = \{y\}$ or $X = \{x, y\}$ y}. Theorem ZFMISC_1:76. $\emptyset \in \text{bool } A$. Theorem ZFMISC_1:77. A \in bool A. Theorem ZFMISC_1:78. bool $A \neq \emptyset$. Theorem ZFMISC_1:79. A \subseteq B implies bool A \subseteq bool B. Theorem ZFMISC_1:80. $\{A\} \subset bool A$. Theorem ZFMISC_1:81. bool $A \cup bool B \subset bool (A \cup B)$. Theorem ZFMISC_1:82. bool $A \cup bool B = bool (A \cup B)$ implies $A \subseteq B$ or $B \subseteq A$. Theorem ZFMISC_1:83. bool $(A \cap B) = bool A \cap bool B$. Theorem ZFMISC_1:84. bool $(A \setminus B) \subset \{\emptyset\} \cup (bool A \setminus bool B)$. Theorem ZFMISC_1:85. $X \in bool(A \setminus B)$ iff $X \subseteq A \& X$ misses B. Theorem ZFMISC_1:86. bool $(A \setminus B) \cup bool (B \setminus A) \subseteq bool (A - B)$. Theorem ZFMISC_1:87. $X \in bool (A \rightarrow B)$ iff $X \subseteq A \cup B \& X$ misses $A \cap B$. Theorem ZFMISC_1:88. $X \in bool A \& Y \in bool A implies X \cup Y \in bool A$. Theorem ZFMISC_1:89. $X \in bool A$ or $Y \in bool A$ implies $X \cap Y \in bool A$. Theorem ZFMISC_1:90. $X \in \text{bool } A$ implies $X \setminus Y \in \text{bool } A$. Theorem ZFMISC_1:91. $X \in bool A \& Y \in bool A implies X \to Y \in bool A$. Theorem ZFMISC_1:92. $X \in A$ implies $X \subseteq \bigcup A$. Theorem ZFMISC_1:93. $\bigcup \{X, Y\} = X \cup Y$. Theorem ZFMISC_1:94. (for X st $X \in A$ holds $X \subseteq Z$) implies $\bigcup A \subseteq Z$. Theorem ZFMISC_1:95. A \subseteq B implies $\bigcup A \subseteq \bigcup B$. Theorem ZFMISC_1:96. $\bigcup (A \cup B) = \bigcup A \cup \bigcup B$. Theorem ZFMISC_1:97. $\bigcup (A \cap B) \subseteq \bigcup A \cap \bigcup B$. Theorem ZFMISC_1:98. (for X st X \in A holds X \cap B = \emptyset) implies \bigcup (A) \cap B = \emptyset . Theorem ZFMISC_1:99. []bool A = A.

Theorem ZFMISC_1:100. A \subseteq bool \bigcup A.

Theorem ZFMISC_1:101. (for X, Y st $X \neq Y$ & $X \in A \cup B$ & $Y \in A \cup B$ holds $X \cap Y = \emptyset$) implies $\bigcup (A \cap B) = \bigcup A \cap \bigcup B$.

Theorem ZFMISC_1:102. $z \in [X, Y]$ implies ex x, y st [x, y] = z.

Theorem ZFMISC_1:103. A $\subseteq [X, Y]$ & $z \in A$ implies ex x, y st $x \in X$ & $y \in Y$ & z = [x, y].

Theorem ZFMISC_1:104. $z \in [X1, Y1] \cap [X2, Y2]$ implies ex x, y st $z = [x, y] \& x \in X1 \cap X2 \& y \in Y1 \cap Y2$.

Theorem ZFMISC_1:105. $[X, Y] \subseteq bool bool (X \cup Y)$.

Theorem ZFMISC_1:106. $[x, y] \in [X, Y]$ iff $x \in X \& y \in Y$.

Theorem ZFMISC_1:107. $[x, y] \in [X, Y]$ implies $[y, x] \in [Y, X]$.

Theorem ZFMISC_1:108. (for x, y holds $[x, y] \in [X1, Y1]$ iff $[x, y] \in [X2, Y2]$) implies [X1, Y1] = [X2, Y2].

Theorem ZFMISC_1:109. $A \subseteq [X, Y]$ & (for x, y st $[x, y] \in A$ holds $[x, y] \in B$) implies $A \subseteq B$.

Theorem ZFMISC_1:110. $A \subseteq [X1, Y1]] \& B \subseteq [X2, Y2]] \& (for x, y holds [x, y] \in A iff [x, y] \in B)$ implies A = B.

Theorem ZFMISC_1:111. (for z st $z \in A$ ex x, y st z = [x, y]) & (for x, y st $[x, y] \in A$ holds $[x, y] \in B$) implies $A \subseteq B$.

Theorem ZFMISC_1:112. (for z st $z \in A$ ex x, y st z = [x, y]) & (for z st $z \in B$ ex x, y st z = [x, y]) & (for x, y holds $[x, y] \in A$ iff $[x, y] \in B$) implies A = B.

Theorem ZFMISC_1:113. $\llbracket X, Y \rrbracket = \emptyset$ iff $X = \emptyset$ or $Y = \emptyset$.

Theorem ZFMISC_1:114. $X \neq \emptyset \& Y \neq \emptyset \& [X, Y]] = [Y, X]$ implies X = Y.

Theorem ZFMISC_1:115. [X, X] = [Y, Y] implies X = Y.

Theorem ZFMISC_1:116. $X \subseteq [X, X]$ implies $X = \emptyset$.

Theorem ZFMISC_1:117. $Z \neq \emptyset$ & ($[X, Z] \subseteq [Y, Z]$ or $[Z, X] \subseteq [Z, Y]$) implies $X \subseteq Y$.

Theorem ZFMISC_1:118. $X \subseteq Y$ implies $[X, Z] \subseteq [Y, Z] \& [Z, X] \subseteq [Z, Y]$.

Theorem ZFMISC_1:119. X1 \subseteq Y1 & X2 \subseteq Y2 **implies** $[X1, X2]] \subseteq [Y1, Y2]$.

Theorem ZFMISC_1:120. $[X \cup Y, Z] = [X, Z] \cup [Y, Z] \& [Z, X \cup Y] = [Z, X] \cup [Z, Y].$

Theorem ZFMISC_1:121. $[X1\cup X2, Y1\cup Y2] = [X1, Y1] \cup [X1, Y2] \cup [X2, Y1] \cup [X2, Y2].$

Theorem ZFMISC_1:122. $[X \cap Y, Z] = [X, Z] \cap [Y, Z] \& [Z, X \cap Y] = [Z, X] \cap [Z, Y].$ Theorem ZFMISC_1:123. $[X1 \cap X2, Y1 \cap Y2] = [X1, Y1] \cap [X2, Y2].$

Theorem ZFMISC_1:124. $A \subseteq X \& B \subseteq Y$ implies $[A, Y] \cap [X, B] = [A, B]$.

 $Theorem \ ZFMISC_1:125. \ \llbracket X \smallsetminus Y, \ Z \rrbracket = \llbracket X, \ Z \rrbracket \smallsetminus \llbracket Y, \ Z \rrbracket \& \ \llbracket Z, \ X \smallsetminus Y \rrbracket = \llbracket Z, \ X \rrbracket \smallsetminus \llbracket Z, \ Y \rrbracket.$

Theorem ZFMISC_1:126. $[X1, X2] \setminus [Y1, Y2] = [X1 \setminus Y1, X2] \cup [X1, X2 \setminus Y2].$

Theorem ZFMISC_1:127. $X1 \cap X2 = \emptyset$ or $Y1 \cap Y2 = \emptyset$ implies $[X1, Y1] \cap [X2, Y2] = \emptyset$. Theorem ZFMISC_1:128. $[x, y] \in [[{z}, Y]]$ iff $x = z \& y \in Y$. Theorem ZFMISC_1:129. $[x, y] \in [[X, {z}]]$ iff $x \in X \& y = z$. Theorem ZFMISC_1:130. $X \neq \emptyset$ implies $[[{x}, X]] \neq \emptyset \& [[X, {x}]] \neq \emptyset$. Theorem ZFMISC_1:131. $x \neq y$ implies $[[{x}, X]] \cap [[{y}, Y]] = \emptyset \& [[X, {x}]] \cap [[Y, {y}]]$ $= \emptyset$. Theorem ZFMISC_1:132. $[[{x, y}, X]] = [[{x}, X]] \cup [[{y}, X]] \& [[X, {x, y}]] = [[X, {x}]]$ $\cup [[X, {y}]]$. Theorem ZFMISC_1:133. Z = [[X, Y]] iff for z holds $z \in Z$ iff ex x, y st $x \in X \& y \in Y \& z = [x, y]$. Theorem ZFMISC_1:134. $X1 \neq \emptyset \& Y1 \neq \emptyset \& [[X1, Y1]] = [[X2, Y2]]$ implies X1 =

Theorem ZFMISC_1:134. $X1 \neq \emptyset \& Y1 \neq \emptyset \& [X1, Y1]] = [X2, Y2]$ implies X1 = X2 & Y1 = Y2.

Theorem ZFMISC_1:135. $X \subseteq [X, Y]$ or $X \subseteq [Y, X]$ implies $X = \emptyset$.

Chapter 6

ENUMSET1

Enumerated Sets

by

Andrzej Trybulec¹

Warsaw University (Białystok)

Summary. We prove basic facts about enumerated sets: definitional theorems and their immediate consequences, some theorems related to the decomposition of an enumerated set into union of two sets, facts about removing elements that occur more than once, and facts about permutations of enumerated sets (with the length ≤ 4). The article includes also schemes enabling instantiation of up to nine universal quantifiers.

The symbols used in this article are introduced in vocabularies BOOLE and FAM_OP. The articles TARSKI and BOOLE provide the terminology and notation for this article.

 $\begin{array}{c} \textbf{reserve } x,\,x1,\,x2,\,x3,\,x4,\,x5,\,x6,\,x7,\,x8,\,y,\,y1,\,y2,\,y3,\,y4,\,y5,\,y6,\,y7,\,y8,\,z,\,z1,\,z2,\,z3,\\ z4,\,z5,\,z6,\,z7,\,z8 \,\,\textbf{for}\,\,\text{Any}. \end{array}$

reserve X, X1, X2, Y, Y1, Y2, Z, Z1, Z2 for set.

scheme UI1{x1() \rightarrow Any, P[Any]}: P[x1()] provided A: for x1 holds P[x1].

scheme UI2{x1() \rightarrow Any, x2() \rightarrow Any, P[Any, Any]}: P[x1(), x2()] provided A: for x1, x2 holds P[x1, x2].

scheme UI3{x1() \rightarrow Any, x2() \rightarrow Any, x3() \rightarrow Any, P[Any, Any, Any]}: P[x1(), x2(), x3()] provided A: for x1, x2, x3 holds P[x1, x2, x3].

¹Supported by RPBP.III-24.C1.

scheme UI4{x1() \rightarrow Any, x2() \rightarrow Any, x3() \rightarrow Any, x4() \rightarrow Any, P[Any, Any, Any, Any]: P[x1(), x2(), x3(), x4()] provided A: for x1, x2, x3, x4 holds P[x1, x2, x3, x4].

scheme UI5{x1() \rightarrow Any, x2() \rightarrow Any, x3() \rightarrow Any, x4() \rightarrow Any, x5() \rightarrow Any, P[Any, Any, Any, Any, Any]}: P[x1(), x2(), x3(), x4(), x5()] provided A: for x1, x2, x3, x4, x5 holds P[x1, x2, x3, x4, x5].

scheme UI6{x1() \rightarrow Any, x2() \rightarrow Any, x3() \rightarrow Any, x4() \rightarrow Any, x5() \rightarrow Any, x6() \rightarrow Any, P[Any, Any, Any, Any, Any, Any]}: P[x1(), x2(), x3(), x4(), x5(), x6()] provided A: for x1, x2, x3, x4, x5, x6 holds P[x1, x2, x3, x4, x5, x6].

scheme UI7{x1() \rightarrow Any, x2() \rightarrow Any, x3() \rightarrow Any, x4() \rightarrow Any, x5() \rightarrow Any, x6() \rightarrow Any, x7() \rightarrow Any, P[Any, Any, Any, Any, Any, Any, Any]: P[x1(), x2(), x3(), x4(), x5(), x6(), x7()] provided A: for x1, x2, x3, x4, x5, x6, x7 holds P[x1, x2, x3, x4, x5, x6, x7].

scheme UI8{x1() \rightarrow Any, x2() \rightarrow Any, x3() \rightarrow Any, x4() \rightarrow Any, x5() \rightarrow Any, x6() \rightarrow Any, x7() \rightarrow Any, x8() \rightarrow Any, P[Any, Any, Any, Any, Any, Any, Any]}: P[x1(), x2(), x3(), x4(), x5(), x6(), x7(), x8()] provided A: for x1, x2, x3, x4, x5, x6, x7, x8 holds P[x1, x2, x3, x4, x5, x6, x7, x8].

Theorem ENUMSET1:1. for x1, X holds $X = \{x1\}$ iff for x holds $x \in X$ iff x = x1. Theorem ENUMSET1:2. for x1, x holds $x \in \{x1\}$ iff x = x1.

Theorem ENUMSET1:3. $x \in \{x1\}$ implies x = x1.

Theorem ENUMSET1:4. $x \in \{x\}$.

Theorem ENUMSET1:5. for x1, X st for x holds $x \in X$ iff x = x1 holds $X = \{x1\}$. Theorem ENUMSET1:6. for x1, x2, X holds $X = \{x1, x2\}$ iff for x holds $x \in X$ iff x = x1 or x = x2.

Theorem ENUMSET1:7. for x1, x2 holds for x holds $x \in \{x1, x2\}$ iff x = x1 or x = x2.

Theorem ENUMSET1:8. $x \in \{x1, x2\}$ implies x = x1 or x = x2.

Theorem ENUMSET1:9. x = x1 or x = x2 implies $x \in \{x1, x2\}$.

Theorem ENUMSET1:10. for x1, x2, X st for x holds $x \in X$ iff x = x1 or x = x2 holds $X = \{x1, x2\}$.

Definition

let x1, x2, x3.

func $\{x1, x2, x3\} \rightarrow \text{set means } x \in \text{it iff } x = x1 \text{ or } x = x2 \text{ or } x = x3.$

Theorem ENUMSET1:11. for x1, x2, x3, X holds $X = \{x1, x2, x3\}$ iff for x holds $x \in X$ iff x = x1 or x = x2 or x = x3.

Theorem ENUMSET1:12. for x1, x2, x3 holds for x holds $x \in \{x1, x2, x3\}$ iff x = x1 or x = x2 or x = x3.

Theorem ENUMSET1:13. $x \in \{x1, x2, x3\}$ implies x = x1 or x = x2 or x = x3.

Theorem ENUMSET1:14. x = x1 or x = x2 or x = x3 implies $x \in \{x1, x2, x3\}$.

Theorem ENUMSET1:15. for x1, x2, x3, X st for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 holds $X = \{x1, x2, x3\}$.

Definition

let x1, x2, x3, x4.

func {x1, x2, x3, x4} \rightarrow set means $x \in it iff x = x1$ or x = x2 or x = x3 or x = x4.

Theorem ENUMSET1:16. for x1, x2, x3, x4, X holds $X = \{x1, x2, x3, x4\}$ iff for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4.

Theorem ENUMSET1:17. for x1, x2, x3, x4 holds for x holds $x \in \{x1, x2, x3, x4\}$ iff x = x1 or x = x2 or x = x3 or x = x4.

Theorem ENUMSET1:18. $x \in \{x1, x2, x3, x4\}$ implies x = x1 or x = x2 or x = x3 or x = x4.

Theorem ENUMSET1:19. x = x1 or x = x2 or x = x3 or x = x4 implies $x \in \{x1, x2, x3, x4\}$.

Theorem ENUMSET1:20. for x1, x2, x3, x4, X st for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 holds X = {x1, x2, x3, x4}.

Definition

let x1, x2, x3, x4, x5.

func {x1, x2, x3, x4, x5} \rightarrow set means $x \in$ it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5.

Theorem ENUMSET1:21. for x1, x2, x3, x4, x5 for X being set holds $X = \{x1, x2, x3, x4, x5\}$ iff for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5.

Theorem ENUMSET1:22. $x \in \{x1, x2, x3, x4, x5\}$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5.

Theorem ENUMSET1:23. $x \in \{x1, x2, x3, x4, x5\}$ implies x = x1 or x = x2 or x = x3 or x = x4 or x = x5.

Theorem ENUMSET1:24. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 implies $x \in \{x1, x2, x3, x4, x5\}$.

Theorem ENUMSET1:25. for X being set st for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 holds $X = \{x1, x2, x3, x4, x5\}$.

Definition

let x1, x2, x3, x4, x5, x6.

func {x1, x2, x3, x4, x5, x6} \rightarrow set means $x \in it$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6.

Theorem ENUMSET1:26. for x1, x2, x3, x4, x5, x6 for X being set holds $X = \{x1, x2, x3, x4, x5, x6\}$ iff for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6.

Theorem ENUMSET1:27. $x \in \{x1, x2, x3, x4, x5, x6\}$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6.

Theorem ENUMSET1:28. $x \in \{x1, x2, x3, x4, x5, x6\}$ implies x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6.

Theorem ENUMSET1:29. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 implies $x \in \{x1, x2, x3, x4, x5, x6\}$.

Theorem ENUMSET1:30. for X being set st for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 holds $X = \{x1, x2, x3, x4, x5, x6\}$.

Definition

let x1, x2, x3, x4, x5, x6, x7.

func {x1, x2, x3, x4, x5, x6, x7} \rightarrow set means $x \in$ it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7.

Theorem ENUMSET1:31. for x1, x2, x3, x4, x5, x6, x7 for X being set holds $X = \{x1, x2, x3, x4, x5, x6, x7\}$ iff for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7.

Theorem ENUMSET1:32. $x \in \{x1, x2, x3, x4, x5, x6, x7\}$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7.

Theorem ENUMSET1:33. $x \in \{x1, x2, x3, x4, x5, x6, x7\}$ implies x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7.

Theorem ENUMSET1:34. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 implies $x \in \{x1, x2, x3, x4, x5, x6, x7\}$.

Theorem ENUMSET1:35. for X being set st for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 holds $X = \{x1, x2, x3, x4, x5, x6, x7\}$.

Definition

let x1, x2, x3, x4, x5, x6, x7, x8.

func {x1, x2, x3, x4, x5, x6, x7, x8} \rightarrow set means $x \in$ it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.

Theorem ENUMSET1:36. for x1, x2, x3, x4, x5, x6, x7, x8 for X being set holds $X = \{x1, x2, x3, x4, x5, x6, x7, x8\}$ iff for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.

Theorem ENUMSET1:37. $x \in \{x1, x2, x3, x4, x5, x6, x7, x8\}$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.

Theorem ENUMSET1:38. $x \in \{x1, x2, x3, x4, x5, x6, x7, x8\}$ implies x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.

Theorem ENUMSET1:39. x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 implies $x \in \{x1, x2, x3, x4, x5, x6, x7, x8\}$.

Theorem ENUMSET1:40. for X being set st for x holds $x \in X$ iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 holds $X = \{x1, x2, x3, x4, x5, x6, x7, x8\}$.

Theorem ENUMSET1:41. $\{x1, x2\} = \{x1\} \cup \{x2\}.$ Theorem ENUMSET1:42. $\{x1, x2, x3\} = \{x1\} \cup \{x2, x3\}.$ Theorem ENUMSET1:43. $\{x1, x2, x3\} = \{x1, x2\} \cup \{x3\}.$ Theorem ENUMSET1:44. $\{x1, x2, x3, x4\} = \{x1\} \cup \{x2, x3, x4\}.$ Theorem ENUMSET1:45. $\{x1, x2, x3, x4\} = \{x1, x2\} \cup \{x3, x4\}.$ Theorem ENUMSET1:46. $\{x1, x2, x3, x4\} = \{x1, x2, x3\} \cup \{x4\}.$ Theorem ENUMSET1:47. $\{x1, x2, x3, x4, x5\} = \{x1\} \cup \{x2, x3, x4, x5\}.$ Theorem ENUMSET1:48. $\{x1, x2, x3, x4, x5\} = \{x1, x2\} \cup \{x3, x4, x5\}.$ Theorem ENUMSET1:49. $\{x1, x2, x3, x4, x5\} = \{x1, x2, x3\} \cup \{x4, x5\}.$ Theorem ENUMSET1:50. $\{x1, x2, x3, x4, x5\} = \{x1, x2, x3, x4\} \cup \{x5\}.$ Theorem ENUMSET1:51. $\{x1, x2, x3, x4, x5, x6\} = \{x1\} \cup \{x2, x3, x4, x5, x6\}.$ Theorem ENUMSET1:52. $\{x1, x2, x3, x4, x5, x6\} = \{x1, x2\} \cup \{x3, x4, x5, x6\}.$ Theorem ENUMSET1:53. $\{x1, x2, x3, x4, x5, x6\} = \{x1, x2, x3\} \cup \{x4, x5, x6\}.$ Theorem ENUMSET1:54. $\{x1, x2, x3, x4, x5, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6\}$. Theorem ENUMSET1:55. $\{x1, x2, x3, x4, x5, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6\}$. Theorem ENUMSET1:56. $\{x1, x2, x3, x4, x5, x6, x7\} = \{x1\} \cup \{x2, x3, x4, x5, x6, x7\}$ x7}. Theorem ENUMSET1:57. $\{x1, x2, x3, x4, x5, x6, x7\} = \{x1, x2\} \cup \{x3, x4, x5, x6, x7\}$ x7}. Theorem ENUMSET1:58. {x1, x2, x3, x4, x5, x6, x7} = {x1, x2, x3} \cup {x4, x5, x6, x6} x7}. Theorem ENUMSET1:59. $\{x1, x2, x3, x4, x5, x6, x7\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6, x7\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6, x7\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6, x7\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6, x7\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6, x7\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x6\} = \{x1, x2, x3, x4\} \cup \{x5, x6\} = \{x1, x2, x3\} = \{x1, x2, x3, x4\} \cup \{x5, x6\} = \{x1, x2, x3\} = \{x1, x2, x3\} = \{x1, x2, x3\} \cup \{x1, x2, x3\} = \{x1, x2, x3\} = \{x1, x2, x3\} \cup \{x1, x2, x4\} = \{x1, x2, x3\} \cup \{x1, x2\} = \{x1, x2, x3\} = \{x1, x2, x3\} \cup \{x1, x2\} = \{x1, x2, x3\} = \{x1, x2, x3\} = \{x1, x2\} \cup \{x1, x2\} = \{x1, x2\} = \{x1, x2\} = \{x1, x2\} + \{x1, x2\} = \{x1,$ x7}. Theorem ENUMSET1:60. $\{x1, x2, x3, x4, x5, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6, x7\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x4, x5\} \cup \{x6, x6, x6\} = \{x1, x2, x4, x5\} \cup \{x6, x6\} = \{x1, x2, x4\} \cup \{x6, x6\} = \{x1, x2, x4\} \cup \{x6, x6\} = \{x1, x2, x4\} \cup \{x6, x6\} \cup \{x6, x6\} = \{x1, x2, x4\} \cup \{x6, x6\} \cup \{x6, x6\}$ x7}. Theorem ENUMSET1:61. $\{x1, x2, x3, x4, x5, x6, x7\} = \{x1, x2, x3, x4, x5, x6\} \cup$ {x7}. Theorem ENUMSET1:62. $\{x1, x2, x3, x4, x5, x6, x7, x8\} = \{x1\} \cup \{x2, x3, x4, x5, x6, x6\} = \{x1\} \cup \{x2, x3, x4, x5, x6, x6\} = \{x1\} \cup \{x2, x3, x4, x5, x6, x6\} = \{x1\} \cup \{x2, x3, x4, x5, x6\} = \{x1\} \cup \{x2, x3, x4, x5\} = \{x1\} \cup \{x2, x3, x4, x5\} = \{x1\} \cup \{x4, x5, x6\} = \{x1\} \cup \{x4, x5\} = \{x4, x5\} =$ x7, x8.

Theorem ENUMSET1:63. $\{x1, x2, x3, x4, x5, x6, x7, x8\} = \{x1, x2\} \cup \{x3, x4, x5, x6, x7, x8\}.$

Theorem ENUMSET1:64. $\{x1, x2, x3, x4, x5, x6, x7, x8\} = \{x1, x2, x3\} \cup \{x4, x5, x6, x7\} \cup \{x4, x5, x6\} \cup \{x4, x5, x6, x8\} \cup \{x4, x5, x6\} \cup \{x4, x5\} \cup \{x4, $
x7, x8}.
Theorem ENUMSET1:65. $\{x1, x2, x3, x4, x5, x6, x7, x8\} = \{x1, x2, x3, x4\} \cup \{x5, x6, x7\} \cup \{x5, x6, x8\} \cup \{x5, x8\}$
x7, x8.
Theorem ENUMSET1:66. $\{x1, x2, x3, x4, x5, x6, x7, x8\} = \{x1, x2, x3, x4, x5\} \cup \{x6, x7, x8\}.$
Theorem ENUMSET1:67. $\{x1, x2, x3, x4, x5, x6, x7, x8\} = \{x1, x2, x3, x4, x5, x6\} \cup$
$\{x7, x8\}.$
Theorem ENUMSET1:68. $\{x1, x2, x3, x4, x5, x6, x7, x8\} = \{x1, x2, x3, x4, x5, x6, x7, x8\} = \{x1, x2, x3, x4, x5, x6, x7, x8\}$
$x7$ \cup { $x8$ }.
Theorem ENUMSET1:69. $\{x1, x1\} = \{x1\}.$
Theorem ENUMSET1:70. $\{x1, x1, x2\} = \{x1, x2\}.$
Theorem ENUMSET1:71. $\{x1, x1, x2, x3\} = \{x1, x2, x3\}.$
Theorem ENUMSET1:72. $\{x1, x1, x2, x3, x4\} = \{x1, x2, x3, x4\}.$
Theorem ENUMSET1:73. $\{x1, x1, x2, x3, x4, x5\} = \{x1, x2, x3, x4, x5\}.$
Theorem ENUMSET1:74. $\{x1, x1, x2, x3, x4, x5, x6\} = \{x1, x2, x3, x4, x5, x6\}.$
Theorem ENUMSET1:75. $\{x1, x1, x2, x3, x4, x5, x6, x7\} = \{x1, x2, x3, x4, x5, x6, x6, x7\}$
x7}.
Theorem ENUMSET1:76. $\{x1, x1, x1\} = \{x1\}.$
Theorem ENUMSET1:77. $\{x1, x1, x1, x2\} = \{x1, x2\}.$
Theorem ENUMSET1:78. $\{x1, x1, x1, x2, x3\} = \{x1, x2, x3\}.$
Theorem ENUMSET1:79. $\{x1, x1, x1, x2, x3, x4\} = \{x1, x2, x3, x4\}.$
Theorem ENUMSET1:80. $\{x1, x1, x1, x2, x3, x4, x5\} = \{x1, x2, x3, x4, x5\}.$
Theorem ENUMSET1:81. $\{x1, x1, x1, x2, x3, x4, x5, x6\} = \{x1, x2, x3, x4, x5, x6\}.$
Theorem ENUMSET1:82. $\{x1, x1, x1, x1\} = \{x1\}.$
Theorem ENUMSET1:83. $\{x1, x1, x1, x1, x2\} = \{x1, x2\}.$
Theorem ENUMSET1:84. $\{x1, x1, x1, x1, x2, x3\} = \{x1, x2, x3\}.$
Theorem ENUMSET1:85. $\{x1, x1, x1, x1, x2, x3, x4\} = \{x1, x2, x3, x4\}.$
Theorem ENUMSET1:86. $\{x1, x1, x1, x1, x2, x3, x4, x5\} = \{x1, x2, x3, x4, x5\}.$
Theorem ENUMSET1:87. $\{x1, x1, x1, x1, x1, x1\} = \{x1\}.$
Theorem ENUMSET1:88. $\{x1, x1, x1, x1, x1, x2\} = \{x1, x2\}.$
Theorem ENUMSET1:89. $\{x1, x1, x1, x1, x1, x2, x3\} = \{x1, x2, x3\}.$
Theorem ENUMSET1:90. $\{x1, x1, x1, x1, x1, x2, x3, x4\} = \{x1, x2, x3, x4\}.$
Theorem ENUMSET1:91. $\{x1, x1, x1, x1, x1, x1, x1\} = \{x1\}.$
Theorem ENUMSET1:92. $\{x1, x1, x1, x1, x1, x1, x2\} = \{x1, x2\}.$

Theorem ENUMSET1:94. $\{x1, x1, x1, x1, x1, x1, x1, x1\} = \{x1\}.$ Theorem ENUMSET1:95. $\{x1, x1, x1, x1, x1, x1, x1, x2\} = \{x1, x2\}.$ Theorem ENUMSET1:96. $\{x1, x1, x1, x1, x1, x1, x1, x1, x1\} = \{x1\}.$ Theorem ENUMSET1:97. $\{x1, x2\} = \{x2, x1\}.$ Theorem ENUMSET1:98. $\{x1, x2, x3\} = \{x1, x3, x2\}.$ Theorem ENUMSET1:99. $\{x1, x2, x3\} = \{x2, x1, x3\}.$ Theorem ENUMSET1:100. $\{x1, x2, x3\} = \{x2, x3, x1\}.$ Theorem ENUMSET1:101. $\{x1, x2, x3\} = \{x3, x1, x2\}.$ Theorem ENUMSET1:102. $\{x1, x2, x3\} = \{x3, x2, x1\}.$ Theorem ENUMSET1:103. $\{x1, x2, x3, x4\} = \{x1, x2, x4, x3\}.$ Theorem ENUMSET1:104. $\{x1, x2, x3, x4\} = \{x1, x3, x2, x4\}.$ Theorem ENUMSET1:105. $\{x1, x2, x3, x4\} = \{x1, x3, x4, x2\}.$ Theorem ENUMSET1:106. $\{x1, x2, x3, x4\} = \{x1, x4, x2, x3\}.$ Theorem ENUMSET1:107. $\{x1, x2, x3, x4\} = \{x1, x4, x3, x2\}.$ Theorem ENUMSET1:108. $\{x1, x2, x3, x4\} = \{x2, x1, x3, x4\}.$ Theorem ENUMSET1:109. $\{x1, x2, x3, x4\} = \{x2, x1, x4, x3\}.$ Theorem ENUMSET1:110. $\{x1, x2, x3, x4\} = \{x2, x3, x1, x4\}.$ Theorem ENUMSET1:111. $\{x1, x2, x3, x4\} = \{x2, x3, x4, x1\}.$ Theorem ENUMSET1:112. $\{x1, x2, x3, x4\} = \{x2, x4, x1, x3\}.$ Theorem ENUMSET1:113. $\{x1, x2, x3, x4\} = \{x2, x4, x3, x1\}.$ Theorem ENUMSET1:114. $\{x1, x2, x3, x4\} = \{x3, x1, x2, x4\}.$ Theorem ENUMSET1:115. $\{x1, x2, x3, x4\} = \{x3, x1, x4, x2\}.$ Theorem ENUMSET1:116. $\{x1, x2, x3, x4\} = \{x3, x2, x1, x4\}.$ Theorem ENUMSET1:117. $\{x1, x2, x3, x4\} = \{x3, x2, x4, x1\}.$ Theorem ENUMSET1:118. $\{x1, x2, x3, x4\} = \{x3, x4, x1, x2\}.$ Theorem ENUMSET1:119. $\{x1, x2, x3, x4\} = \{x3, x4, x2, x1\}.$ Theorem ENUMSET1:120. $\{x1, x2, x3, x4\} = \{x4, x1, x2, x3\}.$ Theorem ENUMSET1:121. $\{x1, x2, x3, x4\} = \{x4, x1, x3, x2\}.$ Theorem ENUMSET1:122. $\{x1, x2, x3, x4\} = \{x4, x2, x1, x3\}.$ Theorem ENUMSET1:123. $\{x1, x2, x3, x4\} = \{x4, x2, x3, x1\}.$ Theorem ENUMSET1:124. $\{x1, x2, x3, x4\} = \{x4, x3, x1, x2\}.$ Theorem ENUMSET1:125. $\{x1, x2, x3, x4\} = \{x4, x3, x2, x1\}.$

Chapter 7

SUBSET_1

Properties of Subsets

by

Zinaida Trybulec¹

Warsaw University (Białystok)

Summary. The text includes theorems concerning properties of subsets, and some operations on sets. The functions yielding improper subsets of a set, i.e. the empty set and the set itself are introduced. Functions and predicates introduced for sets are redefined. Some theorems about enumerated sets are proved.

The symbols used in this article are introduced in vocabularies BOOLE and SUB_OP. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, and ENUMSET1.

reserve E, X for set.
reserve x, y for Any.
Theorem SUBSET_1:1. E ≠ Ø implies (x is Element of E iff x ∈ E).
Theorem SUBSET_1:2. x ∈ E implies x is Element of E.
Theorem SUBSET_1:3. X is Subset of E iff X ⊆ E.
Definition
let E.

func $\emptyset \to \mathsf{Subset}$ of E means it = \emptyset .

¹Supported by RPBP.III-24.C1.

```
func \Omega E \rightarrow Subset of E means it = E.
```

Theorem SUBSET_1:4. \emptyset is Subset of X.

Theorem SUBSET_1:5. X is Subset of X.

reserve A, B, C for Subset of E.

Theorem SUBSET_1:6. $x \in A$ implies x is Element of E.

Theorem SUBSET_1:7. (for x being Element of E holds $x \in A$ implies $x \in B$) implies $A \subseteq B$.

Theorem SUBSET_1:8. (for x being Element of E holds $x \in A$ iff $x \in B$) implies A = B.

Theorem SUBSET_1:9. $x \in A$ implies $x \in E$.

Theorem SUBSET_1:10. $A \neq \emptyset$ iff ex x being Element of E st $x \in A$.

Definition

let E.

let A.

```
func A^c \rightarrow Subset of E means it = E \smallsetminus A.
```

let B.

redefine

```
func A \cup B \rightarrow Subset of E.
```

```
func A \cap B \rightarrow Subset of E.
```

```
func A \setminus B \rightarrow Subset of E.
```

```
func A \dot{-} B \rightarrow Subset of E.
```

Theorem SUBSET_1:11. $x \in A \cap B$ implies x is Element of A & x is Element of B.

```
Theorem SUBSET_1:12. x \in A \cup B implies x is Element of A or x is Element of B.
```

```
Theorem SUBSET_1:13. x \in A \setminus B implies x is Element of A.
```

```
Theorem SUBSET_1:14. x \in A - B implies x is Element of A or x is Element of B.
```

Theorem SUBSET_1:15. (for x being Element of E holds $x \in A$ iff $x \in B$ or $x \in C$) implies $A = B \cup C$.

Theorem SUBSET_1:16. (for x being Element of E holds $x \in A$ iff $x \in B \& x \in C$) implies $A = B \cap C$.

Theorem SUBSET_1:17. (for x being Element of E holds $x \in A$ iff $x \in B$ & not $x \in C$) implies $A = B \setminus C$.

Theorem SUBSET_1:18. (for x being Element of E holds $x \in A$ iff not ($x \in B$ iff $x \in C$)) implies $A = B \div C$.

Theorem SUBSET_1:19. $\emptyset E = \emptyset$.

Theorem SUBSET_1:20. $\Omega E = E$.

Theorem SUBSET_1:21. $\emptyset E = (\Omega E)^c$.

Theorem SUBSET_1:22. $\Omega E = (\emptyset E)^c$. Theorem SUBSET_1:23. $A^c = E \setminus A$. Theorem SUBSET_1:24. $A^{cc} = A$. Theorem SUBSET_1:25. $A \cup A^c = \Omega E \& A^c \cup A = \Omega E$. Theorem SUBSET_1:26. $A \cap A^c = \emptyset \to A^c \cap A = \emptyset \to E$. Theorem SUBSET_1:27. $A \cap \emptyset \to B = \emptyset \to \emptyset \to A = \emptyset \to B$. Theorem SUBSET_1:28. $A \cup \Omega E = \Omega E \& \Omega E \cup A = \Omega E$. Theorem SUBSET_1:29. $(A \cup B)^c = A^c \cap B^c$. Theorem SUBSET_1:30. $(A \cap B)^c = A^c \cup B^c$. Theorem SUBSET_1:31. $A \subset B$ iff $B^c \subset A^c$. Theorem SUBSET_1:32. $A \setminus B = A \cap B^c$. Theorem SUBSET_1:33. $(A \setminus B)^c = A^c \cup B.$ Theorem SUBSET_1:34. $(A - B)^c = A \cap B \cup A^c \cap B^c$. Theorem SUBSET_1:35. $A \subseteq B^c$ implies $B \subseteq A^c$. Theorem SUBSET_1:36. $A^c \subseteq B$ implies $B^c \subseteq A$. Theorem SUBSET_1:37. $\emptyset \in E \subseteq E$. Theorem SUBSET_1:38. $A \subseteq A^c$ iff $A = \emptyset E$. Theorem SUBSET_1:39. $A^c \subseteq A$ iff $A = \Omega E$. Theorem SUBSET_1:40. $X \subseteq A \& X \subseteq A^c$ implies $X = \emptyset$. Theorem SUBSET_1:41. $(A \cup B)^c \subset A^c \& (A \cup B)^c \subset B^c$. Theorem SUBSET_1:42. $A^c \subseteq (A \cap B)^c \& B^c \subseteq (A \cap B)^c$. Theorem SUBSET_1:43. A misses B iff $A \subset B^c$. Theorem SUBSET_1:44. A misses B^c iff $A \subset B$. Theorem SUBSET_1:45. A misses A^c . Theorem SUBSET_1:46. A misses B & A^c misses B^c implies $A = B^c$. Theorem SUBSET_1:47. A \subseteq B & C misses B implies A \subseteq C^c. Theorem SUBSET_1:48. (for a being Element of A holds $a \in B$) implies $A \subseteq B$. Theorem SUBSET_1:49. (for x being Element of E holds $x \in A$) implies E = A. Theorem SUBSET_1:50. $E \neq \emptyset$ implies for A, B holds $A = B^c$ iff for x being Element of E holds $x \in A$ iff not $x \in B$. Theorem SUBSET_1:51. $E \neq \emptyset$ implies for A, B holds $A = B^c$ iff for x being Element of E holds not $x \in A$ iff $x \in B$. Theorem SUBSET_1:52. $E \neq \emptyset$ implies for A, B holds $A = B^c$ iff for x being Element of E holds not $(x \in A \text{ iff } x \in B)$.

Theorem SUBSET_1:53. $x \in A^c$ implies not $x \in A$.

```
reserve x1, x2, x3, x4, x5, x6, x7, x8 for Element of X.
```

Theorem SUBSET_1:54. $X \neq \emptyset$ implies $\{x1\}$ is Subset of X.

Theorem SUBSET_1:55. $X \neq \emptyset$ implies {x1, x2} is Subset of X.

Theorem SUBSET_1:56. $X \neq \emptyset$ implies {x1, x2, x3} is Subset of X.

Theorem SUBSET_1:57. $X \neq \emptyset$ implies {x1, x2, x3, x4} is Subset of X.

Theorem SUBSET_1:58. $X \neq \emptyset$ implies {x1, x2, x3, x4, x5} is Subset of X.

Theorem SUBSET_1:59. $X \neq \emptyset$ implies {x1, x2, x3, x4, x5, x6} is Subset of X.

Theorem SUBSET_1:60. $X \neq \emptyset$ implies {x1, x2, x3, x4, x5, x6, x7} is Subset of X.

Theorem SUBSET_1:61. $X \neq \emptyset$ implies {x1, x2, x3, x4, x5, x6, x7, x8} is Subset of X.

reserve x1, x2, x3, x4, x5, x6, x7, x8 for Any.

Theorem SUBSET_1:62. $x1 \in X$ implies $\{x1\}$ is Subset of X.

Theorem SUBSET_1:63. $x1 \in X \& x2 \in X$ implies $\{x1, x2\}$ is Subset of X.

Theorem SUBSET_1:64. $x1 \in X \& x2 \in X \& x3 \in X$ implies $\{x1, x2, x3\}$ is Subset of X.

Theorem SUBSET_1:65. $x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X$ implies {x1, x2, x3, x4} is Subset of X.

Theorem SUBSET_1:66. $x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X \& x5 \in X$ implies {x1, x2, x3, x4, x5} is Subset of X.

Theorem SUBSET_1:67. $x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X \& x5 \in X \& x6 \in X$ implies {x1, x2, x3, x4, x5, x6} is Subset of X.

Theorem SUBSET_1:68. $x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X \& x5 \in X \& x6 \in X \& x7 \in X$ implies {x1, x2, x3, x4, x5, x6, x7} is Subset of X.

Theorem SUBSET_1:69. $x1 \in X \& x2 \in X \& x3 \in X \& x4 \in X \& x5 \in X \& x6 \in X \& x7 \in X \& x8 \in X implies {x1, x2, x3, x4, x5, x6, x7, x8} is Subset of X.$

scheme Subset_ $Ex{A() \rightarrow set, P[Any]}$: ex X being Subset of A() st for x holds x $\in X$ iff $x \in A() \& P[x]$.

Chapter 8

FUNCT_1

Functions and Their Basic Properties

by

Czesław Byliński¹

Warsaw University (Białystok)

Summary. The definitions of the mode Function and the graph of a function are introduced. The graph of a function is defined to be identical with the function. The following concepts are also defined: the domain of a function, the range of a function, the identity function, the composition of functions, the 1-1 function, the inverse function, the restriction of a function, the image and the inverse image. Certain basic facts about functions and the notions defined in the article are proved.

The symbols used in this article are introduced in the following vocabularies: FAM_OP, BOOLE, REAL_1, FUNC_REL, and FUNC. The articles TARSKI and BOOLE provide the terminology and notation for this article.

reserve X, X1, X2, Y, Y1, Y2 **for** set, p, x, x1, x2, y, y1, y2, z, z1, z2 **for** Any.

Definition

 $\begin{array}{l} \textbf{mode} \ \text{Function} \rightarrow \text{Any means ex } F \ \textbf{being set st it} = F \ \& \ (\textbf{for } p \ \textbf{st} \ p \in F \ \textbf{ex} \\ \textbf{x}, \ \textbf{y st} \ [\textbf{x}, \ \textbf{y}] = p) \ \& \ (\textbf{for } \textbf{x}, \ \textbf{y1}, \ \textbf{y2 st} \ [\textbf{x}, \ \textbf{y1}] \in F \ \& \ [\textbf{x}, \ \textbf{y2}] \in F \ \textbf{holds} \ \textbf{y1} = \textbf{y2}). \end{array}$

reserve f, f1, f2, g, g1, g2, h for Function.

Definition

let f.

¹Supported by RPBP.III-24.C1.

func graph $f \rightarrow set means f = it$.

Theorem FUNCT_1:1. graph f = f.

Theorem FUNCT_1:2. for F being set st (for p st $p \in F$ ex x, y st [x, y] = p) & (for x, y1, y2 st $[x, y1] \in F$ & $[x, y2] \in F$ holds y1 = y2) ex f being Function st graph f = F.

Theorem FUNCT_1:3. $p \in graph f implies ex x, y st [x, y] = p$.

Theorem FUNCT_1:4. $[x, y1] \in \text{graph } f \& [x, y2] \in \text{graph } f \text{ implies } y1 = y2.$

Theorem FUNCT_1:5. graph f = graph g implies f = g.

scheme GraphFunc{A() \rightarrow set, P[Any, Any]}: ex f st for x, y holds [x, y] \in graph f iff $x \in A()$ & P[x, y] provided A: for x, y1, y2 st P[x, y1] & P[x, y2] holds y1 = y2. Definition

let f.

```
func dom f \rightarrow set means for x holds x \in it iff ex y st [x, y] \in graph f.
```

Theorem FUNCT_1:6. $X = \text{dom } f \text{ iff for } x \text{ holds } x \in X \text{ iff ex } y \text{ st } [x, y] \in \text{graph } f$. Definition

let f, x.

assume $x \in \mathsf{dom} f$.

func $f.x \rightarrow Any$ **means** $[x, it] \in graph f.$

Theorem FUNCT_1:7. $x \in \text{dom f implies}$ $(y = f.x \text{ iff } [x, y] \in \text{graph f})$.

Theorem FUNCT_1:8. $[x, y] \in \text{graph } f \text{ iff } x \in \text{dom } f \& y = f.x.$

Theorem FUNCT_1:9. $X = \text{dom } f \& X = \text{dom } g \& (\text{for } x \text{ st } x \in X \text{ holds } f.x = g.x)$ implies f = g.

Definition

let f.

func rng f \rightarrow set means for y holds y \in it iff ex x st x \in dom f & y = f.x.

Theorem FUNCT_1:10. Y = rng f iff for y holds $y \in Y$ iff ex x st $x \in dom f \& y = f.x$.

Theorem FUNCT_1:11. $y \in \operatorname{rng} f$ iff $ex x st x \in \operatorname{dom} f \& y = f.x$.

Theorem FUNCT_1:12. $x \in \text{dom f implies } f.x \in \text{rng f.}$

Theorem FUNCT_1:13. dom $f = \emptyset$ iff rng $f = \emptyset$.

Theorem FUNCT_1:14. dom $f = \{x\}$ implies $rng f = \{f.x\}$.

scheme FuncEx{A() \rightarrow set, P[Any, Any]}: ex f st dom f = A() & for x st x \in A() holds P[x, f.x] provided A: for x, y1, y2 st x \in A() & P[x, y1] & P[x, y2] holds y1 = y2 and B: for x st x \in A() ex y st P[x, y].

scheme Lambda{A() \rightarrow set, F(Any) \rightarrow Any}: ex f being Function st dom f = A() & for x st $x \in A()$ holds f.x = F(x).

```
Theorem FUNCT_1:15. X \neq \emptyset implies for y ex f st dom f = X \& rng f = \{y\}.
```

Theorem FUNCT_1:16. (for f, g st dom f = X & dom g = X holds f = g) implies $X = \emptyset$.

Theorem FUNCT_1:17. dom $f = \text{dom } g \& \text{ rng } f = \{y\} \& \text{ rng } g = \{y\} \text{ implies } f = g.$

```
Theorem FUNCT_1:18. Y \neq \emptyset or X = \emptyset implies ex f st X = \text{dom } f \& \text{ rng } f \subseteq Y.
```

Theorem FUNCT_1:19. (for y st $y \in Y$ ex x st $x \in \text{dom } f \& y = f.x$) implies $Y \subseteq \text{rng } f.$

Definition

let f, g.

func $g \cdot f \rightarrow$ Function means (for x holds $x \in$ dom it iff $x \in$ dom f & f.x \in dom g) & (for x st $x \in$ dom it holds it.x = g.(f.x)).

Theorem FUNCT_1:20. $h = g \cdot f$ iff (for x holds $x \in \text{dom } h$ iff $x \in \text{dom } f \& f.x \in \text{dom } g$) & (for x st $x \in \text{dom } h$ holds h.x = g.(f.x)).

Theorem FUNCT_1:21. $x \in \text{dom } (g \cdot f)$ iff $x \in \text{dom } f \& f \cdot x \in \text{dom } g$.

Theorem FUNCT_1:22. $x \in \text{dom } (g \cdot f)$ implies $(g \cdot f) \cdot x = g \cdot (f \cdot x)$.

Theorem FUNCT_1:23. $x \in \text{dom } f \& f.x \in \text{dom } g \text{ implies } (g \cdot f).x = g.(f.x).$

Theorem FUNCT_1:24. dom $(g \cdot f) \subseteq \text{dom } f$.

Theorem FUNCT_1:25. $z \in rng (g \cdot f)$ implies $z \in rng g$.

Theorem FUNCT_1:26. rng $(g \cdot f) \subseteq$ rng g.

Theorem FUNCT_1:27. rng $f \subseteq \text{dom } g \text{ iff } \text{dom } (g \cdot f) = \text{dom } f$.

Theorem FUNCT_1:28. dom $g \subseteq rng f$ implies $rng (g \cdot f) = rng g$.

Theorem FUNCT_1:29. rng f = dom g implies dom $(g \cdot f) = dom f \& rng (g \cdot f) = rng g$. Theorem FUNCT_1:30. $h \cdot (g \cdot f) = (h \cdot g) \cdot f$.

Theorem FUNCT_1:31. rng f \subseteq dom g & x \in dom f implies (g·f).x = g.(f.x).

Theorem FUNCT_1:32. rng f = dom g & x \in dom f implies (g·f).x = g.(f.x).

Theorem FUNCT_1:33. rng $f \subseteq Y \& (for g, h st dom g = Y \& dom h = Y \& g \cdot f = h \cdot f$

holds g = h) **implies** Y = rng f.

Definition

let X.

func ld $X \rightarrow$ Function means dom it = X & for x st $x \in X$ holds it.x = x. Theorem FUNCT_1:34. f = ld X iff dom f = X & for x st $x \in X$ holds f.x = x. Theorem FUNCT_1:35. $x \in X$ implies (ld X).x = x. Theorem FUNCT_1:36. dom ld X = X & rng ld X = X. Theorem FUNCT_1:37. dom (f (ld X)) = dom f \cap X. Theorem FUNCT_1:38. $x \in$ dom f \cap X implies f.x = (f (ld X)).x. Theorem FUNCT_1:39. dom f \subseteq X implies f (ld X) = f. Theorem FUNCT_1:40. $x \in \mathsf{dom} ((\mathsf{Id} Y) \cdot f) \text{ iff } x \in \mathsf{dom} f \& f.x \in Y.$

Theorem FUNCT_1:41. rng $f \subseteq Y$ implies $(\mathsf{Id} Y) \cdot f = f$.

Theorem FUNCT_1:42. $f \cdot (\mathsf{Id} \mathsf{ dom } f) = f \& (\mathsf{Id} \mathsf{ rng } f) \cdot f = f.$

Theorem FUNCT_1:43. $(\mathsf{Id} X) \cdot (\mathsf{Id} Y) = \mathsf{Id} (X \cap Y).$

Theorem FUNCT_1:44. dom f = X & rng f = X & dom g = X & g f = f implies g = Id X.

Definition

let f.

pred f is 1-1 means for x1, x2 st $x1 \in dom f \& x2 \in dom f \& f.x1 = f.x2$ holds x1 = x2.

Theorem FUNCT_1:45. f is 1-1 iff for x1, x2 st x1 \in dom f & x2 \in dom f & f.x1 = f.x2 holds x1 = x2.

Theorem FUNCT_1:46. f is 1-1 & g is 1-1 implies g f is 1-1.

Theorem FUNCT_1:47. g f is 1-1 & rng f \subseteq dom g **implies** f is 1-1.

Theorem FUNCT_1:48. g f is 1-1 & rng f = dom g implies f is 1-1 & g is 1-1.

Theorem FUNCT_1:49. f is 1-1 iff (for g, h st rng $g \subseteq dom f \& rng h \subseteq dom f \& dom g = dom h \& f \cdot g = f \cdot h$ holds g = h).

Theorem FUNCT_1:50. dom $f = X \& \text{ dom } g = X \& \text{ rng } g \subseteq X \& f \text{ is } 1\text{-}1 \& f \cdot g = f$ implies g = Id X.

Theorem FUNCT_1:51. rng $(g \cdot f) = rng g \& g \text{ is } 1-1 \text{ implies dom } g \subseteq rng f.$

Theorem FUNCT_1:52. ld X is 1-1.

Theorem FUNCT_1:53. (ex g st g f = ld dom f) implies f is 1-1.

Definition

let f.

assume f is 1-1.

func $f^{-1} \rightarrow$ Function means dom it = rng f & for y, x holds $y \in$ rng f & x = it.y iff x \in dom f & y = f.x.

Theorem FUNCT_1:54. f is 1-1 implies $(g = f^{-1} \text{ iff dom } g = \text{rng } f \& \text{ for } y, x \text{ holds}$ $y \in \text{rng } f \& x = g.y \text{ iff } x \in \text{dom } f \& y = f.x).$

Theorem FUNCT_1:55. f is 1-1 implies rng $f = dom (f^{-1}) \& dom f = rng (f^{-1})$. Theorem FUNCT_1:56. f is 1-1 & x \in dom f implies $x = (f^{-1}).(f.x) \& x = (f^{-1} \cdot f).x$. Theorem FUNCT_1:57. f is 1-1 & y \in rng f implies $y = f.((f^{-1}).y) \& y = (f \cdot f^{-1}).y$. Theorem FUNCT_1:58. f is 1-1 implies dom $(f^{-1} \cdot f) = dom f \& rng (f^{-1} \cdot f) = dom f$. Theorem FUNCT_1:59. f is 1-1 implies dom $(f \cdot f^{-1}) = rng f \& rng (f \cdot f^{-1}) = rng f$. Theorem FUNCT_1:60. f is 1-1 & dom f = rng g & rng f = dom g & (for x, y st x \in dom f & y \in dom g holds f.x = y iff g.y = x) implies g = f^{-1}.

```
Theorem FUNCT_1:61. f is 1-1 implies f^{-1} \cdot f = \text{Id dom f } \& f \cdot f^{-1} = \text{Id rng f.}
Theorem FUNCT_1:62. f is 1-1 implies f^{-1} is 1-1.
Theorem FUNCT_1:63. f is 1-1 & rng f = dom g & g \cdot f = \text{Id dom f implies } g = f^{-1}.
Theorem FUNCT_1:64. f is 1-1 & rng g = dom f & f \cdot g = \text{Id rng f implies } g = f^{-1}.
Theorem FUNCT_1:65. f is 1-1 implies (f^{-1})^{-1} = f.
Theorem FUNCT_1:66. f is 1-1 & g is 1-1 implies (g \cdot f)^{-1} = f^{-1} \cdot g^{-1}.
```

- Theorem FUNCT_1:67. (Id X)⁻¹ = (Id X).
- Definition

let f, X.

func $f{\upharpoonright}X\to$ Function means dom it = dom $f{\cap}X$ & for x st $x\in$ dom it holds it.x = f.x.

Theorem FUNCT_1:68. $g = f \upharpoonright X$ iff dom $g = \text{dom } f \cap X \& \text{ for } x \text{ st } x \in \text{dom } g \text{ holds}$ g.x = f.x.

Theorem FUNCT_1:69. dom $(f \upharpoonright X) = \text{dom } f \cap X$.

Theorem FUNCT_1:70. $x \in \text{dom}(f|X)$ implies (f|X).x = f.x.

Theorem FUNCT_1:71. $x \in \text{dom } f \cap X \text{ implies } (f \upharpoonright X).x = f.x.$

Theorem FUNCT_1:72. $x \in \text{dom f } \& x \in X \text{ implies } (f | X).x = f.x.$

Theorem FUNCT_1:73. $x \in \text{dom } f \& x \in X \text{ implies } f.x \in \text{rng } (f \mid X).$

Theorem FUNCT_1:74. $X \subseteq \text{dom f implies dom } (f | X) = X.$

Theorem FUNCT_1:75. dom $(f \upharpoonright X) \subseteq X$.

Theorem FUNCT_1:76. dom $(f | X) \subseteq \text{dom } f \& \text{ rng } (f | X) \subseteq \text{ rng } f$.

Theorem FUNCT_1:77. $f \upharpoonright X = f \cdot (\mathsf{Id} X)$.

Theorem FUNCT_1:78. dom $f \subseteq X$ implies $f \upharpoonright X = f$.

Theorem FUNCT_1:79. f(dom f) = f.

Theorem FUNCT_1:80. $(f \upharpoonright X) \upharpoonright Y = f \upharpoonright (X \cap Y)$.

Theorem FUNCT_1:81. $(f \upharpoonright X) \upharpoonright X = f \upharpoonright X$.

Theorem FUNCT_1:82. $X \subseteq Y$ implies (f | X) | Y = f | X & (f | Y) | X = f | X.

Theorem FUNCT_1:83. $(g \cdot f) \upharpoonright X = g \cdot (f \upharpoonright X).$

Theorem FUNCT_1:84. f is 1-1 implies f X is 1-1.

Definition

let Y, f.

func $Y \upharpoonright f \to$ Function means (for x holds $x \in$ dom it iff $x \in$ dom f & f.x \in Y) & (for x st x \in dom it holds it.x = f.x).

Theorem FUNCT_1:85. $g = Y \upharpoonright f$ iff (for x holds $x \in \text{dom } g$ iff $x \in \text{dom } f \& f.x \in Y$) & (for x st $x \in \text{dom } g$ holds g.x = f.x).

```
Theorem FUNCT_1:86. x \in \text{dom} (Y \upharpoonright f) iff x \in \text{dom} f \& f.x \in Y.

Theorem FUNCT_1:87. x \in \text{dom} (Y \upharpoonright f) implies (Y \upharpoonright f).x = f.x.

Theorem FUNCT_1:88. \text{rng} (Y \upharpoonright f) \subseteq Y.

Theorem FUNCT_1:89. \text{dom} (Y \upharpoonright f) \subseteq \text{dom} f \& \text{rng} (Y \upharpoonright f) \subseteq \text{rng} f.

Theorem FUNCT_1:90. \text{rng} (Y \upharpoonright f) = \text{rng} f \cap Y.

Theorem FUNCT_1:91. Y \subseteq \text{rng} f implies \text{rng} (Y \upharpoonright f) = Y.

Theorem FUNCT_1:92. Y \upharpoonright f = (\text{Id} Y) \cdot f.

Theorem FUNCT_1:93. \text{rng} f \subseteq Y implies Y \upharpoonright f = f.

Theorem FUNCT_1:94. (\text{rng} f) \upharpoonright f = f.

Theorem FUNCT_1:95. Y \upharpoonright (X \upharpoonright f) = (Y \cap X) \upharpoonright f.

Theorem FUNCT_1:96. Y \upharpoonright (Y \upharpoonright f) = Y \upharpoonright f.

Theorem FUNCT_1:97. X \subseteq Y implies Y \upharpoonright (X \upharpoonright f) = X \upharpoonright f \& X \upharpoonright (Y \upharpoonright f) = X \upharpoonright f.

Theorem FUNCT_1:98. Y \upharpoonright (g \cdot f) = (Y \upharpoonright g) \cdot f.

Theorem FUNCT_1:99. f \coloneqq 1-1 implies Y \upharpoonright f \coloneqq 1-1.

Theorem FUNCT_1:100. (Y \upharpoonright f) \upharpoonright X = Y \upharpoonright (f \upharpoonright X).
```

Definition

let f, X.

 $\mathbf{func}\ \mathbf{f.X} \to \mathsf{set}\ \mathbf{means}\ \mathbf{for}\ y\ \mathbf{holds}\ y \in \mathbf{it}\ \mathbf{iff}\ \mathbf{ex}\ x\ \mathbf{st}\ x \in \mathsf{dom}\ f\ \&\ x \in X\ \&\ y = f.x.$

```
Theorem FUNCT_1:101. Y = f.X iff for y holds y \in Y iff ex x st x \in \text{dom } f \& x \in X \& y = f.x.

Theorem FUNCT_1:102. y \in f.X iff ex x st x \in \text{dom } f \& x \in X \& y = f.x.

Theorem FUNCT_1:103. f.X \subseteq \text{rng } f.

Theorem FUNCT_1:104. f.(X) = f.(\text{dom } f\cap X).

Theorem FUNCT_1:105. f.(\text{dom } f) = \text{rng } f.

Theorem FUNCT_1:106. f.X \subseteq f.(\text{dom } f).

Theorem FUNCT_1:107. \text{rng } (f|X) = f.X.

Theorem FUNCT_1:108. f.X = \emptyset iff dom f\cap X = \emptyset.

Theorem FUNCT_1:109. f.\emptyset = \emptyset.

Theorem FUNCT_1:110. X \neq \emptyset \& X \subseteq \text{dom } f implies f.X \neq \emptyset.

Theorem FUNCT_1:111. X1 \subseteq X2 implies f.X1 \subseteq f.X2.

Theorem FUNCT_1:112. f.(X1\cup X2) = f.X1\cup f.X2.

Theorem FUNCT_1:113. f.(X1\cap X2) \subseteq f.X1\cap f.X2.

Theorem FUNCT_1:114. f.X1 \smallsetminus f.X2 \subseteq f.(X1 \smallsetminus X2).
```

Theorem FUNCT_1:115. $(g \cdot f) \cdot X = g \cdot (f \cdot X)$.

Theorem FUNCT_1:116. rng $(g \cdot f) = g_{\bullet}(rng f)$. Theorem FUNCT_1:117. $x \in \text{dom f implies } f_{x} = \{f_{x}\}.$ Theorem FUNCT_1:118. $x1 \in \text{dom f } \& x2 \in \text{dom f implies } f_{x1}, x2 = \{f_{x1}, f_{x2}\}.$ Theorem FUNCT_1:119. ($f \upharpoonright Y$) $X \subseteq f X$. Theorem FUNCT_1:120. $(Y | f) X \subseteq f X$. Theorem FUNCT_1:121. f is 1-1 implies $f_{\bullet}(X1 \cap X2) = f_{\bullet}X1 \cap f_{\bullet}X2$. Theorem FUNCT_1:122. (for X1, X2 holds $f_{\bullet}(X1 \cap X2) = f_{\bullet}X1 \cap f_{\bullet}X2$) implies f is 1-1. Theorem FUNCT_1:123. f is 1-1 implies $f_{\bullet}(X1 \setminus X2) = f_{\bullet}X1 \setminus f_{\bullet}X2$. Theorem FUNCT_1:124. (for X1, X2 holds $f_{1}(X1 \setminus X2) = f_{1}X1 \setminus f_{1}X2$) implies f is 1-1. Theorem FUNCT_1:125. $X \cap Y = \emptyset$ & f is 1-1 implies f. $X \cap f.Y = \emptyset$. Theorem FUNCT_1:126. $(Y | f) X = Y \cap f X$. Definition let f. Y. func $f^{-1}Y \rightarrow set$ means for x holds $x \in it$ iff $x \in dom f \& f.x \in Y$. Theorem FUNCT_1:127. $X = f^{-1}Y$ iff for x holds $x \in X$ iff $x \in dom f \& f.x \in Y$. Theorem FUNCT_1:128. $x \in f^{-1}Y$ iff $x \in dom f \& f.x \in Y$. Theorem FUNCT_1:129. $f^{-1}Y \subseteq \text{dom } f$. Theorem FUNCT_1:130. $f^{-1}Y = f^{-1}(rng f \cap Y)$. Theorem FUNCT_1:131. $f^{-1}(rng f) = dom f.$ Theorem FUNCT_1:132. $f^{-1}\emptyset = \emptyset$. Theorem FUNCT_1:133. $f^{-1}Y = \emptyset$ iff rng $f \cap Y = \emptyset$. Theorem FUNCT_1:134. $Y \subseteq \text{rng f implies } (f^{-1}Y = \emptyset \text{ iff } Y = \emptyset).$ Theorem FUNCT_1:135. Y1 \subseteq Y2 implies $f^{-1}Y1 \subseteq f^{-1}Y2$. Theorem FUNCT_1:136. $f^{-1}(Y1\cup Y2) = f^{-1}Y1\cup f^{-1}Y2$. Theorem FUNCT_1:137. $f^{-1}(Y1 \cap Y2) = f^{-1}Y1 \cap f^{-1}Y2$. Theorem FUNCT_1:138. $f^{-1}(Y1 \setminus Y2) = f^{-1}Y1 \setminus f^{-1}Y2$. Theorem FUNCT_1:139. $(f \upharpoonright X)^{-1}Y = X \cap (f^{-1}Y).$ Theorem FUNCT_1:140. $(g \cdot f)^{-1}Y = f^{-1}(g^{-1}Y).$ Theorem FUNCT_1:141. dom $(g \cdot f) = f^{-1}(\text{dom } g)$. Theorem FUNCT_1:142. $y \in \operatorname{rng} f \operatorname{iff} f^{-1}\{y\} \neq \emptyset$. Theorem FUNCT_1:143. (for y st y \in Y holds $f^{-1}{y} \neq \emptyset$) implies Y \subset rng f. Theorem FUNCT_1:144. (for y st y \in rng f ex x st f⁻¹{y} = {x}) iff f is 1-1. Theorem FUNCT_1:145. f. $(f^{-1}Y) \subset Y$. Theorem FUNCT_1:146. $X \subset \text{dom f implies } X \subset f^{-1}(f.X)$. Theorem FUNCT_1:147. $Y \subseteq rng f implies f.(f^{-1}Y) = Y$.

Theorem FUNCT_1:148. $f_*(f^{-1}Y) = Y \cap f_*(\text{dom } f)$. Theorem FUNCT_1:149. $f_*(X \cap f^{-1}Y) \subseteq (f_*X) \cap Y$. Theorem FUNCT_1:150. $f_*(X \cap f^{-1}Y) = (f_*X) \cap Y$. Theorem FUNCT_1:151. $X \cap f^{-1}Y \subseteq f^{-1}(f_*X \cap Y)$. Theorem FUNCT_1:152. f is 1-1 implies $f^{-1}(f_*X) \subseteq X$. Theorem FUNCT_1:153. (for X holds $f^{-1}(f_*X) \subseteq X$) implies f is 1-1. Theorem FUNCT_1:154. f is 1-1 implies $f_*X = (f^{-1})^{-1}X$. Theorem FUNCT_1:155. f is 1-1 implies $f^{-1}Y = (f^{-1})^{-1}X$. Theorem FUNCT_1:156. $Y = rng f \& dom g = Y \& dom h = Y \& g \cdot f = h \cdot f$ implies g = h. Theorem FUNCT_1:157. $f_*X1 \subseteq f_*X2 \& X1 \subseteq dom f \& f$ is 1-1 implies $X1 \subseteq X2$. Theorem FUNCT_1:158. $f^{-1}Y1 \subseteq f^{-1}Y2 \& Y1 \subseteq rng f$ implies $Y1 \subseteq Y2$. Theorem FUNCT_1:159. f is 1-1 iff for y ex x st $f^{-1}\{y\} \subseteq \{x\}$. Theorem FUNCT_1:160. rng $f \subseteq dom g$ implies $f^{-1}X \subseteq (g \cdot f)^{-1}(g \cdot X)$.

Chapter 9

FUNCT_2

Functions from a Set to a Set.

by

Czesław Byliński¹

Warsaw University (Białystok)

Summary. The article is a continuation of *Functions and Their Basic Properties* (FUNCT_1). We define the following concepts: a function from a set X into a set Y, denoted by "Function of X,Y", the set of all functions from a set X into a set Y, denoted by Funcs(X,Y), and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of FUNCT_1 in the new terminology. Also some basic facts about functions of two variables are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE, FUNC_REL, REAL_1, FUNC, and FUNC2. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, and FUNCT_1.

reserve P, Q, X, X1, X2, Y, Y1, Y2, Z for set. reserve p, q, x, x1, x2, y, y1, y2, z, z1, z2 for Any. Definition let X, Y. assume $Y = \emptyset$ implies $X = \emptyset$. mode Function of X, $Y \rightarrow$ Function means $X = \text{dom it } \& \text{ rng it } \subseteq Y$.

¹Supported by RPBP.III-24.C1.

Theorem FUNCT_2:1. (Y = \emptyset implies X = \emptyset) implies for f being Function holds f is Function of X, Y iff X = dom f & rng f \subseteq Y.

Theorem FUNCT_2:2. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $X = \text{dom f } \& \text{ rng } f \subseteq Y$.

Theorem FUNCT_2:3. for f being Function holds f is Function of dom f, rng f.

Theorem FUNCT_2:4. for f being Function st rng $f \subseteq Y$ holds f is Function of dom f, Y.

Theorem FUNCT_2:5. for f being Function st dom f = X & for $x \text{ st } x \in X$ holds $f.x \in Y$ holds f is Function of X, Y.

Theorem FUNCT_2:6. for f being Function of X, Y st $Y \neq \emptyset$ & $x \in X$ holds f. $x \in$ rng f.

Theorem FUNCT_2:7. for f being Function of X, Y st $Y \neq \emptyset$ & $x \in X$ holds $f.x \in Y$. Theorem FUNCT_2:8. for f being Function of X, Y st $(Y = \emptyset$ implies $X = \emptyset)$ & rng $f \subseteq Z$ holds f is Function of X, Z.

Theorem FUNCT_2:9. for f being Function of X, Y st $(Y = \emptyset \text{ implies } X = \emptyset) \& Y \subseteq Z \text{ holds f is Function of X, Z.}$

scheme $\operatorname{FuncEx1}\{X() \rightarrow \text{set}, Y() \rightarrow \text{set}, P[Any, Any]\}$: ex f being $\operatorname{Function}$ of X(), Y() st for x st $x \in X()$ holds P[x, f.x] provided A1: for x st $x \in X()$ ex y st $y \in Y()$ & P[x, y] and A2: for x, y1, y2 st $x \in X()$ & P[x, y1] & P[x, y2] holds y1 = y2.

scheme Lambda1{X() \rightarrow set, Y() \rightarrow set, F(Any) \rightarrow Any}: ex f being Function of X(), Y() st for x st x \in X() holds f.x = F(x) provided A: for x st x \in X() holds F(x) \in Y().

Definition

let X, Y.

Theorem FUNCT_2:10. for F being set holds F = Funcs (X, Y) iff for x holds $x \in F$ iff ex f being Function st $x = f \& \text{ dom } f = X \& \text{ rng } f \subseteq Y$.

Theorem FUNCT_2:11. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f \in Funcs (X, Y)$.

Theorem FUNCT 2:12. for f being Function of X, X holds $f \in Funcs (X, X)$.

Theorem FUNCT 2:13. for f being Function of \emptyset , X holds $f \in Funcs (\emptyset, X)$.

Theorem FUNCT_2:14. $X \neq \emptyset$ implies Funcs $(X, \emptyset) = \emptyset$.

Theorem FUNCT_2:15. Funcs $(X, Y) = \emptyset$ implies $X \neq \emptyset \& Y = \emptyset$.

Theorem FUNCT_2:16. for f being Function of X, Y st $Y \neq \emptyset$ & for y st $y \in Y$ ex x st $x \in X$ & y = f.x holds rng f = Y.

Theorem FUNCT_2:17. for f being Function of X, Y st $y \in Y$ & rng f = Y ex x st x $\in X$ & f.x = y.

Theorem FUNCT_2:18. for f1, f2 being Function of X, Y st $Y \neq \emptyset$ & for x st $x \in X$ holds f1.x = f2.x holds f1 = f2.

Theorem FUNCT_2:19. for f being Function of X, Y for g being Function of Y, Z st $(Z = \emptyset \text{ implies } Y = \emptyset) \& (Y = \emptyset \text{ implies } X = \emptyset) \text{ holds g f is Function of X, Z.}$

Theorem FUNCT_2:20. for f being Function of X, Y for g being Function of Y, Z st $Y \neq \emptyset \& Z \neq \emptyset \& \text{ rng } f = Y \& \text{ rng } g = Z \text{ holds rng } (g \cdot f) = Z.$

Theorem FUNCT_2:21. for f being Function of X, Y for g being Function of Y, Z st $Y \neq \emptyset \& Z \neq \emptyset \& x \in X$ holds (g·f).x = g.(f.x).

Theorem FUNCT_2:22. for f being Function of X, Y st $Y \neq \emptyset$ holds rng f = Y iff for Z st $Z \neq \emptyset$ for g, h being Function of Y, Z st $g \cdot f = h \cdot f$ holds g = h.

Theorem FUNCT_2:23. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f \cdot (Id X) = f \& (Id Y) \cdot f = f$.

Theorem FUNCT_2:24. for f being Function of X, Y for g being Function of Y, X st $Y \neq \emptyset$ & f·g = Id Y holds rng f = Y.

Theorem FUNCT_2:25. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds f is 1-1 iff for x1, x2 st x1 \in X & x2 \in X & f.x1 = f.x2 holds x1 = x2.

Theorem FUNCT_2:26. for f being Function of X, Y for g being Function of Y, Z st $(Z = \emptyset \text{ implies } Y = \emptyset) \& (Y = \emptyset \text{ implies } X = \emptyset) \& g \cdot f \text{ is } 1\text{-}1 \text{ holds } f \text{ is } 1\text{-}1.$

Theorem FUNCT_2:27. for f being Function of X, Y st $X \neq \emptyset$ & $Y \neq \emptyset$ holds f is 1-1 iff for Z for g, h being Function of Z, X st f·g = f·h holds g = h.

Theorem FUNCT_2:28. for f being Function of X, Y for g being Function of Y, Z st $Z \neq \emptyset \& Y \neq \emptyset \&$ rng (g·f) = Z & g is 1-1 holds rng f = Y.

Theorem FUNCT_2:29. for f being Function of X, Y for g being Function of Y, X st $X \neq \emptyset \& Y \neq \emptyset \& g \cdot f = Id X$ holds f is 1-1 & rng g = X.

Theorem FUNCT_2:30. for f being Function of X, Y for g being Function of Y, Z st $(Z = \emptyset \text{ implies } Y = \emptyset) \& g \cdot f \text{ is } 1\text{-}1 \& rng f = Y \text{ holds } f \text{ is } 1\text{-}1 \& g \text{ is } 1\text{-}1.$

Theorem FUNCT_2:31. for f being Function of X, Y st f is 1-1 & $(X = \emptyset \text{ iff } Y = \emptyset)$ & rng f = Y holds f⁻¹ is Function of Y, X.

Theorem FUNCT_2:32. for f being Function of X, Y st $Y \neq \emptyset$ & f is 1-1 & $x \in X$ holds $(f^{-1}).(f.x) = x$.

Theorem FUNCT_2:33. for f being Function of X, Y st rng f = Y & f is 1-1 $\& y \in Y$ holds $f.((f^{-1}).y) = y$.

Theorem FUNCT_2:34. for f being Function of X, Y for g being Function of Y, X st $X \neq \emptyset \& Y \neq \emptyset \&$ rng f = Y & f is 1-1 & for y, x holds $y \in Y \& g.y = x$ iff $x \in X \& f.x = y$ holds $g = f^{-1}$.

Theorem FUNCT_2:35. for f being Function of X, Y st $Y \neq \emptyset$ & rng f = Y & f is 1-1 holds $f^{-1} \cdot f = Id X \& f \cdot f^{-1} = Id Y$.

Theorem FUNCT_2:36. for f being Function of X, Y for g being Function of Y, X

st $X \neq \emptyset \& Y \neq \emptyset \&$ rng $f = Y \& g \cdot f = Id X \& f$ is 1-1 holds $g = f^{-1}$.

Theorem FUNCT_2:37. for f being Function of X, Y st $Y \neq \emptyset$ & ex g being Function of Y, X st g f = Id X holds f is 1-1.

Theorem FUNCT_2:38. for f being Function of X, Y st $(Y = \emptyset \text{ implies } X = \emptyset) \& Z \subseteq X \text{ holds } f \upharpoonright Z \text{ is Function of } Z, Y.$

Theorem FUNCT_2:39. for f being Function of X, Y st $Y \neq \emptyset$ & $x \in X$ & $x \in Z$ holds $(f \upharpoonright Z).x = f.x$.

Theorem FUNCT_2:40. for f being Function of X, Y st $(Y = \emptyset \text{ implies } X = \emptyset) \& X \subseteq Z \text{ holds } f|Z = f.$

Theorem FUNCT_2:41. for f being Function of X, Y st $Y \neq \emptyset$ & $x \in X$ & f. $x \in Z$ holds $(Z \upharpoonright f).x = f.x$.

Theorem FUNCT_2:42. for f being Function of X, Y st $(Y = \emptyset \text{ implies } X = \emptyset) \& Y \subseteq Z \text{ holds } Z \upharpoonright f = f.$

Theorem FUNCT_2:43. for f being Function of X, Y st $Y \neq \emptyset$ for y holds $y \in f.P$ iff ex x st $x \in X \& x \in P \& y = f.x$.

Theorem FUNCT_2:44. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds f.P $\subseteq Y$.

Theorem FUNCT_2:45. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds f.X = rng f.

Theorem FUNCT_2:46. for f being Function of X, Y st $Y \neq \emptyset$ for x holds $x \in f^{-1}Q$ iff $x \in X \& f.x \in Q$.

Theorem FUNCT_2:47. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1}Q \subseteq X$.

Theorem FUNCT_2:48. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1}Y = X$.

Theorem FUNCT_2:49. for f being Function of X, Y st $Y \neq \emptyset$ holds (for y st $y \in Y$ holds $f^{-1}{y} \neq \emptyset$) iff rng f = Y.

Theorem FUNCT_2:50. for f being Function of X, Y st $(Y = \emptyset \text{ implies } X = \emptyset) \& P \subseteq X \text{ holds } P \subseteq f^{-1}(f.P).$

Theorem FUNCT_2:51. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1}(f.X) = X$.

Theorem FUNCT_2:52. for f being Function of X, Y st $(Y = \emptyset \text{ implies } X = \emptyset) \&$ rng f = Y holds f. $(f^{-1}Y) = Y$.

Theorem FUNCT_2:53. for f being Function of X, Y for g being Function of Y, Z st $(Z = \emptyset \text{ implies } Y = \emptyset) \& (Y = \emptyset \text{ implies } X = \emptyset) \text{ holds } f^{-1}Q \subseteq (g \cdot f)^{-1}(g \cdot Q).$

Theorem FUNCT_2:54. for f being Function of \emptyset , Y holds dom $f = \emptyset$ & rng $f = \emptyset$.

Theorem FUNCT_2:55. for f being Function st dom $f = \emptyset$ holds f is Function of \emptyset , Y.

```
Theorem FUNCT_2:56. for f1 being Function of \emptyset, Y1 for f2 being Function of \emptyset, Y2 holds f1 = f2.
```

Theorem FUNCT_2:57. for f being Function of \emptyset , Y for g being Function of Y, Z st $Z = \emptyset$ implies $Y = \emptyset$ holds g f is Function of \emptyset , Z.

Theorem FUNCT 2:58. for f being Function of \emptyset , Y holds f is 1-1.

Theorem FUNCT_2:59. for f being Function of \emptyset , Y holds f.P = \emptyset .

Theorem FUNCT_2:60. for f being Function of \emptyset , Y holds $f^{-1}Q = \emptyset$.

Theorem FUNCT_2:61. for f being Function of $\{x\}$, Y st Y $\neq \emptyset$ holds f.x \in Y.

Theorem FUNCT_2:62. for f being Function of $\{x\}$, Y st $Y \neq \emptyset$ holds rng $f = \{f.x\}$.

Theorem FUNCT_2:63. for f being Function of $\{x\}$, Y st Y $\neq \emptyset$ holds f is 1-1.

Theorem FUNCT_2:64. for f being Function of $\{x\}$, Y st $Y \neq \emptyset$ holds f $P \subseteq \{f, x\}$.

Theorem FUNCT_2:65. for f being Function of X, $\{y\}$ st $x \in X$ holds f.x = y.

```
Theorem FUNCT_2:66. for f1, f2 being Function of X, \{y\} holds f1 = f2.
```

Definition

let X.

let f, g being Function of X, X.

redefine

func $g f \rightarrow$ Function of X, X.

Definition

 $\mathbf{let} \mathbf{X}.$

redefine

func Id $X \rightarrow$ Function of X, X.

Theorem FUNCT_2:67. for f being Function of X, X holds dom $f = X \& rng f \subseteq X$.

Theorem FUNCT_2:68. for f being Function st dom $f = X \& rng f \subseteq X$ holds f is Function of X, X.

Theorem FUNCT_2:69. for f being Function of X, X st $x \in X$ holds f. $x \in X$.

Theorem FUNCT_2:70. for f, g being Function of X, X st $x \in X$ holds $(g \cdot f).x = g$. (f.x).

Theorem FUNCT_2:71. for f being Function of X, X for g being Function of X, Y st $Y \neq \emptyset$ & $x \in X$ holds $(g \cdot f) \cdot x = g \cdot (f \cdot x)$.

Theorem FUNCT_2:72. for f being Function of X, Y for g being Function of Y, Y st $Y \neq \emptyset \& x \in X$ holds (g·f).x = g.(f.x).

Theorem FUNCT_2:73. for f, g being Function of X, X st rng f = X & rng g = X holds rng $(g \cdot f) = X$.

Theorem FUNCT_2:74. for f being Function of X, X holds $f \cdot (Id X) = f \& (Id X) \cdot f = f$.

```
Theorem FUNCT_2:75. for f, g being Function of X, X st g f = f \& rng f = X holds
g = Id X.
   Theorem FUNCT_2:76. for f, g being Function of X, X st f \cdot g = f \& f is 1-1 holds g
= \mathsf{Id} X.
   Theorem FUNCT_2:77. for f being Function of X, X holds f is 1-1 iff for x1, x2 st
x1 \in X \& x2 \in X \& f.x1 = f.x2 holds x1 = x2.
   Theorem FUNCT 2:78. for f being Function of X, X holds f.P \subset X.
Definition
   let X.
   let f be Function of X, X.
   let P.
   redefine
         func f P \rightarrow Subset of X.
   Theorem FUNCT_2:79. for f being Function of X, X holds f.X = rng f.
   Theorem FUNCT_2:80. for f being Function of X, X holds f^{-1}Q \subset X.
Definition
   let X.
   let f be Function of X, X.
   let Q.
   redefine
         func f^{-1}Q \rightarrow Subset of X.
   Theorem FUNCT_2:81. for f being Function of X, X st rng f = X holds f(f^{-1}X) =
Х.
   Theorem FUNCT_2:82. for f being Function of X, X holds f^{-1}(f X) = X.
Definition
   let X.
         mode Permutation of X \rightarrow Function of X, X means it is 1-1 & rng it = X.
   Theorem FUNCT_2:83. for f being Function of X, X holds f is Permutation of X iff
f is 1-1 & rng f = X.
   Theorem FUNCT_2:84. for f being Permutation of X holds f is 1-1 & rng f = X.
   Theorem FUNCT_2:85. for f being Permutation of X for x1, x2 st x1 \in X & x2 \in X
& f.x1 = f.x2 holds x1 = x2.
Definition
   let X.
   let f, g be Permutation of X.
   redefine
```

func $g \cdot f \rightarrow Permutation of X.$

```
Definition
   let X.
   redefine
          func Id X \rightarrow Permutation of X.
Definition
   let X.
   let f be Permutation of X.
   redefine
          func f^{-1} \rightarrow Permutation of X.
   Theorem FUNCT_2:86. for f, g being Permutation of X st g \cdot f = g holds f = Id X.
   Theorem FUNCT_2:87. for f, g being Permutation of X st g \cdot f = \mathsf{Id} X holds g = f^{-1}.
   Theorem FUNCT_2:88. for f being Permutation of X holds (f^{-1}) \cdot f = \text{Id } X \& f \cdot (f^{-1})
= \mathsf{Id} X.
   Theorem FUNCT_2:89. for f being Permutation of X holds (f^{-1})^{-1} = f.
   Theorem FUNCT_2:90. for f, g being Permutation of X holds (g \cdot f)^{-1} = f^{-1} \cdot g^{-1}.
   Theorem FUNCT_2:91. for f being Permutation of X st P \cap Q = \emptyset holds f.P \cap f.Q = \emptyset
Ø.
   Theorem FUNCT_2:92. for f being Permutation of X st P \subseteq X holds f(f^{-1}P) = P
\& f^{-1}(f P) = P.
   Theorem FUNCT_2:93. for f being Permutation of X holds f P = (f^{-1})^{-1}P \& f^{-1}P
= (f^{-1}) P.
   reserve C, D, E for DOMAIN.
Definition
   let X, D, E.
   let f be Function of X, D.
   let g be Function of D, E.
   redefine
          func g \cdot f \rightarrow Function of X, E.
Definition
   let X, D.
   redefine
          mode Function of X, D means X = \text{dom it } \& \text{ rng it } \subseteq D.
   Theorem FUNCT_2:94. for f being Function of X, D holds dom f = X \& rng f \subset D.
   Theorem FUNCT_2:95. for f being Function st dom f = X \& rng f \subseteq D holds f is
Function of X, D.
   Theorem FUNCT 2:96. for f being Function of X, D st x \in X holds f.x \in D.
```

52

Theorem FUNCT 2:97. for f being Function of $\{x\}$, D holds f.x \in D.

Theorem FUNCT_2:98. for f1, f2 being Function of X, D st for x st $x \in X$ holds f1.x = f2.x holds f1 = f2.

Theorem FUNCT_2:99. for f being Function of X, D for g being Function of D, E st $x \in X$ holds $(g \cdot f) \cdot x = g \cdot (f \cdot x)$.

Theorem FUNCT_2:100. for f being Function of X, D holds $f \cdot (Id X) = f \& (Id D) \cdot f = f$.

Theorem FUNCT_2:101. for f being Function of X, D holds f is 1-1 iff for x1, x2 st $x1 \in X \& x2 \in X \& f.x1 = f.x2$ holds x1 = x2.

Theorem FUNCT_2:102. for f being Function of X, D for y holds $y \in f.P$ iff ex x st $x \in X \& x \in P \& y = f.x$.

Theorem FUNCT_2:103. for f being Function of X, D holds f.P \subseteq D.

Definition

let X, D.

let f **be** Function of X, D.

let P.

redefine

func $f.P \rightarrow Subset of D.$

Theorem FUNCT_2:104. for f being Function of X, D holds f.X = rng f.

Theorem FUNCT_2:105. for f being Function of X, D st f X = D holds rng(f) = D.

Theorem FUNCT_2:106. for f being Function of X, D for x holds $x \in f^{-1}Q$ iff $x \in X \& f.x \in Q$.

Theorem FUNCT_2:107. for f being Function of X, D holds $f^{-1}Q \subseteq X$.

Definition

let X, D.

let f be Function of X, D.

let Q.

redefine

func $f^{-1}Q \rightarrow Subset$ of X.

Theorem FUNCT_2:108. for f being Function of X, D holds $f^{-1}D = X$.

Theorem FUNCT_2:109. for f being Function of X, D holds (for y st $y \in D$ holds $f^{-1}{y} \neq \emptyset$) iff rng f = D.

Theorem FUNCT_2:110. for f being Function of X, D holds $f^{-1}(f X) = X$.

Theorem FUNCT_2:111. for f being Function of X, D st rng f = D holds $f_{\bullet}(f^{-1}D) = D$.

Theorem FUNCT_2:112. for f being Function of X, D for g being Function of D, E holds $f^{-1}Q \subseteq (g \cdot f)^{-1}(g \cdot Q)$.

reserve c, c1, c2 for Element of C.

reserve d, d1, d2 for Element of D.

Definition

let C, D.

let f be Function of C, D.

let c.

redefine

func f.c \rightarrow Element of D.

scheme FuncExD{C() \rightarrow DOMAIN, D() \rightarrow DOMAIN, P[Any, Any]}: ex f being Function of C(), D() st for x being Element of C() holds P[x, f.x] provided A1: for x being Element of C() ex y being Element of D() st P[x, y] and A2: for x being (Element of C()), y1, y2 being Element of D() st P[x, y1] & P[x, y2] holds y1 = y2.

scheme LambdaD{C() \rightarrow DOMAIN, D() \rightarrow DOMAIN, F((Element of C())) \rightarrow Element of D()}: ex f being Function of C(), D() st for x being Element of C() holds f.x = F(x).

Theorem FUNCT_2:113. for f1, f2 being Function of C, D st for c holds f1.c = f2.c holds f1 = f2.

Theorem FUNCT_2:114. (Id C).c = c.

Theorem FUNCT_2:115. for f being Function of C, D for g being Function of D, E holds $(g \cdot f).c = g.(f.c)$.

Theorem FUNCT_2:116. for f being Function of C, D for d holds $d \in f.P$ iff ex c st $c \in P \& d = f.c.$

Theorem FUNCT_2:117. for f being Function of C, D for c holds $c \in f^{-1}Q$ iff $f.c \in Q$.

Theorem FUNCT_2:118. for f1, f2 being Function of [X, Y], Z st Z $\neq \emptyset$ & for x, y st x $\in X$ & y $\in Y$ holds f1.[x, y] = f2.[x, y] holds f1 = f2.

Theorem FUNCT_2:119. for f being Function of [X, Y], Z st $x \in X \& y \in Y \& Z \neq \emptyset$ holds $f[x, y] \in Z$.

scheme FuncEx2{X() \rightarrow set, Y() \rightarrow set, Z() \rightarrow set, P[Any, Any, Any]}: ex f being Function of [X(), Y()], Z() st for x, y st $x \in X()$ & $y \in Y()$ holds P[x, y, f.[x, y]] provided A1: for x, y st $x \in X()$ & $y \in Y()$ ex z st $z \in Z()$ & P[x, y, z] and A2: for x, y, z1, z2 st $x \in X()$ & $y \in Y()$ & P[x, y, z1] & P[x, y, z2] holds z1 = z2.

scheme Lambda2{X() \rightarrow set, Y() \rightarrow set, Z() \rightarrow set, F(Any, Any) \rightarrow Any}: ex f being Function of [X(), Y()], Z() st for x, y st $x \in X()$ & $y \in Y()$ holds f.[x, y] = F(x, y) provided A: for x, y st $x \in X()$ & $y \in Y()$ holds $F(x, y) \in Z()$.

Theorem FUNCT_2:120. for f1, f2 being Function of [[C, D]], E st for c, d holds f1. [c, d] = f2.[c, d] holds f1 = f2.

54

Element of Y() holds P[x, y, f.[x, y]] provided A1: for x being Element of X() for y being Element of Y() ex z being Element of Z() st P[x, y, z] and A2: for x being Element of X() for y being Element of Y() for z1, z2 being Element of Z() st P[x, y, z1] & P[x, y, z2] holds z1 = z2.

 $\begin{array}{l} \textbf{scheme} \ Lambda2D\{X() \rightarrow \text{DOMAIN}, \ Y() \rightarrow \text{DOMAIN}, \ Z() \rightarrow \text{DOMAIN}, \ F((\text{Element} \ \textbf{of} \ X()), \ \text{Element} \ \textbf{of} \ Y()) \rightarrow \text{Element} \ \textbf{of} \ Z()\}: \ \textbf{ex} \ f \ \textbf{being} \ \text{Function} \ \textbf{of} \ \llbracket X(), \ Y() \rrbracket, \ Z() \ \textbf{st} \ \textbf{for} \ x \ \textbf{being} \ \text{Element} \ \textbf{of} \ X() \ \textbf{for} \ y \ \textbf{being} \ \text{Element} \ \textbf{of} \ Y() \ \textbf{holds} \ f.[x, \ y] = F(x, \ y). \end{array}$

Chapter 10

FUNCT_3

Basic Functions and Operations on Functions

by

Czesław Byliński¹

Warsaw University (Białystok)

Summary. We define the following mappings: the characteristic function of a subset of a set, the inclusion function (injection or embedding), the projections from a cartesian product onto its arguments and diagonal function (inclusion of a set into its cartesian square). Some operations on functions are also defined: the products of two functions (the complex function and the more general product-function), the function induced on power sets by the image and inverse-image. Some simple propositions related to the introduced notions are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE, BINOP, FUNC, FUNC_REL, REAL_1, FUNC3, and FAM_OP. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, and FUNCT_2.

reserve p, q, x, x1, x2, y, y1, y2, z, z1, z2 for Any. reserve A, B, V, X, X1, X2, Y, Y1, Y2, Z, P for set. reserve C, C1, C2, D, D1, D2 for DOMAIN. Theorem FUNCT_3:1. A \subseteq Y implies Id A = (Id Y) \uparrow A. Theorem FUNCT_3:2. for f, g being Function st X \subseteq dom (g·f) holds f.X \subseteq dom g.

¹Supported by RPBP.III-24.C1.

Theorem FUNCT_3:3. for f, g being Function st $X \subseteq \text{dom } f \& f \cdot X \subseteq \text{dom } g \text{ holds } X \subseteq \text{dom } (g \cdot f).$

Theorem FUNCT_3:4. for f, g being Function st $Y \subseteq rng (g \cdot f) \& g \text{ is } 1\text{-}1 \text{ holds } g^{-1}Y \subseteq rng f.$

Theorem FUNCT_3:5. for f, g being Function st $Y \subseteq \operatorname{rng} g \& g^{-1}Y \subseteq \operatorname{rng} f$ holds $Y \subseteq \operatorname{rng} (g \cdot f)$.

scheme FuncEx_3{A() \rightarrow set, B() \rightarrow set, P[Any, Any, Any]}: ex f being Function st dom f = [A(), B()] & for x, y st x \in A() & y \in B() holds P[x, y, f.[x, y]] provided A: for x, y, z1, z2 st x \in A() & y \in B() & P[x, y, z1] & P[x, y, z2] holds z1 = z2 and B: for x, y st x \in A() & y \in B() ex z st P[x, y, z].

scheme Lambda_3{A() \rightarrow set, B() \rightarrow set, F(Any, Any) \rightarrow Any}: ex f being Function st dom f = [A(), B()] & for x, y st $x \in A()$ & $y \in B()$ holds f.[x, y] = F(x, y).

Theorem FUNCT_3:6. for f, g being Function st dom f = [X, Y] & dom g = [X, Y]& for x, y st $x \in X$ & $y \in Y$ holds f[x, y] = g[x, y] holds f = g.

Definition

let f **be** Function.

 $\mathbf{func.}f \rightarrow \mathsf{Function}\ \mathbf{means}\ \mathsf{dom}\ \mathbf{it} = \mathsf{bool}\ \mathsf{dom}\ f\ \&\ \mathbf{for}\ X\ \mathbf{st}\ X \in \mathsf{bool}\ \mathsf{dom}\ f\ \mathbf{holds}$ $\mathbf{it.}X = \mathbf{f.}X.$

Theorem FUNCT_3:7. for f, g being Function holds g = f iff dom g = bool dom f & for X st X \in bool dom f holds g.X = f.X.

Theorem FUNCT 3:8. for f being Function st $X \in dom(.f)$ holds (.f) X = f X.

Theorem FUNCT_3:9. for f being Function holds $(.f).\emptyset = \emptyset$.

Theorem FUNCT_3:10. for f being Function holds rng (f) \subseteq bool rng f.

Theorem FUNCT_3:11. for f being Function holds $Y \in (.f)$. A iff ex X st $X \in dom$ (.f) & $X \in A$ & Y = (.f).X.

Theorem FUNCT_3:12. for f being Function holds (.f). $A \subseteq bool rng f$.

Theorem FUNCT_3:13. for f being Function holds $(.f)^{-1}B \subseteq$ bool dom f.

Theorem FUNCT_3:14. for f being Function of X, D holds $(f)^{-1}B \subseteq bool X$.

Theorem FUNCT 3:15. for f being Function holds $\bigcup ((.f) A) \subseteq f (\bigcup A)$.

Theorem FUNCT_3:16. for f being Function st $A \subseteq bool \text{ dom f holds } f_{\bullet}(\bigcup A) = \bigcup((.f) A)$.

Theorem FUNCT_3:17. for f being Function of X, D st $A \subseteq bool X$ holds $f_{\bullet}(\bigcup A) = \bigcup((.f) \cdot A)$.

Theorem FUNCT_3:18. for f being Function holds $\bigcup ((.f)^{-1}B) \subseteq f^{-1}(\bigcup B)$.

Theorem FUNCT_3:19. for f being Function st $B \subseteq \text{bool rng f holds } f^{-1}(\bigcup B) = \bigcup((.f)^{-1}B).$

Theorem FUNCT_3:20. for f, g being Function holds $(g \cdot f) = g \cdot f$.

Theorem FUNCT_3:21. for f being Function holds.f is Function of bool dom f, bool rng f.

Theorem FUNCT_3:22. for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds.f is Function of bool X, bool Y.

Definition

let X, D.

let f be Function of X, D.

redefine

func.f \rightarrow Function of bool X, bool D.

Definition

let f be Function.

 $\mathbf{func}^{-1}f \rightarrow \text{Function means dom it} = \text{bool rng } f \ \& \ \mathbf{for} \ Y \ \mathbf{st} \ Y \in \text{bool rng } f \ \mathbf{holds}$ $\mathbf{it}.Y = f^{-1}Y.$

Theorem FUNCT_3:23. for g, f being Function holds $g = {}^{-1}f$ iff dom g = bool rng f & for Y st Y \in bool rng f holds $g.Y = f^{-1}Y$.

Theorem FUNCT_3:24. for f being Function st $Y \in \text{dom}(^{-1}f)$ holds $(^{-1}f).Y = f^{-1}Y$. Theorem FUNCT_3:25. for f being Function holds rng $(^{-1}f) \subset \text{bool dom } f$.

Theorem FUNCT_3:26. for f being Function holds $X \in (^{-1}f)$. A iff ex Y st $Y \in dom$ (^{-1}f) & $Y \in A$ & $X = (^{-1}f)$. Y.

Theorem FUNCT 3:27. for f being Function holds $(^{-1}f) \cdot B \subseteq$ bool dom f.

Theorem FUNCT_3:28. for f being Function holds $(^{-1}f)^{-1}A \subseteq \text{bool rng } f$.

Theorem FUNCT_3:29. for f being Function holds $\bigcup((^{-1}f).B) \subseteq f^{-1}(\bigcup B)$.

Theorem FUNCT_3:30. for f being Function st $B \subseteq \text{bool rng f holds } \bigcup((^{-1}f).B) = f^{-1}(\bigcup B).$

Theorem FUNCT_3:31. for f being Function holds $\bigcup ((^{-1}f)^{-1}A) \subseteq f_{\bullet}(\bigcup A)$.

Theorem FUNCT_3:32. for f being Function st $A \subseteq bool \text{ dom } f \& f \text{ is 1-1 holds}$ $\bigcup((^{-1}f)^{-1}A) = f(\bigcup A).$

Theorem FUNCT_3:33. for f being Function holds $(^{-1}f) \cdot B \subseteq (.f)^{-1}B$.

Theorem FUNCT_3:34. for f being Function st f is 1-1 holds $(^{-1}f) B = (f)^{-1}B$.

Theorem FUNCT_3:35. for f being Function, A be set st $A \subseteq$ bool dom f holds $(^{-1}f)^{-1}A \subseteq (.f).A$.

Theorem FUNCT_3:36. for f being Function, A be set st f is 1-1 holds (.f).A $\subseteq (^{-1}f)^{-1}A$.

Theorem FUNCT_3:37. for f being Function, A be set st f is 1-1 & A \subseteq bool dom f holds $(^{-1}f)^{-1}A = (.f).A$.

Theorem FUNCT_3:38. for f, g being Function st g is 1-1 holds⁻¹(g·f) = $^{-1}f \cdot ^{-1}g$.

58

Theorem FUNCT_3:39. for f being Function $holds^{-1}f$ is Function of bool rng f, bool dom f.

Definition

let A, X.

func $\chi(A, X) \rightarrow$ Function means dom it = X & for x st x \in X holds (x $\in A$ implies it.x = 1) & (not x $\in A$ implies it.x = 0).

Theorem FUNCT_3:40. for f being Function holds $f = \chi(A, X)$ iff dom f = X & for x st x $\in X$ holds (x $\in A$ implies f.x = 1) & (not x $\in A$ implies f.x = 0).

Theorem FUNCT_3:41. $A \subseteq X \& x \in A$ implies $\chi(A, X).x = 1$.

Theorem FUNCT_3:42. $x \in X \& \chi(A, X).x = 1$ implies $x \in A$.

Theorem FUNCT_3:43. $x \in X \setminus A$ implies $\chi(A, X).x = 0$.

Theorem FUNCT_3:44. $x \in X \& \chi(A, X).x = 0$ implies not $x \in A$.

Theorem FUNCT_3:45. $x \in X$ implies $\chi(\emptyset, X).x = 0$.

Theorem FUNCT_3:46. $x \in X$ implies $\chi(X, X).x = 1$.

Theorem FUNCT_3:47. A \subseteq X & B \subseteq X & $\chi(A, X) = \chi(B, X)$ implies A = B.

Theorem FUNCT_3:48. rng $\chi(A, X) \subseteq \{0, 1\}$.

Theorem FUNCT_3:49. for f being Function of X, $\{0, 1\}$ holds $f = \chi(f^{-1}\{1\}, X)$. Definition

let A, X.

redefine

func $\chi(A, X) \rightarrow$ Function of X, $\{0, 1\}$.

Theorem FUNCT_3:50. for d being Element of D holds $\chi(A, D).d = 1$ iff $d \in A$.

Theorem FUNCT_3:51. for d being Element of D holds $\chi(A, D).d = 0$ iff not $d \in A$.

Definition

let Y.

let A be Subset of Y.

func incl (A) \rightarrow Function of A, Y means it = Id A.

Theorem FUNCT_3:52. for A being Subset of Y holds incl A = Id A.

Theorem FUNCT_3:53. for A being Subset of Y holds incl $A = (Id Y) \upharpoonright A$.

Theorem FUNCT_3:54. for A being Subset of Y holds dom incl A = A & rng incl A = A.

```
Theorem FUNCT_3:55. for A being Subset of Y st x \in A holds (incl A).x = x.
```

Theorem FUNCT_3:56. for A being Subset of Y st $x \in A$ holds incl (A). $x \in Y$.

Definition

let X, Y.

func $\pi_1(X, Y) \rightarrow$ Function means dom it = [X, Y] & for x, y st x $\in X$ & y \in Y holds it.[x, y] = x. func $\pi_2(X, Y) \rightarrow$ Function means dom it = [X, Y] & for x, y st x $\in X$ & y \in Y holds it.[x, y] = y. Theorem FUNCT_3:57. for f being Function holds $f = \pi_1(X, Y)$ iff dom f = [X, Y]& for x, y st $x \in X$ & $y \in Y$ holds f[x, y] = x. Theorem FUNCT_3:58. for f being Function holds $f = \pi_2(X, Y)$ iff dom f = [X, Y]& for x, y st $x \in X$ & $y \in Y$ holds f.[x, y] = y. Theorem FUNCT_3:59. rng $\pi_1(X, Y) \subseteq X$. Theorem FUNCT_3:60. $Y \neq \emptyset$ implies rng $\pi_1(X, Y) = X$. Theorem FUNCT_3:61. rng $\pi_2(X, Y) \subseteq Y$. Theorem FUNCT_3:62. $X \neq \emptyset$ implies $\operatorname{rng} \pi_2(X, Y) = Y$. Definition let X, Y. redefine func $\pi_1(X, Y) \rightarrow$ Function of [X, Y], X. func $\pi_2(X, Y) \rightarrow$ Function of [X, Y], Y. Theorem FUNCT_3:63. for d1 being Element of D1 for d2 being Element of D2 holds $\pi_1(D1, D2).[d1, d2] = d1.$ Theorem FUNCT_3:64. for d1 being Element of D1 for d2 being Element of D2 holds $\pi_2(D1, D2).[d1, d2] = d2.$ Definition let X. func $\delta(X) \rightarrow$ Function means dom it = X & for x st x \in X holds it x = [x, x].

Theorem FUNCT_3:65. for f being Function holds $f = \delta X$ iff dom f = X & for x st $x \in X$ holds f.x = [x, x].

Theorem FUNCT_3:66. rng $\delta X \subseteq [\![X, X]\!]$.

Definition

let X.

redefine

func $\delta(X) \rightarrow$ Function of X, [X, X].

Definition

let f, g be Function.

func $[(f, g)] \rightarrow$ Function means dom it = dom f \cap dom g & for x st x \in dom it holds it.x = [f.x, g.x].

Theorem FUNCT_3:67. for f, g, fg being Function holds fg = [(f, g)] iff dom $fg = dom f \cap dom g \& \text{ for } x \text{ st } x \in dom fg \text{ holds } fg.x = [f.x, g.x].$

Theorem FUNCT_3:68. for f, g being Function st $x \in \text{dom } f \cap \text{dom } g$ holds [(f, g)].x = [f.x, g.x].

Theorem FUNCT_3:69. for f, g being Function st dom $f = X \& dom g = X \& x \in X$ holds [(f, g)] x = [f.x, g.x].

Theorem FUNCT_3:70. for f, g being Function st dom f = X & dom g = X holds dom [f, g] = X.

Theorem FUNCT_3:71. for f, g being Function holds rng $[(f, g)] \subseteq [[rng f, rng g]]$.

Theorem FUNCT_3:72. for f, g being Function st dom f = dom g & rng f \subseteq Y & rng g \subseteq Z holds $\pi_1(Y, Z) \cdot [(f, g)] = f \& \pi_2(Y, Z) \cdot [(f, g)] = g.$

Theorem FUNCT_3:73. $[(\pi_1(X, Y), \pi_2(X, Y))] = Id [[X, Y]].$

Theorem FUNCT_3:74. for f, g, h, k being Function st dom f = dom g & dom k = dom h & [[f, g]] = [[k, h]] holds f = k & g = h.

Theorem FUNCT_3:75. for f, g, h being Function holds $[(f \cdot h, g \cdot h)] = [(f, g)] \cdot h$.

Theorem FUNCT_3:76. for f, g being Function holds $[(f, g)] A \subseteq [[f.A, g.A]]$.

Theorem FUNCT_3:77. for f, g being Function holds $[(f, g)]^{-1}[[B, C]] = f^{-1}B \cap g^{-1}C$.

Theorem FUNCT_3:78. for f being Function of X, Y for g being Function of X, Z st $(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } X = \emptyset) \text{ holds } [[f, g]] \text{ is Function of } X, [[Y, Z]].$ Definition

let X, D1, D2.

let f1 be Function of X, D1.

let f2 be Function of X, D2.

redefine

func $[(f1, f2)] \rightarrow$ Function of X, [D1, D2].

Theorem FUNCT_3:79. for f1 being Function of C, D1 for f2 being Function of C, D2 for c being Element of C holds [(f1, f2)].c = [f1.c, f2.c].

Theorem FUNCT_3:80. for f being Function of X, Y for g being Function of X, Z st $(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } X = \emptyset) \text{ holds rng } [(f, g)] \subseteq [[Y, Z]].$

Theorem FUNCT_3:81. for f being Function of X, Y for g being Function of X, Z st $(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } X = \emptyset) \text{ holds } \pi_1(Y, Z) \cdot [[f, g]] = f \& \pi_2(Y, Z) \cdot [[f, g]] = g.$

Theorem FUNCT_3:82. for f being Function of X, D1 for g being Function of X, D2 holds $\pi_1(D1, D2) \cdot [(f, g)] = f \& \pi_2(D1, D2) \cdot [(f, g)] = g.$

Theorem FUNCT_3:83. for f1, f2 being Function of X, Y for g1, g2 being Function of X, Z st $(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } X = \emptyset) \& [[f1, g1]] = [[f2, g2]] \text{ holds}$ f1 = f2 & g1 = g2.

Theorem FUNCT_3:84. for f1, f2 being Function of X, D1 for g1, g2 being Function of X, D2 st [[f1, g1]] = [[f2, g2]] holds f1 = f2 & g1 = g2.

Definition

let f, g be Function.

 $\mathbf{func} \ \llbracket f, \ g \rrbracket \to \mathsf{Function} \ \mathbf{means} \ \mathsf{dom} \ \mathbf{it} = \llbracket \mathsf{dom} \ f, \ \mathsf{dom} \ g \rrbracket \ \& \ \mathbf{for} \ x, \ y \ \mathbf{st} \ x \in \mathsf{dom} \ f \ \& \ y \in \mathsf{dom} \ g \ \mathbf{holds} \ \mathbf{it}.[x, \ y] = [f.x, \ g.y].$

Theorem FUNCT_3:85. for f, g, fg being Function holds fg = [f, g] iff dom fg = [dom f, dom g] & for x, y st x \in dom f & y \in dom g holds fg.[x, y] = [f.x, g.y].

Theorem FUNCT_3:86. for f, g being Function, x, y st $[x, y] \in [dom f, dom g]$ holds [f, g].[x, y] = [f.x, g.y].

Theorem FUNCT_3:87. for f, g being Function holds $\llbracket f, g \rrbracket = \llbracket f \cdot \pi_1 (\text{dom } f, \text{dom } g), g \cdot \pi_2 (\text{dom } f, \text{dom } g) \rrbracket$.

Theorem FUNCT_3:88. for f, g being Function holds rng [[f, g]] = [[rng f, rng g]].

Theorem FUNCT_3:89. for f, g being Function st dom $f = X \& \text{dom } g = X \text{ holds } [(f, g)] = [[f, g]] \cdot (\delta X).$

Theorem FUNCT_3:90. $\llbracket \mathsf{Id} X, \mathsf{Id} Y \rrbracket = \mathsf{Id} \llbracket X, Y \rrbracket$.

Theorem FUNCT_3:91. for f, g, h, k being Function holds $[\![f, h]\!] \cdot [\![g, k]\!] = [\![f \cdot g, h \cdot k]\!]$. Theorem FUNCT_3:92. for f, g, h, k being Function holds $[\![f, h]\!] \cdot [\![g, k]\!] = [\![f \cdot g, h \cdot k]\!]$.

Theorem FUNCT_3:93. for f, g being Function holds $[f, g] \cdot [B, C] = [f.B, g.C]$.

Theorem FUNCT_3:94. for f, g being Function holds $[\![f, g]\!]^{-1}[\![B, C]\!] = [\![f^{-1}B, g^{-1}C]\!]$. Theorem FUNCT_3:95. for f being Function of X, Y for g being Function of V, Z st $(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } V = \emptyset) \text{ holds } [\![f, g]\!] \text{ is Function of } [\![X, V]\!], [\![Y, Z]\!].$

Definition

```
let X1, X2, D1, D2.
```

```
let f1 be Function of X1, D1.
```

let f2 be Function of X2, D2.

redefine

func $\llbracket f1, f2 \rrbracket \rightarrow$ Function of $\llbracket X1, X2 \rrbracket, \llbracket D1, D2 \rrbracket$.

Theorem FUNCT_3:96. for f1 being Function of C1, D1 for f2 being Function of C2, D2 for c1 being Element of C1 for c2 being Element of C2 holds [f1, f2].[c1, c2] = [f1.c1, f2.c2].

Theorem FUNCT_3:97. for fl being Function of X1, Y1 for f2 being Function of X2, Y2 st $(Y1 = \emptyset \text{ implies } X1 = \emptyset) \& (Y2 = \emptyset \text{ implies } X2 = \emptyset) \text{ holds } [[f1, f2]] = [[f1 \cdot \pi_1(X1, X2), f2 \cdot \pi_2(X1, X2)]].$

Theorem FUNCT_3:98. for f1 being Function of X1, D1 for f2 being Function of X2, D2 holds $[[f1, f2]] = [[f1 \cdot \pi_1(X1, X2), f2 \cdot \pi_2(X1, X2)]].$

Theorem FUNCT_3:99. for f1 being Function of X, Y1 for f2 being Function of X, Y2 st $(Y1 = \emptyset \text{ implies } X = \emptyset) \& (Y2 = \emptyset \text{ implies } X = \emptyset) \text{ holds } [[f1, f2]] = [[f1, f2]] \cdot (\delta X).$

Theorem FUNCT_3:100. for f1 being Function of X, D1 for f2 being Function of X, D2 holds $[[f1, f2]] = [[f1, f2]] \cdot (\delta X)$.

Chapter 11

$BINOP_1$

Binary Operations.

by

Czesław Byliński¹

Warsaw University (Białystok)

Summary. In this paper we define binary and unary operations on domains. We also define the following predicates concerning the operations: is commutative, is associative, is the unity of, and is distributive wrt. A number of schemes useful in justifying the existence of the operations are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE, BINOP, FUNC, FUNC_REL, and COORD. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, and FUNCT_2.

Definition

 $\mathbf{let} \ \mathbf{f} \ \mathbf{be}$ Function.

 ${\bf let} \; {\rm a}, \; {\rm b} \; {\bf be} \; {\sf Any}.$

func $f.(a, b) \rightarrow Any$ means it = f.[a, b].

Theorem BINOP_1:1. for f being Function for a, b being Any holds $f_{\cdot}(a, b) = f_{\cdot}[a, b]$.

reserve A, B, C for DOMAIN.

¹Supported by RPBP.III-24.C1.

Definition

let A, B, C.
let f be Function of [[A, B]], C.
let a be Element of A.
let b be Element of B.
redefine

func $f.(a, b) \rightarrow \mathsf{Element} \ \mathbf{of} \ C.$

Theorem BINOP_1:2. for f1, f2 being Function of [A, B], C st for a being Element of A for b being Element of B holds f1.(a, b) = f2.(a, b) holds f1 = f2.

Definition

let A.

mode UnOp of $A \rightarrow$ Function of A, A means not contradiction.

mode BinOp of $A \rightarrow$ Function of $[\![A, A]\!]$, A means not contradiction.

Theorem BINOP_1:3. for f being Function of A, A holds f is UnOp of A.

reserve u, u' for UnOp of A.

Theorem BINOP_1:4. for f being Function of [[A, A]], A holds f is BinOp of A.

scheme $UnOpEx{A()} \rightarrow DOMAIN$, P[(Element of A()), Element of A()]: ex u being UnOp of A() st for x being Element of A() holds P[x, u.x] provided A1: for x being Element of A() ex y being Element of A() st P[x, y] and A2: for x, y1, y2 being Element of A() st P[x, y1] & P[x, y2] holds y1 = y2.

scheme UnOpLambda{A() \rightarrow DOMAIN, F((Element of A())) \rightarrow Element of A()}: ex u being UnOp of A() st for x being Element of A() holds u.x = F(x).

reserve o, o' for BinOp of A.

reserve a, a1, a2, b, b1, b2, c, e, e1, e2 for Element of A.

Definition

let A, o, a, b.

redefine

func $o.(a, b) \rightarrow \mathsf{Element}$ of A.

scheme $BinOpEx\{A() \rightarrow DOMAIN, P[(Element of A()), (Element of A()), Element of A()]\}$: ex o being BinOp of A() st for a, b being Element of A() holds P[a, b, o.(a, b)] provided A1: for x, y being Element of A() ex z being Element of A() st P[x, y, z] and A2: for x, y being Element of A() for z1, z2 being Element of A() st P[x, y, z1] & P[x, y, z2] holds z1 = z2.

scheme BinOpLambda{A() \rightarrow DOMAIN, O((Element of A()), Element of A()) \rightarrow Element of A()}: ex o being BinOp of A() st for a, b being Element of A() holds o.(a, b) = O(a, b). Definition

let A, o.

pred o is commutative means for a, b holds o.(a, b) = o.(b, a). pred o is associative means for a, b, c holds o.(a, o.(b, c)) = o.(o.(a, b), c). pred o is an idempotent means for a holds o.(a, a) = a.

```
Theorem BINOP_1:5. o is commutative iff for a, b holds o.(a, b) = o.(b, a).
```

Theorem BINOP_1:6. o is associative iff for a, b, c holds o.(a, o.(b, c)) = o.(o.(a, b), c).

```
Theorem BINOP_1:7. o is an idempotent iff for a holds o(a, a) = a.
```

Definition

let A, e, o.

pred e is a left unity wrt o means for a holds o.(e, a) = a.

pred e is a right unity wrt o means for a holds o.(a, e) = a.

Definition

let A, e, o.

 \mathbf{pred} e is a unity wrt o \mathbf{means} e is a left unity wrt o & e is a right unity wrt o.

Theorem BINOP_1:8. e is a left unity wrt o iff for a holds o(e, a) = a.

Theorem BINOP_1:9. e is a right unity wrt o iff for a holds o(a, e) = a.

Theorem BINOP_1:10. e is a unity wrt o iff e is a left unity wrt o & e is a right unity wrt o.

Theorem BINOP_1:11. e is a unity wrt o iff for a holds o.(e, a) = a & o.(a, e) = a.

Theorem BINOP_1:12. o is commutative implies (e is a unity wrt o iff for a holds o. (e, a) = a).

Theorem BINOP_1:13. o is commutative implies (e is a unity wrt o iff for a holds o. (a, e) = a).

Theorem BINOP_1:14. o is commutative **implies** (e is a unity wrt o **iff** e is a left unity wrt o).

Theorem BINOP_1:15. o is commutative **implies** (e is a unity wrt o **iff** e is a right unity wrt o).

Theorem BINOP_1:16. o is commutative **implies** (e is a left unity wrt o **iff** e is a right unity wrt o).

Theorem BINOP_1:17. e1 is a left unity wrt o & e2 is a right unity wrt o implies e1 = e2.

Theorem BINOP_1:18. e1 is a unity wrt o & e2 is a unity wrt o **implies** e1 = e2. Definition

let A, o.

 $\mathbf{assume} \ \mathbf{ex} \ \mathbf{e} \ \mathbf{st} \ \mathbf{e} \ \mathbf{is} \ \mathbf{a} \ \mathbf{unity} \ \mathbf{wrt} \ \mathbf{o}.$

func the unity wrt $o \rightarrow \mathsf{Element}$ of A means it is a unity wrt o.

Theorem BINOP_1:19. (ex e st e is a unity wrt o) implies for e holds e = the unity wrt o iff e is a unity wrt o.

Definition

let A, o', o.

pred o' is left distributive wrt o means for a, b, c holds o'.(a, o.(b, c)) = o.(o'. (a, b), o'.(a, c)).

pred o' is right distributive wrt o means for a, b, c holds o'.(o.(a, b), c) = o.(o'.(a, c), o'.(b, c)).

Definition

let A, o', o.

 \mathbf{pred} o' is distributive wrt o \mathbf{means} o' is left distributive wrt o & o' is right distributive wrt o.

Theorem BINOP_1:20. o' is left distributive wrt o **iff for** a, b, c **holds** o'.(a, o.(b, c)) = o.(o'.(a, b), o'.(a, c)).

Theorem BINOP_1:21. o' is right distributive wrt o iff for a, b, c holds o'.(o.(a, b), c) = o.(o'.(a, c), o'.(b, c)).

Theorem BINOP_1:22. o' is distributive wrt o iff o' is left distributive wrt o & o' is right distributive wrt o.

Theorem BINOP_1:23. o' is distributive wrt o **iff for** a, b, c **holds** o'.(a, o.(b, c)) = o. (o'.(a, b), o'.(a, c)) & o'.(o.(a, b), c) = o.(o'.(a, c), o'.(b, c)).

Theorem BINOP_1:24. o' is commutative implies (o' is distributive wrt o iff for a, b, c holds o'.(a, o.(b, c)) = o.(o'.(a, b), o'.(a, c))).

Theorem BINOP_1:25. o' is commutative implies (o' is distributive wrt o iff for a, b, c holds o'.(o.(a, b), c) = o.(o'.(a, c), o'.(b, c))).

Theorem BINOP_1:26. o' is commutative **implies** (o' is distributive wrt o **iff** o' is left distributive wrt o).

Theorem BINOP_1:27. o' is commutative **implies** (o' is distributive wrt o **iff** o' is right distributive wrt o).

Theorem BINOP_1:28. o' is commutative **implies** (o' is right distributive wrt o **iff** o' is left distributive wrt o).

Definition

let A, u, o.

pred u is distributive wrt o means for a, b holds u.(o.(a, b)) = o.((u.a), (u.b)).

Theorem BINOP_1:29. u is distributive wrt o iff for a, b holds u.(o.(a, b)) = o.((u.a), (u.b)).

$RELAT_1$

Relations and Their Basic Properties

by

Edmund Woronowicz¹

Warsaw University (Białystok)

Summary. We define here: mode Relation as a set of pairs, the domain, the codomain, and the field of relation; the empty and the identity relations, the composition of relations, the image and the inverse image of a set under a relation. Two predicates, = and \subseteq , and three functions, \cap , \cup , and \setminus are redefined. Basic facts about the above mentioned notions are presented.

The symbols used in this article are introduced in the following vocabularies: FAM_OP, BOOLE, REAL_1, FUNC_REL, and RELATION. The articles TARSKI and BOOLE provide the terminology and notation for this article.

reserve A, B, X, X1, X2, Y, Y1, Y2 for set.

reserve a, b, c, d, x, y, z for Any.

Definition

mode Relation \rightarrow set means $x \in it$ implies ex y, z st x = [y, z].

Theorem RELAT_1:1. for R being set st (for x st $x \in R$ holds ex y, z st x = [y, z]) holds R is Relation.

reserve P, P1, P2, Q, R, S for Relation.

¹Supported by RPBP.III-24.C1.

```
Theorem RELAT_1:2. x \in R implies ex y, z st x = [y, z].
    Theorem RELAT_1:3. A \subseteq R implies A is Relation.
    Theorem RELAT_1:4. \{[x, y]\} is Relation.
    Theorem RELAT_1:5. {[a, b], [c, d]} is Relation.
    Theorem RELAT_1:6. [X, Y] is Relation.
    scheme Rel_Existence{A() \rightarrow set, B() \rightarrow set, P[Any, Any]}: ex R being Relation st
for x, y holds [x, y] \in R iff x \in A() \& y \in B() \& P[x, y].
Definition
    let P, R.
    redefine
           pred P = R means for a, b holds [a, b] \in P iff [a, b] \in R.
    Theorem RELAT_1:7. P = R iff for a, b holds [a, b] \in P iff [a, b] \in R.
Definition
    let P, R.
    redefine
           func P \cap R \rightarrow \mathsf{Relation}.
           func P \cup R \rightarrow Relation.
           func P \setminus R \rightarrow \text{Relation}.
           pred P \subseteq R means for a, b holds [a, b] \in P implies [a, b] \in R.
    Theorem RELAT_1:8. P \subseteq R iff for a, b holds [a, b] \in P implies [a, b] \in R.
    Theorem RELAT_1:9. X \cap R is Relation & R \cap X is Relation.
    Theorem RELAT_1:10. R \setminus X is Relation.
Definition
    let R.
           func dom R \rightarrow set means x \in it iff ex y st [x, y] \in R.
    Theorem RELAT_1:11. X = dom R iff for x holds x \in X iff ex y st [x, y] \in R.
    Theorem RELAT_1:12. x \in \text{dom } R \text{ iff } ex y st [x, y] \in R.
    Theorem RELAT_1:13. dom (P \cup R) = \text{dom } P \cup \text{dom } R.
    Theorem RELAT_1:14. dom (P \cap R) \subseteq \text{dom } P \cap \text{dom } R.
    Theorem RELAT_1:15. dom P \setminus \text{dom } R \subseteq \text{dom } (P \setminus R).
Definition
    let R.
           func rng R \rightarrow set means y \in it iff ex x st [x, y] \in R.
    Theorem RELAT_1:16. X = rng R iff for x holds x \in X iff ex y st [y, x] \in R.
    Theorem RELAT_1:17. x \in \operatorname{rng} R iff ex y st [y, x] \in R.
```

```
Theorem RELAT_1:18. x \in \text{dom } R \text{ implies } ex y st y \in \text{rng } R.
    Theorem RELAT_1:19. y \in \operatorname{rng} R implies ex x st x \in \operatorname{dom} R.
    Theorem RELAT_1:20. [x, y] \in R implies x \in \text{dom } R \& y \in \text{rng } R.
    Theorem RELAT_1:21. R \subseteq [dom R, rng R].
    Theorem RELAT_1:22. \mathbb{R} \cap \llbracket \mathsf{dom} \ \mathbb{R}, \operatorname{rng} \ \mathbb{R} \rrbracket = \mathbb{R}.
    Theorem RELAT_1:23. R = \{[x, y]\} implies dom R = \{x\} & rng R = \{y\}.
    Theorem RELAT_1:24. R = \{[a, b], [x, y]\} implies dom R = \{a, x\} & rng R = \{b, a\}
y}.
    Theorem RELAT_1:25. P \subseteq R implies dom P \subseteq dom R \& rng P \subseteq rng R.
    Theorem RELAT_1:26. rng (P \cup R) = rng P \cup rng R.
    Theorem RELAT_1:27. rng (P \cap R) \subseteq rng P \caprng R.
    Theorem RELAT_1:28. rng P \setminus rng R \subseteq rng (P \setminus R).
Definition
    let R.
            func field R \rightarrow set means it = dom R \cup rng R.
    Theorem RELAT_1:29. field R = \text{dom } R \cup \text{rng } R.
    Theorem RELAT_1:30. [a, b] \in R implies a \in field R \& b \in field R.
    Theorem RELAT_1:31. P \subseteq R implies field P \subseteq field R.
    Theorem RELAT_1:32. R = \{[x, y]\} implies field R = \{x, y\}.
    Theorem RELAT_1:33. field (P \cup R) = field P \cup field R.
    Theorem RELAT_1:34. field (P \cap R) \subseteq field P \cap field R.
Definition
    let R.
            func \mathbb{R}^{\smile} \rightarrow \mathsf{Relation} means [x, y] \in \mathsf{it} iff [y, x] \in \mathbb{R}.
    Theorem RELAT_1:35. R = P^{\smile} iff for x, y holds [x, y] \in R iff [y, x] \in P.
    Theorem RELAT_1:36. [x, y] \in P^{\smile} iff [y, x] \in P.
    Theorem RELAT_1:37. (\mathbb{R}^{\smile})^{\smile} = \mathbb{R}.
    Theorem RELAT_1:38. field R = field (R^{\sim}).
    Theorem RELAT_1:39. (P \cap R)^{\smile} = P^{\smile} \cap R^{\smile}.
    Theorem RELAT_1:40. (P \cup R)^{\smile} = P^{\smile} \cup R^{\smile}.
    Theorem RELAT_1:41. (P \setminus R)^{\smile} = P^{\smile} \setminus R^{\smile}.
Definition
    let P, R.
            func P \cdot R \rightarrow \text{Relation means } [x, y] \in \text{it iff ex } z \text{ st } [x, z] \in P \& [z, y] \in R.
```

Theorem RELAT_1:42. $Q = P \cdot R$ iff for x, y holds $[x, y] \in Q$ iff ex z st $[x, z] \in P$ & $[z, y] \in R$.

```
Theorem RELAT_1:43. [x, y] \in P \cdot R iff ex z st [x, z] \in P & [z, y] \in R.
     Theorem RELAT_1:44. dom (P \cdot R) \subset \text{dom } P.
     Theorem RELAT_1:45. rng (P \cdot R) \subseteq rng R.
     Theorem RELAT_1:46. rng R \subseteq \text{dom } P implies dom (R \cdot P) = \text{dom } R.
     Theorem RELAT_1:47. dom P \subseteq \operatorname{rng} R implies \operatorname{rng} (R \cdot P) = \operatorname{rng} P.
     Theorem RELAT_1:48. P \subseteq R implies Q \cdot P \subseteq Q \cdot R.
     Theorem RELAT_1:49. P \subseteq Q implies P \cdot R \subseteq Q \cdot R.
     Theorem RELAT_1:50. P \subseteq R \& Q \subseteq S implies P \cdot Q \subseteq R \cdot S.
     Theorem RELAT_1:51. P \cdot (R \cup Q) = (P \cdot R) \cup (P \cdot Q).
     Theorem RELAT_1:52. P \cdot (R \cap Q) \subseteq (P \cdot R) \cap (P \cdot Q).
     Theorem RELAT_1:53. (P \cdot R) \setminus (P \cdot Q) \subseteq P \cdot (R \setminus Q).
     Theorem RELAT_1:54. (P \cdot R)^{\smile} = R^{\smile} \cdot P^{\smile}.
     Theorem RELAT_1:55. (P \cdot R) \cdot Q = P \cdot (R \cdot Q).
Definition
              func \emptyset \rightarrow Relation means not [x, y] \in it.
     Theorem RELAT_1:56. R = \emptyset iff for x, y holds not [x, y] \in R.
     Theorem RELAT_1:57. not [x, y] \in \emptyset.
     Theorem RELAT_1:58. \emptyset \subseteq [[A, B]].
     Theorem RELAT_1:59. \emptyset \subset \mathbb{R}.
     Theorem RELAT_1:60. dom \emptyset = \emptyset & rng \emptyset = \emptyset.
     Theorem RELAT_1:61. \emptyset \cap \mathbf{R} = \emptyset \& \ \emptyset \cup \mathbf{R} = \mathbf{R}.
     Theorem RELAT_1:62. \emptyset \cdot \mathbf{R} = \emptyset \& \mathbf{R} \cdot \emptyset = \emptyset.
     Theorem RELAT_1:63. \mathbf{R} \cdot \mathbf{\emptyset} = \mathbf{\emptyset} \cdot \mathbf{R}.
     Theorem RELAT_1:64. dom R = \emptyset or rng R = \emptyset implies R = \emptyset.
     Theorem RELAT_1:65. dom R = \emptyset iff rng R = \emptyset.
     Theorem RELAT_1:66. \emptyset \subset = \emptyset.
     Theorem RELAT_1:67. rng R\capdom P = \emptyset implies R\cdotP = \emptyset.
Definition
     let X.
              func \triangle X \rightarrow \text{Relation means} [x, y] \in \text{it iff } x \in X \& x = y.
     Theorem RELAT_1:68. P = \triangle X iff for x, y holds [x, y] \in P iff x \in X \& x = y.
     Theorem RELAT_1:69. [x, y] \in \triangle X iff x \in X \& x = y.
```

Theorem RELAT_1:70. $x \in X$ iff $[x, x] \in \Delta X$.

Theorem RELAT_1:71. dom $\triangle X = X \& \text{ rng } \triangle X = X$. Theorem RELAT_1:72. $(\triangle X)^{\smile} = \triangle X$. Theorem RELAT_1:73. (for x st $x \in X$ holds $[x, x] \in R$) implies $\Delta X \subseteq R$. Theorem RELAT_1:74. $[x, y] \in (\triangle X) \cdot R$ iff $x \in X \& [x, y] \in R$. Theorem RELAT_1:75. $[x, y] \in \mathbb{R} \cdot \triangle Y$ iff $y \in Y$ & $[x, y] \in \mathbb{R}$. Theorem RELAT_1:76. $R \cdot (\Delta X) \subseteq R \& (\Delta X) \cdot R \subseteq R$. Theorem RELAT_1:77. dom $R \subset X$ implies $(\Delta X) \cdot R = R$. Theorem RELAT_1:78. ($\triangle dom R$) $\cdot R = R$. Theorem RELAT_1:79. rng $R \subseteq Y$ implies $R \cdot (\triangle Y) = R$. Theorem RELAT_1:80. $R \cdot (\triangle rng R) = R$. Theorem RELAT_1:81. $\Delta \emptyset = \emptyset$. Theorem RELAT_1:82. dom $R = X \& rng P2 \subseteq X \& P2 \cdot R = \triangle(dom P1) \& R \cdot P1 =$ $\triangle X \text{ implies } P1 = P2.$ Theorem RELAT_1:83. dom $R = X \& rng P2 = X \& P2 \cdot R = \triangle(dom P1) \& R \cdot P1 =$ $\triangle X \text{ implies } P1 = P2.$ Definition let R, X. **func** $R \upharpoonright X \rightarrow \text{Relation means } [x, y] \in \text{it iff } x \in X \& [x, y] \in R.$ Theorem RELAT_1:84. $P = R \upharpoonright X$ iff for x, y holds $[x, y] \in P$ iff $x \in X \& [x, y] \in R$. Theorem RELAT_1:85. $[x, y] \in R \upharpoonright X$ iff $x \in X \& [x, y] \in R$. Theorem RELAT_1:86. $x \in \text{dom}(R \upharpoonright X)$ iff $x \in X \& x \in \text{dom} R$. Theorem RELAT_1:87. dom $(R \upharpoonright X) \subseteq X$. Theorem RELAT_1:88. $R \upharpoonright X \subseteq R$. Theorem RELAT_1:89. dom $(R \upharpoonright X) \subseteq \text{dom } R$. Theorem RELAT_1:90. dom $(R \upharpoonright X) = \text{dom } R \cap X$. Theorem RELAT_1:91. $X \subseteq \text{dom } R$ implies dom $(R \upharpoonright X) = X$. Theorem RELAT_1:92. $(R \upharpoonright X) \cdot P \subseteq R \cdot P$. Theorem RELAT_1:93. $P \cdot (R \upharpoonright X) \subseteq P \cdot R$. Theorem RELAT_1:94. $R \upharpoonright X = (\triangle X) \cdot R$. Theorem RELAT_1:95. $R \upharpoonright X = \emptyset iff (dom R) \cap X = \emptyset$. Theorem RELAT_1:96. $R \upharpoonright X = R \cap [X, \operatorname{rng} R]$. Theorem RELAT_1:97. dom $R \subseteq X$ implies $R \upharpoonright X = R$. Theorem RELAT_1:98. $R \mid dom R = R$. Theorem RELAT_1:99. rng $(R \upharpoonright X) \subseteq$ rng R. Theorem RELAT_1:100. $(R \upharpoonright X) \upharpoonright Y = R \upharpoonright (X \cap Y)$.

```
Theorem RELAT_1:101. (R \upharpoonright X) \upharpoonright X = R \upharpoonright X.
      Theorem RELAT_1:102. X \subseteq Y implies (R \upharpoonright X) \upharpoonright Y = R \upharpoonright X.
     Theorem RELAT_1:103. Y \subseteq X implies (R \upharpoonright X) \upharpoonright Y = R \upharpoonright Y.
     Theorem RELAT_1:104. X \subseteq Y implies R \upharpoonright X \subseteq R \upharpoonright Y.
      Theorem RELAT_1:105. P \subseteq R implies P \upharpoonright X \subseteq R \upharpoonright X.
      Theorem RELAT_1:106. P \subseteq R \& X \subseteq Y implies P \upharpoonright X \subseteq R \upharpoonright Y.
      Theorem RELAT_1:107. R \upharpoonright (X \cup Y) = (R \upharpoonright X) \cup (R \upharpoonright Y).
      Theorem RELAT_1:108. R \upharpoonright (X \cap Y) = (R \upharpoonright X) \cap (R \upharpoonright Y).
      Theorem RELAT_1:109. R \upharpoonright (X \smallsetminus Y) = R \upharpoonright X \smallsetminus R \upharpoonright Y.
      Theorem RELAT_1:110. R \upharpoonright \emptyset = \emptyset.
     Theorem RELAT_1:111. \emptyset \upharpoonright X = \emptyset.
      Theorem RELAT_1:112. (P \cdot R) \upharpoonright X = (P \upharpoonright X) \cdot R.
Definition
     let Y, R.
                func Y \upharpoonright R \rightarrow \text{Relation means } [x, y] \in \text{it iff } y \in Y \& [x, y] \in R.
     Theorem RELAT_1:113. P = Y \upharpoonright R iff for x, y holds [x, y] \in P iff y \in Y \& [x, y] \in R.
      Theorem RELAT_1:114. [x, y] \in Y \upharpoonright R iff y \in Y \& [x, y] \in R.
      Theorem RELAT_1:115. y \in \operatorname{rng}(Y \upharpoonright R) iff y \in Y \& y \in \operatorname{rng} R.
      Theorem RELAT_1:116. rng (Y \upharpoonright R) \subseteq Y.
     Theorem RELAT_1:117. Y \upharpoonright R \subseteq R.
      Theorem RELAT_1:118. rng (Y \upharpoonright R) \subseteq rng R.
      Theorem RELAT_1:119. rng (Y \upharpoonright R) = rng R \cap Y.
      Theorem RELAT_1:120. Y \subseteq \operatorname{rng} R implies \operatorname{rng} (Y \upharpoonright R) = Y.
      Theorem RELAT_1:121. (Y \upharpoonright R) \cdot P \subseteq R \cdot P.
      Theorem RELAT_1:122. P \cdot (Y \upharpoonright R) \subset P \cdot R.
      Theorem RELAT_1:123. Y \upharpoonright R = R \cdot (\bigtriangleup Y).
     Theorem RELAT_1:124. Y \upharpoonright R = R \cap \llbracket \mathsf{dom} R, Y \rrbracket.
      Theorem RELAT_1:125. rng R \subseteq Y implies Y \upharpoonright R = R.
      Theorem RELAT_1:126. rng R \upharpoonright R = R.
      Theorem RELAT_1:127. Y \upharpoonright (X \upharpoonright R) = (Y \cap X) \upharpoonright R.
      Theorem RELAT_1:128. Y \upharpoonright (Y \upharpoonright R) = Y \upharpoonright R.
      Theorem RELAT_1:129. X \subseteq Y implies Y \upharpoonright (X \upharpoonright R) = X \upharpoonright R.
      Theorem RELAT_1:130. Y \subset X implies Y \upharpoonright (X \upharpoonright R) = Y \upharpoonright R.
     Theorem RELAT_1:131. X \subseteq Y implies X \upharpoonright R \subseteq Y \upharpoonright R.
      Theorem RELAT_1:132. P1 \subset P2 implies Y|P1 \subset Y|P2.
```

```
Theorem RELAT_1:133. P1 \subseteq P2 & Y1 \subseteq Y2 implies Y1|P1 \subseteq Y2|P2.
    Theorem RELAT_1:134. (X \cup Y) \upharpoonright R = (X \upharpoonright R) \cup (Y \upharpoonright R).
    Theorem RELAT_1:135. (X \cap Y) \upharpoonright R = X \upharpoonright R \cap Y \upharpoonright R.
    Theorem RELAT_1:136. (X \setminus Y) \upharpoonright R = X \upharpoonright R \setminus Y \upharpoonright R.
    Theorem RELAT_1:137. \emptyset \upharpoonright \mathbf{R} = \emptyset.
    Theorem RELAT_1:138. Y \mid \emptyset = \emptyset.
    Theorem RELAT_1:139. Y \upharpoonright (P \cdot R) = P \cdot (Y \upharpoonright R).
    Theorem RELAT_1:140. (Y \upharpoonright R) \upharpoonright X = Y \upharpoonright (R \upharpoonright X).
Definition
    let R, X.
             func R.X \rightarrow set means y \in it iff ex x st [x, y] \in R \& x \in X.
    Theorem RELAT_1:141. Y = R.X iff for y holds y \in Y iff ex x st [x, y] \in R \& x \in
Х.
    Theorem RELAT_1:142. y \in R.X iff ex x st [x, y] \in R \& x \in X.
    Theorem RELAT_1:143. y \in R.X iff ex x st x \in dom R \& [x, y] \in R \& x \in X.
    Theorem RELAT_1:144. R_X \subseteq \operatorname{rng} R.
    Theorem RELAT_1:145. R_X = R_1(\text{dom } R \cap X).
    Theorem RELAT_1:146. R.dom R = rng R.
    Theorem RELAT_1:147. R X \subseteq R (dom R).
    Theorem RELAT_1:148. rng (R \upharpoonright X) = R \cdot X.
    Theorem RELAT_1:149. \mathbf{R}_{\bullet} \emptyset = \emptyset.
    Theorem RELAT_1:150. \emptyset.X = \emptyset.
    Theorem RELAT_1:151. R X = \emptyset iff dom R \cap X = \emptyset.
    Theorem RELAT_1:152. X \neq \emptyset \& X \subseteq \text{dom } R \text{ implies } R X \neq \emptyset.
    Theorem RELAT_1:153. R_{\bullet}(X \cup Y) = R_{\bullet}X \cup R_{\bullet}Y.
    Theorem RELAT_1:154. R_{\bullet}(X \cap Y) \subseteq R_{\bullet}X \cap R_{\bullet}Y.
    Theorem RELAT_1:155. R_X \setminus R_Y \subseteq R_I(X \setminus Y).
    Theorem RELAT_1:156. X \subseteq Y implies R.X \subseteq R.Y.
    Theorem RELAT_1:157. P \subseteq R implies P.X \subseteq R.X.
    Theorem RELAT_1:158. P \subseteq R \& X \subseteq Y implies P X \subseteq R Y.
    Theorem RELAT_1:159. (P \cdot R) \cdot X = R \cdot (P \cdot X).
    Theorem RELAT_1:160. rng (P \cdot R) = R \cdot (rng P).
    Theorem RELAT_1:161. (R \upharpoonright X) \cdot Y \subseteq R \cdot Y.
    Theorem RELAT_1:162. R \upharpoonright X = \emptyset iff (dom R) \cap X = \emptyset.
    Theorem RELAT_1:163. (dom R)\capX \subset (R\sim).(R.X).
```

```
Definition
    let R, Y.
           func R^{-1}Y \rightarrow set means x \in it iff ex y st [x, y] \in R \& y \in Y.
    Theorem RELAT_1:164. X = R^{-1}Y iff for x holds x \in X iff ex y st [x, y] \in R \& y
\in \mathbf{Y}.
    Theorem RELAT_1:165. x \in R^{-1}Y iff ex y st [x, y] \in R \& y \in Y.
    Theorem RELAT_1:166. x \in R^{-1}Y iff ex y st y \in rng R \& [x, y] \in R \& y \in Y.
    Theorem RELAT_1:167. R^{-1}Y \subseteq \text{dom } R.
    Theorem RELAT_1:168. R^{-1}Y = R^{-1}(\operatorname{rng} R \cap Y).
    Theorem RELAT_1:169. R^{-1} rng R = \text{dom } R.
    Theorem RELAT_1:170. R^{-1}Y \subset R^{-1} rng R.
    Theorem RELAT_1:171. R^{-1} \emptyset = \emptyset.
    Theorem RELAT_1:172. \emptyset^{-1}Y = \emptyset.
    Theorem RELAT_1:173. R^{-1}Y = \emptyset iff rng R \cap Y = \emptyset.
    Theorem RELAT_1:174. Y \neq \emptyset \& Y \subseteq \text{rng } R \text{ implies } R^{-1}Y \neq \emptyset.
    Theorem RELAT_1:175. R^{-1}(X \cup Y) = R^{-1}X \cup R^{-1}Y.
    Theorem RELAT_1:176. R^{-1}(X \cap Y) \subset R^{-1}Y \cap R^{-1}Y.
    Theorem RELAT_1:177. R^{-1}X \setminus R^{-1}Y \subseteq R^{-1}(X \setminus Y).
    Theorem RELAT_1:178. X \subseteq Y implies R^{-1}X \subseteq R^{-1}Y.
    Theorem RELAT_1:179. P \subseteq R implies P^{-1}Y \subseteq R^{-1}Y.
    Theorem RELAT_1:180. P \subseteq R \& X \subseteq Y implies P^{-1}X \subseteq R^{-1}Y.
    Theorem RELAT_1:181. (P \cdot R)^{-1}Y = P^{-1}(R^{-1}Y).
    Theorem RELAT_1:182. dom (P \cdot R) = P^{-1}(\text{dom } R).
    Theorem RELAT_1:183. (rng R)\capY \subseteq (R\sim)<sup>-1</sup>(R<sup>-1</sup>Y).
```

75

GRFUNC_1

Graphs of Functions.

by

Czesław Byliński ¹

Warsaw University (Białystok)

Summary. The graph of a function is defined in *Functions and their Basic Properties* (FUNCT_1). In this paper the graph of a function is redefined as a Relation. Operations on functions are interpreted as the corresponding operations on relations. Some theorems about graphs of functions are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE, REAL_1, FUNC_REL, RELATION, and FUNC. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, and RELAT_1.

reserve X, X1, X2, Y, Y1, Y2, Z, Z1, Z2 for set, p, x, x1, x2, y, y1, y2, z, z1, z2 for Any.

reserve f, f1, f2, g, g1, g2, h, h1, h2 for Function.

Definition

let f.

redefine

 \mathbf{func} graph $f \rightarrow$ Relation.

¹Supported by RPBP.III-24.C1.

Theorem GRFUNC_1:1. for R being Relation st for x, y1, y2 st $[x, y1] \in R \& [x, y2] \in R$ holds y1 = y2 holds ex f st graph f = R.

Theorem GRFUNC_1:2. $y \in \text{rng f iff ex x st } [x, y] \in \text{graph f.}$

Theorem GRFUNC_1:3. dom graph f = dom f & rng graph f = rng f.

Theorem GRFUNC_1:4. graph $f \subseteq [dom f, rng f]$.

Theorem GRFUNC_1:5. (for x, y holds $[x, y] \in \text{graph } f1 \text{ iff } [x, y] \in \text{graph } f2) \text{ implies}$ f1 = f2.

Theorem GRFUNC_1:6. for G being set st $G \subseteq$ graph f holds ex g st graph g = G.

Theorem GRFUNC_1:7. graph $f \subseteq$ graph g implies dom $f \subseteq$ dom g & rng $f \subseteq$ rng g.

Theorem GRFUNC_1:8. graph $f \subseteq$ graph g iff dom $f \subseteq$ dom g & (for $x \text{ st } x \in$ dom f holds f.x = g.x).

Theorem GRFUNC_1:9. dom $f = \text{dom } g \& \text{ graph } f \subseteq \text{graph } g \text{ implies } f = g.$

Theorem GRFUNC_1:11. (graph f)·(graph g) = graph (g·f).

Theorem GRFUNC_1:12. $[x, z] \in \mathsf{graph}(g \cdot f)$ implies $[x, f.x] \in \mathsf{graph} f \& [f.x, z] \in \mathsf{graph} g$.

Theorem GRFUNC_1:13. graph $h \subseteq$ graph f implies graph $(g \cdot h) \subseteq$ graph $(g \cdot f)$ & graph $(h \cdot g) \subseteq$ graph $(f \cdot g)$.

Theorem GRFUNC_1:14. graph $g_2 \subseteq$ graph $g_1 \&$ graph $f_2 \subseteq$ graph f_1 implies graph $(g_2 \cdot f_2) \subseteq$ graph $(g_1 \cdot f_1)$.

Theorem GRFUNC_1:15. ex f st graph $f = \{[x, y]\}$.

Theorem GRFUNC_1:16. graph $f = \{[x, y]\}$ implies f.x = y.

Theorem GRFUNC_1:17. graph $f = \{[x, y]\}$ implies dom $f = \{x\}$ & rng $f = \{y\}$.

Theorem GRFUNC_1:18. dom $f = \{x\}$ implies graph $f = \{[x, f.x]\}$.

Theorem GRFUNC_1:19. (ex f st graph $f = \{[x1, y1], [x2, y2]\}$) iff (x1 = x2 implies y1 = y2).

Theorem GRFUNC_1:20. ex f st graph $f = \emptyset$.

Theorem GRFUNC_1:21. graph $f = \emptyset$ implies dom $f = \emptyset$ & rng $f = \emptyset$.

Theorem GRFUNC_1:22. rng $f = \emptyset$ or dom $f = \emptyset$ implies graph $f = \emptyset$.

Theorem GRFUNC_1:23. rng f \cap dom g = \emptyset implies graph (g·f) = \emptyset .

Theorem GRFUNC_1:24. graph $g = \emptyset$ implies graph $(g \cdot f) = \emptyset$ & graph $(f \cdot g) = \emptyset$.

Theorem GRFUNC_1:25. f is 1-1 iff for x1, x2, y st $[x1, y] \in \text{graph } f \& [x2, y] \in \text{graph } f$ holds x1 = x2.

Theorem GRFUNC_1:26. graph $g \subseteq$ graph f & f is 1-1 implies g is 1-1.

Theorem GRFUNC_1:27. (ex g st graph $g = graph f \cap X$) & (ex g st graph $g = X \cap graph f$).

Theorem GRFUNC_1:28. graph $h = graph f \cap graph g$ implies dom $h \subseteq dom f \cap dom g$ & rng h \subseteq rng f \cap rng g. Theorem GRFUNC_1:29. graph $h = graph \ f \cap graph \ g \& x \in dom \ h \ implies \ h.x = f.x$ & h.x = g.x.Theorem GRFUNC_1:30. (f is 1-1 or g is 1-1) & graph $h = graph f \cap graph g$ implies h is 1-1. Theorem GRFUNC_1:31. dom $f \cap dom g = \emptyset$ implies ex h st graph $h = graph f \cup graph$ g. Theorem GRFUNC_1:32. graph $f \subseteq$ graph h & graph $g \subseteq$ graph h implies ex h1 st graph $h1 = graph f \cup graph g$. Theorem GRFUNC_1:33. graph $h = graph(f) \cup graph(g)$ implies dom $h = dom f \cup dom$ $g \& rng h = rng f \cup rng g.$ Theorem GRFUNC_1:34. $x \in \text{dom } f \& \text{ graph } h = \text{graph } f \cup \text{graph } g \text{ implies } h.x = f.x.$ Theorem GRFUNC_1:35. $x \in \text{dom g }\&$ graph $h = \text{graph } f \cup \text{graph g implies } h.x = g.x.$ Theorem GRFUNC-1:36. $x \in \text{dom } h \& \text{ graph } h = \text{graph } f \cup \text{graph } g \text{ implies } h.x = f.x$ or h.x = g.x. Theorem GRFUNC_1:37. f is 1-1 & g is 1-1 & graph $h = graph f \cup graph g \& rng f \cap rng$ $g = \emptyset$ implies h is 1-1. Theorem GRFUNC_1:38. ex g st graph $g = graph (f) \setminus X$. Theorem GRFUNC_1:39. $[x, y] \in \text{graph} \text{ Id } (X) \text{ iff } x \in X \& x = y.$ Theorem GRFUNC_1:40. graph Id $X = \triangle X$. Theorem GRFUNC_1:41. $x \in X$ iff $[x, x] \in graph Id (X)$. Theorem GRFUNC_1:42. $[x, y] \in \text{graph}$ (f·ld (X)) iff $x \in X \& [x, y] \in \text{graph}$ f. Theorem GRFUNC_1:43. $[x, y] \in \text{graph} (\mathsf{Id} (Y) \cdot f) \text{ iff } [x, y] \in \text{graph} f \& y \in Y.$ Theorem GRFUNC_1:44. graph (f·ld (X)) \subseteq graph f & graph (ld (X)·f) \subseteq graph (f). Theorem GRFUNC_1:45. graph ld $\emptyset = \emptyset$. Theorem GRFUNC_1:46. graph $f = \emptyset$ implies f is 1-1. Theorem GRFUNC_1:47. f is 1-1 implies for x, y holds $[y, x] \in \text{graph}(f^{-1})$ iff [x, y] \in graph f. Theorem GRFUNC_1:48. f is 1-1 implies graph $(f^{-1}) = (\text{graph } f)^{\smile}$. Theorem GRFUNC_1:49. graph $f = \emptyset$ implies graph $(f^{-1}) = \emptyset$. Theorem GRFUNC_1:50. $[x, y] \in \text{graph}(f \mid X)$ iff $x \in X \& [x, y] \in \text{graph} f$. Theorem GRFUNC_1:51. graph $(f \mid X) = (graph f) \mid X$. Theorem GRFUNC_1:52. $x \in \text{dom } f \& x \in X \text{ iff } [x, f.x] \in \text{graph } (f | X).$ Theorem GRFUNC_1:53. graph $(f \upharpoonright X) \subseteq$ graph f. Theorem GRFUNC-1:54. graph $((f|X) \cdot h) \subset$ graph $(f \cdot h)$ & graph $(g \cdot (f|X)) \subset$ graph $(\mathbf{g} \cdot \mathbf{f}).$

Theorem GRFUNC_1:55. graph $(f|X) = \text{graph } (f) \cap \llbracket X, \text{ rng } f \rrbracket$.

Theorem GRFUNC_1:56. $X \subseteq Y$ implies graph $(f \upharpoonright X) \subseteq$ graph $(f \upharpoonright Y)$.

Theorem GRFUNC_1:57. graph f1 \subseteq graph f2 implies graph (f1 \upharpoonright X) \subseteq graph (f2 \upharpoonright X).

Theorem GRFUNC_1:58. graph f1 \subseteq graph f2 & X1 \subseteq X2 implies graph (f1|X1) \subseteq graph (f2|X2).

```
Theorem GRFUNC_1:59. graph (f \upharpoonright (X \cup Y)) = graph (f \upharpoonright X) \cup graph (f \upharpoonright Y).
```

```
Theorem GRFUNC_1:60. graph (f \upharpoonright (X \cap Y)) = graph (f \upharpoonright X) \cap graph (f \upharpoonright Y).
```

Theorem GRFUNC_1:61. graph $(f \upharpoonright (X \setminus Y)) = \text{graph } (f \upharpoonright X) \setminus \text{graph } (f \upharpoonright Y).$

Theorem GRFUNC_1:62. graph $(f|\emptyset) = \emptyset$.

Theorem GRFUNC_1:63. graph $f = \emptyset$ implies graph $(f | X) = \emptyset$.

Theorem GRFUNC_1:64. graph $g \subseteq$ graph f implies fdom g = g.

Theorem GRFUNC_1:65. $[x, y] \in \mathsf{graph}(Y | f)$ iff $y \in Y \& [x, y] \in \mathsf{graph} f$.

Theorem GRFUNC_1:66. graph (Y | f) = Y | (graph f).

Theorem GRFUNC_1:67. $x \in \text{dom } f \& f.x \in Y \text{ iff } [x, f.x] \in \text{graph } (Y | f).$

Theorem GRFUNC_1:68. graph $(Y \upharpoonright f) \subseteq$ graph (f).

Theorem GRFUNC_1:69. graph $((Y \restriction f) \cdot h) \subseteq$ graph $(f \cdot h)$ & graph $(g \cdot (Y \restriction f)) \subseteq$ graph $(g \cdot f)$.

Theorem GRFUNC_1:70. graph $(Y | f) = \text{graph} (f) \cap \llbracket \text{dom } f, Y \rrbracket$.

Theorem GRFUNC_1:71. $X \subseteq Y$ implies graph $(X \upharpoonright f) \subseteq$ graph $(Y \upharpoonright f)$.

Theorem GRFUNC_1:72. graph f1 \subseteq graph f2 implies graph (Y|f1) \subseteq graph (Y|f2).

Theorem GRFUNC_1:73. graph f1 \subseteq graph f2 & Y1 \subseteq Y2 implies graph (Y1|f1) \subseteq graph (Y2|f2).

Theorem GRFUNC_1:74. graph $((X \cup Y) \restriction f) = \text{graph} (X \restriction f) \cup \text{graph} (Y \restriction f)$.

Theorem GRFUNC_1:75. graph $((X \cap Y) | f) = \text{graph} (X | f) \cap \text{graph} (Y | f)$.

Theorem GRFUNC_1:76. graph $((X \setminus Y) | f) = \text{graph} (X | f) \setminus \text{graph} (Y | f)$.

Theorem GRFUNC_1:77. graph $(\emptyset | f) = \emptyset$.

Theorem GRFUNC_1:78. graph $f = \emptyset$ implies graph $(Y | f) = \emptyset$.

```
Theorem GRFUNC_1:79. graph g \subseteq graph f & f is 1-1 implies rng g \restriction f = g.
```

Theorem GRFUNC_1:80. $y \in f.X$ iff ex x st $[x, y] \in graph f \& x \in X$.

Theorem GRFUNC_1:81. f.X = (graph f).X.

Theorem GRFUNC_1:82. graph $f = \emptyset$ implies $f X = \emptyset$.

Theorem GRFUNC_1:83. graph f1 \subseteq graph f2 implies f1.X \subseteq f2.X.

Theorem GRFUNC_1:84. graph f1 \subseteq graph f2 & X1 \subseteq X2 implies f1.X1 \subseteq f2.X2.

Theorem GRFUNC_1:85. $x \in f^{-1}Y$ iff ex y st $[x, y] \in graph f \& y \in Y$.

Theorem GRFUNC_1:86. $f^{-1}Y = (graph f)^{-1}Y$.

Theorem GRFUNC_1:87. $x \in f^{-1}Y$ iff $[x, f.x] \in graph f \& f.x \in Y$. Theorem GRFUNC_1:88. graph $f = \emptyset$ implies $f^{-1}Y = \emptyset$.

Theorem GRFUNC_1:89. graph f1 \subseteq graph f2 implies f1⁻¹Y \subseteq f2⁻¹Y.

Theorem GRFUNC_1:90. graph f1 \subseteq graph f2 & Y1 \subseteq Y2 implies f1⁻¹Y1 \subseteq f2⁻¹Y2.

$RELAT_2$

Properties of Binary Relations

by

Edmund Woronowicz¹ Warsaw University (Białystok)

Anna Zalewska²

Warsaw University (Białystok)

Summary. The paper contains definitions of some properties of binary relations: reflexivity, irreflexivity, symmetry, asymmetry, antisymmetry, connectedness, strong connectedness, and transitivity. Basic theorems relating the above mentioned notions are given.

The symbols used in this article are introduced in the following vocabularies: BOOLE, REAL_1, FUNC_REL, RELATION, and REL_REL. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, and RELAT_1.

reserve X, Y for set. reserve a, b, c, x, y, z for Any. reserve P, R for Relation. Definition

let R, X.

¹Supported by RPBP.III-24.C1.

²Supported by RPBP.III-24.C1.

pred R is reflexive in X means $x \in X$ implies $[x, x] \in R$.

pred R is irreflexive in X means $x \in X$ implies not $[x, x] \in R$.

pred R is symmetric in X means $x \in X \& y \in X \& [x, y] \in R$ implies $[y, x] \in$

pred R is antisymmetric in X means $x \in X \& y \in X \& [x, y] \in R \& [y, x] \in R$ implies x = y.

 $\mathbf{pred}\ R \ \text{is asymmetric in } X \ \mathbf{means}\ x \in X \ \& \ y \in X \ \& \ [x, \ y] \in R \ \mathbf{implies \ not} \ [y, \ x] \in R.$

pred R is connected in X means $x \in X \& y \in X \& x \neq y$ implies $[x, y] \in R$ or $[y, x] \in R$.

 $\mathbf{pred}\ R \text{ is strongly connected in } X \ \mathbf{means}\ x \in X \ \& \ y \in X \ \mathbf{implies}\ [x,\ y] \in R \ \mathbf{or} \\ [y,\ x] \in R.$

pred R is transitive in X means $x \in X \& y \in X \& z \in X \& [x, y] \in R \& [y, z] \in R$ implies $[x, z] \in R$.

Theorem RELAT_2:1. R is reflexive in X iff for $x \text{ st } x \in X \text{ holds } [x, x] \in R$.

Theorem RELAT_2:2. R is irreflexive in X iff for x st $x \in X$ holds not $[x, x] \in R$.

Theorem RELAT_2:3. R is symmetric in X iff for x, y st $x \in X \& y \in X \& [x, y] \in R$ holds $[y, x] \in R$.

Theorem RELAT_2:4. R is antisymmetric in X iff for x, y st $x \in X \& y \in X \& [x, y] \in R \& [y, x] \in R$ holds x = y.

Theorem RELAT_2:5. R is asymmetric in X iff for x, y st $x \in X \& y \in X \& [x, y] \in R$ holds not $[y, x] \in R$.

Theorem RELAT_2:6. R is connected in X iff for x, y st $x \in X \& y \in X \& x \neq y$ holds $[x, y] \in R$ or $[y, x] \in R$.

Theorem RELAT_2:7. R is strongly connected in X iff for x, y st $x \in X \& y \in X$ holds $[x, y] \in R$ or $[y, x] \in R$.

Theorem RELAT_2:8. R is transitive in X iff for x, y, z st $x \in X \& y \in X \& z \in X \& [x, y] \in R \& [y, z] \in R$ holds $[x, z] \in R$.

Definition

let R.

pred R is reflexive means R is reflexive in field R.

pred R is irreflexive means R is irreflexive in field R.

pred R is symmetric means R is symmetric in field R.

pred R is antisymmetric means R is antisymmetric in field R.

pred R is asymmetric means R is asymmetric in field R.

pred R is connected means R is connected in field R.

pred R is strongly connected means R is strongly connected in field R.

R.

pred R is transitive means R is transitive in field R.

Theorem RELAT_2:9. R is reflexive iff R is reflexive in field R.

Theorem RELAT_2:10. R is irreflexive iff R is irreflexive in field R.

Theorem RELAT_2:11. R is symmetric iff R is symmetric in field R.

Theorem RELAT_2:12. R is antisymmetric iff R is antisymmetric in field R.

Theorem RELAT_2:13. R is asymmetric iff R is asymmetric in field R.

Theorem RELAT_2:14. R is connected iff R is connected in field R.

Theorem RELAT_2:15. R is strongly connected iff R is strongly connected in field R.

Theorem RELAT_2:16. R is transitive iff R is transitive in field R.

Theorem RELAT_2:17. R is reflexive iff \triangle field R \subseteq R.

Theorem RELAT_2:18. R is irreflexive iff \triangle (field R) \cap R = \emptyset .

Theorem RELAT_2:19. R is antisymmetric in X iff $R \setminus \Delta X$ is asymmetric in X.

Theorem RELAT_2:20. R is asymmetric in X implies $R \cup \triangle X$ is antisymmetric in X.

Theorem RELAT_2:21. R is antisymmetric in X implies $R \setminus \Delta X$ is asymmetric in X.

Theorem RELAT_2:22. R is symmetric & R is transitive implies R is reflexive.

Theorem RELAT_2:23. $\triangle X$ is symmetric & $\triangle X$ is transitive.

Theorem RELAT_2:24. $\triangle X$ is antisymmetric & $\triangle X$ is reflexive.

Theorem RELAT_2:25. R is irreflexive & R is transitive implies R is asymmetric.

Theorem RELAT_2:26. R is asymmetric **implies** R is irreflexive & R is antisymmetric.

Theorem RELAT_2:27. R is reflexive implies R^{\sim} is reflexive.

Theorem RELAT_2:28. R is irreflexive implies R^{\sim} is irreflexive.

Theorem RELAT 2:29. R is reflexive implies dom $R = \text{dom}(R^{\sim}) \& \text{rng } R = \text{rng}(R^{\sim})$.

Theorem RELAT 2:30. R is symmetric iff $R = R^{\smile}$.

Theorem RELAT_2:31. P is reflexive & R is reflexive implies $P \cup R$ is reflexive & $P \cap R$ is reflexive.

Theorem RELAT_2:32. P is irreflexive & R is irreflexive implies $P \cup R$ is irreflexive & $P \cap R$ is irreflexive.

Theorem RELAT_2:33. P is irreflexive **implies** $P \setminus R$ is irreflexive.

Theorem RELAT_2:34. R is symmetric implies R^{\sim} is symmetric.

Theorem RELAT_2:35. P is symmetric & R is symmetric **implies** $P \cup R$ is symmetric & $P \cap R$ is symmetric.

Theorem RELAT_2:36. R is asymmetric **implies** R^{\sim} is asymmetric.

Theorem RELAT_2:37. P is asymmetric & R is asymmetric **implies** $P \cap R$ is asymmetric.

Theorem RELAT_2:38. P is asymmetric **implies** $P \ R$ is asymmetric.

Theorem RELAT_2:39. R is antisymmetric iff $R \cap (R^{\sim}) \subseteq \triangle(\text{dom } R)$.

Theorem RELAT_2:40. R is antisymmetric implies R^{\smile} is antisymmetric.

Theorem RELAT_2:41. P is antisymmetric implies $P \cap R$ is antisymmetric & $P \setminus R$ is antisymmetric.

Theorem RELAT_2:42. R is transitive implies R^{\sim} is transitive.

Theorem RELAT_2:43. P is transitive & R is transitive implies $P \cap R$ is transitive.

Theorem RELAT 2:44. R is transitive iff $R \cdot R \subseteq R$.

Theorem RELAT_2:45. R is connected iff [field R, field R] $\land \triangle$ (field R) $\subseteq R \cup R^{\smile}$.

Theorem RELAT_2:46. R is strongly connected implies R is connected & R is reflexive.

Theorem RELAT_2:47. R is strongly connected iff [[field R, field R]] = $R \cup R^{\smile}$.

RELSET_1

Relations Defined on Sets

by

Edmund Woronowicz¹

Warsaw University (Białystok)

Summary. The article includes theorems concerning properties of relations defined as a subset of the Cartesian product of two sets (mode Relation of X,Y where X,Y are sets). Some notions, introduced in RELAT_1 such as domain, codomain, field of a relation, composition of relations, image and inverse image of a set under a relation are redefined.

The symbols used in this article are introduced in the following vocabularies: FAM_OP, BOOLE, REAL_1, FUNC_REL, and RELATION. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, and RELAT_1.

reserve A, B, X, X1, X2, Y, Y1, Y2, Z, W for set.

reserve a, b, c, d, x, y, z for Any.

Definition

let X, Y.

mode Relation of X, $Y \rightarrow$ Relation means it $\subseteq [X, Y]$.

Theorem RELSET_1:1. for R being Relation holds $R \subseteq [X, Y]$ iff R is Relation of X, Y.

¹Supported by RPBP.III-24.C1.

```
reserve P, P1, P2, Q, R for Relation of X, Y.
   Theorem RELSET_1:2. A \subseteq R implies A \subseteq [X, Y].
   Theorem RELSET_1:3. A \subseteq [X, Y] implies A is Relation of X, Y.
   Theorem RELSET_1:4. A \subseteq R implies A is Relation of X, Y.
   Theorem RELSET_1:5. [X, Y] is Relation of X, Y.
   Theorem RELSET_1:6. a \in R implies ex x, y st a = [x, y] & x \in X & y \in Y.
   Theorem RELSET_1:7. [x, y] \in R implies x \in X \& y \in Y.
   Theorem RELSET_1:8. x \in X \& y \in Y implies \{[x, y]\} is Relation of X, Y.
   Theorem RELSET_1:9. for R being Relation st dom R \subseteq X holds R is Relation of
X, rng R.
   Theorem RELSET_1:10. for R being Relation st rng R \subseteq Y holds R is Relation of
dom R, Y.
   Theorem RELSET_1:11. for R being Relation st dom R \subseteq X \& \text{ rng } R \subseteq Y holds R
is Relation of X, Y.
   Theorem RELSET_1:12. dom R \subseteq X \& \text{ rng } R \subseteq Y.
   Theorem RELSET_1:13. dom R \subseteq X1 implies R is Relation of X1, Y.
   Theorem RELSET_1:14. rng R \subseteq Y1 implies R is Relation of X, Y1.
   Theorem RELSET_1:15. X \subseteq X1 implies R is Relation of X1, Y.
   Theorem RELSET_1:16. Y \subset Y1 implies R is Relation of X, Y1.
   Theorem RELSET_1:17. X \subseteq X1 \& Y \subseteq Y1 implies R is Relation of X1, Y1.
Definition
   let X, Y, P, R.
   redefine
          func P \cup R \rightarrow \text{Relation of } X, Y.
          func P \cap R \rightarrow \text{Relation of } X, Y.
          func P \setminus R \rightarrow \text{Relation of } X, Y.
   Theorem RELSET_1:18. \mathbb{R} \cap [\![X, Y]\!] = \mathbb{R}.
Definition
   let X, Y, R.
   redefine
          func dom R \rightarrow Subset of X.
          func rng R \rightarrow Subset of Y.
   Theorem RELSET_1:19. field R \subset X \cup Y.
   Theorem RELSET_1:20. for R being Relation holds R is Relation of dom R, rng R.
   Theorem RELSET_1:21. dom R \subset X1 & rng R \subset Y1 implies R is Relation of X1, Y1.
   Theorem RELSET_1:22. (for x st x \in X ex y st [x, y] \in R) iff dom R = X.
```

```
Theorem RELSET_1:23. (for y st y \in Y ex x st [x, y] \in R) iff rng R = Y.
Definition
    let X, Y, R.
    redefine
            func \mathbb{R}^{\smile} \to \mathsf{Relation} of Y, X.
Definition
    let X, Y, Z.
    let P be Relation of X, Y.
    let R be Relation of Y, Z.
    redefine
            func P \cdot R \rightarrow \text{Relation of } X, Z.
    Theorem RELSET_1:24. dom (R^{\sim}) = \operatorname{rng} R \& \operatorname{rng} (R^{\sim}) = \operatorname{dom} R.
    Theorem RELSET_1:25. Øis Relation of X, Y.
    Theorem RELSET_1:26. R is Relation of \emptyset, Y implies R = \emptyset.
    Theorem RELSET_1:27. R is Relation of X, \emptyset implies R = \emptyset.
    Theorem RELSET_1:28. \triangle X \subseteq [X, X].
    Theorem RELSET_1:29. \triangle X is Relation of X, X.
    Theorem RELSET_1:30. \triangle A \subseteq R implies A \subseteq dom R \& A \subseteq rng R.
    Theorem RELSET_1:31. \triangle X \subseteq R implies X = \text{dom } R \& X \subseteq \text{rng } R.
    Theorem RELSET_1:32. \triangle Y \subseteq R implies Y \subseteq dom R \& Y = rng R.
Definition
    let X, Y, R, A.
    redefine
            func R \upharpoonright A \rightarrow \mathsf{Relation} of X, Y.
Definition
    let X, Y, B, R.
    redefine
            func B \upharpoonright R \rightarrow \text{Relation of } X, Y.
    Theorem RELSET_1:33. R \upharpoonright X1 is Relation of X1, Y.
    Theorem RELSET_1:34. X \subseteq X1 implies R \upharpoonright X1 = R.
    Theorem RELSET_1:35. Y1 is Relation of X, Y1.
    Theorem RELSET_1:36. Y \subseteq Y1 implies Y1 \upharpoonright R = R.
Definition
    let X, Y, R, A.
    redefine
            func R A \rightarrow Subset of Y.
```

func $R^{-1}A \rightarrow Subset of X$.

Theorem RELSET_1:37. R.A \subseteq Y & R⁻¹A \subseteq X.

Theorem RELSET_1:38. R.X = rng R & $R^{-1}Y = \text{dom } R$.

Theorem RELSET_1:39. $R_{\bullet}(R^{-1}Y) = \operatorname{rng} R \& R^{-1}(R_{\bullet}X) = \operatorname{dom} R.$

scheme Rel_On_Set_Ex{A() \rightarrow set, B() \rightarrow set, P[Any, Any]}: ex R being Relation of A(), B() st for x, y holds [x, y] \in R iff $x \in$ A() & $y \in$ B() & P[x, y].

Definition

let X.

mode Relation of $X \to Relation$ of X, X **means** it $\subseteq [X, X]$.

Theorem RELSET_1:40. for R being Relation of X, X holds $R \subseteq [X, X]$ iff R is Relation of X.

reserve P, Q, R for Relation of X.

Theorem RELSET_1:41. [X, X] is Relation of X.

Theorem RELSET_1:42. for R being Relation of X, X st dom R = X & rng R = X holds R is Relation of X.

Theorem RELSET_1:43. $\triangle X$ is Relation of X.

Theorem RELSET_1:44. $\triangle X \subseteq R$ implies X = dom R & X = rng R.

Theorem RELSET_1:45. $\mathbf{R} \cdot (\Delta \mathbf{X}) = \mathbf{R} \& (\Delta \mathbf{X}) \cdot \mathbf{R} = \mathbf{R}$.

reserve D, D1, D2, E, E1, F for DOMAIN.

```
reserve P, P1, Q, R for Relation of D, E.
```

```
reserve a, x, x1 for Element of D.
```

```
reserve b, y, y1 for Element of E.
```

```
reserve c, z for Element of F.
```

```
Theorem RELSET_1:46. \triangle D \neq \emptyset.
```

Definition

let D, E, R.

redefine

func dom $R \rightarrow \mathsf{Element}$ of bool D.

func rng $R \rightarrow \text{Element of bool } E$.

Theorem RELSET_1:47. for x being Element of D holds $x \in \text{dom } R$ iff ex y being Element of E st $[x, y] \in R$.

Theorem RELSET_1:48. for y being Element of E holds $y \in rng R$ iff ex x being Element of D st $[x, y] \in R$.

Theorem RELSET_1:49. for x being Element of D holds $x \in \text{dom } R$ implies ex y being Element of E st $y \in \text{rng } R$.

Theorem RELSET_1:50. for y being Element of E holds $y \in rng R$ implies ex x being Element of D st $x \in dom R$.

Theorem RELSET_1:51. for P being (Relation of D, E), R being (Relation of E, F) for x being (Element of D), z being Element of F holds $[x, z] \in P \cdot R$ iff ex y being Element of E st $[x, y] \in P \& [y, z] \in R$.

Definition

let D, E, R, D1.

redefine

 $\mathbf{func} \ \mathrm{R}\textbf{.}\mathrm{D1} \to \mathsf{Element} \ \mathbf{of} \ \mathsf{bool} \ \mathrm{E}.$

func $R^{-1}D1 \rightarrow \text{Element of bool } D$.

Theorem RELSET_1:52. $y \in R.D1$ iff ex x being Element of D st $[x, y] \in R \& x \in D1$.

Theorem RELSET_1:53. $x \in R^{-1}D2$ iff ex y being Element of E st $[x, y] \in R \& y \in D2$.

scheme Rel_On_Dom_Ex{A() \rightarrow DOMAIN, B() \rightarrow DOMAIN, P[Any, Any]}: ex R being Relation of A(), B() st for x being (Element of A()), y being Element of B() holds [x, y] \in R iff x \in A() & y \in B() & P[x, y].

WELLORD1

The Well Ordering Relations

by

Grzegorz Bancerek¹

Warsaw University (Białystok)

Summary. Some theorems about well ordering relations are proved. The goal of the article is to prove that any two well ordering relations are either isomorphic or one of them is isomorphic to a segment of the other. The following concepts are defined: the segment of a relation induced by an element, well founded relations, well ordering relations, the restriction of a relation to a set, and the isomorphism of two relations. A number of simple facts is presented.

The symbols used in this article are introduced in the following vocabularies: BOOLE, FAM_OP, REAL_1, FUNC_REL, RELATION, REL_REL, WELLORD, and FUNC. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, RELAT_1, RELAT_2, and FUNCT_1.

 ${\bf reserve}~a,~b,~c,~d,~e,~x,~y,~z$ for Any, X, Y, Z for set.

scheme Extensionality{A() \rightarrow set, B() \rightarrow set, P[Any]}: A() = B() provided A: for a holds $a \in A()$ iff P[a] and B: for a holds $a \in B()$ iff P[a].

reserve R, S, T for Relation.

Definition

let R, a.

¹Supported by RPBP.III-24.C1.

func R-Seg(a) \rightarrow set means $x \in it iff x \neq a \& [x, a] \in R$.

Theorem WELLORD1:1. for R, Y, a holds Y = R-Seg(a) iff for b holds $b \in Y$ iff $b \neq a \& [b, a] \in R$.

Theorem WELLORD1:2. $x \in field R \text{ or } R\text{-}Seg(x) = \emptyset$.

Definition

let R.

pred R is well founded means for Y st $Y \subseteq$ field R & $Y \neq \emptyset$ ex a st $a \in Y$ & R-Seg $(a) \cap Y = \emptyset$.

let X.

pred R is well founded in X means for Y st $Y \subseteq X \& Y \neq \emptyset$ ex a st $a \in Y \&$ R-Seg $(a) \cap Y = \emptyset$.

Theorem WELLORD1:3. for R holds R is well founded iff for Y st Y \subseteq field R & Y $\neq \emptyset$ ex a st $a \in Y$ & R-Seg(a) $\cap Y = \emptyset$.

Theorem WELLORD1:4. for R, X holds R is well founded in X iff for Y st $Y \subseteq X \& Y \neq \emptyset$ ex a st $a \in Y \& R$ -Seg $(a) \cap Y = \emptyset$.

Theorem WELLORD1:5. R is well founded iff R is well founded in field R.

Definition

let R.

 $\mathbf{pred} \ R$ is well-ordering-relation $\mathbf{means} \ R$ is reflexive & R is transitive & R is antisymmetric & R is connected & R is well founded.

let X.

 $\mathbf{pred} \ R$ well orders X $\mathbf{means} \ R$ is reflexive in X & R is transitive in X & R is antisymmetric in X & R is connected in X & R is well founded in X.

Theorem WELLORD1:6. for R holds R is well-ordering-relation iff R is reflexive & R is transitive & R is antisymmetric & R is connected & R is well founded.

Theorem WELLORD1:7. for R, X holds R well orders X iff R is reflexive in X & R is transitive in X & R is antisymmetric in X & R is connected in X & R is well founded in X.

Theorem WELLORD1:8. R well orders field R iff R is well-ordering-relation.

Theorem WELLORD1:9. R well orders X implies for Y st $Y \subseteq X \& Y \neq \emptyset$ ex a st a $\in Y \&$ for b st b $\in Y$ holds [a, b] $\in \mathbb{R}$.

Theorem WELLORD1:10. R is well-ordering-relation implies for Y st Y \subseteq field R & Y $\neq \emptyset$ ex a st $a \in Y$ & for b st $b \in Y$ holds $[a, b] \in R$.

Theorem WELLORD1:11. for R st R is well-ordering-relation & field $R \neq \emptyset$ ex a st a \in field R & for b st b \in field R holds $[a, b] \in R$.

Theorem WELLORD1:12. for R st R is well-ordering-relation & field $R \neq \emptyset$ for a st a \in field R holds (for b st b \in field R holds [b, a] \in R) or (ex b st b \in field R & [a, b] \in R & for c st c \in field R & [a, c] \in R holds c = a or [b, c] \in R).

reserve F, G, H for Function.

Theorem WELLORD1:13. R-Seg(a) \subseteq field R.

Definition

let R, Y.

func $R \upharpoonright^2 Y \rightarrow \mathsf{Relation} \ \mathbf{means} \ \mathbf{it} = R \cap \llbracket Y, \ Y \rrbracket.$

Theorem WELLORD1:14. $\mathbb{R}^{2} \mathbb{Y} = \mathbb{R} \cap [\![\mathbb{Y}, \mathbb{Y}]\!]$.

Theorem WELLORD1:15. $\mathbb{R}^{2}X \subseteq \mathbb{R} \& \mathbb{R}^{2}X \subseteq [\![X, X]\!]$.

Theorem WELLORD1:16. $x \in \mathbb{R} \upharpoonright^2 X$ iff $x \in \mathbb{R} \& x \in [X, X]$.

Theorem WELLORD1:17. $R \upharpoonright^2 X = X \upharpoonright R \upharpoonright X$.

Theorem WELLORD1:18. $R \upharpoonright^2 X = X \upharpoonright (R \upharpoonright X)$.

Theorem WELLORD1:19. $x \in field (R \upharpoonright^2 X)$ implies $x \in field R \& x \in X$.

Theorem WELLORD1:20. field $(R \uparrow^2 X) \subseteq$ field R & field $(R \uparrow^2 X) \subseteq X$.

Theorem WELLORD1:21. $(R \uparrow^2 X)$ -Seg $(a) \subseteq R$ -Seg(a).

Theorem WELLORD1:22. R is reflexive **implies** $R \upharpoonright^2 X$ is reflexive.

Theorem WELLORD1:23. R is connected implies $R \upharpoonright^2 Y$ is connected.

Theorem WELLORD1:24. R is transitive **implies** $R|^2Y$ is transitive.

Theorem WELLORD1:25. R is antisymmetric **implies** $R|^2Y$ is antisymmetric.

Theorem WELLORD1:26. $(R \upharpoonright^2 X) \upharpoonright^2 Y = R \upharpoonright^2 (X \cap Y).$

Theorem WELLORD1:27. $(R \uparrow^2 X) \uparrow^2 Y = (R \uparrow^2 Y) \uparrow^2 X.$

Theorem WELLORD1:28. $(R \uparrow^2 Y) \uparrow^2 Y = R \uparrow^2 Y$.

Theorem WELLORD1:29. $Z \subseteq Y$ implies $(R \upharpoonright^2 Y) \upharpoonright^2 Z = R \upharpoonright^2 Z$.

Theorem WELLORD1:30. $R \upharpoonright^2 field R = R$.

Theorem WELLORD1:31. R is well founded implies $R \upharpoonright^2 X$ is well founded.

Theorem WELLORD1:32. R is well-ordering-relation implies $R|^2Y$ is well-ordering-relation.

Theorem WELLORD1:33. R is well-ordering-relation implies $R-Seg(a) \subseteq R-Seg(b)$ or $R-Seg(b) \subseteq R-Seg(a)$.

Theorem WELLORD1:34. R is well-ordering-relation **implies** $R \upharpoonright^2(R-Seg(a))$ is well-ordering-relation.

Theorem WELLORD1:35. R is well-ordering-relation & $a \in field R \& b \in R-Seg(a)$ implies $(R\uparrow^2(R-Seg(a)))-Seg(b) = R-Seg(b)$.

Theorem WELLORD1:36. R is well-ordering-relation & $Y \subseteq$ field R **implies** (Y = field R **or** (ex a st a \in field R & Y = R-Seg(a)) iff for a st a \in Y for b st [b, a] \in R holds b \in Y).

Theorem WELLORD1:37. R is well-ordering-relation & $a \in field R \& b \in field R implies$ ([a, b] $\in R$ iff R-Seg(a) $\subseteq R$ -Seg(b)).

92

Theorem WELLORD1:38. R is well-ordering-relation & $a \in field R \& b \in field R implies$ (R-Seg(a) \subseteq R-Seg(b) iff a = b or $a \in R$ -Seg(b)).

Theorem WELLORD1:39. R is well-ordering-relation & $X \subseteq$ field R **implies** field (R|²X) = X.

Theorem WELLORD1:40. R is well-ordering-relation implies field $(R|^2R-Seg(a)) = R-Seg(a)$.

Theorem WELLORD1:41. R is well-ordering-relation implies for Z st for a st $a \in$ field R & R-Seg(a) \subseteq Z holds $a \in$ Z holds field R \subseteq Z.

Theorem WELLORD1:42. R is well-ordering-relation & $a \in field R \& b \in field R \& (for c st c \in R-Seg(a) holds [c, b] \in R \& c \neq b) implies [a, b] \in R.$

Theorem WELLORD1:43. R is well-ordering-relation & dom F = field R & rng F \subseteq field R & (for a, b st [a, b] \in R & a \neq b holds [F.a, F.b] \in R & F.a \neq F.b) implies for a st a \in field R holds [a, F.a] \in R.

Definition

let R, S, F.

pred F is isomorphism of R, S means dom F = field R & rng F = field S & F is 1-1 & for a, b holds $[a, b] \in R$ iff $a \in field R \& b \in field R \& [F.a, F.b] \in S$.

Theorem WELLORD1:44. F is isomorphism of R, S iff dom $F = field R \& rng F = field S \& F is 1-1 \& for a, b holds [a, b] \in R iff a \in field R \& b \in field R \& [F.a, F.b] \in S.$

Theorem WELLORD1:45. F is isomorphism of R, S implies for a, b st [a, b] $\in \mathbb{R}$ & $a \neq b$ holds [F.a, F.b] $\in S$ & F.a \neq F.b.

Definition

let \mathbf{R} , \mathbf{S} .

pred R, S are isomorphic means ex F st F is isomorphism of R, S.

Theorem WELLORD1:46. R, S are isomorphic iff ex F st F is isomorphism of R, S.

Theorem WELLORD1:47. ld (field R) is isomorphism of R, R.

Theorem WELLORD1:48. R, R are isomorphic.

Theorem WELLORD1:49. F is isomorphism of R, S implies F^{-1} is isomorphism of S, R.

Theorem WELLORD1:50. R, S are isomorphic implies S, R are isomorphic.

Theorem WELLORD1:51. F is isomorphism of R, S & G is isomorphism of S, T **implies** $G \cdot F$ is isomorphism of R, T.

Theorem WELLORD1:52. R, S are isomorphic & S, T are isomorphic **implies** R, T are isomorphic.

Theorem WELLORD1:53. F is isomorphism of R, S **implies** (R is reflexive **implies** S is reflexive) & (R is transitive **implies** S is transitive) & (R is connected **implies** S is connected) & (R is antisymmetric **implies** S is antisymmetric) & (R is well founded **implies** S is well founded).

Theorem WELLORD1:54. R is well-ordering-relation & F is isomorphism of R, S **implies** S is well-ordering-relation.

Theorem WELLORD1:55. R is well-ordering-relation implies for F, G st F is isomorphism of R, S & G is isomorphism of R, S holds F = G.

Definition

let R, S.

assume R is well-ordering-relation & R, S are isomorphic.

 ${\bf func}$ canonical isomorphism of $({\rm R,~S}) \rightarrow$ Function ${\bf means~it}$ is isomorphism of ${\rm R},$

Theorem WELLORD1:56. R is well-ordering-relation & R, S are isomorphic **implies** (F = canonical isomorphism of (R, S) iff F is isomorphism of R, S).

Theorem WELLORD1:57. R is well-ordering-relation implies for $a \ st \ a \in field \ R \ holds$ not R, $R \upharpoonright^2(R-Seg(a))$ are isomorphic.

Theorem WELLORD1:58. R is well-ordering-relation & $a \in field \ R \ \& \ b \in field \ R \ \& \ a \neq b \text{ implies not } R^2(R-Seg(a)), \ R^2(R-Seg(b)) \text{ are isomorphic.}$

Theorem WELLORD1:59. R is well-ordering-relation & $Z \subseteq$ field R & F is isomorphism of R, S **implies** $F \upharpoonright Z$ is isomorphism of $R \upharpoonright^2 Z$, $S \upharpoonright^2 (F.Z)$ & $R \upharpoonright^2 Z$, $S \upharpoonright^2 (F.Z)$ are isomorphic.

Theorem WELLORD1:60. R is well-ordering-relation & F is isomorphism of R, S implies for a st $a \in field R ex b st b \in field S \& F.(R-Seg(a)) = S-Seg(b).$

Theorem WELLORD1:61. R is well-ordering-relation & F is isomorphism of R, S implies for a st $a \in field R ex b st b \in field S \& R \upharpoonright^2(R-Seg(a)), S \upharpoonright^2(S-Seg(b))$ are isomorphic.

Theorem WELLORD1:62. R is well-ordering-relation & S is well-ordering-relation & $a \in field R \& b \in field S \& c \in field S \& R, S|^2(S-Seg(b))$ are isomorphic $\& R|^2(R-Seg(a)), S|^2(S-Seg(c))$ are isomorphic **implies** $S-Seg(c) \subseteq S-Seg(b) \& [c, b] \in S$.

Theorem WELLORD1:63. R is well-ordering-relation & S is well-ordering-relation implies R, S are isomorphic or (ex a st $a \in field \ R \& \ R \uparrow^2(R-Seg(a))$, S are isomorphic) or (ex a st $a \in field \ S \& \ R, \ S \uparrow^2(S-Seg(a))$ are isomorphic).

Theorem WELLORD1:64. $Y \subseteq$ field R & R is well-ordering-relation **implies** R, $R|^2Y$ are isomorphic **or ex** a **st** $a \in$ field R & $R|^2(R-Seg(a))$, $R|^2Y$ are isomorphic.

94

S.

\mathbf{SETFAM}_{-1}

Families of Sets

by

Beata Padlewska¹

Warsaw University (Białystok)

Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functions \cap , \cup , and \setminus are redefined for families of subsets of a set. Some properties of these notions are presented.

The symbols used in this article are introduced in the following vocabularies: BOOLE, FAM_OP, SUB_OP, and SFAMILY. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, and SUBSET_1.

reserve X, X1, X2, X3, Y, Z, Z1, Z2, D for set, x, y, z for Any.

Definition

let X.

func $\bigcap X \rightarrow$ set means for x holds $x \in$ it iff (for Y holds $Y \in X$ implies $x \in Y$) if $X \neq \emptyset$ otherwise it = \emptyset .

Theorem SETFAM_1:1. $X \neq \emptyset$ implies for x holds $x \in \bigcap X$ iff for Y st $Y \in X$ holds $x \in Y$.

Theorem SETFAM_1:2. $\bigcap \emptyset = \emptyset$.

¹Supported by RPBP.III-24.C1.

```
Theorem SETFAM_1:3. \bigcap X \subseteq \bigcup X.
   Theorem SETFAM_1:4. Z \in X implies \bigcap X \subseteq Z.
   Theorem SETFAM_1:5. \emptyset \in X implies \bigcap X = \emptyset.
   Theorem SETFAM_1:6. X \neq \emptyset & (for Z1 st Z1 \in X holds Z \subseteq Z1) implies Z \subseteq \bigcap X.
   Theorem SETFAM_1:7. X \neq \emptyset \& X \subset Y implies \bigcap Y \subset \bigcap X.
   Theorem SETFAM_1:8. X \in Y \& X \subset Z implies \bigcap Y \subset Z.
   Theorem SETFAM_1:9. X \in Y \& X \cap Z = \emptyset implies \bigcap Y \cap Z = \emptyset.
   Theorem SETFAM_1:10. X \neq \emptyset & Y \neq \emptyset implies \bigcap (X \cup Y) = \bigcap X \cap \bigcap Y.
   Theorem SETFAM_1:11. \bigcap \{x\} = x.
   Theorem SETFAM_1:12. \bigcap \{X, Y\} = X \cap Y.
Definition
          mode Set-Family \rightarrow set means not contradiction.
   reserve SFX, SFY, SFZ for Set-Family.
   Theorem SETFAM_1:13. x is Set-Family.
   Theorem SETFAM_1:14. SFX = SFY iff (for X holds X \in SFX iff X \in SFY).
Definition
   let SFX, SFY.
          pred SFX is finer than SFY means for X st X \in SFX ex Y st Y \in SFY & X
\subset Y.
           pred SFX is coarser than SFY means for Y st Y \in SFY ex X st X \in SFX &
\mathbf{X} \subset \mathbf{Y}.
   Theorem SETFAM_1:15. SFX is finer than SFY iff for X st X \in SFX ex Y st Y \in
SFY & X \subseteq Y.
   Theorem SETFAM_1:16. SFX is coarser than SFY iff for Y st Y \in SFY ex X st X \in
SFX & X \subseteq Y.
   Theorem SETFAM_1:17. SFX \subseteq SFY implies SFX is finer than SFY.
   Theorem SETFAM_1:18. SFX is finer than SFY implies | JSFX \subset | JSFY.
   Theorem SETFAM_1:19. SFY \neq \emptyset & SFX is coarser than SFY implies \bigcap SFX \subset
\bigcapSFY.
Definition
   redefine
          func \emptyset \rightarrow Set-Family.
```

let x.

 $\mathbf{func} \ \{x\} \rightarrow \mathsf{Set}\text{-}\mathsf{Family}.$

let y.

 $\mathbf{func} \ \{x, \ y\} \rightarrow \mathsf{Set}\text{-}\mathsf{Family}.$

Theorem SETFAM_1:20. \emptyset is finer than SFX.

Theorem SETFAM_1:21. SFX is finer than \emptyset implies SFX = \emptyset .

Theorem SETFAM_1:22. SFX is finer than SFX.

Theorem SETFAM_1:23. SFX is finer than SFY & SFY is finer than SFZ **implies** SFX is finer than SFZ.

Theorem SETFAM_1:24. SFX is finer than $\{Y\}$ implies for X st X \in SFX holds X \subseteq Y.

Theorem SETFAM_1:25. SFX is finer than $\{X, Y\}$ implies for Z st $Z \in SFX$ holds $Z \subseteq X$ or $Z \subseteq Y$.

Definition

let SFX, SFY.

func \bigcup (SFX, SFY) \rightarrow Set-Family means $Z \in it iff ex X, Y st X \in SFX \& Y \in SFY \& Z = X \cup Y.$

func $\bigoplus(SFX, SFY) \rightarrow Set$ -Family means $Z \in it iff ex X, Y st X \in SFX \& Y \in SFY \& Z = X \cap Y.$

func \sim (SFX, SFY) \rightarrow Set-Family means $Z \in it iff ex X, Y st X \in SFX \& Y \in SFY \& Z = X \setminus Y.$

Theorem SETFAM_1:26. $Z \in \bigcup(SFX, SFY)$ iff ex X, Y st $X \in SFX \& Y \in SFY \& Z = X \cup Y$.

Theorem SETFAM_1:27. $Z \in \bigoplus(SFX, SFY)$ iff ex X, Y st $X \in SFX \& Y \in SFY \& Z = X \cap Y$.

Theorem SETFAM_1:28. $Z \in \mathbb{V}(SFX, SFY)$ iff ex X, Y st $X \in SFX \& Y \in SFY \& Z = X \setminus Y$.

Theorem SETFAM_1:29. SFX is finer than \bigcup (SFX, SFX).

Theorem SETFAM_1:30. \bigcirc (SFX, SFX) is finer than SFX.

Theorem SETFAM_1:31. \sim (SFX, SFX) is finer than SFX.

Theorem SETFAM_1:32. U(SFX, SFY) = U(SFY, SFX).

Theorem SETFAM_1:33. $\square(SFX, SFY) = \square(SFY, SFX).$

Theorem SETFAM_1:34. SFX \cap SFY $\neq \emptyset$ implies \bigcap SFX $\cap \bigcap$ SFY = $\bigcap \bigoplus (SFX, SFY)$.

Theorem SETFAM_1:35. SFY $\neq \emptyset$ implies $X \cup \bigcap SFY = \bigcap \bigcup (\{X\}, SFY)$.

Theorem SETFAM_1:36. $X \cap \bigcup SFY = \bigcup \bigcap (\{X\}, SFY).$

Theorem SETFAM_1:37. SFY $\neq \emptyset$ implies X \setminus JSFY = $\bigcap \setminus (\{X\}, SFY)$.

Theorem SETFAM_1:38. SFY $\neq \emptyset$ implies $X \setminus \bigcap SFY = \bigcup \setminus (\{X\}, SFY)$.

Theorem SETFAM_1:39. $\bigcup \cap (SFX, SFY) \subseteq \bigcup SFX \cap \bigcup SFY$.

Theorem SETFAM_1:40. SFX $\neq \emptyset$ & SFY $\neq \emptyset$ implies $\bigcap SFX \cup \bigcap SFY \subseteq \bigcap \bigcup (SFX, SFY)$.

```
Theorem SETFAM_1:41. SFX \neq \emptyset & SFY \neq \emptyset implies \bigcap (SFX, SFY) \subseteq \bigcap SFX \setminus
\bigcapSFY.
Definition
    let D be set.
           mode Subset-Family of D \rightarrow Subset of bool D means not contradiction.
    Theorem SETFAM_1:42. for F being Subset of bool D holds F is Subset-Family of
D.
    reserve F, G for Subset-Family of D.
    reserve P, Q for Subset of D.
Definition
    let D, F, G.
    redefine
           func F \cup G \rightarrow Subset-Family of D.
           func F \cap G \rightarrow Subset-Family of D.
           func F \setminus G \rightarrow Subset-Family of D.
    Theorem SETFAM_1:43. X \in F implies X is Subset of D.
Definition
    let D, F.
    redefine
           func \bigcup F \rightarrow Subset of D.
Definition
    let D, F.
    redefine
           func \bigcap F \rightarrow Subset of D.
    Theorem SETFAM_1:44. F = G iff (for P holds P \in F iff P \in G).
    scheme SubFamEx{A() \rightarrow set, P[Subset of A()]}: ex F being Subset-Family of A()
st for B being Subset of A() holds B \in F iff P[B].
Definition
    let D, F.
           func F^c \rightarrow Subset-Family of D means for P being Subset of D holds P \in it
iff \mathbf{P}^c \in \mathbf{F}.
    Theorem SETFAM_1:45. for P holds P \in F^c iff P^c \in F.
    Theorem SETFAM_1:46. F \neq \emptyset implies F^c \neq \emptyset.
    Theorem SETFAM_1:47. F \neq \emptyset implies \Omega D \setminus \bigcup F = \bigcap (F^c).
    Theorem SETFAM_1:48. F \neq \emptyset implies \bigcup F^c = \Omega D \setminus \bigcap F.
```

98

$MCART_1$

Tuples, Projections and Cartesian Products

by

Andrzej Trybulec¹

Warsaw University (Białystok)

Summary. The purpose of this article is to define projections of ordered pairs, and to introduce triples and quadruples, and their projections. The theorems in this paper may be roughly divided into two groups: theorems describing basic properties of introduced concepts and theorems related to the regularity, analogous to those proved for ordered pairs in *Some Basic Properties of Sets* by Cz. Byliński (ZFMISC_1). Cartesian products of subsets are redefined as subsets of Cartesian products.

The symbols used in this article are introduced in the following vocabularies: FAM_OP, BOOLE, and COORD. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, and ORDINAL1.

reserve v, x, x1, x2, x3, x4, y, y1, y2, y3, y4, z, z1, z2 for Any, X, X1, X2, X3, X4, X5, X6, Y, Y1, Y2, Y3, Y4, Y5, Z, Z1, Z2, Z3, Z4, Z5 for set.

Theorem MCART_1:1. $X \neq \emptyset$ implies ex Y st $Y \in X \& Y$ misses X.

Theorem MCART_1:2. $X \neq \emptyset$ implies ex Y st $Y \in X$ & for Y1 st Y1 \in Y holds Y1 misses X.

¹Supported by RPBP.III-24.C1.

Theorem MCART_1:3. $X \neq \emptyset$ implies ex Y st $Y \in X$ & for Y1, Y2 st Y1 \in Y2 & Y2 \in Y holds Y1 misses X.

Theorem MCART_1:4. $X \neq \emptyset$ implies ex Y st $Y \in X$ & for Y1, Y2, Y3 st Y1 \in Y2 & Y2 \in Y3 & Y3 \in Y holds Y1 misses X.

Theorem MCART_1:5. $X \neq \emptyset$ implies ex Y st $Y \in X$ & for Y1, Y2, Y3, Y4 st Y1 \in Y2 & Y2 \in Y3 & Y3 \in Y4 & Y4 \in Y holds Y1 misses X.

Theorem MCART_1:6. $X \neq \emptyset$ implies ex Y st Y \in X & for Y1, Y2, Y3, Y4, Y5 st Y1 \in Y2 & Y2 \in Y3 & Y3 \in Y4 & Y4 \in Y5 & Y5 \in Y holds Y1 misses X.

```
Definition
```

 $\mathbf{let} \mathbf{x}.$

```
given x1, x2 being Any such that x = [x1, x2].
```

func x_1 means $x = [y_1, y_2]$ implies it $= y_1$.

func x_2 means $x = [y_1, y_2]$ implies it $= y_2$.

Theorem MCART_1:7. $[x, y]_1 = x \& [x, y]_2 = y.$

Theorem MCART_1:8. (ex x, y st z = [x, y]) implies $[z_1, z_2] = z$.

Theorem MCART_1:9. $X \neq \emptyset$ implies ex v st $v \in X$ & not ex x, y st $(x \in X \text{ or } y \in X)$ & v = [x, y].

Theorem MCART_1:10. $z \in [X, Y]$ implies $z_1 \in X \& z_2 \in Y$.

Theorem MCART_1:11. (ex x, y st z = [x, y]) & $z_1 \in X$ & $z_2 \in Y$ implies $z \in [X, Y]$.

Theorem MCART_1:12. $z \in \llbracket \{x\}, Y \rrbracket$ implies $z_1 = x \& z_2 \in Y$.

Theorem MCART_1:13. $z \in [X, \{y\}]$ implies $z_1 \in X \& z_2 = y$.

Theorem MCART_1:14. $z \in \llbracket \{x\}, \{y\} \rrbracket$ implies $z_1 = x \& z_2 = y$.

Theorem MCART_1:15. $z \in [[\{x1, x2\}, Y]]$ implies $(z_1 = x1 \text{ or } z_1 = x2) \& z_2 \in Y$.

Theorem MCART_1:16. $z \in [X, \{y1, y2\}]$ implies $z_1 \in X \& (z_2 = y1 \text{ or } z_2 = y2)$.

Theorem MCART_1:17. $z \in [[{x1, x2}, {y}]]$ implies $(z_1 = x1 \text{ or } z_1 = x2) \& z_2 = y$.

Theorem MCART_1:18. $z \in [[\{x\}, \{y1, y2\}]]$ implies $z_1 = x \& (z_2 = y1 \text{ or } z_2 = y2)$.

Theorem MCART_1:19. $z \in [[{x1, x2}, {y1, y2}]]$ implies $(z_1 = x1 \text{ or } z_1 = x2) \& (z_2 = y1 \text{ or } z_2 = y2)$.

Theorem MCART_1:20. (ex y, z st x = [y, z]) implies $x \neq x_1 \& x \neq x_2$.

reserve xx, xx1, xx2 for Element of X.

reserve yy, yy1, yy2 for Element of Y.

Theorem MCART_1:21. $X \neq \emptyset \& Y \neq \emptyset$ implies $[xx, yy] \in [X, Y]$.

Theorem MCART_1:22. $X \neq \emptyset \& Y \neq \emptyset$ implies [xx, yy] is Element of [X, Y].

Theorem MCART_1:23. $x \in [X, Y]$ implies $x = [x_1, x_2]$.

Theorem MCART_1:24. $X \neq \emptyset \& Y \neq \emptyset$ implies for x being Element of [X, Y] holds $x = [x_1, x_2]$.

Theorem MCART_1:25. $[[{x1, x2}, {y1, y2}]] = {[x1, y1], [x1, y2], [x2, y1], [x2, y2]}.$

Theorem MCART_1:26. $X \neq \emptyset \& Y \neq \emptyset$ implies for x being Element of [X, Y] holds $x \neq x_1 \& x \neq x_2$.

Definition

let x1, x2, x3.

func [x1, x2, x3] means it = [[x1, x2], x3].

Theorem MCART_1:27. [x1, x2, x3] = [[x1, x2], x3].

Theorem MCART_1:28. [x1, x2, x3] = [y1, y2, y3] implies x1 = y1 & x2 = y2 & x3 = y3.

Theorem MCART_1:29. $X \neq \emptyset$ implies ex v st $v \in X$ & not ex x, y, z st (x $\in X$ or y $\in X$) & v = [x, y, z].

Definition

let x1, x2, x3, x4.

func [x1, x2, x3, x4] means it = [[x1, x2, x3], x4].

Theorem MCART_1:30. [x1, x2, x3, x4] = [[x1, x2, x3], x4].

Theorem MCART_1:31. [x1, x2, x3, x4] = [[[x1, x2], x3], x4].

Theorem MCART_1:32. [x1, x2, x3, x4] = [[x1, x2], x3, x4].

Theorem MCART_1:33. [x1, x2, x3, x4] = [y1, y2, y3, y4] implies x1 = y1 & x2 = y2 & x3 = y3 & x4 = y4.

Theorem MCART_1:34. $X \neq \emptyset$ implies ex v st v $\in X$ & not ex x1, x2, x3, x4 st (x1 $\in X$ or x2 $\in X$) & v = [x1, x2, x3, x4].

Theorem MCART_1:35. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset$ iff $[X1, X2, X3] \neq \emptyset$.

reserve xx1 for (Element of X1), xx2 for (Element of X2), xx3 for (Element of X3).

Theorem MCART_1:36. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset$ implies ([X1, X2, X3]] = [Y1, Y2, Y3] implies X1 = Y1 & X2 = Y2 & X3 = Y3).

Theorem MCART_1:37. $[X1, X2, X3] \neq \emptyset \& [X1, X2, X3] = [Y1, Y2, Y3]$ implies X1 = Y1 & X2 = Y2 & X3 = Y3.

Theorem MCART_1:38. [X, X, X] = [Y, Y, Y] implies X = Y.

Theorem MCART_1:39. $[[{x1}, {x2}, {x3}]] = {[x1, x2, x3]}.$

Theorem MCART_1:40. $[[\{x1, y1\}, \{x2\}, \{x3\}]] = \{[x1, x2, x3], [y1, x2, x3]\}.$

Theorem MCART_1:41. $[[\{x1\}, \{x2, y2\}, \{x3\}]] = \{[x1, x2, x3], [x1, y2, x3]\}.$

Theorem MCART_1:42. $[[\{x1\}, \{x2\}, \{x3, y3\}]] = \{[x1, x2, x3], [x1, x2, y3]\}.$

Theorem MCART_1:43. $[[{x1, y1}, {x2, y2}, {x3}]] = {[x1, x2, x3], [y1, x2, x3], [x1, y2, x3], [y1, y2, x3]}.$

Theorem MCART_1:44. $[[{x1, y1}, {x2}, {x3, y3}]] = {[x1, x2, x3], [y1, x2, x3], [x1, x2, y3], [y1, x2, y3]}.$

Theorem MCART_1:45. $[[{x1}, {x2, y2}, {x3, y3}]] = {[x1, x2, x3], [x1, y2, x3], [x1, x2, y3], [x1, y2, y3]}.$

Theorem MCART_1:46. $[[\{x1, y1\}, \{x2, y2\}, \{x3, y3\}]] = \{[x1, x2, x3], [x1, y2, x3], [x1, x2, y3], [x1, y2, y3], [y1, x2, x3], [y1, y2, x3], [y1, x2, y3], [y1, y2, y3]\}.$ Definition

let X1, X2, X3.

assume $X1 \neq \emptyset$ & $X2 \neq \emptyset$ & $X3 \neq \emptyset$.

let x be Element of [X1, X2, X3].

func $x_1 \rightarrow \text{Element of X1 means } x = [x_1, x_2, x_3] \text{ implies it} = x_1.$

func $x_2 \rightarrow$ Element of X2 means x = [x1, x2, x3] implies it = x2.

func
$$x_3 \rightarrow$$
 Element of X3 means $x = [x1, x2, x3]$ implies it = x3.

Theorem MCART_1:47. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset$ implies for x being Element of [X1, X2, X3] for x1, x2, x3 st x = [x1, x2, x3] holds x₁ = x1 & x₂ = x2 & x₃ = x3.

Theorem MCART_1:48. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset$ implies for x being Element of [X1, X2, X3] holds $x = [x_1, x_2, x_3]$.

Theorem MCART_1:49. $X \subseteq [\![X, Y, Z]\!]$ or $X \subseteq [\![Y, Z, X]\!]$ or $X \subseteq [\![Z, X, Y]\!]$ implies $X = \emptyset$.

Theorem MCART_1:50. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset$ implies for x being Element of [X1, X2, X3] holds $x_1 = (x \text{ qua } Any)_{11} \& x_2 = (x \text{ qua } Any)_{12} \& x_3 = (x \text{ qua } Any)_2$.

Theorem MCART_1:51. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset$ implies for x being Element of [[X1, X2, X3]] holds $x \neq x_1 \& x \neq x_2 \& x \neq x_3$.

Theorem MCART_1:52. [[X1, X2, X3]] meets [[Y1, Y2, Y3]] **implies** X1 meets Y1 & X2 meets Y2 & X3 meets Y3.

Theorem MCART_1:53. [X1, X2, X3, X4] = [[[X1, X2], X3], X4]].

Theorem MCART_1:54. [[X1, X2]], X3, X4] = [X1, X2, X3, X4].

Theorem MCART_1:55. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset$ iff $[X1, X2, X3, X4] \neq \emptyset$.

Theorem MCART_1:56. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset$ implies ([[X1, X2, X3, X4]] = [[Y1, Y2, Y3, Y4]] implies X1 = Y1 & X2 = Y2 & X3 = Y3 & X4 = Y4).

Theorem MCART_1:57. $[X1, X2, X3, X4] \neq \emptyset \& [X1, X2, X3, X4] = [Y1, Y2, Y3, Y4]$ implies X1 = Y1 & X2 = Y2 & X3 = Y3 & X4 = Y4.

Theorem MCART_1:58. [X, X, X, X] = [Y, Y, Y, Y] implies X = Y.

reserve xx4 for Element of X4.

Definition

let X1, X2, X3, X4.

assume $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset$.

let x be Element of [X1, X2, X3, X4].

func $x_1 \rightarrow \text{Element}$ of X1 means x = [x1, x2, x3, x4] implies it = x1. func $x_2 \rightarrow \text{Element}$ of X2 means x = [x1, x2, x3, x4] implies it = x2.

```
func x_3 \rightarrow \text{Element of X3 means } x = [x1, x2, x3, x4] implies it = x3.
```

func $x_4 \rightarrow \text{Element of } X4 \text{ means } x = [x1, x2, x3, x4] \text{ implies it} = x4.$

Theorem MCART_1:59. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset$ implies for x being Element of [[X1, X2, X3, X4]] for x1, x2, x3, x4 st x = [x1, x2, x3, x4] holds x₁ = x1 & x₂ = x2 & x₃ = x3 & x₄ = x4.

Theorem MCART_1:60. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset$ implies for x being Element of [X1, X2, X3, X4] holds $x = [x_1, x_2, x_3, x_4]$.

Theorem MCART_1:61. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset$ implies for x being Element of [X1, X2, X3, X4] holds $x_1 = (x qua Any)_{111} \& x_2 = (x qua Any)_{112} \& x_3 = (x qua Any)_{12} \& x_4 = (x qua Any)_2.$

Theorem MCART_1:62. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset$ implies for x being Element of [[X1, X2, X3, X4]] holds $x \neq x_1 \& x \neq x_2 \& x \neq x_3 \& x \neq x_4$.

Theorem MCART_1:63. X1 \subseteq [[X1, X2, X3, X4]] or X1 \subseteq [[X2, X3, X4, X1]] or X1 \subseteq [[X3, X4, X1, X2]] or X1 \subseteq [[X4, X1, X2, X3]] implies X1 = \emptyset .

Theorem MCART_1:64. [[X1, X2, X3, X4]] meets [[Y1, Y2, Y3, Y4]] **implies** X1 meets Y1 & X2 meets Y2 & X3 meets Y3 & X4 meets Y4.

Theorem MCART_1:65. $[[\{x1\}, \{x2\}, \{x3\}, \{x4\}]] = \{[x1, x2, x3, x4]\}.$

Theorem MCART_1:66. $[X, Y] \neq \emptyset$ implies for x being Element of [X, Y] holds x $\neq x_1 \& x \neq x_2$.

Theorem MCART_1:67. $x \in [X, Y]$ implies $x \neq x_1 \& x \neq x_2$.

reserve A1 for (Subset of X1), A2 for (Subset of X2), A3 for (Subset of X3), A4 for Subset of X4.

reserve x for Element of [X1, X2, X3].

Theorem MCART_1:68. $X1 \neq \emptyset$ & $X2 \neq \emptyset$ & $X3 \neq \emptyset$ implies for x1, x2, x3 st x = [x1, x2, x3] holds x₁ = x1 & x₂ = x2 & x₃ = x3.

Theorem MCART_1:69. $X1 \neq \emptyset$ & $X2 \neq \emptyset$ & $X3 \neq \emptyset$ & (for xx1, xx2, xx3 st x = [xx1, xx2, xx3] holds y1 = xx1) implies y1 = x₁.

Theorem MCART_1:70. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \&$ (for xx1, xx2, xx3 st x = [xx1, xx2, xx3] holds y2 = xx2) implies y2 = x₂.

Theorem MCART_1:71. $X1 \neq \emptyset$ & $X2 \neq \emptyset$ & $X3 \neq \emptyset$ & (for xx1, xx2, xx3 st x = [xx1, xx2, xx3] holds y3 = xx3) implies y3 = x₃.

Theorem MCART_1:72. $z \in [X1, X2, X3]$ implies ex x1, x2, x3 st x1 \in X1 & x2 \in X2 & x3 \in X3 & z = [x1, x2, x3].

Theorem MCART_1:73. $[x1, x2, x3] \in [[X1, X2, X3]]$ iff $x1 \in X1 \& x2 \in X2 \& x3 \in X3$.

Theorem MCART_1:74. (for z holds $z \in Z$ iff ex x1, x2, x3 st x1 \in X1 & x2 \in X2 & x3 \in X3 & z = [x1, x2, x3]) implies Z = [[X1, X2, X3]].

Theorem MCART_1:75. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& Y1 \neq \emptyset \& Y2 \neq \emptyset \& Y3 \neq \emptyset$ implies for x being (Element of [X1, X2, X3]), y being Element of [Y1, Y2, Y3] holds x = y implies $x_1 = y_1 \& x_2 = y_2 \& x_3 = y_3$.

Theorem MCART_1:76. for x being Element of [X1, X2, X3] st $x \in [A1, A2, A3]$ holds $x_1 \in A1 \& x_2 \in A2 \& x_3 \in A3$.

Theorem MCART_1:77. X1 \subseteq Y1 & X2 \subseteq Y2 & X3 \subseteq Y3 **implies** [[X1, X2, X3]] \subseteq [[Y1, Y2, Y3]].

reserve x for Element of [X1, X2, X3, X4].

Theorem MCART_1:78. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset$ implies for x1, x2, x3, x4 st x = [x1, x2, x3, x4] holds x₁ = x1 & x₂ = x2 & x₃ = x3 & x₄ = x4.

Theorem MCART_1:79. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset \& (for xx1, xx2, xx3, xx4 st x = [xx1, xx2, xx3, xx4] holds y1 = xx1) implies y1 = x_1.$

Theorem MCART_1:80. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset \&$ (for xx1, xx2, xx3, xx4 st x = [xx1, xx2, xx3, xx4] holds y2 = xx2) implies y2 = x₂.

Theorem MCART_1:81. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset \&$ (for xx1, xx2, xx3, xx4 st x = [xx1, xx2, xx3, xx4] holds y3 = xx3) implies y3 = x₃.

Theorem MCART_1:82. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset \& (for xx1, xx2, xx3, xx4 st x = [xx1, xx2, xx3, xx4] holds y4 = xx4) implies y4 = x_4.$

Theorem MCART_1:83. $z \in [X1, X2, X3, X4]$ implies ex x1, x2, x3, x4 st x1 \in X1 & x2 \in X2 & x3 \in X3 & x4 \in X4 & z = [x1, x2, x3, x4].

Theorem MCART_1:84. $[x1, x2, x3, x4] \in [X1, X2, X3, X4]$ iff $x1 \in X1 \& x2 \in X2 \& x3 \in X3 \& x4 \in X4$.

Theorem MCART_1:85. (for z holds $z \in Z$ iff ex x1, x2, x3, x4 st x1 \in X1 & x2 \in X2 & x3 \in X3 & x4 \in X4 & z = [x1, x2, x3, x4]) implies Z = [X1, X2, X3, X4].

Theorem MCART_1:86. $X1 \neq \emptyset \& X2 \neq \emptyset \& X3 \neq \emptyset \& X4 \neq \emptyset \& Y1 \neq \emptyset \& Y2 \neq \emptyset \& Y3 \neq \emptyset \& Y4 \neq \emptyset$ implies for x being (Element of [X1, X2, X3, X4]), y being Element of [Y1, Y2, Y3, Y4] holds x = y implies $x_1 = y_1 \& x_2 = y_2 \& x_3 = y_3 \& x_4 = y_4$.

Theorem MCART_1:87. for x being Element of [X1, X2, X3, X4] st $x \in [A1, A2, A3, A4]$ holds $x_1 \in A1 \& x_2 \in A2 \& x_3 \in A3 \& x_4 \in A4$.

Theorem MCART_1:88. $X1 \subseteq Y1 \& X2 \subseteq Y2 \& X3 \subseteq Y3 \& X4 \subseteq Y4$ implies [[X1, X2, X3, X4]] \subseteq [[Y1, Y2, Y3, Y4]].

Definition

let X1, X2, A1, A2.

 $\begin{array}{l} \textbf{redefine} \\ \textbf{func} [\![A1, A2]\!] \rightarrow \textbf{Subset of} [\![X1, X2]\!]. \end{array}$ Definition
let X1, X2, X3, A1, A2, A3. **redefine func** [\![A1, A2, A3]\!] \rightarrow \textbf{Subset of} [\![X1, X2, X3]\!]. \end{array}
Definition
let X1, X2, X3, X4, A1, A2, A3, A4. **redefine func** [\![A1, A2, A3, A4]\!] \rightarrow \textbf{Subset of} [\![X1, X2, X3, X4]\!]. \end{array}

\mathbf{REAL}_{-1}

Basic Properties of Real Numbers

by

Krzysztof Hryniewiecki¹

Warsaw University

Summary. Basic facts of arithmetics of real numbers are presented: definitions and properties of the complement element, the inverse element, subtraction and division; some basic properties of the set REAL (e.g. density), and the scheme of separation for sets of reals.

The symbols used in this article are introduced in vocabularies REAL_1 and BOOLE. The articles TARSKI and BOOLE provide the terminology and notation for this article.

 $\begin{array}{l} \textbf{reserve } x, \ y, \ z, \ t \ \textbf{for } \mathsf{Real}.\\ \textbf{reserve } a, \ b, \ c, \ d \ \textbf{for } \mathsf{Element } \textbf{of } \mathsf{REAL}.\\ \textbf{reserve } r \ \textbf{for } \mathsf{Any}.\\ \hline \textbf{Definition}\\ \textbf{let } x, \ y.\\ \textbf{redefine}\\ \textbf{func } x+y \rightarrow \mathsf{Real}.\\ \textbf{func } x\cdot y \rightarrow \mathsf{Real}.\\ \hline \textbf{Theorem } \mathsf{REAL_1:1.} \ r \ \textbf{is } \mathsf{Real } \textbf{iff } r \in \mathsf{REAL}. \end{array}$

¹Supported by RPBP.III-24.C1.

```
Theorem REAL_1:2. x+y = y+x.
    Theorem REAL_1:3. x+(y+z) = (x+y)+z.
    Theorem REAL_1:4. x+0 = x \& 0+x = x.
    Theorem REAL_1:5. x \cdot y = y \cdot x.
    Theorem REAL_1:6. \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}.
    Theorem REAL_1:7. x \cdot 1 = x \& 1 \cdot x = x.
    Theorem REAL_1:8. (x+y)\cdot z = x\cdot z + y\cdot z \& z\cdot (x+y) = z\cdot x + z\cdot y.
    \mathbf{x} \cdot \mathbf{z} \neq \mathbf{z} \cdot \mathbf{y}).
    Theorem REAL_1:10. (z+x = z+y \text{ or } x+z = y+z \text{ or } z+x = y+z \text{ or } x+z = z+y)
implies x = y.
    Theorem REAL_1:11. x \neq y iff x+z \neq y+z.
    Theorem REAL_1:12. (z \neq 0 \& (x \cdot z = y \cdot z \text{ or } z \cdot x = z \cdot y \text{ or } x \cdot z = z \cdot y \text{ or } z \cdot x = y \cdot z))
implies x = y.
Definition
    let x.
           func-x \rightarrow \text{Real means } x+it = 0.
    assume x \neq 0.
           func x^{-1} \rightarrow \text{Real means } x \cdot it = 1.
Definition
    let x, y.
           func x-y \rightarrow \text{Real means it} = x+(-y).
    assume y \neq 0.
           func x/y \rightarrow \text{Real means it} = x \cdot y^{-1}.
    Theorem REAL_1:13. x + -x = 0 \& -x + x = 0.
    Theorem REAL_1:14. x-y = x+-y.
    Theorem REAL_1:15. x \neq 0 implies x \cdot x^{-1} = 1 \& x^{-1} \cdot x = 1.
    Theorem REAL_1:16. y \neq 0 implies (x/y = x \cdot y^{-1} \& x/y = y^{-1} \cdot x).
    Theorem REAL_1:17. x+y-z = x+(y-z).
    Theorem REAL_1:18. -(-x) = x.
    Theorem REAL_1:19. 0-x = -x.
    Theorem REAL_1:20. x \cdot 0 = 0 \& 0 \cdot x = 0.
    Theorem REAL_1:21. (-x)\cdot y = -(x\cdot y) \& x \cdot (-y) = -(x\cdot y) \& (-x)\cdot y = x \cdot (-y).
    Theorem REAL_1:22. x \neq 0 iff -x \neq 0.
    Theorem REAL_1:23. \mathbf{x} \cdot \mathbf{y} = 0 iff (\mathbf{x} = 0 \text{ or } \mathbf{y} = 0).
```

107

Theorem REAL_1:24. $x \neq 0 \& y \neq 0$ implies $x^{-1} \cdot y^{-1} = (x \cdot y)^{-1}$. Theorem REAL_1:25. x-0 = x. Theorem REAL_1:26. -0 = 0. Theorem REAL_1:27. x - (y+z) = x - y - z. Theorem REAL_1:28. x-(y-z) = x-y+z. Theorem REAL_1:29. $\mathbf{x} \cdot (\mathbf{y} - \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{z} \& (\mathbf{y} - \mathbf{z}) \cdot \mathbf{x} = \mathbf{y} \cdot \mathbf{x} - \mathbf{z} \cdot \mathbf{x}.$ Theorem REAL_1:30. x+z = y implies (x = y-z & z = y-x). Theorem REAL_1:31. $x \neq 0$ implies $x^{-1} \neq 0$. Theorem REAL_1:32. $x \neq 0$ implies $x^{-1-1} = x$. Theorem REAL_1:33. $x \neq 0$ implies $(1/x = x^{-1} \& 1/x^{-1} = x)$. Theorem REAL_1:34. $x \neq 0$ implies $x \cdot (1/x) = 1 \& (1/x) \cdot x = 1$. Theorem REAL_1:35. $(y \neq 0 \& t \neq 0)$ implies $(x/y) \cdot (z/t) = (x \cdot z)/(y \cdot t)$. Theorem REAL_1:36. x-x = 0. Theorem REAL_1:37. $x \neq 0$ implies x/x = 1. Theorem REAL_1:38. $y \neq 0 \& z \neq 0$ implies $x/y = (x \cdot z)/(y \cdot z)$. Theorem REAL_1:39. $y \neq 0$ implies (-x/y = (-x)/y & x/(-y) = -x/y). Theorem REAL_1:40. $z \neq 0$ implies (x/z+y/z = (x+y)/z) & (x/z-y/z = (x-y)/z). Theorem REAL_1:41. $y \neq 0$ & $t \neq 0$ implies $(x/y+z/t = (x \cdot t+z \cdot y)/(y \cdot t))$ & (x/y-z/t) $= (\mathbf{x} \cdot \mathbf{t} - \mathbf{z} \cdot \mathbf{y})/(\mathbf{y} \cdot \mathbf{t})).$ Theorem REAL_1:42. $y \neq 0 \& z \neq 0$ implies $x/(y/z) = (x \cdot z)/y$. Theorem REAL_1:43. $y \neq 0$ implies $x/y \cdot y = x$. Theorem REAL_1:44. for x, y ex z st (x = y+z & x = z+y). Theorem REAL_1:45. for x, y st $y \neq 0$ ex z st $(x = y \cdot z \& x = z \cdot y)$. Theorem REAL_1:46. $x \leq y \& y \leq x$ implies x = y. Theorem REAL_1:47. $x \leq y \& y \leq z$ implies $x \leq z$. Theorem REAL_1:48. $x \leq y$ or $y \leq x$. Theorem REAL_1:49. $x \leq y$ implies $(x+z \leq y+z \& x-z \leq y-z)$. Theorem REAL_1:50. $x \leq y$ iff $-y \leq -x$. Theorem REAL_1:51. $x \leq y \& 0 \leq z$ implies $(x \cdot z \leq y \cdot z \& z \cdot x \leq z \cdot y \& z \cdot x \leq y \cdot z \&$ $\mathbf{x} \cdot \mathbf{z} \leq \mathbf{z} \cdot \mathbf{y}$). Theorem REAL_1:52. $x \leq y \& z \leq 0$ implies $(y \cdot z \leq x \cdot z \& z \cdot y \leq z \cdot x \& y \cdot z \leq z \cdot x \&$ $z \cdot y \leq x \cdot z$). Theorem REAL_1:53. $x \leq y$ iff $x+z \leq y+z$. Theorem REAL_1:54. $x \leq y$ iff $x-z \leq y-z$.

```
Theorem REAL_1:55. (x \leq y \& z \leq t) implies (x+z \leq y+t \& x+z \leq t+y \& z+x \leq t)
t+y \& z+x \leq y+t).
                  Theorem REAL_1:56. x \leq x.
Definition
                  let x, y.
                                                  pred x < y means x \leq y \& x \neq y.
                  Theorem REAL_1:57. x < y iff (x \leq y \& x \neq y).
                  Theorem REAL_1:58. ((x \leq y \& y < z) \text{ or } (x < y \& y \leq z) \text{ or } (x < y \& y < z))
implies x < z.
                  Theorem REAL_1:59. x < y implies (x+z < y+z \& x-z < y-z \& z+x < z+y \& x+z
 < z+y \& z+x < y+z).
                  Theorem REAL_1:60. (x+z < y+z \text{ or } z+x < z+y \text{ or } x+z < z+y \text{ or } z+x < y+z < y+z \text{ or } z+x < y+z < y+z < y+z < y+z < y+z < y+
x-z < y-z) implies x < y.
                  Theorem REAL_1:61. x \neq y implies x < y or y < x.
                  Theorem REAL_1:62. not x < y iff y \leq x.
                  Theorem REAL_1:63. x < y or y < x or x = y.
                  Theorem REAL_1:64. x < y implies not y < x.
                  Theorem REAL_1:65. 0 < 1.
                  Theorem REAL_1:66. x < 0 iff 0 < -x.
                  Theorem REAL_1:67. ((x < y & z \leq t) or (x \leq y & z < t) or (x < y & z < t))
implies (x+z < y+t \& z+x < y+t \& z+x < t+y \& x+z < t+y).
                  Theorem REAL_1:68. x < y iff -y < -x.
                  Theorem REAL_1:69. for x, y st 0 < x holds y < y+x.
                  Theorem REAL_1:70. 0 < z \& x < y implies (x \cdot z < y \cdot z \& z \cdot x < z \cdot y \& x \cdot z < z \cdot y \otimes x 
z \cdot x < y \cdot z).
                  Theorem REAL_1:71. z < 0 & x < y implies (y \cdot z < x \cdot z & z \cdot y < z \cdot x & y \cdot z < z \cdot x & z \cdot y + z \cdot x & y \cdot z < z \cdot x & z \cdot y + z \cdot x & y \cdot z < z \cdot x & z \cdot y + z \cdot x & z \cdot y + z \cdot y 
z \cdot y < x \cdot z).
                  Theorem REAL_1:72. 0 < z implies 0 < z^{-1}.
                  Theorem REAL_1:73. 0 < z implies (x < y \text{ iff } x/z < y/z).
                  Theorem REAL_1:74. z < 0 implies (x < y \text{ iff } y/z < x/z).
                  Theorem REAL_1:75. x < y implies ex z st x < z \& z < y.
                  Theorem REAL_1:76. for x ex y st x < y.
                  Theorem REAL_1:77. for x ex y st y < x.
                  Theorem REAL-1:78. for X, Y being Subset of REAL st (ex x st x \in X) & (ex x st
x \in Y) & for x, y st x \in X & y \in Y holds x \leq y ex z st for x, y st x \in X & y \in Y
holds x \leq z \& z \leq y.
```

scheme SepReal{P[Real]}: ex X being set of Real st for x holds $x \in X$ iff P[x]. Theorem REAL_1:79. y = -x iff x+y = 0. Theorem REAL_1:80. for x, y st $x \neq 0$ holds $y = x^{-1}$ iff $x \cdot y = 1$. Theorem REAL_1:81. for x, y st $x \neq 0$ & $y \neq 0$ holds $(x/y)^{-1} = y/x$. Theorem REAL_1:82. for x, y, z, t st $y \neq 0$ & $z \neq 0$ & $t \neq 0$ holds (x/y)/(z/t) = $(\mathbf{x} \cdot \mathbf{t})/(\mathbf{y} \cdot \mathbf{z}).$ Theorem REAL_1:83. -(x-y) = y-x. Theorem REAL_1:84. $(x+y \leq z \text{ iff } x \leq z-y)$. Theorem REAL_1:85. $(x+y \leq z \text{ iff } y \leq z-x)$. Theorem REAL_1:86. $(x \leq y+z \text{ iff } x-y \leq z)$. Theorem REAL_1:87. ($x \leq y+z$ iff $x-z \leq y$). Theorem REAL_1:88. (x+y < z iff x < z-y). Theorem REAL_1:89. (x+y < z iff y < z-x). Theorem REAL_1:90. (x < z+y iff x-z < y). Theorem REAL_1:91. (x < y+z iff x-z < y). Theorem REAL_1:92. (($x \leq y \& z \leq t$) implies $x-t \leq y-z$) & ((($x < y \& z \leq t$) or $(x \leq y \& z < t)$ or (x < y & z < t) implies x-t < y-z). Theorem REAL_1:93. $0 \leq x \cdot x$.

ORDINAL1

The Ordinal Numbers

Transfinite Induction and Defining by Transfinite Induction

by

Grzegorz Bancerek¹

Warsaw University (Białystok)

Summary. We introduce some consequences of the regularity axiom, the successor of a set, \in -transitivity and \in -connectedness, the definition and basic properties of ordinal numbers and sets of ordinals, transfinite sequences, transfinite induction, and schemes of defining by transfinite induction.

The symbols used in this article are introduced in the following vocabularies: BOOLE, FAM_OP, REAL_1, FUNC_REL, FUNC, and ORDINAL. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, and FUNCT_1.

reserve X, Y, Z, A, B, C, X1, X2, X3, X4, X5, X6 for set, x, y, z, a, b, c for Any. Theorem ORDINAL1:1. not X \in X. Theorem ORDINAL1:2. not (X \in Y & Y \in X). Theorem ORDINAL1:3. not (X \in Y & Y \in Z & Z \in X). Theorem ORDINAL1:4. not (X1 \in X2 & X2 \in X3 & X3 \in X4 & X4 \in X1). Theorem ORDINAL1:5. not (X1 \in X2 & X2 \in X3 & X3 \in X4 & X4 \in X5 & X5 \in X1).

¹Supported by RPBP.III-24.C1.

Theorem ORDINAL1:6. **not** (X1 \in X2 & X2 \in X3 & X3 \in X4 & X4 \in X5 & X5 \in X6 & X6 \in X1).

Theorem ORDINAL1:7. $Y \in X$ implies not $X \subseteq Y$.

scheme Comprehension $\{A() \rightarrow set, P[set]\}$: ex B st for Z being set holds $Z \in B$ iff $Z \in A() \& P[Z]$.

Theorem ORDINAL1:8. (for X holds $X \in A$ iff $X \in B$) implies A = B.

Definition

let X.

func succ $X \rightarrow$ set means it = $X \cup \{X\}$.

Theorem ORDINAL1:9. succ $X = X \cup \{X\}$.

Theorem ORDINAL1:10. $X \in succ X$.

Theorem ORDINAL1:11. succ $X \neq \emptyset$.

Theorem ORDINAL1:12. succ X = succ Y implies X = Y.

Theorem ORDINAL1:13. $x \in \text{succ } X \text{ iff } x \in X \text{ or } x = X.$

Theorem ORDINAL1:14. $X \neq succ X$.

reserve a, b, c, d for Any, X, Y, Z, x, y, z for set.

Definition

let X.

pred X is \in -transitive means for x st x \in X holds x \subseteq X.

 $\mathbf{pred}\ X\ \text{is} \in \text{-connected}\ \mathbf{means}\ \mathbf{for}\ x,\ y\ \mathbf{st}\ x \in X\ \&\ y \in X\ \mathbf{holds}\ x \in y\ \mathbf{or}\ x = y$ or $y \in x.$

Theorem ORDINAL1:15. X is \in transitive iff for x st x \in X holds x \subseteq X.

Theorem ORDINAL1:16. X is \in -connected iff for x, y st x \in X & y \in X holds x \in y or x = y or y \in x.

Definition

mode Ordinal \rightarrow set **means** it is \in -transitive & it is \in -connected.

reserve A, B, C, D for Ordinal.

Theorem ORDINAL1:17. X is Ordinal iff X is \in -transitive & X is \in -connected.

Theorem ORDINAL1:18. $x \in A$ implies $x \subseteq A$.

Theorem ORDINAL1:19. $A \in B \& B \in C$ implies $A \in C$.

Theorem ORDINAL1:20. $x \in A \& y \in A$ implies $x \in y$ or x = y or $y \in x$.

Theorem ORDINAL1:21. for x, A being Ordinal st $x \subseteq A \& x \neq A$ holds $x \in A$.

Theorem ORDINAL1:22. $A \subseteq B \& B \in C$ implies $A \in C$.

Theorem ORDINAL1:23. $a \in A$ implies a is Ordinal.

Theorem ORDINAL1:24. $A \in B$ or A = B or $B \in A$.

112

Theorem ORDINAL1:25. $A \subseteq B$ or $B \subseteq A$.

Theorem ORDINAL1:26. $A \subseteq B$ or $B \in A$.

Theorem ORDINAL1:27. \emptyset is Ordinal.

Definition

func $\mathbf{0} \rightarrow \text{Ordinal means it} = \emptyset$.

```
Theorem ORDINAL1:28. \mathbf{0} = \emptyset.
```

Theorem ORDINAL1:29. x is Ordinal implies succ x is Ordinal.

Theorem ORDINAL1:30. x is Ordinal implies Ux is Ordinal.

Definition

let A.

redefine

 $\mathbf{func} \text{ succ } A \rightarrow \mathsf{Ordinal}.$

func $\bigcup A \rightarrow \text{Ordinal}$.

Theorem ORDINAL1:31. (for x st $x \in X$ holds x is Ordinal & $x \subseteq X$) implies X is Ordinal.

Theorem ORDINAL1:32. $X \subseteq A \& X \neq \emptyset$ implies ex C st $C \in X \&$ for B st $B \in X$ holds $C \subseteq B$.

Theorem ORDINAL1:33. $A \in B$ iff succ $A \subseteq B$.

Theorem ORDINAL1:34. A \in succ C iff A \subseteq C.

scheme Ordinal_Min{P[Ordinal]}: ex A st P[A] & for B st P[B] holds $A \subseteq B$ provided A: ex A st P[A].

scheme Transfinite_Ind{P[Ordinal]}: for A holds P[A] provided A: for A st for C st $C \in A$ holds P[C] holds P[A].

Theorem ORDINAL1:35. for X st for a st $a \in X$ holds a is Ordinal holds $\bigcup X$ is Ordinal.

Theorem ORDINAL1:36. for X st for a st $a \in X$ holds a is Ordinal ex A st $X \subseteq A$.

Theorem ORDINAL1:37. not ex X st for x holds $x \in X$ iff x is Ordinal.

Theorem ORDINAL1:38. not ex X st for A holds $A \in X$.

Theorem ORDINAL1:39. for X ex A st not $A \in X \&$ for B st not $B \in X$ holds $A \subseteq B$.

Definition

let A.

pred A is limit ordinal **means** $A = \bigcup A$.

Theorem ORDINAL1:40. A is limit ordinal iff $A = \bigcup A$.

Theorem ORDINAL1:41. for A holds A is limit ordinal iff for $C \text{ st } C \in A$ holds succ $C \in A$.

Theorem ORDINAL1:42. not A is limit ordinal iff ex B st A = succ B.

reserve F, G, H for Function.

Definition

```
mode transfinite sequence \rightarrow Function means ex A st dom it = A.
```

Definition

let Z.

mode transfinite sequence of $Z \rightarrow$ transfinite sequence means rng it $\subseteq Z$.

Theorem ORDINAL1:43. F is transfinite sequence iff ex A st dom F = A.

Theorem ORDINAL1:44. F is transfinite sequence of Z iff F is transfinite sequence & rng $F \subseteq Z$.

Theorem ORDINAL1:45. \emptyset is transfinite sequence of Z.

reserve L, L1, L2 for transfinite sequence.

Theorem ORDINAL1:46. dom F is Ordinal implies F is transfinite sequence of rng F. Definition

let L.

redefine

func dom $L \rightarrow \text{Ordinal}$.

Theorem ORDINAL1:47. $X \subseteq Y$ implies for L being transfinite sequence of X holds L is transfinite sequence of Y.

Definition

let L, A.

redefine

func $L \upharpoonright A \rightarrow$ transfinite sequence of rng L.

Theorem ORDINAL1:48. for L being transfinite sequence of X for A holds $L \upharpoonright A$ is transfinite sequence of X.

Theorem ORDINAL1:49. (for a st $a \in X$ holds a is transfinite sequence) & (for L1, L2 st $L1 \in X$ & $L2 \in X$ holds graph $L1 \subseteq$ graph L2 or graph $L2 \subseteq$ graph L1) implies $\bigcup X$ is transfinite sequence.

scheme TS_Uniq{A() \rightarrow Ordinal, H(transfinite sequence) \rightarrow Any, L1() \rightarrow transfinite sequence, L2() \rightarrow transfinite sequence}: L1() = L2() provided B: dom L1() = A() & for B, L st B \in A() & L = L1()|B holds L1().B = H(L) and C: dom L2() = A() & for B, L st B \in A() & L = L2()|B holds L2().B = H(L).

scheme TS_Exist{A() \rightarrow Ordinal, H(transfinite sequence) \rightarrow Any}: ex L st dom L = A() & for B, L1 st B \in A() & L1 = L \upharpoonright B holds L.B = H(L1).

scheme Func_TS{L() \rightarrow transfinite sequence, F(Ordinal) \rightarrow Any, H(transfinite sequence) \rightarrow Any}: for B st B \in dom L() holds L().B = H(L()|B) provided A: for A, a holds a $=F(A) \text{ iff ex } L \text{ st } a = H(L) \& \text{ dom } L = A \& \text{ for } B \text{ st } B \in A \text{ holds } L.B = H(L \upharpoonright B) \text{ and } B: \text{ for } A \text{ st } A \in \text{dom } L() \text{ holds } L().A = F(A).$

NAT_1

The Fundamental Properties of Natural Numbers

by

Grzegorz Bancerek¹

Warsaw University (Białystok)

Summary. Some fundamental properties of addition, multiplication, order relations, exact division, the remainder, divisibility, the least common multiple, the greatest common divisor are presented. A proof of Euclid algorithm is also given.

The symbols used in this article are introduced in the following vocabularies: BOOLE, REAL_1, and NAT_1. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, and REAL_1.

reserve x, y, z for Real, k, l, m, n, u, w, v for Nat, X, Y, Z for set of Real. Theorem NAT_1:1. x is Nat implies x+1 is Nat. Theorem NAT_1:2. for X st 0 ∈ X & for x st x ∈ X holds x+1 ∈ X for k holds k ∈ X. Theorem NAT_1:3. k+n = n+k. Theorem NAT_1:4. k+m+n = k+(m+n). Theorem NAT_1:5. k+0 = k & 0+k = k.

Theorem NAT_1:6. $k \cdot n = n \cdot k$.

 $^{^1 \}rm Supported$ by RPBP.III-24.C1.

Theorem NAT_1:7. $\mathbf{k} \cdot (\mathbf{m} \cdot \mathbf{n}) = (\mathbf{k} \cdot \mathbf{m}) \cdot \mathbf{n}$. Theorem NAT_1:8. $k \cdot 1 = k \& 1 \cdot k = k$. Theorem NAT_1:9. $\mathbf{k} \cdot (\mathbf{n}+\mathbf{m}) = \mathbf{k} \cdot \mathbf{n} + \mathbf{k} \cdot \mathbf{m} \& (\mathbf{n}+\mathbf{m}) \cdot \mathbf{k} = \mathbf{n} \cdot \mathbf{k} + \mathbf{m} \cdot \mathbf{k}$. Theorem NAT_1:10. k+m = n+m or k+m = m+n or m+k = m+n implies k = n. Theorem NAT_1:11. $k \cdot 0 = 0 \& 0 \cdot k = 0$. Definition let n, k. redefine **func** $n+k \rightarrow Nat$. scheme $Ind\{P[Nat]\}$: for k holds P[k] provided A: P[0] and B: for k st P[k] holds P[k+1].Definition let n, k. redefine **func** $n \cdot k \rightarrow Nat$. Theorem NAT_1:12. $k \leq n \& n \leq k$ implies k = n. Theorem NAT_1:13. $k \leq n \& n \leq m$ implies $k \leq m$. Theorem NAT_1:14. $k \leq n$ or $n \leq k$. Theorem NAT_1:15. $k \leq k$. Theorem NAT_1:16. $k \leq n$ implies $k+m \leq n+m$ & $k+m \leq m+n$ & $m+k \leq m+n$ & $m+k \leq n+m$. Theorem NAT_1:17. k+m \leq n+m or k+m \leq m+n or m+k \leq m+n or m+k \leq n+m implies $k \leq n$. Theorem NAT_1:18. for k holds $0 \leq k$. Theorem NAT_1:19. $0 \neq k$ implies 0 < k. m∙n. Theorem NAT_1:21. $0 \neq k+1$. Theorem NAT_1:22. k = 0 or ex n st k = n+1. Theorem NAT_1:23. k+n = 0 implies k = 0 & n = 0. Theorem NAT_1:24. $k \neq 0$ & $(n \cdot k = m \cdot k \text{ or } n \cdot k = k \cdot m \text{ or } k \cdot n = k \cdot m)$ implies n = m. Theorem NAT_1:25. $k \cdot n = 0$ implies k = 0 or n = 0. scheme Def_by_Ind{N() \rightarrow Nat, F(Nat, Nat) \rightarrow Nat, P[Nat, Nat]}: (for k ex n st P[k, n]) & for k, n, m st P[k, n] & P[k, m] holds n = m provided A: for k, n holds P[k, n]iff k = 0 & n = N() or ex m, l st k = m+1 & P[m, l] & n = F(k, l). Theorem NAT_1:26. for k, n st $k \leq n+1$ holds $k \leq n$ or k = n+1.

Theorem NAT_1:27. for n, k st $n \leq k \& k \leq n+1$ holds n = k or k = n+1.

Theorem NAT_1:28. for k, n st $k \leq n$ ex m st n = k+m.

Theorem NAT_1:29. n = k+m implies $k \leq n$.

Theorem NAT_1:30. k < n iff $k \leq n \& k \neq n$.

Theorem NAT_1:31. not k < 0.

scheme Comp_Ind{P[Nat]}: for k holds P[k] provided A: for k st for n st n < k holds P[n] holds P[k].

scheme $Min\{P[Nat]\}$: ex k st P[k] & for n st P[n] holds $k \leq n$ provided A: ex k st P[k].

scheme $Max\{P[Nat], N() \rightarrow Nat\}$: ex k st P[k] & for n st P[n] holds $n \leq k$ provided A: for k st P[k] holds $k \leq N()$ and B: ex k st P[k].

Theorem NAT_1:32. not (k < n & n < k).

Theorem NAT_1:33. k < n & n < m implies k < m.

Theorem NAT_1:34. k < n or k = n or n < k.

Theorem NAT_1:35. not k < k.

Theorem NAT_1:36. k < n implies k+m < n+m & k+m < m+n & m+k < m+n & m+k < m+n & m+k < n+m.

Theorem NAT_1:37. $k \leq n$ implies $k \leq n+m$.

Theorem NAT_1:38. k < n+1 iff $k \leq n$.

Theorem NAT_1:39. k \leqslant n & n < m or k < n & n \leqslant m or k < n & n < m implies k < m.

Theorem NAT_1:40. $k \cdot n = 1$ implies k = 1 & n = 1.

Theorem NAT_1:41. $k+1 \leq n$ iff k < n.

scheme $\operatorname{Regr} \{ P[Nat] \}$: P[0] provided A: ex k st P[k] and B: for k st $k \neq 0 \& P[k]$ ex n st n < k & P[n].

reserve k1, t, t1 for Nat.

Theorem NAT_1:42. for m st 0 < m for n ex k, t st $n = (m \cdot k) + t \& t < m$.

Theorem NAT_1:43. for n, m, k, k1, t, t1 st n = m·k+t & t < m & n = m·k1+t1 & t1 < m holds k = k1 & t = t1.

Definition

let k, l be Nat.

func $k \div l \rightarrow Nat$ means (ex t st $k = l \cdot it + t \& t < l$) or it = 0 & l = 0.

func k mod $l \rightarrow Nat$ means (ex t st $k = l \cdot t + it \& it < l$) or it = 0 & l = 0.

Theorem NAT_1:44. for k, l, n being Nat holds $n = k \div l$ iff (ex t st $k = l \cdot n + t \& t < l$) or n = 0 & l = 0.

Theorem NAT_1:45. for k, l, n being Nat holds $n = k \mod l$ iff (ex t st $k = l \cdot t + n \& n < l$) or n = 0 & l = 0.

Theorem NAT_1:46. for m, n st 0 < m holds n mod m < m.

Theorem NAT_1:47. for n, m st 0 < m holds $n = m \cdot (n \div m) + (n \mod m)$.

Definition

let k, l be Nat.

pred k | l means ex t st $l = k \cdot t$.

Theorem NAT_1:48. for k, l being Nat holds $k \mid l$ iff ex t st $l = k \cdot t$.

Theorem NAT_1:49. for n, m holds m | n iff n = $m \cdot (n \div m)$.

Theorem NAT_1:50. for n holds $n \mid n$.

Theorem NAT_1:51. for n, m, l st n | m & m | l holds n | l.

Theorem NAT_1:52. for n, m st n | m & m | n holds n = m.

Theorem NAT_1:53. $k \mid 0 \& 1 \mid k$.

Theorem NAT_1:54. for n, m st $0 < m \& n \mid m$ holds $n \leq m$.

Theorem NAT_1:55. for n, m, l st n | m & n | l holds n | m+l.

Theorem NAT_1:56. n | k implies n | $k \cdot m$.

Theorem NAT_1:57. for n, m, l st n | m & n | m+l holds n | l.

Theorem NAT_1:58. n | m & n | k implies n | m mod k.

Definition

let k, n.

 $\label{eq:funck} \mbox{funck} \ \mbox{lcm} \ n \to \mbox{Natmeans} \ \mbox{k} \ | \ \mbox{it} \ \& \ \mbox{for} \ \mbox{m} \ \mbox{st} \ \mbox{k} \ | \ \mbox{m} \ \& \ \mbox{n} \ | \ \mbox{m} \ \mbox{holds} \ \mbox{it} \ | \\ m. \end{array}$

Definition

let k, n.

 $\mathbf{func}\ k\ \mathsf{gcd}\ n \to \mathsf{Nat}\ \mathbf{means}\ \mathbf{it} \mid k\ \&\ \mathbf{it} \mid n\ \&\ \mathbf{for}\ m\ \mathbf{st}\ m \mid k\ \&\ m \mid n\ \mathbf{holds}\ m \mid$ it.

scheme Euklides{Q(Nat) \rightarrow Nat, a() \rightarrow Nat, b() \rightarrow Nat}: ex n st Q(n) = a() gcd b() & Q(n+1) = 0 provided A: 0 < b() & b() < a() and B: Q(0) = a() & Q(1) = b() and C: for n holds Q(n+2) = Q(n) mod Q(n+1).

FINSEQ_1

Segments of Natural Numbers and Finite Sequences

by

Grzegorz Bancerek ¹ Warsaw University (Białystok) Krzysztof Hryniewiecki ² Warsaw University

Summary. We define the notion of an initial segment of natural numbers and prove a number of their properties. Using this notion we introduce finite sequences, subsequences, the empty sequence, a sequence of a domain, and the operation of concatenation of two sequences.

The symbols used in this article are introduced in the following vocabularies: FINSEQ, FUNC_REL, FUNC, BOOLE, REAL_1, and NAT_1. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, REAL_1, and NAT_1.

reserve $k,\,l,\,m,\,n,\,k1,\,k2$ for Nat, $X,\,Y,\,Z$ for set, $x,\,y,\,z,\,y1,\,y2$ for Any, $f,\,g,\,h$ for Function.

¹Supported by RPBP.III-24.C1.

²Supported by RPBP.III-24.C1.

Definition

let n.

func Seg n \rightarrow set of Nat means it = {k: 1 \leq k & k \leq n}. Theorem FINSEQ_1:1. Seg n = {k: 1 \leq k & k \leq n}. Theorem FINSEQ_1:2. x \in Seg n implies x is Nat. Theorem FINSEQ_1:3. k \in Seg n iff 1 \leq k & k \leq n. Theorem FINSEQ_1:4. Seg 0 = \emptyset & Seg 1 = {1} & Seg 2 = {1, 2}. Theorem FINSEQ_1:5. n = 0 or n \in Seg n. Theorem FINSEQ_1:6. n+1 \in Seg (n+1). Theorem FINSEQ_1:7. n \leq m iff Seg n \subseteq Seg m. Theorem FINSEQ_1:8. Seg n = Seg m implies n = m. Theorem FINSEQ_1:9. k \leq n implies Seg k = Seg k \cap Seg n & Seg k = Seg n \cap Seg k. Theorem FINSEQ_1:10. (Seg k = Seg k \cap Seg n or Seg k = Seg n \cap Seg k) implies k \leq

n.

Theorem FINSEQ_1:11. Seg $n \cup \{n+1\} = Seg (n+1)$.

Definition

```
mode FinSequence \rightarrow Function means ex n st dom it = Seg n.
```

reserve p, q, r, s, t, v for FinSequence.

Definition

let p.

func len $p \rightarrow Nat$ means Seg it = dom p.

Theorem FINSEQ_1:12. for f being Function holds f is FinSequence iff ex n st dom f = Seg n.

Theorem FINSEQ_1:13. k = len p iff Seg k = dom p.

Theorem FINSEQ_1:14. \emptyset is FinSequence.

Theorem FINSEQ_1:15. (ex k st dom $f \subseteq Seg k$) implies ex p st graph $f \subseteq graph p$.

scheme $SeqEx{A() \rightarrow Nat, P[Any, Any]}$: ex p st dom p = Seg A() &for k st $k \in Seg A()$ holds P[k, p.k] provided A: for k, y1, y2 st $k \in Seg A() \& P[k, y1] \& P[k, y2]$ holds y1 = y2 and B: for k st $k \in Seg A()$ ex st P[k, x].

scheme SeqLambda{A() \rightarrow Nat, F(Any) \rightarrow Any}: ex p being FinSequence st len p = A() & for k st k \in Seg A() holds p.k = F(k).

Theorem FINSEQ_1:16. $z \in graph p implies ex k st (k \in dom p \& z = [k, p.k]).$

Theorem FINSEQ_1:17. $X = \text{dom } p \& X = \text{dom } q \& (\text{for } k \text{ st } k \in X \text{ holds } p.k = q.k)$ implies p = q.

Theorem FINSEQ_1:18. for p, q st (len p = len q) & for k st $1 \le k$ & $k \le len p$ holds p.k = q.k holds p = q.

```
Theorem FINSEQ_1:19. p[(Seg n) is FinSequence.
   Theorem FINSEQ_1:20. (rng p \subseteq \text{dom } f) implies (f p is FinSequence).
   Theorem FINSEQ_1:21. k \leq |en p \& q = p|(Seg k) implies |en q = k \& dom q = Seg
k.
Definition
   let D be DOMAIN.
          mode FinSequence of D \rightarrow FinSequence means rng it \subseteq D.
   reserve D, D1, D2 for DOMAIN.
   Theorem FINSEQ_1:22. p is FinSequence of D iff rng p \in D.
   Theorem FINSEQ_1:23. for D, k for p being FinSequence of D holds p \upharpoonright (Seg k) is
FinSequence of D.
   Theorem FINSEQ_1:24. ex p being FinSequence of D st len p = k.
Definition
          func \varepsilon \to \text{FinSequence means len } \mathbf{it} = 0.
   Theorem FINSEQ_1:25. p = \varepsilon iff len p = 0.
   Theorem FINSEQ_1:26. p = \varepsilon iff dom p = \emptyset.
   Theorem FINSEQ_1:27. p = \varepsilon iff rng p = \emptyset.
   Theorem FINSEQ_1:28. graph \varepsilon = \emptyset.
   Theorem FINSEQ_1:29. for D holds \varepsilon is FinSequence of D.
Definition
   let D be DOMAIN.
          func \varepsilon(D) \to FinSequence of D means it = \varepsilon.
   Theorem FINSEQ_1:30. p = \varepsilon(D) iff dom p = \emptyset.
   Theorem FINSEQ_1:31. \varepsilon(D) = \varepsilon.
   Theorem FINSEQ_1:32. p = \varepsilon(D) iff len p = 0.
   Theorem FINSEQ_1:33. p = \varepsilon(D) iff rng p = \emptyset.
Definition
   let p, q.
          func p \cap q \rightarrow FinSequence means dom it = Seg (len p+len q) & (for k st k \in
dom p holds it.k = p.k) & (for k st k \in \text{dom } q holds it.(len p+k) = q.k).
   Theorem FINSEQ_1:34. r = p^{\gamma}q iff (dom r = Seg (len p+len q) & (for k st k \in dom
p holds r.k = p.k) & (for k st k \in dom q holds r.(len p+k) = q.k)).
   Theorem FINSEQ_1:35. len (p^q) = \text{len } p + \text{len } q.
   Theorem FINSEQ_1:36. for k st len p+1 \leq k \& k \leq len p+len q holds (p^q).k = q.
(k-len p).
   Theorem FINSEQ_1:37. len p < k \& k \leq len (p^q) implies (p^q).k = q.(k-len p).
```

122

Theorem FINSEQ_1:38. $k \in \mathsf{dom}\ (p^q)$ implies $(k \in \mathsf{dom}\ p \text{ or } (\mathbf{ex}\ n \ \mathbf{st}\ n \in \mathsf{dom}\ q \& k = \mathsf{len}\ p+n)).$

Theorem FINSEQ_1:39. dom $p \subseteq \text{dom} (p^q)$. Theorem FINSEQ_1:40. $x \in \text{dom } q$ **implies ex** k **st** k = x & len $p+k \in \text{dom} (p^q)$. Theorem FINSEQ_1:41. $k \in \text{dom } q$ **implies** len $p+k \in \text{dom} (p^q)$. Theorem FINSEQ_1:42. rng $p \subseteq \text{rng} (p^q)$. Theorem FINSEQ_1:43. rng $q \subseteq \text{rng} (p^q)$. Theorem FINSEQ_1:44. rng $(p^q) = \text{rng} p \cup \text{rng} q$. Theorem FINSEQ_1:45. $p^q q^r = p^q (q^r)$. Theorem FINSEQ_1:46. $p^r = q^r$ or $r^r p = r^q$ **implies** p = q. Theorem FINSEQ_1:47. $p^r \varepsilon = p$ & $\varepsilon^r p = p$. Theorem FINSEQ_1:48. $p^q = \varepsilon$ **implies** $p = \varepsilon$ & $q = \varepsilon$.

Definition

let D.

let p, q be FinSequence of D.

redefine

func $p^{\frown}q \rightarrow \mathsf{FinSequence}$ of D.

Theorem FINSEQ_1:49. for p, q being FinSequence of D holds $p^{\uparrow}q$ is FinSequence of D.

Definition

let x.

```
func \langle x \rangle \rightarrow FinSequence means dom it = Seg 1 & it.1 = x.
```

Theorem FINSEQ_1:50. $p \frown q$ is FinSequence of D implies p is FinSequence of D & q is FinSequence of D.

Definition

let x, y.

func $\langle x, y \rangle \rightarrow$ FinSequence **means** it = $\langle x \rangle^{\frown} \langle y \rangle$.

let z.

func $\langle x, y, z \rangle \rightarrow$ FinSequence means it $= \langle x \rangle^{\frown} \langle y \rangle^{\frown} \langle z \rangle$. Theorem FINSEQ_1:51. $p = \langle x \rangle$ iff dom p = Seg 1 & p.1 = x. Theorem FINSEQ_1:52. graph $\langle x \rangle = \{[1, x]\}$. Theorem FINSEQ_1:53. $\langle x, y \rangle = \langle x \rangle^{\frown} \langle y \rangle$. Theorem FINSEQ_1:54. $\langle x, y, z \rangle = \langle x \rangle^{\frown} \langle y \rangle^{\frown} \langle z \rangle$. Theorem FINSEQ_1:55. $p = \langle x \rangle$ iff dom p = Seg 1 & rng $p = \{x\}$. Theorem FINSEQ_1:56. $p = \langle x \rangle$ iff len p = 1 & rng $p = \{x\}$.

```
Theorem FINSEQ_1:57. p = \langle x \rangle iff len p = 1 \& p.1 = x.
    Theorem FINSEQ_1:58. (\langle x \rangle^{\frown} p).1 = x.
    Theorem FINSEQ_1:59. (p^{(x)}).(len p+1) = x.
    Theorem FINSEQ_1:60. \langle \mathbf{x}, \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x} \rangle^{\frown} \langle \mathbf{y}, \mathbf{z} \rangle \& \langle \mathbf{x}, \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle^{\frown} \langle \mathbf{z} \rangle.
    Theorem FINSEQ_1:61. p = \langle x, y \rangle iff len p = 2 \& p.1 = x \& p.2 = y.
    Theorem FINSEQ_1:62. p = \langle x, y, z \rangle iff len p = 3 \& p.1 = x \& p.2 = y \& p.3 = z.
    Theorem FINSEQ_1:63. for p st p \neq \varepsilon holds ex q, x st p = q\langle x \rangle.
Definition
    let D.
    let x be Element of D.
    redefine
            func \langle \mathbf{x} \rangle \rightarrow \mathsf{FinSequence} of D.
Definition
    let D.
    let S be SUBDOMAIN of D.
    let x be Element of S.
    redefine
            func \langle x \rangle \rightarrow FinSequence of S.
Definition
    let S be SUBDOMAIN of REAL.
    let x be Element of S.
    redefine
            func \langle x \rangle \rightarrow FinSequence of S.
    scheme IndSeq{P[FinSequence]}: for p holds P[p] provided A: P[\varepsilon] and B: for p,
x st P[p] holds P[p^{(x)}].
    Theorem FINSEQ_1:64. for p, q, r, s being FinSequence st p^q = r^s \& \text{ len } p \leq \text{ len } p
r ex t being FinSequence st p^t = r.
Definition
    let D.
            func D^* \to \mathsf{DOMAIN} means x \in it iff x is FinSequence of D.
    Theorem FINSEQ_1:65. x \in D^* iff x is FinSequence of D.
    Theorem FINSEQ_1:66. \varepsilon \in D^*.
    scheme SepSeq{D() \rightarrow DOMAIN, P[FinSequence]}: ex X st (for x holds x \in X iff
\mathbf{ex} p \mathbf{st} (p \in D()^* \& P[p] \& x = p)).
```

Definition

```
\mathbf{mode} \ \mathsf{FinSubsequence} \rightarrow \mathsf{Function} \ \mathbf{means} \ \mathbf{ex} \ k \ \mathbf{st} \ \mathsf{dom} \ \mathbf{it} \subseteq \mathsf{Seg} \ k.
```

Theorem FINSEQ_1:67. f is FinSubsequence iff ex k st dom $f \subseteq Seg k$.

Theorem FINSEQ_1:68. for p being FinSequence holds p is FinSubsequence.

Theorem FINSEQ_1:69. for p, X holds ($p{\upharpoonright} X$ is FinSubsequence & X ${\upharpoonright} p$ is FinSubsequence).

reserve p', q' for FinSubsequence.

Definition

let X.

given k such that $X \subseteq Seg k$.

func Sgm X \rightarrow FinSequence of NAT means rng it = X & for l, m, k1, k2 st (1 $\leq l \& l < m \& m \leq len$ it & k1 = it.l & k2 = it.m) holds k1 < k2.

Theorem FINSEQ_1:70. (ex k st $X \subseteq Seg k$) implies for p being FinSequence of NAT holds (p = Sgm X iff rng p = X & for l, m, k1, k2 st (1 $\leq l \& l < m \& m \leq len p \& k1 = p.l \& k2 = p.m$) holds k1 < k2).

Theorem FINSEQ_1:71. rng Sgm dom p' = dom p'.

Definition

let p'.

func Seq $p' \rightarrow$ FinSequence means it = $p' \cdot Sgm$ (dom p').

Theorem FINSEQ_1:72. for X st ex k st $X \subseteq Seg k$ holds $Sgm X = \varepsilon$ iff $X = \emptyset$.

FINSET_1

Finite Sets

by

Agata Darmochwał¹

Warsaw University (Białystok)

Summary. The article contains the definition of a finite set based on the notion of finite sequence. Some theorems about properties of finite sets and finite families of sets are proved.

The symbols used in this article are introduced in the following vocabularies: FINSEQ, BOOLE, FAM_OP, COORD, FUNC, FUNC_REL, FINITE, NAT_1, REAL_1, and SFAMILY. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, ORDINAL1, MCART_1, REAL_1, NAT_1, FINSEQ_1, and SETFAM_1.

Definition

let A be set.

pred A is finite means ex p being FinSequence st rng p = A.

reserve A, B, C, D, X, Y, Y1, Y2, Z for set.

reserve p, q for FinSequence.

 ${\bf reserve}\ x,\ y,\ z,\ x1,\ x2,\ x3,\ x4,\ x5,\ x6,\ x7,\ x8,\ y1,\ y2\ {\bf for}\ {\sf Any}.$

reserve f, g for Function.

 $^{^1\}mathrm{Supported}$ by RPBP.III-24.C1.

reserve n for Nat.

Theorem FINSET_1:1. A is finite iff ex p being FinSequence st rng p = A. Theorem FINSET_1:2. for p being FinSequence holds rng p is finite. Theorem FINSET_1:3. Seg n is finite. Theorem FINSET_1:4. \emptyset is finite. Theorem FINSET_1:5. $\{x\}$ is finite. Theorem FINSET_1:6. $\{x, y\}$ is finite. Theorem FINSET_1:7. $\{x, y, z\}$ is finite. Theorem FINSET_1:8. $\{x1, x2, x3, x4\}$ is finite. Theorem FINSET_1:9. $\{x1, x2, x3, x4, x5\}$ is finite. Theorem FINSET_1:10. $\{x1, x2, x3, x4, x5, x6\}$ is finite. Theorem FINSET_1:11. {x1, x2, x3, x4, x5, x6, x7} is finite. Theorem FINSET_1:12. {x1, x2, x3, x4, x5, x6, x7, x8} is finite. Theorem FINSET_1:13. $A \subseteq B \& B$ is finite implies A is finite. Theorem FINSET_1:14. A is finite & B is finite implies $A \cup B$ is finite. Theorem FINSET_1:15. A is finite implies $A \cap B$ is finite & $B \cap A$ is finite. Theorem FINSET_1:16. A is finite **implies** $A \setminus B$ is finite. Theorem FINSET_1:17. A is finite implies f.A is finite. Theorem FINSET_1:18. A is finite implies for X being Subset-Family of A st $X \neq \emptyset$ ex x being set st $x \in X$ & for B being set st $B \in X$ holds $x \subseteq B$ implies B = x. scheme Finite{A() \rightarrow set, P[set]}: P[A()] provided A: A() is finite and B: P[\emptyset] and C: for x, B being set st $x \in A()$ & $B \subseteq A()$ & P[B] holds $P[B \cup \{x\}]$. Theorem FINSET_1:19. A is finite & B is finite implies [A, B] is finite. Theorem FINSET_1:20. A is finite & B is finite & C is finite implies [A, B, C] is finite. Theorem FINSET_1:21. A is finite & B is finite & C is finite & D is finite implies [A, A]B, C, D is finite. Theorem FINSET_1:22. $B \neq \emptyset \& [A, B]$ is finite implies A is finite. Theorem FINSET_1:23. $A \neq \emptyset \& [A, B]$ is finite implies B is finite. Theorem FINSET_1:24. A is finite iff bool A is finite. Theorem FINSET_1:25. A is finite & (for X st $X \in A$ holds X is finite) iff $\bigcup A$ is finite. Theorem FINSET_1:26. dom f is finite implies rng f is finite. Theorem FINSET_1:27. Y \subset rng f & f⁻¹Y is finite implies Y is finite.

DOMAIN_1

Domains and Their Cartesian Products

by

Andrzej Trybulec¹

Warsaw University (Białystok)

Summary. The article includes: theorems related to domains, theorems related to Cartesian products presented earlier in various articles and simplified here by substituting domains for sets and omitting the assumption that the sets involved must not be empty. Several schemes and theorems related to Frænkel operator are given. We also redefine subset yielding functions such as the pair of elements of a set and the union of two subsets of a set.

The symbols used in this article are introduced in the following vocabularies: BOOLE, COORD, and SUB_OP. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, ORDINAL1, and MCART_1.

reserve a, b, c, d for Any, A, B, C for set. reserve D, X1, X2, X3, X4, Y1, Y2, Y3, Y4 for DOMAIN. reserve x1, y1, z1 for (Element of X1), x2, y2, z2 for (Element of X2), x3, y3, z3 for (Element of X3), x4, y4, z4 for (Element of X4). Theorem DOMAIN_1:1. A is DOMAIN iff $A \neq \emptyset$. Theorem DOMAIN_1:2. $D \neq \emptyset$.

¹Supported by RPBP.III-24.C1.

Theorem DOMAIN_1:3. a is Element of D implies $a \in D$. reserve A1, B1 for Subset of X1. Theorem DOMAIN_1:4. $A1 = B1^c$ iff for x1 holds $x1 \in A1$ iff not $x1 \in B1$. Theorem DOMAIN_1:5. $A1 = B1^c$ iff for x1 holds not x1 \in A1 iff x1 \in B1. Theorem DOMAIN_1:6. A1 = B1^c iff for x1 holds not (x1 \in A1 iff x1 \in B1). Theorem DOMAIN_1:7. $[x1, x2] \in [X1, X2]$. Theorem DOMAIN_1:8. [x1, x2] is Element of [X1, X2]. Theorem DOMAIN_1:9. $a \in [X1, X2]$ implies ex x1, x2 st a = [x1, x2]. reserve x for Element of [X1, X2]. Theorem DOMAIN_1:10. $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2].$ Theorem DOMAIN_1:11. $x \neq x_1 \& x \neq x_2$. Theorem DOMAIN_1:12. for x, y being Element of [X1, X2] st $x_1 = y_1 \& x_2 = y_2$ holds x = y. Theorem DOMAIN_1:13. $[A, D] \subseteq [B, D]$ or $[D, A] \subseteq [D, B]$ implies $A \subseteq B$. Theorem DOMAIN_1:14. [X1, X2] = [A, B] implies X1 = A & X2 = B. Definition let X1, X2, x1, x2. redefine func $[x1, x2] \rightarrow \text{Element of } [X1, X2]$. Definition let X1, X2. let x be Element of [X1, X2]. redefine **func** $x_1 \rightarrow \text{Element of } X1$. func $x_2 \rightarrow \text{Element of } X2$. Theorem DOMAIN_1:15. $a \in [X1, X2, X3]$ iff ex x1, x2, x3 st a = [x1, x2, x3]. Theorem DOMAIN_1:16. (for a holds $a \in D$ iff ex x1, x2, x3 st a = [x1, x2, x3]) implies D = [X1, X2, X3]. Theorem DOMAIN_1:17. D = [X1, X2, X3] iff for a holds $a \in D$ iff ex x1, x2, x3 st a = [x1, x2, x3].Theorem DOMAIN_1:18. [X1, X2, X3] = [Y1, Y2, Y3] implies X1 = Y1 & X2 = Y2& X3 = Y3.reserve x, y for Element of [X1, X2, X3].

Theorem DOMAIN_1:19. x = [a, b, c] implies $x_1 = a \& x_2 = b \& x_3 = c$.

Theorem DOMAIN_1:20. $x = [x_1, x_2, x_3].$

Theorem DOMAIN_1:21. $x_1 = (x \ qua \ Any)_{11} \& x_2 = (x \ qua \ Any)_{12} \& x_3 = (x \ qua \ Any)_2.$

Theorem DOMAIN_1:22. $x \neq x_1 \& x \neq x_2 \& x \neq x_3$.

Theorem DOMAIN_1:23. $[x1, x2, x3] \in \llbracket X1, X2, X3 \rrbracket$.

Definition

```
let X1, X2, X3, x1, x2, x3.
```

redefine

func $[x1, x2, x3] \rightarrow \text{Element of } [X1, X2, X3].$

Definition

```
let X1, X2, X3.
```

let x be Element of [X1, X2, X3].

redefine

func $x_1 \rightarrow \mathsf{Element}$ of X1.

func $x_2 \rightarrow \mathsf{Element}$ of X2.

func $x_3 \rightarrow \text{Element of X3}$.

Theorem DOMAIN_1:24. $a = x_1$ iff for x1, x2, x3 st x = [x1, x2, x3] holds a = x1. Theorem DOMAIN_1:25. $b = x_2$ iff for x1, x2, x3 st x = [x1, x2, x3] holds b = x2. Theorem DOMAIN_1:26. $c = x_3$ iff for x1, x2, x3 st x = [x1, x2, x3] holds c = x3. Theorem DOMAIN_1:27. $[x_1, x_2, x_3] = x$.

Theorem DOMAIN_1:28. $x_1 = y_1 \& x_2 = y_2 \& x_3 = y_3$ implies x = y.

Theorem DOMAIN_1:29. $[x1, x2, x3]_1 = x1 \& [x1, x2, x3]_2 = x2 \& [x1, x2, x3]_3 = x3$. Theorem DOMAIN_1:30. for x being (Element of [X1, X2, X3]), y being Element of [Y1, Y2, Y3] holds x = y implies $x_1 = y_1 \& x_2 = y_2 \& x_3 = y_3$.

Theorem DOMAIN_1:31. $a \in [X1, X2, X3, X4]$ iff ex x1, x2, x3, x4 st a = [x1, x2, x3, x4].

Theorem DOMAIN_1:32. (for a holds $a \in D$ iff ex x1, x2, x3, x4 st a = [x1, x2, x3, x4]) implies D = [X1, X2, X3, X4].

Theorem DOMAIN_1:33. D = [X1, X2, X3, X4] iff for a holds $a \in D$ iff ex x1, x2, x3, x4 st a = [x1, x2, x3, x4].

reserve x, y for Element of [X1, X2, X3, X4].

Theorem DOMAIN_1:34. [X1, X2, X3, X4] = [Y1, Y2, Y3, Y4] implies X1 = Y1 & X2 = Y2 & X3 = Y3 & X4 = Y4.

Theorem DOMAIN_1:35. x = [a, b, c, d] implies $x_1 = a \& x_2 = b \& x_3 = c \& x_4 = d$.

Theorem DOMAIN_1:36. $x = [x_1, x_2, x_3, x_4].$

Theorem DOMAIN_1:37. $x_1 = (x \ qua \ Any)_{111} \& x_2 = (x \ qua \ Any)_{112} \& x_3 = (x \ qua \ Any)_{12} \& x_4 = (x \ qua \ Any)_2.$

130

```
Theorem DOMAIN_1:38. x \neq x_1 \& x \neq x_2 \& x \neq x_3 \& x \neq x_4.
```

Theorem DOMAIN_1:39. $[x1, x2, x3, x4] \in [X1, X2, X3, X4]$.

Definition

let X1, X2, X3, X4, x1, x2, x3, x4.

redefine

func $[x1, x2, x3, x4] \rightarrow \text{Element of } [X1, X2, X3, X4]$.

Definition

```
let X1, X2, X3, X4.
```

```
let x be Element of [X1, X2, X3, X4].
```

redefine

func $x_1 \rightarrow \text{Element of X1}$. func $x_2 \rightarrow \text{Element of X2}$.

func $x_3 \rightarrow \text{Element of } X3$.

func $x_4 \rightarrow \mathsf{Element}$ of X4.

Theorem DOMAIN_1:40. $a = x_1$ iff for x1, x2, x3, x4 st $x = [x_1, x_2, x_3, x_4]$ holds $a = x_1$.

Theorem DOMAIN_1:41. $b = x_2$ iff for x1, x2, x3, x4 st $x = [x_1, x_2, x_3, x_4]$ holds $b = x_2$.

Theorem DOMAIN_1:42. $c = x_3$ iff for x1, x2, x3, x4 st x = [x1, x2, x3, x4] holds c = x3.

Theorem DOMAIN_1:43. $d = x_4$ iff for x1, x2, x3, x4 st x = [x1, x2, x3, x4] holds d = x4.

Theorem DOMAIN_1:44. for x being Element of [X1, X2, X3, X4] holds $[x_1, x_2, x_3, x_4] = x$.

Theorem DOMAIN_1:45. for x, y being Element of [X1, X2, X3, X4] st $x_1 = y_1 \& x_2 = y_2 \& x_3 = y_3 \& x_4 = y_4$ holds x = y.

Theorem DOMAIN_1:46. $[x1, x2, x3, x4]_1 = x1 \& [x1, x2, x3, x4]_2 = x2 \& [x1, x2, x3, x4]_3 = x3 \& [x1, x2, x3, x4]_4 = x4.$

Theorem DOMAIN_1:47. for x being (Element of [X1, X2, X3, X4]), y being Element of [Y1, Y2, Y3, Y4] holds x = y implies $x_1 = y_1 \& x_2 = y_2 \& x_3 = y_3 \& x_4 = y_4$.

reserve A2 for (Subset of X2), A3 for (Subset of X3), A4 for Subset of X4.

scheme Fraenkel1{P[Any]}: for X1 holds {x1: P[x1]} is Subset of X1.

scheme Fraenkel2{P[Any, Any]}: for X1, X2 holds {[x1, x2]: P[x1, x2]} is Subset of [X1, X2].

scheme Fraenkel3{P[Any, Any, Any]}: for X1, X2, X3 holds {[x1, x2, x3]: P[x1, x2, x3]} is Subset of [[X1, X2, X3]].

```
scheme Fraenkel4{P[Any, Any, Any, Any]}: for X1, X2, X3, X4 holds {[x1, x2, x3,
x4]: P[x1, x2, x3, x4] is Subset of [X1, X2, X3, X4].
        scheme Fraenkel5{P[Any], Q[Any]}: for X1 st for x1 holds P[x1] implies Q[x1]
holds \{y_1: P[y_1]\} \subseteq \{z_1: Q[z_1]\}.
        scheme Fraenkel6{P[Any], Q[Any]: for X1 st for x1 holds P[x1] iff Q[x1] holds
\{y_1: P[y_1]\} = \{z_1: Q[z_1]\}.
        Theorem DOMAIN_1:48. X1 = \{x1: not contradiction\}.
        Theorem DOMAIN_1:49. [X1, X2] = \{ [x1, x2] : not contradiction \}.
        Theorem DOMAIN_1:50. [X1, X2, X3] = \{ [x1, x2, x3]: not contradiction \}.
        Theorem DOMAIN_1:51. [X1, X2, X3, X4] = \{[x1, x2, x3, x4]: not contradiction\}.
        Theorem DOMAIN_1:52. A1 = \{x1: x1 \in A1\}.
Definition
        let X1, X2, A1, A2.
        redefine
                       func [A1, A2] \rightarrow Subset of [X1, X2].
        Theorem DOMAIN_1:53. [A1, A2] = \{ [x1, x2] : x1 \in A1 \& x2 \in A2 \}.
Definition
        let X1, X2, X3, A1, A2, A3.
        redefine
                       func [A1, A2, A3] \rightarrow Subset of <math>[X1, X2, X3].
        Theorem DOMAIN_1:54. [A1, A2, A3] = \{ [x1, x2, x3] : x1 \in A1 \& x2 \in A2 \& x3 = A2  X3 = A2 \& x3
A3}.
Definition
        let X1, X2, X3, X4, A1, A2, A3, A4.
        redefine
                       func [A1, A2, A3, A4] \rightarrow Subset of <math>[X1, X2, X3, X4].
        Theorem DOMAIN_1:55. [A1, A2, A3, A4] = \{[x1, x2, x3, x4]: x1 \in A1 \& x2 \in A2\}
& x_3 \in A_3 \& x_4 \in A_4.
        Theorem DOMAIN_1:56. \emptyset X1 = {x1: contradiction}.
        Theorem DOMAIN_1:57. A1^c = \{x1: not x1 \in A1\}.
        Theorem DOMAIN_1:58. A1 \cap B1 = \{x1: x1 \in A1 \& x1 \in B1\}.
        Theorem DOMAIN_1:59. A1 \cup B1 = \{x1: x1 \in A1 \text{ or } x1 \in B1\}.
        Theorem DOMAIN_1:60. A1 \setminus B1 = \{x1: x1 \in A1 \& not x1 \in B1\}.
        Theorem DOMAIN_1:61. A1\divB1 = {x1: x1 \in A1 & not x1 \in B1 or not x1 \in A1 &
x1 \in B1.
        Theorem DOMAIN_1:62. A1 \doteq B1 = \{x1: \text{ not } x1 \in A1 \text{ iff } x1 \in B1\}.
```

```
Theorem DOMAIN_1:63. A1 - B1 = \{x1: x1 \in A1 \text{ iff not } x1 \in B1\}.
   Theorem DOMAIN_1:64. A1 \rightarrow B1 = \{x1: not (x1 \in A1 \text{ iff } x1 \in B1)\}.
   reserve x1, x2, x3, x4, x5, x6, x7, x8 for Element of D.
   Theorem DOMAIN_1:65. \{x1\} is Subset of D.
   Theorem DOMAIN_1:66. \{x1, x2\} is Subset of D.
   Theorem DOMAIN_1:67. \{x1, x2, x3\} is Subset of D.
   Theorem DOMAIN_1:68. \{x1, x2, x3, x4\} is Subset of D.
   Theorem DOMAIN_1:69. \{x1, x2, x3, x4, x5\} is Subset of D.
   Theorem DOMAIN_1:70. \{x1, x2, x3, x4, x5, x6\} is Subset of D.
   Theorem DOMAIN_1:71. \{x1, x2, x3, x4, x5, x6, x7\} is Subset of D.
   Theorem DOMAIN_1:72. {x1, x2, x3, x4, x5, x6, x7, x8} is Subset of D.
Definition
   let D.
   redefine
   let x1 be Element of D.
          func \{x1\} \rightarrow Subset of D.
   let x2 be Element of D.
          func \{x1, x2\} \rightarrow Subset of D.
   let x3 be Element of D.
          func {x1, x2, x3} \rightarrow Subset of D.
   let x4 be Element of D.
          func {x1, x2, x3, x4} \rightarrow Subset of D.
   let x5 be Element of D.
          func {x1, x2, x3, x4, x5} \rightarrow Subset of D.
   let x6 be Element of D.
          func {x1, x2, x3, x4, x5, x6} \rightarrow Subset of D.
   let x7 be Element of D.
          func {x1, x2, x3, x4, x5, x6, x7} \rightarrow Subset of D.
   let x8 be Element of D.
          func {x1, x2, x3, x4, x5, x6, x7, x8} \rightarrow Subset of D.
Definition
   let X1, A1.
   redefine
          func A1^c \rightarrow Subset of X1.
   let B1.
```

FINSUB_1

Boolean Domains

by

Andrzej Trybulec¹ Warsaw University (Białystok) Agata Darmochwał²

Warsaw University (Białystok)

Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union and difference. This condition is equivalent to being closed under symmetric difference and one of the following operations: union, intersection or difference. We introduce the set of all finite subsets of a set A, denoted by Fin A. The mode Finite Subset of a set A is introduced with the mother type: Element of Fin A. In consequence, "Finite Subset of ..." is an elementary type, therefore one may use such types as "set of Finite Subset of A", "[(Finite Subset of A), Finite Subset of A]", and so on. The article begins with some auxiliary theorems that belong really to BOOLE or ORDINAL1 but are missing there. Moreover, bool A is redefined as a SET DOMAIN, for an arbitrary set A.

The symbols used in this article are introduced in the following vocabularies: BOOLE, FINITE, and BOOLEDOM. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, REAL_1, NAT_1, FINSEQ_1, ENUMSET1, SUBSET_1, ORDINAL1, MCART_1, SETFAM_1, FINSET_1, and DOMAIN_1.

¹Supported by RPBP.III-24.C1.

²Supported by RPBP.III-24.C1.

 $\mathbf{reserve}\ X,\ Y\ \mathbf{for}\ \mathsf{set}.$

Theorem FINSUB_1:1. X misses Y implies $X \setminus Y = X \& Y \setminus X = Y$. Theorem FINSUB_1:2. X misses Y implies $(X \cup Y) \setminus Y = X \& (X \cup Y) \setminus X = Y$. Theorem FINSUB_1:3. $X \cup Y = X \div (Y \setminus X)$. Theorem FINSUB_1:4. $X \cup Y = X \div Y \div X \cap Y$. Theorem FINSUB_1:5. $X \setminus Y = X \div (X \cap Y)$.

Theorem FINSUB_1:6. $X \cap Y = X - Y - (X \cup Y)$.

Theorem FINSUB_1:7. (for x being set st $x \in X$ holds $x \in Y$) implies $X \subseteq Y$.

Definition

let X.

redefine

func bool $X \rightarrow \mathsf{SET}$ DOMAIN.

Theorem FINSUB_1:8. for Y being Element of bool X holds $Y \subseteq X$.

Definition

 $\label{eq:mode_bound} \begin{array}{l} \mathbf{mode} \ \mathsf{BOOLE} \ \mathsf{DOMAIN} \rightarrow \mathsf{SET} \ \mathsf{DOMAIN} \ \mathbf{means} \ \mathbf{for} \ X, \ Y \ \mathbf{being} \ \mathsf{Element} \ \mathbf{of} \ \mathbf{it} \\ \mathbf{holds} \ X \cup Y \ \in \ \mathbf{it} \ \& \ X \smallsetminus Y \ \in \ \mathbf{it}. \end{array}$

Theorem FINSUB_1:9. for A being SET DOMAIN holds A is BOOLE DOMAIN iff for X, Y being Element of A holds $X \cup Y \in A \& X \setminus Y \in A$.

 $\mathbf{reserve}\ A\ \mathbf{for}\ \mathsf{BOOLE}\ \mathsf{DOMAIN}.$

Theorem FINSUB_1:10. $X \in A \& Y \in A$ implies $X \cup Y \in A \& X \setminus Y \in A$.

Theorem FINSUB_1:11. X is Element of A & Y is Element of A implies $X \cup Y$ is Element of A.

Theorem FINSUB_1:12. X is Element of A & Y is Element of A implies $X \setminus Y$ is Element of A.

Definition

let A.

let X, Y be Element of A.

redefine

 $\mathbf{func}\ X{\cup}Y\ \rightarrow\ \mathsf{Element}\ \mathbf{of}\ A.$

func $X \setminus Y \to \mathsf{Element}$ of A.

Theorem FINSUB_1:13. X is Element of A & Y is Element of A implies $X \cap Y$ is Element of A.

Theorem FINSUB_1:14. X is Element of A & Y is Element of A implies X - Y is Element of A.

Theorem FINSUB_1:15. for A being SET DOMAIN st for X, Y being Element of A holds $X - Y \in A \& X \setminus Y \in A$ holds A is BOOLE DOMAIN.

Theorem FINSUB_1:16. for A being SET DOMAIN st for X, Y being Element of A holds $X - Y \in A \& X \cap Y \in A$ holds A is BOOLE DOMAIN.

Theorem FINSUB_1:17. for A being SET DOMAIN st for X, Y being Element of A holds $X - Y \in A \& X \cup Y \in A$ holds A is BOOLE DOMAIN.

Definition

let A.

let X, Y be Element of A.

redefine

func $X \cap Y \to \mathsf{Element}$ of A.

func $X - Y \rightarrow \mathsf{Element} \mathbf{of} A.$

Theorem FINSUB_1:18. $\emptyset \in A$.

Theorem FINSUB_1:19. \emptyset is Element of A.

Theorem FINSUB_1:20. bool A is BOOLE DOMAIN.

Theorem FINSUB_1:21. for A, B being BOOLE DOMAIN holds $A \cap B$ is BOOLE DOMAIN.

 $\mathbf{reserve}\ A,\ B,\ P\ \mathbf{for}\ \mathbf{set}.$

reserve x, y for Any.

Definition

let A.

func Fin A \to BOOLE DOMAIN means for X being set holds $X \in \mathbf{it}$ iff $X \subseteq$ A & X is finite.

Theorem FINSUB_1:22. $B \in Fin A \text{ iff } B \subseteq A \& B \text{ is finite.}$

Theorem FINSUB_1:23. $A \subseteq B$ implies Fin $A \subseteq$ Fin B.

Theorem FINSUB_1:24. Fin $(A \cap B) = Fin A \cap Fin B$.

Theorem FINSUB_1:25. Fin $A \cup Fin B \subseteq Fin (A \cup B)$.

Theorem FINSUB_1:26. Fin $A \subseteq bool A$.

Theorem FINSUB_1:27. A is finite **implies** Fin A = bool A.

```
Theorem FINSUB_1:28. Fin \emptyset = \{\emptyset\}.
```

Definition

let A.

mode Finite Subset of $A \rightarrow$ Element of Fin A means not contradiction.

Theorem FINSUB_1:29. for X being Element of Fin A holds X is Finite Subset of A. Definition

let A.

let X, Y be Finite Subset of A.

redefine

func $X \cup Y \rightarrow$ Finite Subset of A.

 $\mathbf{func}\ X \cap Y \ \rightarrow \ \mathsf{Finite}\ \mathsf{Subset}\ \mathbf{of}\ A.$

func $X \smallsetminus Y \rightarrow$ Finite Subset of A.

 $\mathbf{func}\ \mathrm{X}\dot{-}\mathrm{Y}\ \rightarrow\ \mathsf{Finite}\ \mathsf{Subset}\ \mathbf{of}\ \mathrm{A}.$

Theorem FINSUB_1:30. for X being Finite Subset of A holds X is finite.

Theorem FINSUB_1:31. for X being Finite Subset of A holds $X \subseteq A$.

Theorem FINSUB_1:32. for X being Finite Subset of A holds X is Subset of A.

Theorem FINSUB_1:33. \emptyset is Finite Subset of A.

Theorem FINSUB_1:34. A is finite **implies for** X **being** Subset of A holds X is Finite Subset of A.

INCSP_1

Axioms of Incidency

by

Wojciech A. Trybulec¹

Warsaw University

Summary. This text is a translation into Mizar of a small part of *Foundations* of *Geometry* by K. Borsuk and W. Szmielew related to the axioms of incidency. (Remark: The fourth axiom of incidency is weakened in this text. In the source text it has the form: for any plane there exist three non-collinear points in the plane and in this text: for any plane there exists one point in the plane. The original axiom is proved in the text.) The article includes: theorems concerning collinearity of points and coplanarity of points and lines, basic theorems concerning lines and planes, fundamental existence theorems, theorems concerning intersection of lines and planes.

The symbols used in this article are introduced in the following vocabularies: INCSP_1, BOOLE, and RELATION. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, RELAT_1, MCART_1, DOMAIN_1, and RELSET_1.

struct lncStruct ((Points, Lines, Planes \rightarrow DOMAIN, lnc1 \rightarrow (Relation of the Points, the Lines), lnc2 \rightarrow (Relation of the Points, the Planes), lnc3 \rightarrow Relation of the Lines, the Planes)).

¹Supported by RPBP.III-24.C1.

Definition let S be IncStruct.
mode POINT of $S \rightarrow$ Element of the Points of S means not contradiction.
mode LINE of $S \rightarrow$ Element of the Lines of S means not contradiction.
mode PLANE of S \rightarrow Element of the Planes of S means not contradiction.
reserve S for IncStruct.
reserve A for Element of the Points of S.
reserve L for Element of the Lines of S.
reserve P for Element of the Planes of S. $(1 - 1)^{1/2}$
Theorem INCSP_1:1. A is POINT of S.
Theorem INCSP_1:2. L is LINE of S.
Theorem INCSP_1:3. P is PLANE of S.
reserve A, B, C, D, E for POINT of S.
reserve K, L, L1, L2 for LINE of S.
reserve P, P1, P2, Q for PLANE of S.
reserve F, G for Subset of the Points of S.
Definition
let S.
let A be (POINT of S), L be LINE of S.
$\mathbf{pred} \ \mathrm{A} \ \mathrm{on} \ \mathrm{L} \ \mathbf{means} \ [\mathrm{A}, \ \mathrm{L}] \in \mathbf{the} \ lnc1 \ \mathbf{of} \ \mathrm{S}.$
Definition
let S.
let A be (POINT of S), P be PLANE of S.
pred A on P means $[A, P] \in \mathbf{the} \text{ lnc2 of } S.$
Definition
let S.
let L be (LINE of S), P be PLANE of S .
$\mathbf{pred} \ \mathrm{L} \ \mathrm{on} \ \mathrm{P} \ \mathbf{means} \ [\mathrm{L}, \ \mathrm{P}] \in \mathbf{the} \ lnc3 \ \mathbf{of} \ \mathrm{S}.$
Definition
let S.
let F be (set of POINT of S), L be LINE of S.
pred F on L means for A being POINT of S st $A \in F$ holds A on L.
Definition
let \mathbf{F} by (set of DOINT of \mathbf{G}) \mathbf{D} by \mathbf{D} by \mathbf{D}
let F be (set of POINT of S), P be PLANE of S .

pred F on P means for A st $A \in F$ holds A on P.

Definition

let S.

let F be set of POINT of S.

pred F is collinear means $\mathbf{ex} \ L \ \mathbf{st} \ F$ on L.

Definition

let S.

let F be set of POINT of S.

 $\mathbf{pred} \ \mathbf{F}$ is coplanar $\mathbf{means} \ \mathbf{ex} \ \mathbf{P} \ \mathbf{st} \ \mathbf{F}$ on \mathbf{P} .

Theorem INCSP_1:4. A on L iff $[A, L] \in$ the lnc1 of S.

Theorem INCSP_1:5. A on P iff $[A, P] \in$ the lnc2 of S.

Theorem INCSP_1:6. L on P iff $[L, P] \in$ the lnc3 of S.

Theorem INCSP_1:7. F on L iff for A st $A \in F$ holds A on L.

Theorem INCSP_1:8. F on P iff for A st $A \in F$ holds A on P.

Theorem INCSP_1:9. F is collinear **iff** ex L st F on L.

Theorem INCSP_1:10. F is coplanar iff ex P st F on P.

Theorem INCSP_1:11. $\{A, B\}$ on L iff A on L & B on L.

Theorem INCSP_1:12. $\{A, B, C\}$ on L iff A on L & B on L & C on L.

Theorem INCSP_1:13. $\{A, B\}$ on P iff A on P & B on P.

Theorem INCSP_1:14. $\{A, B, C\}$ on P iff A on P & B on P & C on P.

Theorem INCSP_1:15. $\{A, B, C, D\}$ on P iff A on P & B on P & C on P & D on P.

Theorem INCSP_1:16. $G \subseteq F \& F$ on L implies G on L.

Theorem INCSP_1:17. $G \subseteq F \& F$ on P implies G on P.

Theorem INCSP_1:18. F on L & A on L iff $F \cup \{A\}$ on L.

Theorem INCSP_1:19. F on P & A on P iff $F \cup \{A\}$ on P.

Theorem INCSP_1:20. $F \cup G$ on L iff F on L & G on L.

Theorem INCSP_1:21. $F \cup G$ on P iff F on P & G on P.

Theorem INCSP_1:22. $G \subseteq F \& F$ is collinear **implies** G is collinear.

Theorem INCSP_1:23. $G \subseteq F \& F$ is coplanar implies G is coplanar.

Definition

mode $lncSpace \rightarrow lncStruct$ means (for L being LINE of it ex A, B being POINT of it st A \neq B & {A, B} on L) & (for A, B being POINT of it ex L being LINE of it st {A, B} on L) & (for A, B being (POINT of it), K, L being LINE of it st A \neq B & {A, B} on K & {A, B} on L holds K = L) & (for P being PLANE of it ex A being POINT of it st A on P) & (for A, B, C being POINT of it ex P being PLANE of it st {A, B, C} on P) & (for A, B, C being (POINT of it), P, Q being PLANE of it st not {A, B, C} is collinear & {A, B, C} on P & {A, B, C} on Q holds P = Q) & (for L being (LINE of it), P being PLANE of it st ex A, B being POINT of it st A \neq B & {A, B} on L & {A, B} on P holds L on P) & (for A being (POINT of it), P, Q being PLANE of it st A on P & A on Q ex B being POINT of it st A \neq B & B on P & B on Q) & (ex A, B, C, D being POINT of it st not {A, B, C, D} is coplanar) & (for A being (POINT of it), P being (LINE of it), P being PLANE of it st A on L & L on P holds A on P).

Theorem INCSP_1:24. (for L being LINE of S ex A, B being POINT of S st $A \neq B$ & {A, B} on L) & (for A, B being POINT of S), K, L being LINE of S st $A \neq B$ & {A, B} on L) & (for A, B being (POINT of S), K, L being LINE of S st $A \neq B$ & {A, B} on K & {A, B} on L holds K = L) & (for P being PLANE of S ex A being POINT of S st A on P) & (for A, B, C being POINT of S ex P being PLANE of S st {A, B, C} on P) & (for A, B, C being (POINT of S), P, Q being PLANE of S st not {A, B, C} on P) & (for A, B, C being (POINT of S), P, Q being PLANE of S st not {A, B, C} is collinear & {A, B, C} on P & {A, B, C} on Q holds P = Q) & (for L being (LINE of S), P being PLANE of S st ex A, B being POINT of S st $A \neq B$ & {A, B} on L & {A, B} on P holds L on P) & (for A being (POINT of S), P, Q being PLANE of S st A on P & A on Q ex B being POINT of S st $A \neq B$ & B on P & B on Q) & (ex A, B, C, D being POINT of S st not {A, B, C, D} is coplanar) & (for A being (POINT of S), L being (LINE of S), P being PLANE of S st A on L & L on P holds A on P) implies S is IncSpace.

reserve S for IncSpace.

reserve A, B, C, D, E for POINT of S.

reserve K, L, L1, L2 for LINE of S.

reserve P, P1, P2, Q for PLANE of S.

reserve F for Subset of the Points of S.

Theorem INCSP_1:25. ex A, B st A \neq B & {A, B} on L.

Theorem INCSP_1:26. ex L st $\{A, B\}$ on L.

Theorem INCSP_1:27. $A \neq B \& \{A, B\}$ on K & $\{A, B\}$ on L implies K = L.

Theorem INCSP_1:28. ex A st A on P.

Theorem INCSP_1:29. ex P st $\{A, B, C\}$ on P.

Theorem INCSP_1:30. not $\{A, B, C\}$ is collinear & $\{A, B, C\}$ on P & $\{A, B, C\}$ on Q implies P = Q.

Theorem INCSP_1:31. (ex A, B st A \neq B & {A, B} on L & {A, B} on P) implies L on P.

Theorem INCSP_1:32. A on P & A on Q implies (ex B st $A \neq B$ & B on P & B on Q).

Theorem INCSP_1:33. ex A, B, C, D st not {A, B, C, D} is coplanar.

Theorem INCSP_1:34. A on L & L on P implies A on P.

Theorem INCSP_1:35. F on L & L on P implies F on P.

Theorem INCSP_1:36. {A, A, B} is collinear.

Theorem INCSP_1:37. {A, A, B, C} is coplanar.

Theorem INCSP_1:38. {A, B, C} is collinear implies {A, B, C, D} is coplanar.

Theorem INCSP_1:39. $A \neq B \& \{A, B\}$ on L & not C on L implies not $\{A, B, C\}$ is collinear.

Theorem INCSP_1:40. not $\{A, B, C\}$ is collinear & $\{A, B, C\}$ on P & not D on P implies not $\{A, B, C, D\}$ is coplanar.

Theorem INCSP_1:41. not (ex P st K on P & L on P) implies $K \neq L$.

Theorem INCSP_1:42. not (ex P st L on P & L1 on P & L2 on P) & (ex A st A on L & A on L1 & A on L2) implies $L \neq L1$.

Theorem INCSP_1:43. L1 on P & L2 on P & not L on P & L1 \neq L2 implies not (ex Q st L on Q & L1 on Q & L2 on Q).

Theorem INCSP_1:44. ex P st A on P & L on P.

Theorem INCSP_1:45. (ex A st A on K & A on L) implies (ex P st K on P & L on P).

Theorem INCSP_1:46. $A \neq B$ implies ex L st for K holds $\{A, B\}$ on K iff K = L.

Theorem INCSP_1:47. not $\{A, B, C\}$ is collinear implies ex P st for Q holds $\{A, B, C\}$ on Q iff P = Q.

Theorem INCSP_1:48. not A on L implies ex P st for Q holds A on Q & L on Q iff P = Q.

Theorem INCSP_1:49. $K \neq L \& (ex A st A on K \& A on L)$ implies ex P st for Q holds K on Q & L on Q iff P = Q.

Definition

let S.

let A, B.

assume $A \neq B$.

func Line $(A, B) \rightarrow \text{LINE of } S \text{ means } \{A, B\}$ on it.

Definition

let S.

let A, B, C.

assume not $\{A, B, C\}$ is collinear.

func Plane $(A, B, C) \rightarrow \mathsf{PLANE} \text{ of } S \text{ means } \{A, B, C\} \text{ on it.}$

Definition

let S.

let A, L.

assume not A on L.

func Plane $(A, L) \rightarrow \mathsf{PLANE} \text{ of } S \text{ means } A \text{ on } it \& L \text{ on } it.$

Definition let S. let K, L. assume that $K \neq L$ and (ex A st A on K & A on L). func Plane (K, L) \rightarrow PLANE of S means K on it & L on it. Theorem INCSP_1:50. $A \neq B$ implies $\{A, B\}$ on Line (A, B). Theorem INCSP_1:51. $A \neq B \& \{A, B\}$ on K implies K = Line (A, B). Theorem INCSP_1:52. not {A, B, C} is collinear implies {A, B, C} on Plane (A, B, C). Theorem INCSP_1:53. not $\{A, B, C\}$ is collinear & $\{A, B, C\}$ on Q implies Q = Plane (A, B, C).Theorem INCSP_1:54. not A on L implies A on Plane (A, L) & L on Plane (A, L). Theorem INCSP_1:55. not A on L & A on Q & L on Q implies Q = Plane (A, L). Theorem INCSP_1:56. K \neq L & (ex A st A on K & A on L) implies K on Plane (K, L) & L on Plane (K, L). Theorem INCSP_1:57. $A \neq B$ implies Line (A, B) = Line (B, A). Theorem INCSP_1:58. not $\{A, B, C\}$ is collinear implies Plane (A, B, C) =Plane (C, B). Theorem INCSP_1:59. not $\{A, B, C\}$ is collinear implies Plane (A, B, C) = Plane (B, C)A, C). Theorem INCSP_1:60. not $\{A, B, C\}$ is collinear implies Plane (A, B, C) = Plane (B, C)C, A). Theorem INCSP_1:61. not $\{A, B, C\}$ is collinear implies Plane (A, B, C) = Plane (C, C)A, B). Theorem INCSP_1:62. not $\{A, B, C\}$ is collinear implies Plane (A, B, C) = Plane (C, B) =B, A). Theorem INCSP_1:63. $K \neq L \& (ex A st A on K \& A on L) \& K on Q \& L on Q$ implies Q = Plane (K, L). Theorem INCSP_1:64. $K \neq L \& (ex A st A on K \& A on L)$ implies Plane (K, L) = Plane (L, K). Theorem INCSP_1:65. $A \neq B \& C$ on Line (A, B) implies {A, B, C} is collinear. Theorem INCSP_1:66. $A \neq B \& A \neq C \& \{A, B, C\}$ is collinear implies Line (A, B)= Line (A, C). Theorem INCSP_1:67. not $\{A, B, C\}$ is collinear implies Plane (A, B, C) = Plane (C, C)Line (A, B)). Theorem INCSP_1:68. not {A, B, C} is collinear & D on Plane (A, B, C) implies {A, $B, C, D\}$ is coplanar.

Theorem INCSP_1:69. not C on L & $\{A, B\}$ on L & $A \neq B$ implies Plane (C, L) = Plane (A, B, C).

Theorem INCSP_1:70. not $\{A, B, C\}$ is collinear implies Plane (A, B, C) = Plane (Line (A, B), Line (A, C)).

Theorem INCSP_1:71. ex A, B, C st $\{A, B, C\}$ on P & not $\{A, B, C\}$ is collinear.

Theorem INCSP_1:72. ex A, B, C, D st A on P & not {A, B, C, D} is coplanar.

Theorem INCSP_1:73. ex B st $A \neq B \& B$ on L.

Theorem INCSP_1:74. $A \neq B$ implies ex C st C on P & not {A, B, C} is collinear.

Theorem INCSP_1:75. not $\{A, B, C\}$ is collinear implies ex D st not $\{A, B, C, D\}$ is coplanar.

Theorem INCSP_1:76. ex B, C st {B, C} on P & not {A, B, C} is collinear.

Theorem INCSP_1:77. $A \neq B$ implies (ex C, D st not {A, B, C, D} is coplanar).

Theorem INCSP_1:78. ex B, C, D st not {A, B, C, D} is coplanar.

Theorem INCSP_1:79. ex L st not A on L & L on P.

Theorem INCSP_1:80. A on P implies (ex L, L1, L2 st L1 \neq L2 & L1 on P & L2 on P & not L on P & A on L & A on L1 & A on L2).

Theorem INCSP_1:81. ex L, L1, L2 st A on L & A on L1 & A on L2 & not (ex P st L on P & L1 on P & L2 on P).

Theorem INCSP_1:82. ex P st A on P & not L on P.

Theorem INCSP_1:83. ex A st A on P & not A on L.

Theorem INCSP_1:84. ex K st not (ex P st L on P & K on P).

Theorem INCSP_1:85. ex P, Q st $P \neq Q \& L$ on P & L on Q.

Theorem INCSP_1:86. $K \neq L \& \{A, B\}$ on $K \& \{A, B\}$ on L implies A = B.

Theorem INCSP_1:87. not L on P & $\{A, B\}$ on L & $\{A, B\}$ on P implies A = B.

Theorem INCSP_1:88. $P \neq Q$ implies not (ex A st A on P & A on Q) or (ex L st for B holds B on P & B on Q iff B on L).

Chapter 27

LATTICES

Introduction to Lattice Theory

by

Stanisław Żukowski¹

Warsaw University (Białystok)

Summary. A lattice is defined as an algebra on a nonempty set with binary operations join and meet which are commutative and associative, and satisfy the absorption identities. The following kinds of lattices are considered: distributive, modular, bounded (with zero and unit elements), complemented, and Boolean (with complement). The article includes also theorems which immediately follow from definitions.

The symbols used in this article are introduced in the following vocabularies: BOOLE, COORD, FUNC, SUB_OP, BINOP, FUNC_REL, BOOLEDOM, and LATTICES. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, MCART_1, DOMAIN_1, FUNCT_2, BINOP_1, FINSET_1, and FINSUB_1.

scheme BooleDomBinOpLambda{A() \rightarrow BOOLE DOMAIN, O((Element of A()), Element of A()) \rightarrow Element of A()}: ex o being BinOp of A() st for a, b being Element of A() holds o.(a, b) = O(a, b).

struct LattStr ((L carrier \rightarrow DOMAIN, L join, L meet \rightarrow BinOp of the L carrier)). reserve G for LattStr.

¹Supported by RPBP.III-24.C1.

reserve p, q, r for Element of the L carrier of G.

Definition

let G, p, q.

```
func p \sqcup q \rightarrow \text{Element of the } L \text{ carrier of } G \text{ means it} = (\text{the } L \text{ join of } G).(p, q).
func p \sqcap q \rightarrow \text{Element of the } L \text{ carrier of } G \text{ means it} = (\text{the } L \text{ meet of } G).(p, q).
```

q).

```
Theorem LATTICES:1. p \sqcup q = (\mathbf{the } \mathsf{L} \mathsf{ join } \mathbf{of } G).(p, q).
```

Theorem LATTICES:2. $p \sqcap q = (\mathbf{the } \mathsf{L} \mathsf{ meet of } G).(p, q).$

Definition

let G, p, q.

pred $p \sqsubseteq q$ **means** $p \sqcup q = q$.

Theorem LATTICES:3. $p \sqsubseteq q$ iff $p \sqcup q = q$.

Definition

mode Lattice \rightarrow LattStr means (for a, b being Element of the L carrier of it holds $a \sqcup b = b \sqcup a$) & (for a, b, c being Element of the L carrier of it holds $a \sqcup (b \sqcup c) =$ $(a \sqcup b) \sqcup c$) & (for a, b being Element of the L carrier of it holds $(a \sqcap b) \sqcup b = b$) & (for a, b being Element of the L carrier of it holds $a \sqcap b = b \sqcap a$) & (for a, b, c being Element of the L carrier of it holds $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$) & (for a, b being Element of the L carrier of it holds $a \sqcap (a \sqcup b) = a$).

Theorem LATTICES:4. (for p, q holds $p \sqcup q = q \sqcup p$) & (for p, q, r holds $p \sqcup (q \sqcup r) = (p \sqcup q) \sqcup r$) & (for p, q holds $(p \sqcap q) \sqcup q = q$) & (for p, q holds $p \sqcap q = q \sqcap p$) & (for p, q, r holds $p \sqcap (q \sqcap r) = (p \sqcap q) \sqcap r$) & (for p, q holds $p \sqcap (p \sqcup q) = p$) implies G is Lattice.

reserve L for Lattice.

reserve a, b, c, c1, c2 for Element of the L carrier of L.

Theorem LATTICES:5. $a \sqcup b = b \sqcup a$.

Theorem LATTICES:6. $a \square b = b \square a$.

Theorem LATTICES:7. $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$.

Theorem LATTICES:8. $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$.

Theorem LATTICES:9. $(a \sqcap b) \sqcup b = b \& b \sqcup (a \sqcap b) = b \& b \sqcup (b \sqcap a) = b \& (b \sqcap a) \sqcup b = b.$

Theorem LATTICES:10. a $\sqcap(a\sqcup b) = a \& (a\sqcup b) \sqcap a = a \& (b\sqcup a) \sqcap a = a \& a \sqcap(b\sqcup a) = a.$

Definition

mode D Lattice \rightarrow Lattice means for a, b, c being Element of the L carrier of it holds $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$.

Theorem LATTICES:11. (for a, b, c holds $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$) implies L is D Lattice.

```
Definition
```

mode M Lattice \rightarrow Lattice means for a, b, c being Element of the L carrier of it st a \sqsubseteq c holds a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap c.

Theorem LATTICES:12. (for a, b, c st a \sqsubset c holds $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap c$) implies L is M Lattice.

Definition

```
mode 0 Lattice \rightarrow Lattice means ex c being Element of the L carrier of it st
for a being Element of the L carrier of it holds c \Box a = c.
```

Theorem LATTICES:13. (ex c st for a holds $c \square a = c$) implies L is 0 Lattice.

Definition

mode 1 Lattice \rightarrow Lattice means ex c being Element of the L carrier of it st for a being Element of the L carrier of it holds $c \sqcup a = c$.

Theorem LATTICES:14. (ex c st for a holds $c \sqcup a = c$) implies L is 1 Lattice.

Definition

mode 01 Lattice \rightarrow Lattice means it is 0 Lattice & it is 1 Lattice.

Theorem LATTICES:15. (L is 0 Lattice & L is 1 Lattice) implies L is 01 Lattice. Definition

let L.

```
assume ex c st for a holds c \square a = c.
```

```
\mathbf{func} \perp L \rightarrow \mathsf{Element} \ \mathbf{of} \ \mathbf{the} \ \mathsf{L} \ \mathsf{carrier} \ \mathbf{of} \ L \ \mathbf{means} \ \mathbf{it} \sqcap a = \mathbf{it}.
```

Definition

let L be 0 Lattice.

redefine

func $\perp L \rightarrow$ Element of the L carrier of L.

Definition

let L.

assume ex c st for a holds $c \sqcup a = c$.

func $\top L \rightarrow \mathsf{Element}$ of the L carrier of L means $it \sqcup a = it$.

Definition

let L be 1 Lattice.

redefine

func $\top L \rightarrow$ Element of the L carrier of L.

Definition

let L be 01 Lattice.

redefine

func $\perp L \rightarrow$ Element of the L carrier of L.

func $\top L \rightarrow \mathsf{Element}$ of the L carrier of L.

Definition

let L, a, b.

assume L is 01 Lattice.

pred a is a complement b **means** $a \sqcup b = \top L \& a \sqcap b = \bot L$.

Definition

mode C Lattice \rightarrow 01 Lattice means for b being Element of the L carrier of it ex a being Element of the L carrier of it st a is a complement b.

Definition

 $\mathbf{mode} ~ \mathsf{B} ~ \mathsf{Lattice} \rightarrow \mathsf{C} ~ \mathsf{Lattice} ~ \mathbf{means} ~ \mathbf{it} ~ \mathbf{is} ~ \mathsf{D} ~ \mathsf{Lattice}.$

Theorem LATTICES:16. $a \sqcup b = b$ iff $a \sqcap b = a$.

Theorem LATTICES:17. $a \sqcup a = a$.

Theorem LATTICES:18. $a \square a = a$.

Theorem LATTICES:19. for L holds (for a, b, c holds $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$) iff (for a, b, c holds $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$).

Theorem LATTICES:20. $a \sqsubseteq b$ iff $a \sqcup b = b$.

Theorem LATTICES:21. $a \sqsubseteq b$ iff $a \sqcap b = a$.

Theorem LATTICES:22. a \sqsubseteq a \sqcup b.

```
Theorem LATTICES:23. a \sqcap b \sqsubseteq a.
```

Theorem LATTICES:24. a \sqsubseteq a.

```
Theorem LATTICES:25. a \sqsubseteq b \& b \sqsubseteq c implies a \sqsubseteq c.
```

```
Theorem LATTICES:26. a \sqsubseteq b \& b \sqsubseteq a implies a = b.
```

```
Theorem LATTICES:27. a \sqsubseteq b implies a \sqcap c \sqsubseteq b \sqcap c.
```

Theorem LATTICES:28. $a \sqsubseteq b$ implies $c \sqcap a \sqsubseteq c \sqcap b$.

```
Theorem LATTICES:29. (for a, b, c holds (a \sqcap b) \sqcup (b \sqcap c) \sqcup (c \sqcap a) = (a \sqcup b) \sqcap (b \sqcup c) \sqcap (c \sqcup a)) implies L is D Lattice.
```

reserve L for D Lattice.

reserve a, b, c for Element of the L carrier of L.

Theorem LATTICES:30. for L holds (for a, b, c holds $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$) & (for a, b, c holds $(b \sqcup c) \sqcap a = (b \sqcap a) \sqcup (c \sqcap a)$).

Theorem LATTICES:31. for L holds (for a, b, c holds $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c))$ & (for a, b, c holds $(b \sqcap c) \sqcup a = (b \sqcup a) \sqcap (c \sqcup a)$).

Theorem LATTICES:32. $c \square a = c \square b \& c \square a = c \square b$ implies a = b.

Theorem LATTICES:33. $a \square c = b \square c \& a \square c = b \square c$ implies a = b.

Theorem LATTICES:34. $(a \sqcup b) \sqcap (b \sqcup c) \sqcap (c \sqcup a) = (a \sqcap b) \sqcup (b \sqcap c) \sqcup (c \sqcap a).$

```
Theorem LATTICES:35. L is M Lattice.
   reserve L for M Lattice.
   reserve a, b, c for Element of the L carrier of L.
   Theorem LATTICES:36. a \sqsubseteq c implies a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap c.
   Theorem LATTICES:37. c \sqsubseteq a implies a\sqcap(b\sqcupc) = (a\sqcapb)\sqcupc.
   reserve L for 0 Lattice.
   reserve a, b, c for Element of the L carrier of L.
   Theorem LATTICES:38. ex c st for a holds c \square a = c.
   Theorem LATTICES:39. \perp L \sqcup a = a \& a \sqcup \bot L = a.
   Theorem LATTICES:40. \perp L \sqcap a = \perp L \& a \sqcap \perp L = \perp L.
   Theorem LATTICES:41. \perp L \Box a.
   reserve L for 1 Lattice.
   reserve a, b, c for Element of the L carrier of L.
   Theorem LATTICES:42. ex c st for a holds c \sqcup a = c.
   Theorem LATTICES:43. \top L \sqcap a = a \& a \sqcap \top L = a.
   Theorem LATTICES:44. \top L \sqcup a = \top L \& a \sqcup \top L = \top L.
   Theorem LATTICES:45. a \Box \top L.
   reserve L for C Lattice.
   reserve a, b, c for Element of the L carrier of L.
   Theorem LATTICES:46. ex a st a is a complement b.
   reserve L for Lattice.
   reserve a. b. c for Element of the L carrier of L.
Definition
   let L.
   let x be Element of the L carrier of L.
   assume L is B Lattice.
          func x^c \rightarrow \text{Element of the } L carrier of L means it is a complement x.
Definition
   let L be B Lattice.
   let x be Element of the L carrier of L.
   redefine
          func \mathbf{x}^c \rightarrow \mathsf{Element} of the L carrier of L.
   reserve L for B Lattice.
   reserve a, b, c for Element of the L carrier of L.
   Theorem LATTICES:47. a^c \sqcap a = \bot L \& a \sqcap a^c = \bot L.
```

150

Theorem LATTICES:48. $a^c \sqcup a = \top L \& a \sqcup a^c = \top L$. Theorem LATTICES:49. $a^{cc} = a$. Theorem LATTICES:50. $(a \sqcap b)^c = a^c \sqcup b^c$. Theorem LATTICES:51. $(a \sqcup b)^c = a^c \sqcap b^c$. Theorem LATTICES:52. $b \sqcap a = \bot L$ iff $b \sqsubseteq a^c$. Theorem LATTICES:53. $a \sqsubseteq b$ implies $b^c \sqsubseteq a^c$.

Chapter 28

PRE_TOPC

Topological Spaces and Continuous Functions

by

Beata Padlewska¹ Warsaw University (Białystok) Agata Darmochwał² Warsaw University (Białystok)

Summary. The article contains a definition of topological space. The following notions are defined: point of topological space, subset of topological space, subspace of topological space, and continuous function.

The symbols used in this article are introduced in the following vocabularies: BOOLE, FUNC, FUNC_REL, REAL_1, SUB_OP, FAM_OP, SFAMILY, and TOPCON. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, ORDINAL1, MCART_1, DOMAIN_1, FUNCT_2, and SETFAM_1.

reserve p, q for Subset of the carrier of T.

¹Supported by RPBP.III-24.C1.

²Supported by RPBP.III-24.C1.

reserve x for Any.

Definition

mode TopSpace \rightarrow TopStruct means $\emptyset \in$ the topology of it & the carrier of it \in the topology of it & (for a being Subset-Family of the carrier of it st a \subseteq the topology of it holds $\bigcup a \in$ the topology of it) & (for a, b being Subset of the carrier of it st a \in the topology of it be topology of it holds $a \cap b \in$ the topology of it).

Theorem PRE_TOPC:1. ($\emptyset \in$ the topology of T & the carrier of T \in the topology of T & (for a being Subset-Family of the carrier of T st a \subseteq the topology of T holds $\bigcup a \in$ the topology of T) & (for p, q being Subset of the carrier of T st p \in the topology of T holds $p \cap q \in$ the topology of T)) implies T is TopSpace.

reserve T, S, GX, GY for TopSpace.

Definition

let T.

mode Point of $T \rightarrow$ Element of the carrier of T means not contradiction.

Theorem PRE_TOPC:2. for x being Element of the carrier of T holds x is Point of T.

Definition

let T.

mode Subset of $T \rightarrow {\bf set}$ of Point of T means not contradiction.

Theorem PRE_TOPC:3. for P being Subset of the carrier of T holds P is Subset of T.

reserve P, Q, R for Subset of T.

 $\mathbf{reserve}~p,\,q,\,r$ for Point of T.

Definition

let T.

mode Subset-Family of $T \rightarrow$ Subset-Family of the carrier of T means not contradiction.

Theorem PRE_TOPC:4. for F being Subset-Family of the carrier of T holds F is Subset-Family of T.

reserve F for Subset-Family of T.

scheme SubFamEx1{A() \rightarrow TopSpace, P[Subset of A()]}: ex F being Subset-Family of A() st for B being Subset of A() holds $B \in F$ iff P[B].

Theorem PRE_TOPC:5. $\emptyset \in$ **the** topology of T.

Theorem PRE_TOPC:6. the carrier of $T \in$ the topology of T.

Theorem PRE_TOPC:7. for a being Subset-Family of T st $a \subseteq$ the topology of T holds $\bigcup a \in$ the topology of T.

```
Theorem PRE_TOPC:8. P \in the topology of T & Q \in the topology of T implies
P \cap Q \in the topology of T.
Definition
    let T.
           func \emptyset(T) \rightarrow Subset of T means it = \emptyset the carrier of T.
           func \Omega(T) \rightarrow Subset of T means it = \Omegathe carrier of T.
    Theorem PRE_TOPC:9. \emptyset T = \emptyset the carrier of T.
    Theorem PRE_TOPC:10. \Omega T = \Omega the carrier of T.
    Theorem PRE_TOPC:11. \emptyset(T) = \emptyset.
    Theorem PRE_TOPC:12. \Omega(T) = the carrier of T.
Definition
    let T, P.
           func P^c \rightarrow Subset of T means it = P^c.
Definition
    let T, P, Q.
    redefine
           func P \cup Q \rightarrow Subset of T.
           func P \cap Q \rightarrow Subset of T.
           func P \setminus Q \rightarrow Subset of T.
           func P - Q \rightarrow Subset of T.
    Theorem PRE_TOPC:13. p \in \Omega(T).
    Theorem PRE_TOPC:14. P \subseteq \Omega(T).
    Theorem PRE_TOPC:15. P \cap \Omega(T) = P.
    Theorem PRE_TOPC:16. for A being set holds A \subseteq \Omega(T) implies A is Subset of
Т.
    Theorem PRE_TOPC:17. P^c = \Omega(T) \setminus P.
    Theorem PRE_TOPC:18. P \cup P^c = \Omega(T).
    Theorem PRE_TOPC:19. P \subseteq Q iff Q^c \subseteq P^c.
    Theorem PRE_TOPC:20. P = P^{cc}.
    Theorem PRE_TOPC:21. P \subseteq Q^c iff P \cap Q = \emptyset.
    Theorem PRE_TOPC:22. \Omega(T) \setminus (\Omega(T) \setminus P) = P.
    Theorem PRE_TOPC:23. P \neq \Omega(T) iff \Omega(T) \setminus P \neq \emptyset.
    Theorem PRE_TOPC:24. \Omega(T) \setminus P = Q implies \Omega(T) = P \cup Q.
    Theorem PRE_TOPC:25. \Omega(T) = P \cup Q \& P \cap Q = \emptyset implies Q = \Omega(T) \setminus P.
    Theorem PRE_TOPC:26. P \cap P^c = \emptyset(T).
```

154

```
Theorem PRE_TOPC:27. \Omega(T) = (\emptyset T)^c.
   Theorem PRE_TOPC:28. P \setminus Q = P \cap Q^c.
   Theorem PRE_TOPC:29. P = Q implies \Omega(T) \setminus P = \Omega(T) \setminus Q.
Definition
   let T, P.
          pred P is open means P \in the topology of T.
   Theorem PRE_TOPC:30. P is open iff P \in the topology of T.
Definition
   let T, P.
          pred P is closed means \Omega(T) \setminus P is open.
   Theorem PRE_TOPC:31. P is closed iff \Omega(T) \setminus P is open.
Definition
   let T, P.
          pred P is open closed means P is open & P is closed.
   Theorem PRE_TOPC:32. P is open closed iff P is open & P is closed.
Definition
   let T, F.
    redefine
          func \bigcup F \rightarrow Subset of T.
Definition
   let T, F.
    redefine
          func \bigcap F \rightarrow Subset of T.
Definition
   let T, F.
          pred F is a cover of T means \Omega(T) = \bigcup F.
   Theorem PRE_TOPC:33. F is a cover of T iff \Omega(T) = \bigcup F.
Definition
   let T.
          mode SubSpace of T \rightarrow TopSpace means \Omega(it) \subset \Omega(T) & for P being Subset
```

Theorem PRE_TOPC:34. $(\Omega(S) \subseteq \Omega(T) \&$ for P being Subset of S holds $P \in$ the topology of S iff ex Q being Subset of T st $Q \in$ the topology of T $\& P = Q \cap \Omega(S)$) implies S is SubSpace of T.

of it holds $P \in$ the topology of it iff ex Q being Subset of T st $Q \in$ the topology of T

& P = Q \cap \Omega(it).

Theorem PRE_TOPC:35. for V being SubSpace of T holds $\Omega(V) \subseteq \Omega(T)$ & for P being Subset of V holds $P \in$ the topology of V iff ex Q being Subset of T st $Q \in$ the topology of T & P = Q \cap \Omega(V).

Definition

```
let T, P.
```

assume $P \neq \emptyset(T)$.

```
func T \upharpoonright P \rightarrow SubSpace of T means \Omega(it) = P \& \emptyset(it) = \emptyset.
```

Theorem PRE_TOPC:36. $P \neq \emptyset(T)$ implies $\Omega(T \upharpoonright P) = P \& \emptyset(T \upharpoonright P) = \emptyset$.

Definition

let T, S.

mode map of $T,\ S \to$ Function of (the carrier of T), (the carrier of S) means not contradiction.

Theorem PRE_TOPC:37. for f being Function of the carrier of T, the carrier of S holds f is map of T, S.

reserve f, g for map of T, S.

reserve P1, Q1, R1 for Subset of S.

Definition

let T, S, f, P.

redefine

func $f.P \rightarrow (Subset of S)$.

Definition

let T, S, f, P1.

redefine

func $f^{-1}P1 \rightarrow ($ Subset of T).

Definition

let T, S, f.

pred f is continuous means for P1 holds P1 is closed implies $f^{-1}P1$ is closed.

Theorem PRE_TOPC:38. f is continuous iff (for P1 holds P1 is closed implies $f^{-1}P1$ is closed).

scheme TopAbstr{A() \rightarrow TopSpace, P[Point of A()]}: ex P being Subset of A() st for x being Point of A() holds $x \in P$ iff P[x].

Theorem PRE_TOPC:39. for X' being SubSpace of GX for A being Subset of X' holds A is Subset of GX.

Theorem PRE_TOPC:40. for A being (Subset of GX), x being Any st $x \in A$ holds x is Point of GX.

Theorem PRE_TOPC:41. for A being Subset of GX st $A \neq \emptyset(GX)$ ex x being Point of GX st $x \in A$.

156

Theorem PRE_TOPC:42. $\Omega(GX)$ is closed.

Theorem PRE_TOPC:43. for X' being (SubSpace of GX), B being Subset of X' holds B is closed iff ex C being Subset of GX st C is closed & $C\cap(\Omega(X')) = B$.

Theorem PRE_TOPC:44. for F being Subset-Family of GX st $F \neq \emptyset$ & for A being Subset of GX st $A \in F$ holds A is closed holds $\bigcap F$ is closed.

Definition

let GX be TopSpace, A be Subset of GX.

func Cl A \rightarrow Subset of GX means for p being Point of GX holds $p \in it$ iff for G being Subset of GX st G is open holds $p \in G$ implies $A \cap G \neq \emptyset(GX)$.

Theorem PRE_TOPC:45. for A being (Subset of GX), p being Point of GX holds $p \in Cl A$ iff for C being Subset of GX st C is closed holds ($A \subseteq C$ implies $p \in C$).

Theorem PRE_TOPC:46. for A being (Subset of GX) ex F being Subset-Family of GX st (for C being Subset of GX holds $C \in F$ iff C is closed & $A \subseteq C$) & Cl $A = \bigcap F$.

Theorem PRE_TOPC:47. for X' being (SubSpace of GX), A being (Subset of GX), A1 being Subset of X' st A = A1 holds Cl $A1 = (Cl A) \cap (\Omega(X'))$.

Theorem PRE_TOPC:48. for A being Subset of GX holds $A \subseteq CI A$.

Theorem PRE_TOPC:49. for A, B being Subset of GX st $A \subseteq B$ holds Cl $A \subseteq Cl B$.

Theorem PRE_TOPC:50. for A, B being Subset of GX holds CI $(A \cup B) = CI A \cup CI B$.

Theorem PRE_TOPC:51. for A, B being Subset of GX holds $CI(A \cap B) \subseteq (CIA) \cap CI$ B.

Theorem PRE_TOPC:52. for A being Subset of GX holds A is closed iff Cl A = A. Theorem PRE_TOPC:53. for A being Subset of GX holds A is open iff Cl ($\Omega(GX) \setminus A$) = $\Omega(GX) \setminus A$.

Theorem PRE_TOPC:54. for A being (Subset of GX), p being Point of GX holds p \in Cl A iff for G being Subset of GX st G is open holds $p \in$ G implies $A \cap G \neq \emptyset(GX)$.

Chapter 29

$TOPS_1$

Subsets of a Topological Space

by

Mirosław Wysocki¹ Warsaw University (Białystok) Agata Darmochwał² Warsaw University (Białystok)

Summary. The article contains some theorems about open and closed sets. The following topological operations on sets are defined: closure, interior and frontier. The following notions are introduced: dense set, boundary set, nowheredense set and set being domain (closed domain and open domain), and some basic facts concerning them are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE, FUNC, FUNC_REL, REL_REL, REAL_1, SUB_OP, FAM_OP, SFAMILY, TOPCON, and TOP1. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, ORDINAL1, MCART_1, DOMAIN_1, FUNCT_2, SETFAM_1, and PRE_TOPC.

reserve TS for TopSpace. reserve x for Any.

¹Supported by RPBP.III-24.C1.

²Supported by RPBP.III-24.C1.

reserve X, Y, Z for set. reserve P, Q, G for Subset of TS. reserve p for Point of TS. Theorem TOPS_1:1. $x \in P$ implies x is Point of TS. Theorem TOPS_1:2. $P \cup \Omega TS = \Omega TS \& \Omega TS \cup P = \Omega TS$. Theorem TOPS_1:3. $P \cap \Omega TS = P \& \Omega TS \cap P = P$. Theorem TOPS_1:4. $P \cap \emptyset$ TS = \emptyset TS & \emptyset TS $\cap P$ = \emptyset TS. Theorem TOPS_1:5. $P^c = \Omega TS \setminus P$. Theorem TOPS_1:6. $P^c = (P \text{ qua Subset of the carrier of } TS)^c$. Theorem TOPS_1:7. $p \in P^c$ iff not $p \in P$. Theorem TOPS_1:8. $(\Omega TS)^c = \emptyset TS.$ Theorem TOPS_1:9. $\Omega TS = (\emptyset TS)^c$. Theorem TOPS_1:10. $(\mathbf{P}^c)^c = \mathbf{P}$. Theorem TOPS_1:11. $P \cup P^c = \Omega TS \& P^c \cup P = \Omega TS$. Theorem TOPS_1:12. $P \cap P^c = \emptyset$ TS & $P^c \cap P = \emptyset$ TS. Theorem TOPS_1:13. $(P \cup Q)^c = (P^c) \cap (Q^c)$. Theorem TOPS_1:14. $(P \cap Q)^c = (P^c) \cup (Q^c)$. Theorem TOPS_1:15. $P \subseteq Q$ iff $Q^c \subseteq P^c$. Theorem TOPS_1:16. $P \setminus Q = P \cap Q^c$. Theorem TOPS_1:17. $(P \setminus Q)^c = P^c \cup Q.$ Theorem TOPS_1:18. $P \subseteq Q^c$ implies $Q \subseteq P^c$. Theorem TOPS_1:19. $P^c \subseteq Q$ implies $Q^c \subseteq P$. Theorem TOPS_1:20. $P \subseteq Q$ iff $P \cap Q^c = \emptyset$. Theorem TOPS_1:21. $P^c = Q^c$ implies P = Q. Theorem TOPS_1:22. Ø TS is closed. Theorem TOPS_1:23. Cl (\emptyset TS) = \emptyset TS. Theorem TOPS_1:24. $P \subset CP$. Theorem TOPS_1:25. $P \subseteq Q$ implies $C | P \subseteq C | Q$. Theorem TOPS_1:26. C|(C|P) = C|P. Theorem TOPS_1:27. Cl $(\Omega TS) = \Omega TS$. Theorem TOPS_1:28. Ω TS is closed. Theorem TOPS_1:29. P is closed iff P^c is open. Theorem TOPS_1:30. P is open iff P^c is closed. Theorem TOPS_1:31. Q is closed & $P \subseteq Q$ implies Cl $P \subseteq Q$. Theorem TOPS_1:32. Cl $P \setminus Cl Q \subset Cl (P \setminus Q)$.

```
Theorem TOPS_1:33. Cl (P \cap Q) \subseteq Cl P \cap Cl Q.
   Theorem TOPS_1:34. P is closed & Q is closed implies Cl (P \cap Q) = Cl P \cap Cl Q.
   Theorem TOPS_1:35. P is closed & Q is closed implies P \cap Q is closed.
   Theorem TOPS_1:36. P is closed & Q is closed implies P \cup Q is closed.
   Theorem TOPS_1:37. P is open & Q is open implies P \cup Q is open.
   Theorem TOPS_1:38. P is open & Q is open implies P \cap Q is open.
   Theorem TOPS_1:39. p \in Cl P iff for G st G is open holds (p \in G implies P \cap G \neq
Ø).
   Theorem TOPS_1:40. Q is open implies Q \cap CI P \subseteq CI (Q \cap P).
   Theorem TOPS_1:41. Q is open implies CI(Q \cap CIP) = CI(Q \cap P).
Definition
   let TS, P.
          func lnt P \rightarrow Subset of TS means it = (Cl (P<sup>c</sup>))<sup>c</sup>.
   Theorem TOPS_1:42. Int P = (C | P^c)^c.
   Theorem TOPS_1:43. Int (\Omega TS) = \Omega TS.
   Theorem TOPS_1:44. Int P \subseteq P.
   Theorem TOPS_1:45. lnt (lnt P) = lnt P.
   Theorem TOPS_1:46. Int P \cap Int Q = Int (P \cap Q).
   Theorem TOPS_1:47. Int (\emptyset \text{ TS}) = \emptyset \text{ TS}.
   Theorem TOPS_1:48. P \subseteq Q implies Int P \subseteq Int Q.
   Theorem TOPS_1:49. Int P \cup Int Q \subseteq Int (P \cup Q).
   Theorem TOPS_1:50. Int (P \setminus Q) \subset Int P \setminus Int Q.
   Theorem TOPS_1:51. Int P is open.
   Theorem TOPS_1:52. \emptyset TS is open.
   Theorem TOPS_1:53. \OmegaTS is open.
   Theorem TOPS_1:54. x \in Int P iff ex Q st Q is open & Q \subseteq P & x \in Q.
   Theorem TOPS_1:55. P is open iff Int P = P.
   Theorem TOPS_1:56. Q is open & Q \subseteq P implies Q \subseteq Int P.
   Theorem TOPS_1:57. P is open iff (for x holds x \in P iff ex Q st Q is open & Q \subseteq P
& \mathbf{x} \in \mathbf{Q}).
   Theorem TOPS_1:58. Cl (Int P) = Cl (Int (Cl (Int P))).
   Theorem TOPS_1:59. P is open implies Cl (Int (Cl P)) = Cl P.
Definition
   let TS, P.
          func Fr P \rightarrow Subset of TS means it = Cl P\capCl (P<sup>c</sup>).
```

160

Theorem TOPS_1:60. Fr P = Cl P \cap Cl (P^c).

Theorem TOPS_1:61. $p \in Fr P$ iff (for Q st Q is open & $p \in Q$ holds $(P \cap Q \neq \emptyset \& P^c \cap Q \neq \emptyset)$).

```
Theorem TOPS_1:62. Fr P = Fr (P<sup>c</sup>).

Theorem TOPS_1:63. Fr P \subseteq Cl P.

Theorem TOPS_1:64. Fr P = Cl (P<sup>c</sup>)\capPU(Cl P\setminusP).

Theorem TOPS_1:65. Cl P = PUFr P.

Theorem TOPS_1:66. Fr (P\capQ) \subseteq Fr PUFr Q.

Theorem TOPS_1:67. Fr (PUQ) \subseteq Fr PUFr Q.

Theorem TOPS_1:68. Fr (Fr P) \subseteq Fr P.

Theorem TOPS_1:69. P is closed implies Fr P \subseteq P.

Theorem TOPS_1:70. Fr PUFr Q = Fr (PUQ)UFr (P\capQ)U(Fr P\capFr Q).

Theorem TOPS_1:71. Fr (Int P) \subseteq Fr P.

Theorem TOPS_1:72. Fr (Cl P) \subseteq Fr P.

Theorem TOPS_1:73. Int P\capFr P = \emptyset.

Theorem TOPS_1:74. Int P = P\setminusFr P.

Theorem TOPS_1:75. Fr (Fr (P)) = Fr (Fr P).

Theorem TOPS_1:76. P is open iff Fr P = Cl P\setminusP.
```

Definition

let TS, P.

pred P is dense **means** Cl P = Ω TS.

Theorem TOPS_1:77. P is closed iff Fr $P = P \setminus Int P$.

Theorem TOPS_1:78. P is dense iff Cl P = Ω TS.

Theorem TOPS_1:79. P is dense & $P \subseteq Q$ implies Q is dense.

Theorem TOPS_1:80. P is dense iff (for Q st $Q \neq \emptyset$ & Q is open holds $P \cap Q \neq \emptyset$).

Theorem TOPS_1:81. P is dense implies (for Q holds Q is open implies Cl Q = Cl $(Q \cap P)$).

Theorem TOPS_1:82. P is dense & Q is dense & Q is open implies $P \cap Q$ is dense.

Definition

let TS, P.

pred P is boundary **means** P^c is dense.

Theorem TOPS_1:83. P is boundary iff P^c is dense.

Theorem TOPS_1:84. P is boundary iff $\ln P = \emptyset$.

Theorem TOPS_1:85. P is boundary & Q is boundary & Q is closed implies $P \cup Q$ is boundary.

Theorem TOPS_1:86. P is boundary iff (for Q st Q \subseteq P & Q is open holds Q = \emptyset).

Theorem TOPS_1:87. P is closed implies (P is boundary iff for Q st $Q \neq \emptyset \& Q$ is open ex G st $G \subseteq Q \& G \neq \emptyset \& G$ is open $\& P \cap G = \emptyset$).

Theorem TOPS_1:88. P is boundary iff $P \subseteq Fr P$.

Definition

let TS, P.

 $\mathbf{pred} \ P$ is nowheredense $\mathbf{means} \ Cl \ P$ is boundary.

Theorem TOPS_1:89. P is nowheredense iff Cl P is boundary.

```
Theorem TOPS_1:90. P is nowheredense & Q is nowheredense implies P \cup Q is nowheredense.
```

Theorem TOPS_1:91. P is nowheredense implies P^c is dense.

Theorem TOPS_1:92. P is nowheredense implies P is boundary.

Theorem TOPS_1:93. Q is boundary & Q is closed implies Q is nowheredense.

Theorem TOPS_1:94. P is closed implies (P is nowheredense iff P = Fr P).

Theorem TOPS_1:95. P is open implies Fr P is nowheredense.

Theorem TOPS_1:96. P is closed implies Fr P is nowheredense.

Theorem TOPS_1:97. P is open & P is nowheredense implies $P = \emptyset$.

Definition

let TS, P.

pred P is domain **means** Int (Cl P) \subseteq P & P \subseteq Cl (Int P).

pred P is closed domain **means** P = Cl (Int P).

pred P is open domain means P = Int (CI P).

Theorem TOPS_1:98. P is domain iff lnt (Cl P) \subseteq P & P \subseteq Cl (lnt P).

Theorem TOPS_1:99. P is closed domain iff P = Cl (lnt P).

Theorem TOPS_1:100. P is open domain iff P = Int (CI P).

Theorem TOPS_1:101. P is open domain iff P^c is closed domain.

```
Theorem TOPS_1:102. P is closed domain implies Fr (Int P) = Fr P.
```

```
Theorem TOPS_1:103. P is closed domain implies Fr P \subset Cl (Int P).
```

```
Theorem TOPS_1:104. P is open domain implies Fr P = Fr (Cl P) & Fr (Cl P) = Cl P \setminus P.
```

Theorem TOPS_1:105. P is open & P is closed implies (P is closed domain iff P is open domain).

Theorem TOPS_1:106. P is closed & P is domain iff P is closed domain.

Theorem TOPS_1:107. P is open & P is domain iff P is open domain.

Theorem TOPS_1:108. P is closed domain & Q is closed domain **implies** $P \cup Q$ is closed domain.

Theorem TOPS_1:109. P is open domain & Q is open domain $\mathbf{implies}\ P\cap Q$ is open domain.

Theorem TOPS_1:110. P is domain **implies** Int (Fr P) = \emptyset .

Theorem TOPS_1:111. P is domain **implies** Int P is domain & Cl P is domain.

Chapter 30

CONNSP_1

Connected Spaces

by

Beata Padlewska¹

Warsaw University (Białystok)

Summary. The following notions are defined: separated sets, connected spaces, connected sets, components of a topological space, the component of a point. The definition of the boundary of a set is also included. The singleton of a point of a topological space is redefined as a subset of the space. Some theorems about these notions are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE, REAL_1, FUNC, FUNC_REL, REL_REL, SUB_OP, FAM_OP, SFAMILY, and TOPCON. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, FUNCT_1, SUBSET_1, SETFAM_1, ORDINAL1, MCART_1, DO-MAIN_1, FUNCT_2, PRE_TOPC, and TOPS_1.

reserve GX, GY for TopSpace.

reserve A, A1, B, B1, C for Subset of GX.

Definition

let GX be TopSpace, A, B be Subset of GX.

pred A, B are separated **means** Cl A \cap B = \emptyset (GX) & A \cap Cl B = \emptyset (GX).

¹Supported by RPBP.III-24.C1.

Theorem CONNSP_1:1. A, B are separated implies B, A are separated.

Theorem CONNSP_1:2. A, B are separated implies $A \cap B = \emptyset(GX)$.

Theorem CONNSP_1:3. $\Omega(GX) = A \cup B \& A$ is closed & B is closed & $A \cap B = \emptyset(GX)$ implies A, B are separated.

Theorem CONNSP_1:4. $\Omega(GX) = A \cup B \& A$ is open & B is open & $A \cap B = \emptyset(GX)$ implies A, B are separated.

Theorem CONNSP_1:5. $\Omega(GX) = A \cup B \& A, B$ are separated **implies** A is open closed & B is open closed.

Theorem CONNSP_1:6. for X' being (SubSpace of GX), P1, Q1 being (Subset of GX), P, Q being Subset of X' st P = P1 & Q = Q1 holds P, Q are separated implies P1, Q1 are separated.

Theorem CONNSP_1:7. for X' being (SubSpace of GX), P, Q being (Subset of GX), P1, Q1 being Subset of X' st $P = P1 \& Q = Q1 \& P \cup Q \subseteq \Omega(X')$ holds P, Q are separated implies P1, Q1 are separated.

Theorem CONNSP_1:8. A, B are separated & A1 \subseteq A & B1 \subseteq B **implies** A1, B1 are separated.

Theorem CONNSP_1:9. A, B are separated & A, C are separated implies A, $B\cup C$ are separated.

Theorem CONNSP_1:10. (A is closed & B is closed) or (A is open & B is open) implies $A \setminus B$, $B \setminus A$ are separated.

Definition

let GX be TopSpace.

pred GX is connected means for A, B being Subset of GX st $\Omega(GX) = A \cup B$ & A, B are separated holds $A = \emptyset(GX)$ or $B = \emptyset(GX)$.

Theorem CONNSP_1:11. GX is connected iff for A, B being Subset of GX st $\Omega(GX)$ = A \cup B & A $\neq \emptyset(GX)$ & B $\neq \emptyset(GX)$ & A is closed & B is closed holds A \cap B $\neq \emptyset(GX)$.

Theorem CONNSP_1:12. GX is connected iff for A, B being Subset of GX st $\Omega(GX)$ = A \cup B & A $\neq \emptyset(GX)$ & B $\neq \emptyset(GX)$ & A is open & B is open holds A \cap B $\neq \emptyset(GX)$.

Theorem CONNSP_1:13. GX is connected iff for A being Subset of GX st $A \neq \emptyset(GX)$ & $A \neq \Omega(GX)$ holds (Cl A) \cap Cl ($\Omega(GX) \setminus A$) $\neq \emptyset(GX)$.

Theorem CONNSP_1:14. GX is connected iff for A being Subset of GX st A is open closed holds $A = \emptyset(GX)$ or $A = \Omega(GX)$.

Theorem CONNSP_1:15. for F being map of GX, GY st F is continuous & $F.(\Omega(GX)) = \Omega(GY)$ & GX is connected holds GY is connected.

Definition

let GX be TopSpace, A be Subset of GX.

pred A is connected **means** $GX \upharpoonright A$ is connected.

Theorem CONNSP_1:16. $A \neq \emptyset(GX)$ implies (A is connected iff for P, Q being Subset of GX st $A = P \cup Q \& P$, Q are separated holds $P = \emptyset(GX)$ or $Q = \emptyset(GX)$).

Theorem CONNSP_1:17. A is connected & $A \subseteq B \cup C$ & B, C are separated implies A $\subseteq B$ or $A \subseteq C$.

Theorem CONNSP_1:18. A is connected & B is connected & not A, B are separated implies $A \cup B$ is connected.

Theorem CONNSP_1:19. $C \neq \emptyset(GX)$ & C is connected & $C \subseteq A$ & $A \subseteq C | C$ implies A is connected.

Theorem CONNSP_1:20. A $\neq \emptyset(GX)$ & A is connected implies Cl A is connected.

Theorem CONNSP_1:21. GX is connected & $A \neq \emptyset(GX)$ & A is connected & $\Omega(GX) \land A = B \cup C \& B, C$ are separated implies $A \cup B$ is connected & $A \cup C$ is connected.

Theorem CONNSP_1:22. $\Omega(GX) \setminus A = B \cup C \& B, C$ are separated & A is closed implies $A \cup B$ is closed & $A \cup C$ is closed.

Theorem CONNSP_1:23. C is connected & $C \cap A \neq \emptyset(GX)$ & $C \setminus A \neq \emptyset(GX)$ implies $C \cap Fr A \neq \emptyset(GX)$.

Theorem CONNSP_1:24. for X' being (SubSpace of GX), A being (Subset of GX), B being Subset of X' st $A \neq \emptyset(GX)$ & A = B holds A is connected iff B is connected.

Theorem CONNSP_1:25. $A \cap B \neq \emptyset(GX)$ & A is closed & B is closed implies $(A \cup B \text{ is connected } \& A \cap B \text{ is connected implies } A \text{ is connected } \& B \text{ is connected}).$

Theorem CONNSP_1:26. for F being Subset-Family of GX st (for A being Subset of GX st $A \in F$ holds A is connected) & (ex A being Subset of GX st $A \neq \emptyset(GX)$ & $A \in F$ & (for B being Subset of GX st $B \in F$ & $B \neq A$ holds not A, B are separated)) holds $\bigcup F$ is connected.

Theorem CONNSP_1:27. for F being Subset-Family of GX st (for A being Subset of GX st $A \in F$ holds A is connected) & $\bigcap F \neq \emptyset(GX)$ holds $\bigcup F$ is connected.

Theorem CONNSP_1:28. $\Omega(GX)$ is connected iff GX is connected.

Definition

let GX be TopSpace, x be Point of GX.

redefine

func $\{x\} \rightarrow Subset of GX.$

Theorem CONNSP_1:29. for x being Point of GX holds $\{x\}$ is connected.

Definition

let GX be TopSpace, x, y be Point of GX.

pred x, y are joined means ex C being Subset of GX st C is connected & $x \in C \& y \in C$.

Theorem CONNSP_1:30. (ex x being Point of GX st for y being Point of GX holds x, y are joined) implies GX is connected.

Theorem CONNSP_1:31. (ex x being Point of GX st for y being Point of GX holds x, y are joined) iff (for x, y being Point of GX holds x, y are joined).

Theorem CONNSP_1:32. (for x, y being Point of GX holds x, y are joined) implies GX is connected.

Theorem CONNSP_1:33. for x being (Point of GX), F being Subset-Family of GX st for A being Subset of GX holds $A \in F$ iff A is connected & $x \in A$ holds $F \neq \emptyset$. Definition

let GX be TopSpace, A be Subset of GX.

pred A is a component of GX means A is connected & for B being Subset of GX st B is connected holds $A \subseteq B$ implies A = B.

Theorem CONNSP_1:34. A is a component of GX implies $A \neq \emptyset(GX)$.

Theorem CONNSP_1:35. A is a component of GX implies A is closed.

Theorem CONNSP_1:36. A is a component of GX & B is a component of GX implies A = B or $(A \neq B \text{ implies } A, B \text{ are separated})$.

Theorem CONNSP_1:37. A is a component of GX & B is a component of GX implies A = B or $(A \neq B$ implies $A \cap B = \emptyset(GX))$.

Theorem CONNSP_1:38. C is connected implies for S being Subset of GX st S is a component of GX holds $C \cap S = \emptyset(GX)$ or $C \subseteq S$.

Definition

let GX be TopSpace, A, B be Subset of GX.

pred B is a component of A means ex B1 being Subset of $GX \upharpoonright A$ st B1 = B & B1 is a component of $(GX \upharpoonright A)$.

Theorem CONNSP_1:39. GX is connected & A $\neq \Omega(GX)$ & A $\neq \emptyset(GX)$ & A is connected & C is a component of $(\Omega(GX) \setminus A)$ implies $(\Omega(GX) \setminus C)$ is connected.

Definition

let GX be TopSpace, x be Point of GX.

func skl $x \rightarrow Subset$ of GX means ex F being Subset-Family of GX st (for A being Subset of GX holds $A \in F$ iff A is connected & $x \in A$) & $\bigcup F = it$.

reserve x, y for Point of GX.

Theorem CONNSP_1:40. $x \in skl x$.

Theorem CONNSP_1:41. skl x is connected.

Theorem CONNSP_1:42. C is connected implies (skl $x \subseteq C$ implies C = skl x).

Theorem CONNSP_1:43. A is a component of GX iff ex x being Point of GX st A = skl x.

Theorem CONNSP_1:44. A is a component of GX & $x \in A$ implies $A = \mathsf{skl} x$.

Theorem CONNSP_1:45. for S being Subset of GX st S = skl x holds (for p being Point of GX st $p \neq x \& p \in S$ holds skl p = S).

Theorem CONNSP_1:46. for F being Subset-Family of GX st for A being Subset of GX holds $A \in F$ iff A is a component of GX holds F is a cover of GX.

Theorem CONNSP_1:47. A, B are separated iff Cl $A \cap B = \emptyset(GX)$ & $A \cap Cl B = \emptyset(GX)$. Theorem CONNSP_1:48. GX is connected iff for A, B being Subset of GX st $\Omega(GX)$ = $A \cup B$ & A, B are separated holds $A = \emptyset(GX)$ or $B = \emptyset(GX)$.

Theorem CONNSP_1:49. A is connected iff $GX \upharpoonright A$ is connected.

Theorem CONNSP_1:50. A is a component of GX iff A is connected & for B being Subset of GX st B is connected holds $A \subseteq B$ implies A = B.

Theorem CONNSP_1:51. B is a component of A **iff** ex B1 being Subset of $GX \upharpoonright A$ st B1 = B & B1 is a component of $(GX \upharpoonright A)$.

Theorem CONNSP_1:52. B = skl x iff ex F being Subset-Family of GX st (for A being Subset of GX holds $A \in F$ iff A is connected & $x \in A$) & $\bigcup F = B$.

Chapter 31

\mathbf{SCHEMS}_{-1}

Some Basic Properties of Quantifiers

by

Stanisław T. Czuba¹

Warsaw University (Białystok)

Summary. A number of schemes corresponding to simple tautologies of quantifier calculus are presented.

This article is written in plain Mizar; no additional vocabularies or signatures are referenced.

 $\mathbf{reserve}~a,~b,~c,~d$ for Any.

scheme $Schemat0{P[Any]}: ex a st P[a] provided A: for a holds P[a].$

scheme Schemat1a{P[Any], T[]}: (for a holds P[a]) & T[] provided A: for a holds (P[a] & T[]).

scheme Schemat1b{P[Any], T[]}: for a holds (P[a] & T[]) provided A: (for a holds P[a]) & T[].

scheme Schemat2a{P[Any], T[]}: (ex a st P[a]) or T[] provided A: ex a st (P[a] or T[]).

scheme Schemat2b{P[Any], T[]}: ex a st (P[a] or T[]) provided A: (ex a st P[a]) or T[].

¹Supported by RPBP.III-24.C1.

scheme Schemat3{S[Any, Any]}: for b ex a st S[a, b] provided A: ex a st for b holds S[a, b].

scheme Schemat4a{P[Any], Q[Any]}: (ex a st P[a]) or (ex a st Q[a]) provided A: ex a st (P[a] or Q[a]).

scheme Schemat4b{P[Any], Q[Any]}: ex a st (P[a] or Q[a]) provided A: (ex a st P[a]) or (ex a st Q[a]).

scheme Schemat5{P[Any], Q[Any]}: (ex a st P[a]) & (ex a st Q[a]) provided A: ex a st (P[a] & Q[a]).

scheme Schemat6a{P[Any], Q[Any]}: (for a holds P[a]) & (for a holds Q[a]) provided A: for a holds (P[a] & Q[a]).

scheme $Schemat6b{P[Any], Q[Any]}$: for a holds (P[a] & Q[a]) provided A: (for a holds P[a]) & (for a holds Q[a]).

scheme Schemat7{P[Any], Q[Any]}: for a holds (P[a] or Q[a]) provided A: (for a holds P[a]) or (for a holds Q[a]).

scheme Schemat8{P[Any], Q[Any]}: (for a holds P[a]) implies (for a holds Q[a]) provided A: for a holds P[a] implies Q[a].

 $\label{eq:scheme} \begin{array}{l} \textbf{scheme } Schemat9\{P[\textsf{Any}], \ Q[\textsf{Any}]\}: \ (\textbf{for a holds } P[a]) \ \textbf{iff} \ (\textbf{for a holds } Q[a]) \ \textbf{provided} \ A: \ \textbf{for a holds} \ (P[a] \ \textbf{iff} \ Q[a]). \end{array}$

scheme Schemat10a $\{T[]\}$: T[] provided A: for a holds T[].

scheme Schemat10b{T[]}: for a holds T[] provided A: T[].

scheme Schemat11a{P[Any], T[]}: (for a holds P[a]) or T[] provided A: for a holds (P[a] or T[]).

scheme Schemat11b{P[Any], T[]: for a holds (P[a] or T[]) provided A: (for a holds P[a]) or T[].

scheme Schemat12a{P[Any], T[]}: ex a st (T[] & P[a]) provided A: T[] & (ex a st P[a]).

scheme Schemat12b{P[Any], T[]}: T[] & (ex a st P[a]) provided A: ex a st (T[] & P[a]).

scheme Schemat13a{P[Any], T[]}: for a holds (T[] implies P[a]) provided A: T[] implies (for a holds P[a]).

scheme $Schemat13b{P[Any], T[]}: T[]$ implies (for a holds P[a]) provided A: for a holds (T[] implies P[a]).

scheme Schemat14{P[Any], T[]}: ex a st (T[] implies P[a]) provided A: T[] implies (ex a st P[a]).

scheme Schemat15{P[Any], T[]: for a holds (P[a] implies T[]) provided A: (ex a st P[a]) implies T[].

scheme Schemat16{P[Any], T[]}: ex a st (P[a] implies T[]) provided A: (for a holds P[a]) implies T[].

scheme Schemat17{P[Any], T[]}: (for a holds P[a]) implies T[] provided A: for a holds (P[a] implies T[]).

scheme Schemat18a{P[Any], Q[Any]}: ex a st (for b holds (P[a] or Q[b])) provided A: (ex a st P[a]) or (for b holds Q[b]).

scheme Schemat18b{P[Any], Q[Any]}: (ex a st P[a]) or (for b holds Q[b]) provided A: ex a st (for b holds (P[a] or Q[b])).

scheme Schemat19a{P[Any], Q[Any]}: for b holds (ex a st (P[a] or Q[b])) provided A: (ex a st P[a]) or (for b holds Q[b]).

scheme Schemat19b{P[Any], Q[Any]}: (ex a st P[a]) or (for b holds Q[b]) provided A: for b holds (ex a st (P[a] or Q[b])).

scheme Schemat20a{P[Any], Q[Any]}: for b ex a st (P[a] or Q[b]) provided A: ex a st (for b holds (P[a] or Q[b])).

scheme Schemat20b{P[Any], Q[Any]}: ex a st (for b holds (P[a] or Q[b])) provided A: for b ex a st (P[a] or Q[b]).

scheme Schemat21a{P[Any], Q[Any]}: ex a st for b holds P[a] & Q[b] provided A: (ex a st P[a]) & (for b holds Q[b]).

scheme Schemat21b{P[Any], Q[Any]}: (ex a st P[a]) & (for b holds Q[b]) provided A: ex a st for b holds P[a] & Q[b].

scheme Schemat22a{P[Any], Q[Any]}: for b ex a st (P[a] & Q[b]) provided A: (ex a st P[a]) & (for b holds Q[b]).

scheme Schemat22b{P[Any], Q[Any]}: (ex a st P[a]) & (for b holds Q[b]) provided A: for b ex a st (P[a] & Q[b]).

scheme Schemat23a{P[Any], Q[Any]}: for b ex a st P[a] & Q[b] provided A: ex a st for b holds P[a] & Q[b].

scheme Schemat23b{P[Any], Q[Any]}: ex a st for b holds (P[a] & Q[b]) provided A: for b ex a st (P[a] & Q[b]).

scheme $Schemat24a{S[Any, Any], Q[Any]}$: for a ex b st (S[a, b] implies Q[a]) provided A: for a holds ((for b holds S[a, b]) implies Q[a]).

scheme Schemat24b{S[Any, Any], Q[Any]}: for a holds ((for b holds S[a, b]) implies Q[a]) provided A: for a ex b st (S[a, b] implies Q[a]).

scheme $Schemat25a{S[Any, Any], Q[Any]}$: for a, b holds (S[a, b] implies Q[a]) provided A: for a holds ((ex b st S[a, b]) implies Q[a]).

scheme Schemat25b{S[Any, Any], Q[Any]}: for a holds ((ex b st S[a, b]) implies Q[a]) provided A: for a, b holds (S[a, b] implies Q[a]).

scheme $Schemat26{S[Any, Any]}: ex a st for b holds S[a, b] provided A: for a, b holds S[a, b].$

scheme $Schemat27{S[Any, Any]}$: for a holds S[a, a] provided A: for a, b holds S[a, b].

scheme Schemat28{S[Any, Any]}: ex b st for a holds S[a, b] provided A: for a, b holds S[a, b].

scheme $Schemat29{S[Any, Any]}$: for b ex a st S[a, b] provided A: ex a st for b holds S[a, b].

scheme Schemat30{S[Any, Any]}: ex a st S[a, a] provided A: ex a st for b holds S[a, b].

scheme Schemat31{S[Any, Any]}: for a ex b st S[b, a] provided A: for a holds S[a, a].

scheme Schemat32{S[Any, Any]}: ex a st S[a, a] provided A: for a holds S[a, a].

scheme Schemat33{S[Any, Any]}: for a ex b st S[a, b] provided A: for a holds S[a, a].

scheme Schemat34{S[Any, Any]}: ex b st S[b, b] provided A: ex b st for a holds S[a, b].

scheme $Schemat35{S[Any, Any]}$: for a ex b st S[a, b] provided A: ex b st for a holds S[a, b].

scheme Schemat36{S[Any, Any]}: ex a, b st S[a, b] provided A: for b ex a st S[a, b].

scheme Schemat37{S[Any, Any]}: ex a, b st S[a, b] provided A: ex a st S[a, a].

scheme Schemat38{S[Any, Any]}: ex a, b st S[a, b] provided A: for a ex b st S[a, b].

Chapter 32

ZF_LANG

A Model of ZF Set Theory Language

by

Grzegorz Bancerek¹

Warsaw University (Białystok)

Summary. The goal of this article is to construct a language of the ZF set theory and to develop a notational and conceptual base which facilitates a convenient usage of the language.

The symbols used in this article are introduced in the following vocabularies: FINSEQ, ZF_LANG, FUNC_REL, FUNC, BOOLE, REAL_1, and NAT_1. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, REAL_1, NAT_1, and FINSEQ_1.

reserve k, l, m, n for Nat, X, Y, Z for set, D, D1, D2 for DOMAIN, a, b, c, d for Any.

reserve p, q, r, p', q' for FinSequence of NAT.

Definition

func VAR \rightarrow SUBDOMAIN of NAT means it = {k: $5 \leq k$ }.

Theorem ZF_LANG:1. $VAR = \{k: 5 \leq k\}.$

Definition

 $\mathbf{mode} \ \mathsf{Variable} \to \mathsf{Element} \ \mathbf{of} \ \mathsf{VAR} \ \mathbf{means} \ \mathbf{not} \ \mathbf{contradiction}.$

¹Supported by RPBP.III-24.C1.

```
Theorem ZF_LANG:2. a is Variable iff a is Element of VAR.
Definition
     let n.
              func \xi n \rightarrow Variable means it = 5+n.
     Theorem ZF_LANG:3. \xi n = 5+n.
     reserve x, y, z, t, s for Variable.
Definition
     let x.
     redefine
              func \langle x \rangle \rightarrow FinSequence of NAT.
Definition
     let x, y.
              func \mathbf{x}' = \mathbf{y} \to \mathsf{FinSequence} of NAT means \mathbf{it} = \langle 0 \rangle^{\frown} \langle \mathbf{x} \rangle^{\frown} \langle \mathbf{y} \rangle.
              func \mathbf{x}' \in \mathbf{y} \to \mathsf{FinSequence} of NAT means \mathbf{it} = \langle 1 \rangle^{\frown} \langle \mathbf{x} \rangle^{\frown} \langle \mathbf{y} \rangle.
     Theorem ZF_LANG:4. x'='y = \langle 0 \rangle^{\frown} \langle x \rangle^{\frown} \langle y \rangle.
     Theorem ZF_LANG:5. x' \in y = \langle 1 \rangle^{\frown} \langle x \rangle^{\frown} \langle y \rangle.
     Theorem ZF_LANG:6. x'=y = z'=t implies x = z \& y = t.
     Theorem ZF_LANG:7. x' \in y = z' \in t implies x = z \& y = t.
Definition
     let p.
              func \neg p \rightarrow FinSequence of NAT means it = \langle 2 \rangle^{\frown} p.
     let q.
              func p \land q \rightarrow FinSequence of NAT means it = \langle 3 \rangle^{\frown} p^{\frown} q.
     Theorem ZF_LANG:8. \neg p = \langle 2 \rangle^{\frown} p.
     Theorem ZF_LANG:9. p \land q = \langle 3 \rangle^{\frown} p^{\frown} q.
     Theorem ZF_LANG:10. \neg p = \neg q implies p = q.
Definition
     let x, p.
              func \forall (x, p) \rightarrow \text{FinSequence of NAT means it} = \langle 4 \rangle^{\frown} \langle x \rangle^{\frown} p.
     Theorem ZF_LANG:11. \forall (\mathbf{x}, \mathbf{p}) = \langle 4 \rangle^{\frown} \langle \mathbf{x} \rangle^{\frown} \mathbf{p}.
     Theorem ZF_LANG:12. \forall (x, p) = \forall (y, q) \text{ implies } x = y \& p = q.
Definition
              func WFF \rightarrow DOMAIN means (for a st a \in it holds a is FinSequence of NAT)
& (for x, y holds x'=y \in it \& x'\in y \in it) \& (for p st p \in it holds \neg p \in it) \& (for p,
q st p \in it & q \in it holds p\landq \in it) & (for x, p st p \in it holds \forall(x, p) \in it) & for D
```

st (for a st $a \in D$ holds a is FinSequence of NAT) & (for x, y holds $x'='y \in D$ & $x'\in Y$

174

 $\in D$) & (for p st p $\in D$ holds $\neg p \in D$) & (for p, q st p $\in D$ & q $\in D$ holds $p \land q \in D$) & (for x, p st p $\in D$ holds $\forall (x, p) \in D$) holds it $\subseteq D$.

Theorem ZF_LANG:13. (for a st $a \in WFF$ holds a is FinSequence of NAT) & (for x, y holds $x'='y \in WFF$ & $x'\in'y \in WFF$) & (for p st $p \in WFF$ holds $\neg p \in WFF$) & (for p, q st $p \in WFF$ & $q \in WFF$ holds $p \land q \in WFF$) & (for x, p st $p \in WFF$ holds $\forall (x, p) \in WFF$) & for D st (for a st $a \in D$ holds a is FinSequence of NAT) & (for x, y holds $x'='y \in D$ & $x'\in'y \in D$) & (for p st $p \in D$ holds $\neg p \in D$) & (for p, q st $p \in D$ & $q \in D$ holds $p \land q \in D$) & (for x, p st $p \in D$ & $q \in D$ holds $\forall (x, p) \in D$) holds $WFF \subseteq D$.

```
Definition
```

```
mode ZF-formula \rightarrow FinSequence of NAT means it is Element of WFF.
```

```
Theorem ZF_LANG:14. a is ZF-formula iff a \in WFF.
```

Theorem ZF_LANG:15. a is ZF-formula iff a is Element of WFF.

reserve F, F1, G, G1, H, H1 for ZF-formula.

Definition

let x, y.

redefine

```
func x'='y \rightarrow \mathsf{ZF}-formula.
```

func $\mathbf{x} \in \mathbf{y} \to \mathsf{ZF}$ -formula.

Definition

let H.

redefine

```
func \neg H \rightarrow \mathsf{ZF}-formula.
```

let G.

func $H \land G \rightarrow \mathsf{ZF}$ -formula.

Definition

let x, H.

redefine

func \forall (x, H) \rightarrow ZF-formula.

Definition

let H.

pred H is equality means ex x, y st H = x'='y. pred H is membership means ex x, y st $H = x'\in'y$. pred H is negative means ex H1 st $H = \neg H1$. pred H is conjunctive means ex F, G st $H = F \land G$. pred H is universal means ex x, H1 st $H = \forall (x, H1)$. Theorem ZF_LANG:16. (H is equality iff ex x, y st H = x'='y) & (H is membership iff ex x, y st $H = x'\in'y)$ & (H is negative iff ex H1 st $H = \neg H1$) & (H is conjunctive iff ex F, G st $H = F \land G$) & (H is universal iff ex x, H1 st $H = \forall(x, H1)$). Definition

let H.

pred H is atomic means H is equality or H is membership.

Theorem ZF_LANG:17. H is atomic iff H is equality or H is membership.

Definition

let F, G.

func
$$F \lor G \to \mathsf{ZF}$$
-formula means $\mathbf{it} = \neg(\neg F \land \neg G)$.

```
func F \Rightarrow G \rightarrow \mathsf{ZF}-formula means \mathbf{it} = \neg(F \land \neg G).
```

Theorem ZF_LANG:18. $F \lor G = \neg (\neg F \land \neg G).$

```
Theorem ZF_LANG:19. F \Rightarrow G = \neg (F \land \neg G).
```

Definition

let F, G.

```
func F \Leftrightarrow G \to ZF-formula means it = (F \Rightarrow G) \land (G \Rightarrow F).
```

Theorem ZF_LANG:20. $F \Leftrightarrow G = (F \Rightarrow G) \land (G \Rightarrow F).$

Definition

let x, H.

```
func \exists (x, H) \rightarrow \mathsf{ZF}-formula means it = \neg \forall (x, \neg H).
```

```
Theorem ZF_LANG:21. \exists (x, H) = \neg \forall (x, \neg H).
```

Definition

let H.

```
pred H is disjunctive means ex F, G st H = F \lor G.
```

```
pred H is conditional means ex F, G st H = F \Rightarrow G.
```

pred H is biconditional means ex F, G st $H = F \Leftrightarrow G$.

pred H is existential means ex x, H1 st $H = \exists (x, H1)$.

Theorem ZF_LANG:22. (H is disjunctive iff ex F, G st $H = F \lor G$) & (H is conditional iff ex F, G st $H = F \Rightarrow G$) & (H is biconditional iff ex F, G st $H = F \Leftrightarrow G$) & (H is existential iff ex x, H1 st $H = \exists (x, H1)$).

Definition

 $\begin{array}{l} \textbf{let } x, \ y, \ H. \\ \textbf{func } \forall (x, \ y, \ H) \rightarrow \mathsf{ZF}\text{-formula means it} = \forall (x, \ \forall (y, \ H)). \\ \textbf{func } \exists (x, \ y, \ H) \rightarrow \mathsf{ZF}\text{-formula means it} = \exists (x, \ \exists (y, \ H)). \end{array}$

Theorem ZF_LANG:23. $\forall (x, y, H) = \forall (x, \forall (y, H)) \& \exists (x, y, H) = \exists (x, \exists (y, H)).$

Definition

let x, y, z, H. **func** \forall (x, y, z, H) \rightarrow ZF-formula **means** it = \forall (x, \forall (y, z, H)). **func** $\exists (x, y, z, H) \rightarrow \mathsf{ZF}$ -formula **means** it $= \exists (x, \exists (y, z, H)).$ Theorem ZF_LANG:24. $\forall (x, y, z, H) = \forall (x, \forall (y, z, H)) \& \exists (x, y, z, H) = \exists (x, \exists (y, z, H)) \& (x, y, z, H) \& \exists (x, y, z, H) = \exists (x, \exists (y, z, H)) \& \exists (x, y, z, H) = \exists (x, \exists (y, z, H)) \& \exists (x, y, z, H) = \exists (x, \exists (y, z, H)) \& \exists (x, y, z, H) = \exists (x, \exists (y, z, H)) \& \exists (x, y, z, H) = \exists (x, \exists (y, z, H)) \& \exists (x, y, z, H) = \exists (x, \exists (y, z, H)) \& (x, y, z, H) = \exists (x, \exists (y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, y, z, H) = \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, y, z, H) = \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, y, z, H) = \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, y, z, H)) \& (x, y, z, H) = \exists (x, y, Z) = \exists (x, y, Z)) \& (x, y, Z) = \exists (x, y, Z)) \& (x, y, Z) = \exists (x, y, Z)) \& (x, y, Z) = \exists (x, y, Z)) \& (x, y, Z) = \exists (x, y, Z)) \& (x, Z) = \exists (x, y, Z)) \& (x, Z) = \exists (x, Z)) (x, Z) = \exists (x, Z)) (x, Z) =$ H)). Theorem ZF_LANG:25. H is equality or H is membership or H is negative or H is conjunctive or H is universal. Theorem ZF_LANG:26. H is atomic or H is negative or H is conjunctive or H is universal. Theorem ZF_LANG:27. H is atomic **implies** len H = 3. Theorem ZF_LANG:28. H is atomic or ex H1 st len H1+1 \leq len H. Theorem ZF_LANG:29. $3 \leq \text{len H}$. Theorem ZF_LANG:30. len H = 3 implies H is atomic. reserve p, q, r for ZF-formula. Theorem ZF_LANG:31. for x, y holds $(x'='y).1 = 0 \& (x'\in'y).1 = 1$. Theorem ZF_LANG:32. for H holds $(\neg H).1 = 2$. Theorem ZF_LANG:33. for F, G holds $(F \land G).1 = 3$. Theorem ZF_LANG:34. for x, H holds $\forall (x, H).1 = 4$. Theorem ZF_LANG:35. H is equality implies H.1 = 0. Theorem ZF_LANG:36. H is membership implies H.1 = 1. Theorem ZF_LANG:37. H is negative implies H.1 = 2. Theorem ZF_LANG:38. H is conjunctive implies H.1 = 3. Theorem ZF_LANG:39. H is universal implies H.1 = 4. Theorem ZF_LANG:40. H is equality & H.1 = 0 or H is membership & H.1 = 1 or H is negative & H.1 = 2 or H is conjunctive & H.1 = 3 or H is universal & H.1 = 4. Theorem ZF_LANG:41. H.1 = 0 implies H is equality. Theorem ZF_LANG:42. H.1 = 1 implies H is membership. Theorem ZF_LANG:43. H.1 = 2 implies H is negative. Theorem ZF_LANG:44. H.1 = 3 implies H is conjunctive. Theorem ZF_LANG:45. H.1 = 4 implies H is universal. reserve sq, sq' for FinSequence. Theorem ZF_LANG:46. $H = F^{g}$ sq implies H = F. Theorem ZF_LANG:47. $H \land G = H1 \land G1$ implies H = H1 & G = G1. Theorem ZF_LANG:48. $F \lor G = F1 \lor G1$ implies F = F1 & G = G1. Theorem ZF_LANG:49. $F \Rightarrow G = F1 \Rightarrow G1$ implies F = F1 & G = G1.

```
Theorem ZF_LANG:50. F \Leftrightarrow G = F1 \Leftrightarrow G1 implies F = F1 \& G = G1.
```

```
Theorem ZF_LANG:51. \exists (x, H) = \exists (y, G) \text{ implies } x = y \& H = G.
```

Definition

let H.

 $\mathbf{assume}~\mathrm{H}$ is atomic.

func $Var_1 H \rightarrow Variable$ means it = H.2.

func $Var_2H \rightarrow Variable$ means it = H.3.

Theorem ZF_LANG:52. H is atomic implies $Var_1H = H.2 \& Var_2H = H.3$.

Theorem ZF_LANG:53. H is equality implies $H = (Var_1H)^{i} = Var_2H$.

Theorem ZF_LANG:54. H is membership implies $H = (Var_1H) \in Var_2H$.

Definition

let H.

assume H is negative.

func the argument of $\mathrm{H} \to \mathsf{ZF}\text{-formula}$ means $\neg it = \mathrm{H}.$

Theorem ZF_LANG:55. H is negative implies $H = \neg$ the argument of H.

Definition

let H.

assume H is conjunctive or H is disjunctive.

func the left argument of $H \rightarrow ZF$ -formula means ex H1 st $it \land H1 = H$ if H is conjunctive otherwise ex H1 st $it \lor H1 = H$.

func the right argument of $H \rightarrow ZF$ -formula means ex $H1 \text{ st } H1 \wedge it = H \text{ if } H$ is conjunctive otherwise ex $H1 \text{ st } H1 \vee it = H$.

Theorem ZF_LANG:56. H is conjunctive implies (F = the left argument of H iff ex G st $F \land G = H$) & (F = the right argument of H iff ex G st $G \land F = H$).

Theorem ZF_LANG:57. H is disjunctive implies (F = the left argument of H iff ex G st $F \lor G = H$) & (F = the right argument of H iff ex G st $G \lor F = H$).

Theorem ZF_LANG:58. H is conjunctive implies $H = (\text{the left argument of } H) \land \text{the right argument of } H.$

Theorem ZF_LANG:59. H is disjunctive implies $H = (\text{the left argument of } H) \lor \text{the right}$ argument of H.

Definition

let H.

assume H is universal or H is existential.

func bound in $H \rightarrow Variable$ means ex H1 st $\forall (it, H1) = H$ if H is universal otherwise ex H1 st $\exists (it, H1) = H$.

func the scope of $H \to ZF$ -formula means $ex \ge t \ \forall (x, it) = H \ if \ H$ is universal otherwise $ex \ge st \ \exists (x, it) = H$.

Theorem ZF_LANG:60. H is universal implies $(x = bound in H \text{ iff ex } H1 \text{ st } \forall (x, H1) = H) \& (H1 = the scope of H \text{ iff ex } x \text{ st } \forall (x, H1) = H).$

Theorem ZF_LANG:61. H is existential **implies** (x = bound in H **iff** ex H1 st $\exists (x, H1) = H$) & (H1 = the scope of H **iff** ex x st $\exists (x, H1) = H$).

Theorem ZF_LANG:62. H is universal implies $H = \forall$ (bound in H, the scope of H).

Theorem ZF_LANG:63. H is existential **implies** $H = \exists$ (bound in H, the scope of H). Definition

let H.

assume H is conditional.

func the antecedent of $H \rightarrow ZF$ -formula means ex H1 st $H = it \Rightarrow H1$.

func the consequent of $H \rightarrow \mathsf{ZF}$ -formula means ex H1 st $H = H1 \Rightarrow it$.

Theorem ZF_LANG:64. H is conditional implies (F = the antecedent of H iff ex G st $H = F \Rightarrow G$) & (F = the consequent of H iff ex G st $H = G \Rightarrow F$).

Theorem ZF_LANG:65. H is conditional implies $H = (\text{the antecedent of } H) \Rightarrow \text{the consequent of } H.$

Definition

let H.

assume H is biconditional.

func the left side of $H \rightarrow ZF$ -formula means ex H1 st $H = it \Leftrightarrow H1$.

func the right side of $H \rightarrow ZF$ -formula means ex H1 st $H = H1 \Leftrightarrow it$.

Theorem ZF_LANG:66. H is biconditional implies (F = the left side of H iff ex G st $H = F \Leftrightarrow G$) & (F = the right side of H iff ex G st $H = G \Leftrightarrow F$).

Theorem ZF_LANG:67. H is biconditional implies $H = (\text{the left side of } H) \Leftrightarrow \text{the right}$ side of H.

Definition

let H, F.

pred H is immediate constituent of F means $F = \neg H$ or (ex H1 st $F = H \land H1$ or $F = H1 \land H$) or ex x st $F = \forall (x, H)$.

Theorem ZF_LANG:68. H is immediate constituent of F iff $F = \neg H$ or (ex H1 st $F = H \land H1$ or $F = H1 \land H$) or ex x st $F = \forall (x, H)$.

Theorem ZF_LANG:69. not H is immediate constituent of x'='y.

Theorem ZF_LANG:70. not H is immediate constituent of $x' \in y$.

Theorem ZF_LANG:71. F is immediate constituent of $\neg H$ iff F = H.

Theorem ZF_LANG:72. F is immediate constituent of $G \land H$ iff F = G or F = H.

Theorem ZF_LANG:73. F is immediate constituent of $\forall (x, H)$ iff F = H.

Theorem ZF_LANG:74. H is atomic **implies not** F is immediate constituent of H.

Theorem ZF_LANG:75. H is negative **implies** (F is immediate constituent of H iff F = the argument of H).

Theorem ZF_LANG:76. H is conjunctive **implies** (F is immediate constituent of H **iff** F = the left argument of H **or** F = the right argument of H).

Theorem ZF_LANG:77. H is universal **implies** (F is immediate constituent of H **iff** F = the scope of H).

reserve L, L' for FinSequence, f for Function.

Definition

let H, F.

pred H is subformula of F means ex n, L st $1 \leq n \& \text{ len } L = n \& L.1 = H \& L.n = F \& \text{ for } k \text{ st } 1 \leq k \& k < n \text{ ex } H1, F1 \text{ st } L.k = H1 \& L.(k+1) = F1 \& H1 \text{ is immediate constituent of } F1.$

Theorem ZF_LANG:78. H is subformula of F iff ex n, L st $1 \leq n$ & len L = n & L.1 = H & L.n = F & for k st $1 \leq k$ & k < n ex H1, F1 st L.k = H1 & L.(k+1) = F1 & H1 is immediate constituent of F1.

Theorem ZF_LANG:79. H is subformula of H.

Definition

let H, F.

pred H is proper subformula of F **means** H is subformula of F & H \neq F.

Theorem ZF_LANG:80. H is proper subformula of F iff H is subformula of F & $H \neq F$.

Theorem ZF_LANG:81. H is immediate constituent of F implies len H < len F.

Theorem ZF_LANG:82. H is immediate constituent of F **implies** H is proper subformula of F.

Theorem ZF_LANG:83. H is proper subformula of F implies len H < len F.

Theorem ZF_LANG:84. H is proper subformula of F implies ex G st G is immediate constituent of F.

reserve j, j1, j2 for Nat.

Theorem ZF_LANG:85. F is proper subformula of G & G is proper subformula of H implies F is proper subformula of H.

Theorem ZF_LANG:86. F is subformula of G & G is subformula of H implies F is subformula of H.

Theorem ZF_LANG:87. G is subformula of H & H is subformula of G implies G = H. Theorem ZF_LANG:88. not F is proper subformula of x'='y.

Theorem ZF_LANG:89. **not** F is proper subformula of $x \in y$.

Theorem ZFLANG:90. F is proper subformula of \neg H implies F is subformula of H.

Theorem ZF_LANG:91. F is proper subformula of $G \land H$ implies F is subformula of G or F is subformula of H.

Theorem ZF_LANG:92. F is proper subformula of $\forall (x, H)$ implies F is subformula of H.

Theorem ZF_LANG:93. H is atomic implies not F is proper subformula of H.

Theorem ZF_LANG:94. H is negative implies the argument of H is proper subformula of H.

Theorem ZF_LANG:95. H is conjunctive **implies** the left argument of H is proper subformula of H & the right argument of H is proper subformula of H.

Theorem ZF_LANG:96. H is universal **implies** the scope of H is proper subformula of H.

Theorem ZF_LANG:97. H is subformula of x'='y iff H = x'='y.

Theorem ZF_LANG:98. H is subformula of $x' \in y$ iff $H = x' \in y$.

Definition

Η.

let H.

 ${\bf func}$ Subformulae $H \to {\sf set} \ {\bf means} \ a \in {\bf it} \ {\bf iff} \ {\bf ex} \ F \ {\bf st} \ F = a \ \& \ F$ is subformula of

Theorem ZF_LANG:99. $a \in$ Subformulae H iff ex F st F = a & F is subformula of H. Theorem ZF_LANG:100. G \in Subformulae H implies G is subformula of H.

Theorem ZF_LANG:101. F is subformula of H implies Subformulae F \subseteq Subformulae H.

Theorem ZF_LANG:102. Subformulae $x'='y = \{x'='y\}$.

Theorem ZF_LANG:103. Subformulae $x' \in y = \{x' \in y\}$.

Theorem ZF_LANG:104. Subformulae $\neg H =$ Subformulae $H \cup \{\neg H\}$.

Theorem ZF_LANG:105. Subformulae $(H \land F) =$ Subformulae $H \cup$ Subformulae $F \cup \{H \land F\}$.

Theorem ZF_LANG:106. Subformulae $\forall (x, H) =$ Subformulae $H \cup \{\forall (x, H)\}$.

Theorem ZF_LANG:107. H is atomic iff Subformulae $H = \{H\}$.

Theorem ZF_LANG:108. H is negative implies Subformulae H = Subformulae the argument of $H \cup \{H\}$.

Theorem ZF_LANG:109. H is conjunctive **implies** Subformulae H = Subformulae the left argument of $H \cup$ Subformulae the right argument of $H \cup$ {H}.

Theorem ZF_LANG:110. H is universal implies Subformulae H = Subformulae the scope of $H \cup \{H\}$.

Theorem ZF_LANG:111. (H is immediate constituent of G or H is proper subformula of G or H is subformula of G) & $G \in Subformulae F \text{ implies } H \in Subformulae F$.

scheme ZF_Ind{P[ZF-formula]}: for H holds P[H] provided A: for H st H is atomic holds P[H] and B: for H st H is negative & P[the argument of H] holds P[H] and C: for

H st H is conjunctive & P[the left argument of H] & P[the right argument of H] holds P[H]and D: for H st H is universal & P[the scope of H] holds P[H].

scheme $ZF_CompInd{P[ZF-formula]}$: for H holds P[H] provided A: for H st for F st F is proper subformula of H holds P[F] holds P[H].

Chapter 33

ZF_MODEL

Models and Satisfiability

Defining by Structural Induction and Free Variables in ZF-formulae

by

Grzegorz Bancerek¹

Warsaw University (Białystok)

Summary. The article includes schemes of defining by structural induction, and definitions and theorems related to: the set of variables which have free occurrences in a ZF-formula, the set of all valuations of variables in a model, the set of all valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula in a model by a valuation, the validity of a ZF-formula in a model, the axioms of ZF-language, the model of the ZF set theory.

The symbols used in this article are introduced in the following vocabularies: FINSEQ, ZF_LANG, ZF_SAT, ZF_AXIOM, ORDINAL, FUNC_REL, FUNC, FAM_OP, BOOLE, REAL_1, and NAT_1. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, REAL_1, NAT_1, FINSEQ_1, ZF_LANG, FUNCT_2, ENUMSET1, and ORDINAL1.

reserve F, G, H, H' for ZF-formula, f, g, h for Function, x, y, z, t for Variable, a, b, c, d for Any, A, X, Y, Z for set, D for DOMAIN.

scheme ZFsch_ex{F1(Variable, Variable) \rightarrow Any, F2(Variable, Variable) \rightarrow Any, F3(Any) \rightarrow Any, F4(Any, Any) \rightarrow Any, F5(Variable, Any) \rightarrow Any, H() \rightarrow ZF-formula}: ex a, A st

¹Supported by RPBP.III-24.C1.

(for x, y holds $[x'='y, F1(x, y)] \in A \& [x'\in'y, F2(x, y)] \in A) \& [H(), a] \in A \&$ for H, a st $[H, a] \in A$ holds (H is equality implies $a = F1(Var_1H, Var_2H)) \&$ (H is membership implies $a = F2(Var_1H, Var_2H)) \&$ (H is negative implies ex b st a = F3(b) & [the argument of H, b] $\in A$) & (H is conjunctive implies ex b, c st (a = F4(b, c) & [the left argument of H, b] $\in A$) & [the right argument of H, c] $\in A$) & (H is universal implies ex b, x st x = bound in H & a = F5(x, b) & [the scope of H, b] $\in A$).

scheme ZFsch-uniq{F1(Variable, Variable) \rightarrow Any, F2(Variable, Variable) \rightarrow Any, F3(Any) \rightarrow Any, F4(Any, Any) \rightarrow Any, F5(Variable, Any) \rightarrow Any, H() \rightarrow ZF-formula, a() \rightarrow Any, b() \rightarrow Any}: a() = b() provided A: ex A st (for x, y holds $[x'='y, F1(x, y)] \in A \& [x'\in'y, F2(x, y)] \in A) \& [H(), a()] \in A \&$ for H, a st [H, a] \in A holds (H is equality implies a = F1(Var_1H, Var_2H)) \& (H is membership implies a = F2(Var_1H, Var_2H)) & (H is negative implies ex b st a = F3(b) & [the argument of H, b] \in A) & (H is conjunctive implies ex b, c st a = F4(b, c) & [the left argument of H, b] \in A & [the right argument of H, c] \in A) & (H is universal implies ex b, x st x = bound in H & a = F5(x, b) & [the scope of H, b] \in A) and B: ex A st (for x, y holds $[x'='y, F1(x, y)] \in$ A & $[x'\in'y, F2(x, y)] \in$ A) & [H(), b()] \in A & for H, a st [H, a] \in A holds (H is equality implies a = F1(Var_1H, Var_2H)) & (H is membership implies a = F2(Var_1H, Var_2H)) & (H is negative implies ex b st a = F3(b) & [the argument of H, b] \in A) & (H is conjunctive implies ex b, c st a = F3(b) & [the argument of H, b] \in A) & (H is conjunctive implies ex b st a = F3(b) & [the argument of H, b] \in A) & (H is conjunctive implies ex b, c st a = F4(b, c) & [the left argument of H, b] \in A & [the right argument of H, c] \in A) & (H is universal implies ex b, x st x = bound in H & a = F5(x, b) & [the scope of H, b] \in A).

scheme ZFsch_result{F1(Variable, Variable) \rightarrow Any, F2(Variable, Variable) \rightarrow Any, F3(Any) \rightarrow Any, F4(Any, Any) \rightarrow Any, F5(Variable, Any) \rightarrow Any, H() \rightarrow ZF-formula, f(ZF-formula) \rightarrow Any}: (H() is equality implies $f(H()) = F1(Var_1H(), Var_2H()))$ & (H() is membership implies $f(H()) = F2(Var_1H(), Var_2H()))$ & (H() is negative implies f(H())= F3(f(the argument of H()))) & (H() is conjunctive implies for a, b st a = f(the left argument of H()) & b = f(the right argument of H()) holds f(H()) = F4(a, b)) & (H() is universal implies f(H()) = F5(bound in H(), f(the scope of H()))) provided A: for H', a holds a = f(H') iff ex A st (for x, y holds $[x'='y, F1(x, y)] \in A$ & $[x'\in'y, F2(x, y)] \in$ A) & $[H', a] \in A$ & for H, a st $[H, a] \in A$ holds (H is equality implies a = $F1(Var_1H, Var_2H))$ & (H is membership implies a = $F2(Var_1H, Var_2H))$ & (H is negative implies ex b st a = F3(b) & [the argument of H, b] $\in A$) & (H is conjunctive implies ex b, c st a = F4(b, c) & [the left argument of H, b] $\in A$ & [the right argument of H, c] $\in A$) & (H is universal implies ex b, x st x = bound in H & a = F5(x, b) & [the scope of H, b] $\in A$).

scheme ZFsch_property{F1(Variable, Variable) \rightarrow Any, F2(Variable, Variable) \rightarrow Any, F3(Any) \rightarrow Any, F4(Any, Any) \rightarrow Any, F5(Variable, Any) \rightarrow Any, H() \rightarrow ZF-formula, f(ZFformula) \rightarrow Any, P[Any]}: P[f(H())] provided A: for H', a holds a = f(H') iff ex A st (for x, y holds $[x'='y, F1(x, y)] \in A \& [x'\in'y, F2(x, y)] \in A) \& [H', a] \in A \&$ for H, a st [H, a] \in A holds (H is equality implies $a = F1(Var_1H, Var_2H)) \&$ (H is membership implies $a = F2(Var_1H, Var_2H)) \&$ (H is negative implies ex b st a = F3(b) & [the argument of H, b] \in A & [the right argument of H, c] \in A) & (H is universal implies ex b, $x \text{ st } x = bound \text{ in } H \& a = F5(x, b) \& [the scope of H, b] \in A) \text{ and } B: \text{ for } x, y \text{ holds}$ P[F1(x, y)] & P[F2(x, y)] and C: for a st P[a] holds P[F3(a)] and D: for a, b st P[a] &P[b] holds P[F4(a, b)] and E: for a, x st P[a] holds P[F5(x, a)].

Definition

let H.

func Free H \rightarrow Any means ex A st (for x, y holds $[x'='y, \{x, y\}] \in A \& [x'\in'y, \{x, y\}] \in A \& [H, it] \in A \& for H', a st [H', a] \in A holds (H' is equality implies a = <math>\{Var_1H', Var_2H'\}$) & (H' is membership implies $a = \{Var_1H', Var_2H'\}$) & (H' is negative implies ex b st a = b & [the argument of H', b] $\in A$) & (H' is conjunctive implies ex b, c st $a = \bigcup\{b, c\}$ & [the left argument of H', b] $\in A \&$ [the right argument of H', c] $\in A$) & (H' is universal implies ex b, x st x = bound in H' & a = (\bigcup\{b\}) \setminus \{x\} \& [the scope of H', b] $\in A$).

Definition

let H.

redefine

func Free $H \rightarrow set$ of Variable.

Theorem ZF_MODEL:1. for H holds (H is equality implies Free H = { Var_1H , Var_2H }) & (H is membership implies Free H = { Var_1H , Var_2H }) & (H is negative implies Free H = Free the argument of H) & (H is conjunctive implies Free H = Free the left argument of H \cup Free the right argument of H) & (H is universal implies Free H = (Free the scope of H) \setminus {bound in H}).

Definition

let D be SET DOMAIN.

func VAL $D \rightarrow DOMAIN$ means $a \in it$ iff a is Function of VAR, D.

Definition

let D1 be SET DOMAIN, f be Function of VAR, D1.

let x.

redefine

func $f.x \rightarrow \text{Element of } D1$.

reserve E for SET DOMAIN, f, g, h for (Function of VAR, E), v1, v2, v3, v4, v5, u1, u2, u3, u4, u5 for (Element of VAL E), S, T for Subset of [[WFF, VAL E]].

Definition

let H, E.

func St (H, E) \rightarrow Any means ex A st (for x, y holds [x'='y, {v1: for f st f = v1 holds f.x = f.y}] \in A & [x' \in 'y, {v2: for f st f = v2 holds f.x \in f.y}] \in A) & [H, it] \in A & for H', a st [H', a] \in A holds (H' is equality implies a = {v3: for f st f = v3 holds f.(Var_1H') = f.(Var_2H')}) & (H' is membership implies a = {v4: for f st f = v4 holds f.(Var_1H') \in f.(Var_2H')}) & (H' is negative implies ex b st a = (VAL E) \cup \{b\} & [the

argument of H', b] \in A) & (H' is conjunctive **implies ex** b, c **st** a = (\bigcup {b}) $\cap \bigcup$ {c} & [the left argument of H', b] \in A & [the right argument of H', c] \in A) & (H' is universal **implies ex** b, x **st** x = bound in H' & a = {v5: for X, f st X = b & f = v5 holds f \in X & for g st for y st g.y \neq f.y holds x = y holds g \in X} & [the scope of H', b] \in A).

Definition

let H, E.

redefine

func St (H, E) \rightarrow Subset of VAL E.

Theorem ZF_MODEL:2. for x, y, f holds f.x = f.y iff $f \in St$ (x'='y, E).

Theorem ZF_MODEL:3. for x, y, f holds $f.x \in f.y$ iff $f \in St$ (x' \in 'y, E).

Theorem ZF_MODEL:4. for H, f holds not $f \in St (H, E)$ iff $f \in St (\neg H, E)$.

Theorem ZF_MODEL:5. for H, H', f holds $f \in St (H, E) \& f \in St (H', E)$ iff $f \in St (H \land H', E)$.

Theorem ZF_MODEL:6. for x, H, f holds ($f \in St (H, E)$ & for g st for y st g.y \neq f.y holds x = y holds $g \in St (H, E)$) iff $f \in St (\forall (x, H), E)$.

Theorem ZF_MODEL:7. H is equality implies for f holds $f(Var_1H) = f(Var_2H)$ iff $f \in St$ (H, E).

Theorem ZF_MODEL:8. H is membership implies for f holds $f.(Var_1H) \in f.(Var_2H)$ iff $f \in St$ (H, E).

Theorem ZF_MODEL:9. H is negative implies for f holds not $f \in St$ (the argument of H, E) iff $f \in St$ (H, E).

Theorem ZF_MODEL:10. H is conjunctive implies for f holds $f \in St$ (the left argument of H, E) & $f \in St$ (the right argument of H, E) iff $f \in St$ (H, E).

Theorem ZF_MODEL:11. H is universal implies for f holds (f \in St (the scope of H, E) & for g st for y st g.y \neq f.y holds bound in H = y holds g \in St (the scope of H, E)) iff f \in St (H, E).

Definition

let D be SET DOMAIN.

let f be Function of VAR, D.

let H.

pred D, f = H means $f \in St (H, D)$.

Theorem ZF_MODEL:12. for E, f, x, y holds E, $f \models x'='y$ iff f.x = f.y.

Theorem ZF_MODEL:13. for E, f, x, y holds E, $f \models x \in y$ iff $f.x \in f.y$.

Theorem ZF_MODEL:14. for E, f, H holds E, f \models H iff not E, f $\models \neg$ H.

Theorem ZF_MODEL:15. for E, f, H, H' holds E, $f \models H \land H'$ iff E, $f \models H \& E, f \models H'$.

Theorem ZF_MODEL:16. for E, f, H, x holds E, $f \models \forall (x, H)$ iff for g st for y st g.y \neq f.y holds x = y holds E, $g \models H$.

Theorem ZF_MODEL:17. for E, f, H, H' holds E, $f \models H \lor H'$ iff E, $f \models H$ or E, $f \models H'$.

Theorem ZF_MODEL:18. for E, f, H, H' holds E, $f \models H \Rightarrow H'$ iff (E, $f \models H$ implies E, $f \models H'$).

Theorem ZF_MODEL:19. for E, f, H, H' holds E, $f \models H \Leftrightarrow H'$ iff (E, $f \models H$ iff E, $f \models H'$).

Theorem ZF_MODEL:20. for E, f, H, x holds E, f $\models \exists (x, H) \text{ iff ex } g \text{ st } (for y \text{ st } g.y \neq f.y \text{ holds } x = y) \& E, g \models H.$

Theorem ZF_MODEL:21. for E, f, x for e being Element of E ex g st g.x = e & for z st $z \neq x$ holds g.z = f.z.

Theorem ZF_MODEL:22. E, $f \models \forall (x, y, H)$ iff for g st for z st g.z \neq f.z holds x = z or y = z holds E, g \models H.

Theorem ZF_MODEL:23. E, f $\models \exists (x, y, H) \text{ iff ex } g \text{ st } (for z \text{ st } g.z \neq f.z \text{ holds } x = z \text{ or } y = z) \& E, g \models H.$

Definition

let E, H.

pred $E \models H$ means for f holds $E, f \models H$.

Theorem ZF_MODEL:24. $E \models H$ iff for f holds E, f $\models H$.

Theorem ZF_MODEL:25. $E \models \forall (x, H) \text{ iff } E \models H.$

Definition

func the axiom of extensionality \rightarrow ZF-formula **means** it = $\forall (\xi 0, \xi 1, \forall (\xi 2, \xi 2) \in$ $\xi 0 \Leftrightarrow \xi 2 \in (\xi 1) \Rightarrow \xi 0 = (\xi 1)$.

func the axiom of pairs \rightarrow ZF-formula means it = $\forall (\xi 0, \xi 1, \exists (\xi 2, \forall (\xi 3, \xi 3) \in \xi 2 \Leftrightarrow (\xi 3) = \xi 0 \lor \xi 3)))).$

func the axiom of unions \rightarrow ZF-formula **means** it = $\forall (\xi 0, \exists (\xi 1, \forall (\xi 2, \xi 2) \in \xi 1) \Leftrightarrow \exists (\xi 3, \xi 2) \in \xi 3 \land \xi 3 \in \xi 0)))).$

func the axiom of infinity \rightarrow ZF-formula **means** it $= \exists (\xi 0, \xi 1, \xi 1' \in \xi 0 \land \forall (\xi 2, \xi 2' \in \xi 0) \Rightarrow \exists (\xi 3, \xi 3' \in \xi 0 \land \neg \xi 3' = \xi 2 \land \forall (\xi 4, \xi 4' \in \xi 2) \Rightarrow \xi 4' \in \xi 3)))).$

func the axiom of power sets \rightarrow ZF-formula **means** it = $\forall (\xi 0, \exists (\xi 1, \forall (\xi 2, \xi 2) \in \xi 1))))$.

Definition

let H be ZF-formula.

assume $\{\xi 0, \xi 1, \xi 2\}$ misses Free H.

func the axiom of substitution for $H \to ZF$ -formula **means** it = $\forall (\xi 3, \exists (\xi 0, \forall (\xi 4, H \Leftrightarrow \xi 4^{\circ} = \xi 0))) \Rightarrow \forall (\xi 1, \exists (\xi 2, \forall (\xi 4, \xi 4^{\circ} \in \xi 2 \Leftrightarrow \exists (\xi 3, \xi 3^{\circ} \in \xi 1 \land H))))).$

Theorem ZF_MODEL:26. the axiom of extensionality = $\forall (\xi 0, \xi 1, \forall (\xi 2, \xi 2' \in \xi 0 \Leftrightarrow \xi 2' \in \xi 1) \Rightarrow \xi 0' = \xi 1)$.

Theorem ZF_MODEL:27. the axiom of pairs = $\forall (\xi 0, \xi 1, \exists (\xi 2, \forall (\xi 3, \xi 3' \in \xi 2 \Leftrightarrow (\xi 3' = \xi 0 \lor \xi 3' = \xi 1)))).$

Theorem ZF_MODEL:28. the axiom of unions = $\forall (\xi 0, \exists (\xi 1, \forall (\xi 2, \xi 2) \in \xi 1 \Leftrightarrow \exists (\xi 3, \xi 2) \in \xi 3 \land \xi 3)))$.

Theorem ZF_MODEL:29. the axiom of infinity = $\exists (\xi 0, \xi 1, \xi 1' \in \xi 0 \land \forall (\xi 2, \xi 2' \in \xi 0 \Rightarrow \exists (\xi 3, \xi 3' \in \xi 0 \land \neg \xi 3' = \xi 2 \land \forall (\xi 4, \xi 4' \in \xi 2 \Rightarrow \xi 4' \in \xi 3)))).$

Theorem ZF_MODEL:30. the axiom of power sets = $\forall (\xi 0, \exists (\xi 1, \forall (\xi 2, \xi 2' \in \xi 1 \Leftrightarrow \forall (\xi 3, \xi 3' \in \xi 2 \Rightarrow \xi 3' \in \xi 0)))).$

Theorem ZF_MODEL:31. { $\xi 0, \xi 1, \xi 2$ } misses Free H **implies** the axiom of substitution for H = $\forall (\xi 3, \exists (\xi 0, \forall (\xi 4, H \Leftrightarrow \xi 4'='\xi 0))) \Rightarrow \forall (\xi 1, \exists (\xi 2, \forall (\xi 4, \xi 4'\in'\xi 2 \Leftrightarrow \exists (\xi 3, \xi 3'\in'\xi 1 \land H))))$. Definition

let E.

pred E is a model of ZF **means** E is \in -transitive & E \models the axiom of pairs & E \models the axiom of unions & E \models the axiom of infinity & E \models the axiom of power sets & for H st { $\xi 0, \xi 1, \xi 2$ } misses Free H holds E \models the axiom of substitution for H.

Theorem ZF_MODEL:32. E is a model of ZF iff E is \in -transitive & E \models the axiom of pairs & E \models the axiom of unions & E \models the axiom of infinity & E \models the axiom of power sets & for H st { $\xi 0, \xi 1, \xi 2$ } misses Free H holds E \models the axiom of substitution for H.

Chapter 34

ZF_COLLA

The Contraction Lemma

by

Grzegorz Bancerek¹

Warsaw University (Białystok)

Summary. The article includes the proof of the contraction lemma which claims that every class in which the axiom of extensionality is valid is isomorphic with a transitive class. In this article the isomorphism (wrt membership relation) of two sets is defined. It is based on *Constructible sets* by A. Mostowski.

The symbols used in this article are introduced in the following vocabularies: FIN-SEQ, ZF_LANG, ZF_SAT, ZF_AXIOM, COLLAPS, ORDINAL, FUNC_REL, FUNC, BOOLE, FAM_OP, REAL_1, and NAT_1. The terminology and notation used in this article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, REAL_1, NAT_1, FINSEQ_1, ZF_LANG, FUNCT_2, ENUMSET1, ORDINAL1, and ZF_MODEL.

reserve X, Y, Z for set, v, w, x, y, z for Any, E for SET DOMAIN, A, B, C for Ordinal, L, L1 for transfinite sequence, f, f1, f2, g, h for Function, d, d1, d2, d' for Element of E.

Definition

let E, A.

¹Supported by RPBP.III-24.C1.

func $M\mu(E, A) \rightarrow set$ means ex L st it = {d: for d1 st d1 \in d ex B st B \in dom L & d1 $\in \bigcup\{L.B\}\}$ & dom L = A & for B st B \in A holds L.B = {d1: for d st d \in d1 ex C st C \in dom (L \upharpoonright B) & d $\in \bigcup\{L \upharpoonright B.C\}\}.$

Definition

let f, X, Y.

pred f is \in -isomorphism of X, Y means dom f = X & rng f = Y & f is 1-1 & for x, y st $x \in X \& y \in X$ holds (ex Z st $Z = y \& x \in Z$) iff (ex Z st $f.y = Z \& f.x \in Z$). Definition

let X, Y.

pred X, Y are \in -isomorphic **means** ex f st f is \in -isomorphism of X, Y.

reserve $f,\,g,\,h$ for (Function of VAR, $E),\,u,\,v,\,w$ for (Element of $E),\,x,\,y,\,z$ for Variable, $a,\,b,\,c$ for Any.

Theorem ZF_COLLA:1. $E \models$ the axiom of extensionality implies for u, v st for w holds $w \in u$ iff $w \in v$ holds u = v.

Theorem ZF_COLLA:2. $E \models$ the axiom of extensionality **implies** ex X st X is \in transitive & E, X are \in -isomorphic.

Appendix A

Built-in Concepts

This article is written in plain Mizar; no additional vocabularies or signatures are referenced.

```
Definition
          mode Any.
Definition
          \mathbf{mode} \ \mathsf{set} \to \mathsf{Any}.
Definition
   let x, y be Any.
          pred x = y.
Definition
   let x be Any, X be set.
          pred x \in X.
Definition
   let X be set.
          mode Element of X.
Definition
          mode DOMAIN \rightarrow set.
Definition
   let X be DOMAIN.
   redefine
          mode Element of X.
Definition
   let X1, X2 be set.
          func [X1, X2] \rightarrow set.
```

let X3 be set. func $[X1, X2, X3] \rightarrow set.$ let X4 be set. func $[X1, X2, X3, X4] \rightarrow set.$ Definition let X1, X2 be DOMAIN. redefine func $[X1, X2] \rightarrow \mathsf{DOMAIN}$. let X3 be DOMAIN. func $[X1, X2, X3] \rightarrow \mathsf{DOMAIN}$. let X4 be DOMAIN. func $[X1, X2, X3, X4] \rightarrow \text{DOMAIN}.$ Definition let X1, X2 be DOMAIN. mode TUPLE of X1, X2 \rightarrow Element of [X1, X2] means not contradiction. let X3 be DOMAIN. mode TUPLE of X1, X2, X3 \rightarrow Element of [[X1, X2, X3]] means not contradiction. let X4 be DOMAIN. mode TUPLE of X1, X2, X3, X4 \rightarrow Element of [[X1, X2, X3, X4]] means not contradiction. Definition let X be set. **mode** Subset of $X \rightarrow set$. **func** bool $X \rightarrow set$. Definition **mode** SET DOMAIN \rightarrow DOMAIN. Definition let D be DOMAIN. redefine **func** bool $D \rightarrow \mathsf{SET}$ DOMAIN. Definition let D be SET DOMAIN. redefine **mode** Element of $D \rightarrow set$.

Definition

let X be DOMAIN.

redefine

mode Subset of $X \rightarrow$ Element of bool X means not contradiction.

Definition

let X be DOMAIN .

mode SUBDOMAIN of $X \rightarrow DOMAIN$.

Definition

 $\mathbf{func} \ \mathsf{REAL} \to \mathsf{DOMAIN}.$

Definition

 $\mathbf{func} \ \mathsf{NAT} \to \mathsf{SUBDOMAIN} \ \mathbf{of} \ \mathsf{REAL}.$

Definition

let x, y be Element of REAL.

func $x+y \rightarrow$ Element of REAL. **func** $x \cdot y \rightarrow$ Element of REAL.

pred $x \leq y$.

Definition

mode Real \rightarrow Element of REAL means not contradiction.

Definition

let D be DOMAIN, X be SUBDOMAIN of D.

redefine

 $\mathbf{mode} \ \mathsf{Element} \ \mathbf{of} \ X \to \mathsf{Element} \ \mathbf{of} \ D.$

Definition

let X be SUBDOMAIN of REAL.

redefine

 $\mathbf{mode} \ \mathsf{Element} \ \mathbf{of} \ X \to \mathsf{Real}.$

Definition

mode $\mathsf{Nat} \to \mathsf{Element}$ of NAT means not contradiction.

Appendix B

The Grammar of Mizar Abstracts

```
Abstract = "environ" Environment "begin" Text-Proper .
Environment = { Directive } .
Directive =
     "vocabulary" Vocabulary-File-Name ";" |
     "signature" Signature-File-Name ";" .
Text-Proper = { Text-Item } .
Text-Item =
     Reservation | Definition-Block |
      Structure-Definition |
      Theorem | Scheme .
Theorem = Compact-Statement .
Reservation =
     "reserve" Reservation-Segment
               { "," Reservation-Segment } ";" .
Reservation-Segment = Reserved-Identifiers-List "for" Type .
Reserved-Identifiers-List = Identifier { "," Identifier } .
Definition-Block =
     "definition" Definitions [ "redefine" Redefinitions ]
     "end" ";".
Definitions = { Definition-Item } .
Redefinitions = { Definition-Item } .
Definition-Item =
    Generalization |
    Assumption |
    Mode-Definition |
     Function-Definition |
     Predicate-Definition .
```

```
Mode-Definition =
     "mode" Mode-Pattern [ Specification ]
        [ "means" Definiens ] ";" .
Mode-Pattern = Mode-Symbol [ "of" Loci ] .
Function-Definition =
     "func" Function-Pattern [ Specification ]
        [ "means" Definiens ] ";" .
Function-Pattern =
   [ Function-Loci ] Function-Symbol [ Function-Loci ] |
     Left-Function-Bracket Loci Right-Function-Bracket |
     "{" Loci "}" |
     "[" Loci "]".
Predicate-Definition =
     "pred" Predicate-Pattern [ "means" Definiens ] ";" .
Predicate-Pattern =
   [Loci] Predicate-Symbol [Loci] |
     Locus "=" Locus.
Structure-Definition =
     "struct" Structure-Symbol "(#" Selector-List "#)" ";".
Selector-List = Selector-Segment { "," Selector-Segment }.
Selector-Segment =
     Selector-Symbol { "," Selector-Symbol } Specification .
Function-Loci = Locus |"(" Loci ")".
Loci = Locus { "," Locus }.
Locus = Variable-Identifier.
Specification = "->" Type .
Definiens = Simple-Definiens | Compound-Definiens .
Simple-Definiens = Sentence .
Compound-Definiens = Partial-Definiens-List [ "otherwise" Sentence ] .
Partial-Definiens-List =
     Partial-Definiens { "," Partial-Definiens } .
Partial-Definiens = Sentence "if" Sentence .
Scheme =
     "scheme" Scheme-Identifier "{" Scheme-Parameter-List "}" ":"
```

```
Scheme-Conclusion
            "provided" Scheme-Premise { "and" Scheme-Premise }
          Justification ";" .
Scheme-Conclusion = Sentence.
Scheme-Premise = Proposition .
Scheme-Parameter-List = Scheme-Parameter { "," Scheme-Parameter } .
Scheme-Parameter =
    Local-Function-Pattern Specification
    Local-Predicate-Pattern .
Local-Function-Pattern =
     Function-Identifier "(" [ Type-List ] ")" .
Local-Predicate-Pattern =
     Predicate-Identifier "[" [ Type-List ] "]" .
Generalization = "let" Fixed-Variables .
Assumption =
    Single-Assumption |
    Collective-Assumption |
    Existential-Assumption .
Single-Assumption = "assume" Sentence ";" .
Collective-Assumption = "assume" Conditions ";" .
Existential-Assumption = "given" Fixed-Variables ";" .
Compact-Statement = Sentence ";" .
Fixed-Variables = Qualified-Variables [ "such" Conditions ] .
Conditions = "that" Sentence { "and" Sentence } .
Proposition = [ Label-Identifier ":" ] Sentence .
Sentence = Formula .
Formula =
     Atomic-Formula |
     Quantified-Formula |
    Formula "&" Formula |
    Formula "or" Formula
     Formula "implies" Formula
     Formula "iff" Formula |
     "not" Formula
     "contradiction" .
Quantified-Formula =
     "for" Qualified-Variables [ "st" Formula ]
```

```
( "holds" Formula | Quantified-Formula ) |
     "ex" Qualified-Variables "st" Formula .
Atomic-Formula =
      [ Term-List ] Predicate-Symbol [ Term-List ] |
     Term ( "<>" | "=" ) Term |
     Predicate-Identifier "[" [ Term-List ] "]" |
     Term "is" Type .
Qualified-Variables =
     Implicitly-Qualified-Variables |
     Explicitly-Qualified-Variables |
     Explicitly-Qualified-Variables ","
          Implicitly-Qualified-Variables .
Explicitly-Qualified-Variables =
     Qualified-Segment { "," Qualified-Segment } .
Qualified-Segment = Variable-List Qualification .
Implicitly-Qualified-Variables = Variable-List .
Variable-List =
     Variable-Identifier {"," Variable-Identifier } .
Qualification = ("being" | "be" ) Type .
Type =
          "(" Type ")" |
            Mode-Symbol [ "of" Term-List ] |
            Structure-Symbol |
            "set" [ "of" Type ] |
            "[" Type-List "]" .
Type-List = Type { "," Type } .
Term = "(" Term ")" |
     [ Argument-List ] Function-Symbol [ Argument-List ] |
     Left-Function-Bracket Term-List Right-Function-Bracket |
     Function-Identifier "(" [ Term-List ] ")" |
     "the" Selector-Symbol "of" Term |
     "the" Selector-Symbol |
     Structure-Symbol "," Term-List "." |
     Variable-Identifier
     "[" Term-List "]" |
     "{" Term-List "}" |
     "{" Term ":" Sentence "}" |
     Numeral
     "it" |
```

```
Term "qua" Type .
Term-List = Term { "," Term } .
Argument-List = Term | "(" Term-List ")" .
Variable-Identifier = Identifier .
Function-Identifier = Identifier .
Predicate-Identifier = Identifier .
Scheme-Identifier = Identifier .
Label-Identifier = Identifier .
Vocabulary-File-Name = File-Name .
Signature-File-Name = File-Name .
Definitions-File-Name = File-Name .
Theorems-File-Name = File-Name .
Schemes-File-Name = File-Name .
File-Name = Identifier .
Structure-Symbol = Symbol .
Selector-Symbol = Symbol .
Predicate-Symbol = Symbol .
Function-Symbol = Symbol .
Mode-Symbol = Symbol .
Left-Function-Bracket = Symbol .
Right-Function-Bracket = Symbol .
```

Appendix C

Vocabularies

ddd stands for a character from extended ASCII with code ddd > 127.

Vocabulary BIN_OP

BinOp	BinOp
UnOp	UnOp
the_unity_wrt	the unity wrt
is_associative	is associative
is_commutative	is commutative
is_a_unity_wrt	is a unity wrt
is_a_left_unity_wrt	is a left unity wrt
is_a_right_unity_wrt	is a right unity wrt
is_an_idempotent	is an idempotent
is_distributive_wrt	is distributive wrt
is_left_distributive_wrt	is left distributive wrt
is_right_distributive_wrt	is right distributive wrt

Vocabulary BOOLE

U	U
Λ	\sim
c=	\subseteq
237	Ø
239	\cap
246	÷
meets	meets
misses	misses

Vocabulary BOOLEDOM

BOOLE_DOMAIN

BOOLE DOMAIN

Vocabulary COLLAPS

M 230	${\sf M}\mu$
is 238 - isomorphism_of	$is \in -isomorphism of$
are_238-isomorphic	$are\in\!-isomorphic$

Vocabulary COORD

'1	1
'2	2
'3	3
'4	4

Vocabulary EQUI_REL

247

Vocabulary FAM_OP

meet union ∩ U

 \approx

Vocabulary FINITE

Fin is_finite Finite_Subset Fin is finite Finite Subset

Vocabulary FINSEQ

FinSequence	FinSequence
FinSubsequence	FinSubsequence
Seg	Seg
len	len
^	
Seq	Seq
Sgm	Sgm

*	*
< 237 >	ε
<*	<
*>	\rangle

Vocabulary FUNC

graph	graph
id	Id
Function	Function
is_one-to-one	is 1-1

Vocabulary FUNC2

Funcs	Funcs
Permutation	Permutation

Vocabulary FUNC3

pr1	π_1
pr2	π_2
delta	δ
incl	incl
chi	χ
<:	[
:>)]

Vocabulary FUNC_REL

dom	dom
rng	rng
	1
248	

Vocabulary HIDDEN

Any
Element
DOMAIN
TUPLE

Subset	Subset
SUBDOMAIN	SUBDOMAIN
Real	Real
Nat	Nat
bool	bool
REAL	REAL
set	set
NAT	NAT
SET_DOMAIN	SET DOMAIN
[:	[
:]]
+	+
238	E
243	≤
249	

Vocabulary INCSP_1

IncStruct	IncStruct
Points	Points
Lines	Lines
Planes	Planes
Inc1	lnc1
Inc2	Inc2
Inc3	Inc3
on	on
is_collinear	is collinear
is_coplanar	is coplanar
is_coplanar POINT	
-	is coplanar
POINT	is coplanar POINT
POINT LINE	is coplanar POINT LINE
POINT LINE PLANE	is coplanar POINT LINE PLANE
POINT LINE PLANE IncSpace	is coplanar POINT LINE PLANE IncSpace

Vocabulary LATTICES

Lattice	Lattice
D_Lattice	D Lattice
M_Lattice	M Lattice
0_Lattice	0 Lattice
1_Lattice	1 Lattice

01_Lattice	01 Lattice
C_Lattice	C Lattice
B_Lattice	B Lattice
243 243	
is_comp	is a complement
192 217	\Box
218 191	Π
193	\perp
194	Т
LattStr	LattStr
L_carrier	L carrier
L_join	L join
L_meet	L meet

Vocabulary NAT_1

179	
mod	mod
div	<u>.</u>
lcm	lcm
hcf	gcd

Vocabulary ORDINAL

succ	succ
zero	0
is 238 - transitive	$is \in -transitive$
is_238-connected	$is \in -connected$
is_limit_ordinal	is limit ordinal
Ordinal	Ordinal
T-Sequence	transfinite sequence

Vocabulary REAL_1

-	—
П	-1
/	/ <
<	<

Vocabulary Rel_Rel

is_reflexive_in is_irreflexive_in is_symmetric_in is_antisymmetric_in is_asymmetric_in is_connected_in is_strongly_connected_in is_transitive_in is_reflexive is_irreflexive is_symmetric is_antisymmetric is_asymmetric is_connected is_strongly_connected is_transitive

is reflexive in is irreflexive in is symmetric in is antisymmetric in is asymmetric in is connected in is strongly connected in is transitive in is reflexive is irreflexive is symmetric is antisymmetric is asymmetric is connected is strongly connected is transitive

Vocabulary RELATION

Relation	Relation
empty	Ø
field	field
diagonal	\triangle
~	\smile

Vocabulary SFAMILY

Set-Family	Set-Family
Subset-Family	Subset-Family
is_finer_than	is finer than
is_coarser_than	is coarser than
UNION	\square
INTERSECTION	${\textstyle \widehat{\square}}$
DIFFERENCE	\sim

Vocabulary SUB_OP

234

 $\Omega \atop c$

Vocabulary TOP1

Int
is_domain
is_closed_domain
is_open_domain
is_dense
is_nowheredense
is_boundary

Int is domain is closed domain is open domain is dense is nowheredense is boundary

Vocabulary TOPCON

C1	Cl
Fr	Fr
skl	skl
carrier	carrier
topology	topology
TopStruct	TopStruct
is_open	is open
is_closed	is closed
is_open_closed	is open closed
are_separated	are separated
is_continuous	is continuous
are_joined	are joined
is_a_component_of	is a component of
is_a_cover_of	is a cover of
TopSpace	TopSpace
Point	Point
SubSpace	SubSpace
map	map

Vocabulary WELLORD

is_well_founded_in is_well_founded well_orders is_well-ordering-relation are_isomorphic is_isomorphism_of -Seg | 253 canonical_isomorphism_of is well founded in is well founded well orders is well-ordering-relation are isomorphic is isomorphism of -Seg ↓² canonical isomorphism of

Vocabulary ZF_AXIOM

the_axiom_of_extensionality	the axiom of extensionality
the_axiom_of_pairs	the axiom of pairs
the_axiom_of_unions	the axiom of unions
the_axiom_of_infinity	the axiom of infinity
the_axiom_of_power_sets	the axiom of power sets
the_axiom_of_substitution_for	the axiom of substitution for

Vocabulary ZF_LANG

Variable	Variable
ZF-formula	ZF-formula
; _;	·,
, 238 ,	'∈'
170	-
·& ·	\wedge
All	\forall
'or'	\vee
205 >	\Rightarrow
< 205 >	\Leftrightarrow
Ex	Э
WFF	WFF
VAR	VAR
х.	ξ
Subformulae	Subformulae
Var1	Var_1
Var2	Var_2
the_argument_of	the argument of
the_left_argument_of	the left argument of
the_right_argument_of	the right argument of
the_scope_of	the scope of
bound_in	bound in
the_antecedent_of	the antecedent of
the_consequent_of	the consequent of
the_left_side_of	the left side of
the_right_side_of	the right side of
is_immediate_constituent_of	is immediate constituent of
is_subformula_of	is subformula of
is_proper_subformula_of	is proper subformula of
is_equality	is equality
is_membership	is membership
is_atomic	is atomic
is_negative	is negative

is conjunctive
is universal
is disjunctive
is conditional
is biconditional
is existential

Vocabulary ZF_SAT

Free	Free
VAL	VAL
St	St
199 196	=
is_a_model_of_ZF	is a model of ZF

Bibliography

- [1] R. Constable et al. Implementing Mathematics with the Nuprl Proof Development Syst em. Prentice-Hall, 1986.
- [2] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and J. R. Hindley, editors, Essays in Combinatory Logic, Lambda Calculus, and Formalism, pages 589–606. Academic Press, 1980.
- [3] J. Ketonen. EKL—a mathematically oriented proof checker. In Proceedings of 7th Int. Conf. on Automated Deduction, pages 65–79, Napa, CA, May 1984, 1973.
- [4] D. E. Knuth. The T_EXbook. Addison Wesley, 1984.
- [5] L. Lamport. $I\!\!AT_{F\!X}$: a document preparation system. Addison Wesley, 1985.
- [6] M. Mostowski and Z. Trybulec. A certain experimental computer aided course of logic in Poland. In *Proceedings of World Conference on Computers in Education*. Norfolk, VA, 1985.
- [7] Y. Nakamura. A language for description of mathematics—THEAX. Technical report, Shinshu University FIE, Nagano City, Japan, 1985. In Japanese.
- [8] D. Nieva Soto. The reasoner of MIZAR/LOG. Computerized Logic Teaching Bulletin, 2(1):22-35, 1989.
- [9] K. Prażmowski, P. Rudnicki, et al. Mizar-MSE primer and user guide. TR 88-9, University of Alberta, Department of Computing Science, 1988.
- [10] P. Rudnicki. Obvious inferences. Journal of Automated Reasoning, 3:383-393, 1987.
- [11] P. Rudnicki and W. Drabent. Proving properties of Pascal programs in Mizar-2. Acta Informatica, 22(3):311-331 and 699-707, 1985.
- [12] R. Smith et al. Computer-assisted axiomatic mathematics: Informal rigor. In O. Lecarme and R. Lewis, editors, *Computers in Education*, pages 803–809. North Holland, 1975.

- [13] A. Trybulec. Mizar syntax. Studies in Logic, Grammar, and Rhetorics, 6, 1994. To appear.
- [14] A. Trybulec and H. Blair. Computer aided reasoning. In R. Parikh, editor, Logic of Programs, LNCS 193. Springer Verlag, 1985.
- [15] A. Trybulec and H. Blair. Computer assisted reasoning with Mizar. In *Proceedings* of the 9th IJCAI, pages 26–28, 1985.