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Abstract

We report our work on increasing readability of mathematical texts used as input to
theorem verifiers such as Mizar. Even though the source Mizar text is written in extended
ASCII (256 characters), it lacks the power of symbolic expression needed for mathematical
texts. In our work, the source Mizar texts were automatically translated into TEX input.
The translation was done at a primitive level and was restricted to the lexical structure of
the source texts. We briefly describe the technology of TEXing and attach TEXed abstracts
of 31 Mizar articles written by 12 authors. The results of the experiments are encouraging
and the work on TEXing full Mizar articles will be continued. The main conclusion of our
work is that the quality typesetting of Mizar texts requires full syntactic analysis including
treatment of some contextual dependeces.
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Chapter 1

Introduction

1.1 Motivation

The idea that an automatic device should check our logical derivations is by no means
new. It can be traced back not only to Pascal and Leibnitz, but to Ramon Llull. In recent
years, several projects have aimed at providing computer assistance for doing mathematics.
Among the better known there are: Nuprl [1], THEAX [7], AUTOMATH [2], EKL [3],
QUIP [12]. The specific goals of these projects vary, however, they have one common
feature: the human writes mathematical texts and the machine verifies their correctness.

The input to any of such systems is an ASCII (or some other code) file. As such it can
be printed or seen at a display monitor. However, the input texts are meant to be readable
for the computer (taking into account current input devices) and they are visually far from
what one would call a mathematical text (even if their semantic contents fully justifies
the name). In consequence, the human readers are reluctant to read the texts, although
their authors did not mean only computers as potential readers. We report our work on
increasing readability of mathematical texts used as input to theorem verifiers.

The system we have experimented with is Mizar [13]. The Mizar input text is written
in extended ASCII. The following is an example of a theorem in such a text:

: FUNCT_1:159
f is_one-to-one iff for y ex x st f"{y} c= {x}

Our goal was to make this text better looking by processing it automatically. Here is what
we have obtained:

Theorem FUNCT_1:159. fis 1-1 iff for y ex x st f~}{y} C {x}.

The printouts included in this report have been obtained using TEX[4] and ITEX[5].
However, we wanted that neither the author of the Mizar text nor the reader of the text



2 CHAPTER 1. INTRODUCTION

ever sees the TEX input. The TEX input generated automatically in our experiment for
the above example is as follows:

Theorem FUNCT\_1:159. f
{\sf is 1-1}

{\bf iff}

{\bf for}

y

{\bf ex}

X

{\bf st}
£$7{-138\{y\}
$\subseteq$
\{x\}\vspace{1lmm}.

We have prepared a set of software tools that convert the Mizar source text into the
TEX input. Our experiment was limited in the sense that we generate the TEX input after
doing only the lexical analysis of the Mizar text.

Our original goal was to obtain a readable printout of these Mizar texts that we needed
to look through to write our new article (not included in this collection). Working with
TEX was such a fun that we have ended up processing all Mizar articles available to us.
We hope that the contents of this report will be useful as a reference for other Mizar users.

1.2 The PC Mizar system

1.2.1 A bit of history

The project Mizar started in 1975 in Poland under the leadership of Andrzej Trybulec.
Its original goal was to design and implement a software environment to assist the process
of preparing mathematical papers.

After several years of experiments, a language called Mizar 2 had been designed (by A.
Trybulec) and implemented on ICL 1900 (by Cz. Bylinski, H. Oryszczyszyn, P. Rudnicki,
and A. Trybulec, 1981). The system was later ported to other computers (mainframe IBM
and also to UNIX). It has included the following features: structured types, type hierarchy,
comprehensive definitional facilities, built-in fragments of arithmetics, and built-in variant
of set theory. Among other works with Mizar 2, there was an attempt to prove properties
of programs in it [11].

The Mizar team effort in the following years resulted in developing other Mizar lan-
guages and their implementations but their character was experimental (Mizar 3, Mizar
HPF); the systems were not distributed outside the Mizar group in Bialystok. There
was one exception. A subset of Mizar, named Mizar MSE, was implemented (by R. Ma-
tuszewski, P. Rudnicki, and A. Trybulec) in 1982 and has been widely used since then.
The system is meant for teaching elementary logic with stress on the practical aspects of



1.2. THE PC MIZAR SYSTEM 3

constructing proofs. The Mizar MSE language encompasses many sorted predicate calcu-
lus with equality. However, the language does not support functional notation. There are
numerous implementations of Mizar MSE, see [15, 14, 6, 10, 9, 8]

In 1986 Mizar 4 was implemented as a redesign of Mizar 2 and distributed to several
dozen users. Each Mizar 4 article included the preliminaries part where the author could
state some axioms that were not checked for validity. In 1988 the design process of the
language was completed (by A. Trybulec) and this language is named simply Mizar. While
articles in Mizar 4 must be self-contained, Mizar allows for cross-references among articles.
Moreover, an author of a Mizar text is not allowed to introduce new axioms. Only the
predefined axioms can be used, everything else must be proved.

Recently, the main effort in the Mizar project has been in building the library of Mizar
articles.

1.2.2 The overall structure

In this subsection we give a brief overview of PC Mizar, further subsections elaborate on
some aspects that are relevant to this report. PC Mizar is a Mizar processor implemented
on IBM PCs under DOS (by Cz. Bylinski, A. Trybulec, and S. Zukowski from Warsaw
University in Bialystok).

The central concept of Mizar is a Mizar article. Such an article can be viewed as
an extremely detailed mathematical text written in a fixed formal notation. The source
text of a Mizar article is prepared as a text file (its name has obligatory extension .miz).
There are rather few interesting things that one can prove in a short Mizar article without
making references to other articles. Usually, we base our work on the achievements of
others.

The power of the Mizar system is in automatic processing of cross-references among
articles. This is done by maintaining a Mizar library. The library consists of files that are
automatically created from source Mizar articles and it also includes vocabulary files. The
vocabulary files (extensions .voc and .pri) exist separately from library articles. They
contain declarations of symbols that can be included into the lexical environment of an
article.

The Mizar processor is a program that verifies the correctness of Mizar articles. To
verify an article, the program must run in the appropriate software environment. Namely,
it must have access to all the vocabulary and library files referenced from the given article.
PC Mizar assumes certain organization of directories in which the vocabulary and library
files are kept (we will not discuss it here).

Five library files are created in the process of including an article into the Mizar library.
These are:

e format file (extension .nfr) that, for each constructor (e.g. function) introduced in
the article, gives certain information that is used during parsing.

e signature file (extension .sgn) that, for each constructor, specifies types of its argu-
ments and some additional information, e.g. the type of the result of a function.
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e definitions file (extension .def) for each definition from the article, the definiens is
stored in this file, the definiendum is stored in the signature file.

e theorems file (extension .the) stores the theorems proved in the article (without
proofs).

e schemes file (extension .sch) stores the schemes proved in the article (without
proofs).

The environment part of each article (between environ and begin) must declare all
other PC Mizar units that are referenced from the article.

1.3 The lexical context of an article

The set of symbols that can be used in a Mizar article is not fixed externally. The author
of an article indicates which tokens are taken into account while tokenizing the article. By
a lexicon of an article we mean the set of such tokens. The lexicon of an article consists
of the basic lexicon and some additional lezicons. Additional lexicons are not associated
with any single Mizar article, they can be shared by many articles.

The basic lexicon includes the following tokens:

o Reserved words:

and as assume be

begin being by case

cases coherence compatibility consider
consistency contradiction correctness definition
definitions end environ ex
existence for from func

given hence holds if

iff implies is it

let means mode not

now of or otherwise
per pred proof provided
qua reconsider redefine reserve
scheme schemes signature set

st struct such take

that the then theorem
theorems thesis thus uniqueness
vocabulary

e Special symbols:
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5 o+ o> 0 1 {4 ¥y ## =
& > .= <> $1 $2 $3 $4 $5 $6 $7 88

For (# and #) there are synonymous characters with decimal codes 174 and 175
whose usual graphical representation resembles < and >, respectively.

e Numerals are strings of decimal digits.

e Identifiers are strings of letters, digits, underscore (_), and apostrophe (’) that are
not reserved words, symbols, numerals.

The additional lexicons are defined in the vocabulary files. An additional lexicon is
a set of symbols which are strings of arbitrary characters excluding control characters,
space, and double colon. Each line of such a file introduces a symbol. Symbol are grouped
into the following classes: mode symbol, function symbol, left or right function bracket,
structure symbol, selector symbol, and predicate symbol.

If an additional lexicon defines a symbol represented by a string of characters that
otherwise forms an identifier, the symbol overrides the identifier.

The symbols introduced in vocabulary HIDDEN are put into the lexicon of every Mizar
article. Symbols from other vocabularies are put into the lexicon of an article with the
help of the vocabulary directive.

1.3.1 The structure of a Mizar article

Each Mizar article is written as a text file. The general structure of such an article is as
follows:

environ

Environment
begin

Text-Proper

The Text-Proper contains new facts with their proofs and definitions of new concepts.
The Enwvironment declares the items in the Mizar library that can be referenced from
the Text-Proper. This part consist of a sequence of directives. There is one format of
vocabulary directives:

vocabulary Vocabulary-File-Name;

This directive adds the symbols introduced in the Vocabulary-File-Name to the article’s
lexicon. We say that this directive declares the vocabulary in the article.
There are four kinds of library directives

signature Signature-File-Name;
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definitions Definitions-File-Name;
theorems Theorems-File-Name;
schemes Schemes-File-Name;

The directive signature informs the Mizar processor that the article is permitted to
use the notation introduced in article Signature-File-Name .miz. The directive is needed
to parse the Text-Proper. The remaining three directives allow us to use definitions,
theorems, and schemes (e.g. induction scheme) that are defined or proved in another
article.

The Text-Proper is a sequence of Text-Items, and there are the following kinds of them:

e Reservation is used to reserve identifiers for a type. If a variable has an identifier
reserved for a type, and no explicit type is stated for the variable, then the variable
type defaults to the type for which its identifier was reserved.

e Definition-Block is used to define (or redefine) constructors. There are three sorts of
constructors: term constructors (functions), formula constructors (predicates), and
type constructors (modes).

e Structure-Definition introduces new structures. A structure is an entity that consists
of a number of fields that are accessed by selectors.

e Theorem announces a proposition that can be referenced from other articles.

e Scheme also announces a proposition, visible from outside. It contrast to theorem,
scheme is expressed in terms of second-order variables.

e Auziliary-Item introduces objects that are local to the article in which they occur
and are not exported to the library files (e.g. lemmas, definitions of local predicates).

The goal of writing an article is to prove some theorems and/or define some new
concepts such that the concepts can be referenced by other authors. Before the theorems
and definitions are included into the library they must be proved valid and correct. The
Mizar article contains proofs of the theorems and justifications of the correctness of the
definitions.

1.3.2 Mizar abstracts

Mizar input texts tend to be lengthy as they contain complete proofs in a rather demanding
formalism. New articles strongly depend on already existing ones. Therefore, there was a
need to provide the authors with a quick reference to the already collected articles. The
solution consisted in automatically creating an abstract for each Mizar article. An abstract
of an article includes all the items that can be referenced from other articles. Therefore,
there is no need to examine the entire article to make a reference to a single theorem.
Grammar of PC Mizar abstracts is given in appendix B.
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The environment of an abstract contains only the directives for accessing vocabularies
and signatures. Figure 1.1 presents an example of such an environment.

environ

vocabulary Boole;

vocabulary Fam_op;
vocabulary Sub_op;
vocabulary Sfamily;

signature Tarski;
signature Boole;
signature Enumsetl;
signature Subset_1;

begin

Figure 1.1: Sample environment.

1.3.3 Mizar library

The Mizar group at the Warsaw University (Institute of Mathematics in Bialystok) started
collecting Mizar articles and organizing them into a library that is distributed to other
Mizar users. This report contains the abstracts of the articles in the library as of May 10,
1989. The articles were authored by 12 people.

The person responsible for the library (E. Woronowicz) requires that authors of con-
tributed articles supply an additional file that describes the bibliographic data of the ar-
ticle, a file with extension .bib. These files have been processed by us to obtain the title,
authors’ names, and the summary. They are printed at the beginning of each abstract.

1.4 The technology of TpXing

In our experiment, we have tried to produce a quality output on a laser printer doing only
lexical analysis of the source of Mizar abstracts.

1.4.1 Preprocessing

The TEXing of Mizar abstracts was done under UNIX BSD 4.3. The Mizar source files, in

extended ASCII IBM Set II, were transferred from IBM PC to UNIX (using kermit).
The version of lex that we used recognized only first 128 characters of the code.

Therefore, we had to do something with the remaining 128 characters. In Mizar PC
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all these characters can be used in user-defined vocabularies. Every character with code
greater than 127 was translated into its 3 digit decimal representation prepended with a
backslash.

1.4.2 Lexical analysis

We used lex for analysis of Mizar abstracts and the generation of TEX input. Our first
attempt to write one lex program that would handle all the symbols from vocabularies
failed. We have exceeded the capacity of an internal parameter of lex that cannot be
controlled from outside (number of positions in a state). An attempt to have just a
small number of 1lex programs that could process all the abstracts failed because of the
prohibitively high running time of lex (more than 15 minutes which was too much for
us). But this solution had to be abandoned for another and much more serious reason.
Namely, if a vocabulary is declared in an article then no symbol from the vocabulary can
be used as an identifier, even if it has the syntax of an identifier. E.g. if vocabulary
Boole is declared in an article then capital U cannot be used as an identifier in the article.
(The symbol was meant to denote set union.) However, in articles that do not use the
vocabulary, U is a legal identifier. Therefore, depending on the vocabularies declared in
an article U is printed either as U or as U.

Because of all that, we needed a separate lex program for each of the articles. There-
fore, we prepared a separate set of lex rules for each vocabulary, each kept in a separate
file and prepared by hand. The lex program for an article is obtained by the catenation
of a common beginning part, the files containing rules for vocabularies used in the article,
and a common ending part containing rules for Mizar defined symbols. All Mizar reserved
words are printed in boldface.

1.4.3 Syntax changes

The environment section of an abstract is automatically converted to a different form.
The way how it is done can be easily guessed from the text in figure 1.2 that is the printed
version of the environment part listed in figure 1.1:

The symbols used in this article are introduced in the following vocabularies: BOOLE,
FAM_OP, SUB_OP, and SFAMILY. The terminology and notation used in this article have
been introduced in the following articles: TARSKI, BOOLE, ENUMSET1, and SUBSET_1.

Figure 1.2: TgXed environment.

Some other changes were minor.

e Semicolon was replaced by a period.
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e BEach theorem starts with the word ‘Theorem’ followed by a pattern of library refer-
ence to it.

e The definition starts with the word ‘Definition’ and the matching end is not printed,
indentation is used to improve readability.

1.4.4 Lexem categories and horizontal spacing

For the horizontal spacing all tokens have been classified into 8 groups.

1. Left delimiters: special symbols ( { [ (# and vocabulary symbols classified as Left-
Function-Bracket,

2. Right delimiters: special symbols ) } 1 #) and vocabulary symbols classified as
Right- Function-Bracket,

3. Punctuation marks: special symbols ; ,

4. Identifiers.

5. Identifier-like symbols: Mizar reserved words and vocabulary symbols that are printed
as sequences of letters and possibly some other characters (e.g. the function symbol

the_left_argument_of).

6. Binary operations: function symbols used in infix notation and printed as one sym-
bol.

7. Prefix operations: function symbols used in prefix notation and printed as one sym-
bol.

8. Postfix operations: function symbols used in postfix notation and printed as one
symbol.

For every pair of symbols, we defined the spacing between them depending on their
classes. The array in figure 1.3 specifies the spacing rules. The class 0 in the array denotes
a special class: beginning of a line, no previous symbol. The meaning of the entries in the
array is as follows:

e 0 - no spacing, linebreak not allowed,

e 1 - aregular space,

e 2 - 1o spacing, linebreak allowed (1inebreak[0]).
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/0 1 2 3 4 5 6 7 8 x/
int SPACES [9] [9] = {

/* 0 x/ { 0,0,0,0,0,0,0,0,01%,
/*x1x/ { 0,0,0,0,0,0,0,0,0]13,
/*2x/ { 0,2,0,0,2,1, 2, 2, 0},
/*x3x/ { 0,1,2,0,1,1, 0, 1, 0},
/*4x/ { 0,0,0,0,1, 1, 0, 0, O },
/* 5 %/ { 0,1,0,0,1, 1, 0,1, 0},
/6 x/ { 0,2,0,0,0,0,0, 2,013,
/*x7x/ { 0,0,0,0,0,0,0,0,0]13,
/*8x*/ { 0,0,0,0,0,1, 2,0, 0%}
}s;

Figure 1.3: Spacing rules.

1.4.5 Mishaps

In our experiment the analysis of Mizar source texts was limited to lexical analysis only.
Mizar vocabularies classify all symbols introduced in them into classes specified in sec-
tion 1.3. This classification alone is not sufficient to solve some problems, e.g. is a given
symbol a symbol of a prefix or an infix operation? Moreover, the same function symbol
can be used in the same article as a postfix, prefix, or infix operation. However, without
doing syntactic analysis we have no way of guessing which of the three is used in a specific
case. Fortunately, the authors of the papers in question did not use this possibility, with
some exceptions. E.g. in chapter 10 the author uses the symbol ", which is TEXed as
superscript ~!, as a function symbol for three different functions as follows.

e (infix notation) inverse image of a set under a mapping, e.g. f~'X,
e (postfix notation) inverse of a bijective mapping: e.g. =1,

e (prefix notation) the function induced by a function f on the power set of its range
that assigns to a set its inverse image under f: ~'f.

Originally, the symbol " has been introduced in vocabulary REAL_1 while preparing article
REAL_L and was used as a postfix function to denote the inverse of a real number.

Despite that we used the set of amssymbols in IXTEX, the symbol for symmetric dif-
ference (=) had to be typeset by hand.

There is also one thing to mention about Polish characters available in TEX. Namely,
there is Polish I as a separate object; some Polish letters can be obtained using accents.
However, some Polish letters cannot be constructed using the available features, e.g. e
which was obtained by hand and only poorly resembles the actual character (we did not
have time to design a new font).
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1.5 Conclusions

We feel that our limited experiment was encouraging. The TEXed texts are much easier to
read than the Mizar sources and at the same time visually close enough to the sources. We
did not expect that doing only lexical analysis we can obtain the text that looks so well.
We also feel that obtaining a better output would require a considerably bigger effort.

The following remarks will be considered in the future work on typesetting of Mizar
articles and their abstracts:

e The quality typesetting of Mizar texts requires full syntactic analysis. Moreover, we
feel that pure context-free parsing is insufficient, and contextual dependencies must
be taken into account. Only in this case we will be able to benefit from the power
of the TEX math-mode.

e The authors of Mizar vocabularies should prepare the TEX version of symbols they
introduce.

e It seems useful to prepare a set of TEX macros that are specialized for Mizar texts.

e In the future, pre-editing and post-editing during the typesetting seems the only way
to solve certain problems.

Acknowledgements
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Chapter 2

TARSKI

Tarski Grothendieck Set Theory

by
Andrzej Trybulec !

Warsaw University (Biatystok)

Summary. This is the first part of the axiomatics of the Mizar system. It includes
the axioms of the Tarski-Grothendieck set theory. They are: the axiom stating
that everything is a set, the extensionality axiom, the definitional axiom of the
singleton, the definitional axiom of the pair, the definitional axiom of the union of
a family of sets, the definitional axiom of the boolean (the power set) of a set, the
regularity axiom, the definitional axiom of the ordered pair, the Tarski’s axiom A
(the existence of arbitrary large strongly inaccessible cardinals). Also, the definition
of equinumerosity is introduced.

The symbols used in this article are introduced in the following vocabularies: EQUI_REL,
BOOLE, and FAM_OP.

reserve X, y, z, u for Any, N, M, X, Y, Z for set.
Theorem TARSKI:1. x is set.
Theorem TARSKI:2. (for x holds x € X iff x € Y) implies X =Y.

Definition
let y.
func {y} — set means x € it iff x = y.

!Supported by RPBP.III-24.B1.

12
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let z.

func {y, z} — set means x € it iff x =y or x = z.

Theorem TARSKI:3. X = {y} iff for x holds x € X iff x = y.
Theorem TARSKI:4. X = {y, z} iff for x holds x € X iff x =y or x = z.

Definition
let X, Y.

pred X C Y means x € X implies x € Y.
Definition
let X.
func UX — set means x € it iffex Ystx e Y& Y € X.

Theorem TARSKI:5. X = JY iff for x holds x € X iffexZstx € Z& Z € Y.
Theorem TARSKI:6. X = bool Y iff for Z holds Z € X iff Z C Y.
Theorem TARSKI:7. x € X impliesex Yst Y e X & notexxstx e X &x €Y.

scheme Fraenkel{A() — set, P[Any, Any]}: ex X st for x holds x € X iff ex y st y
€ A() & Ply, x] provided for x, y, z st P[x, y] & P[x, z] holds y = z.
Definition

let x, y.

func [x, y] means it = {{x, y}, {x}}.
Theorem TARSKI:S. [x, y] = {{x, y}, {x}}.

Definition
let X, Y.

pred X ~ Y meansex Zst (forxstx € Xexysty €Y & [x,y] € Z) & (for
ystyeYexxstxe X&[x,y] €Z) & forx,y, z ust [x,y] € Z & [z, u] € Z holds x
=ziffy = u

Theorem TARSKI:9. ex M st N € M & (for X, Y holds X ¢ M & Y C X implies Y
€ M) & (for X holds X € M implies bool X € M) & (for X holds X C M implies X ~
M or X € M).



Chapter 3

AXIOMS

Axioms about Built-in Concepts

by
Andrzej Trybulec !

Warsaw University (Bialystok)

Summary. This abstract contains the second part of the axiomatics of the Mizar
system (the first part is in abstract TARSKI). The axioms listed here characterize
the Mizar built-in concepts that are introduced in abstract HIDDEN which is
automatically attached to every Mizar article. We give definitional axioms of the
following concepts: element, subset, Cartesian product, domain (non empty subset),
subdomain (non empty subset of a domain), set domain (domain consisting of sets).
Axioms of strong arithmetics of real numbers are also included.

The symbols used in this article are introduced in vocabulary BOOLE. The terminology
and notation used here have been introduced in article TARSKI.

reserve x, y, z for Any, X, X1, X2, X3, X4, Y for set.

Theorem AXIOMS:1. (ex x st x € X) implies (x is Element of X iff x € X).
Theorem AXIOMS:2. X is Subset of Y iff X C Y.

Theorem AXIOMS:3. z € [X, Y] iffexx,ystx e X &y e Y &z =[x, y].
Theorem AXIOMS:4. X is DOMAIN iff ex x st x € X.

Theorem AXIOMS:5. [X1, X2, X3] = [[X1, X2], X3].

!Supported by RPBP.III-24.B1.

14
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Theorem AXIOMS:6. [X1, X2, X3, X4] = [[X1, X2, X3], X4].
reserve D1, D2, D3, D4 for DOMAIN.
Theorem AXIOMS:7. for X being Element of [D1, D2] holds X is TUPLE of D1,

Theorem AXIOMS:8. for X being Element of [D1, D2, D3] holds X is TUPLE of

D1, D2, D3.

Theorem AXIOMS:9. for X being Element of [D1, D2, D3, D4] holds X is TUPLE

of D1, D2, D3, D4.

reserve D for DOMAIN.

Theorem AXIOMS:10.
Theorem AXIOMS:11.

D1 is SUBDOMAIN of D2 iff D1 C D2.
D is SET DOMAIN.

reserve x, y, z for Element of REAL.

Theorem AXIOMS:12.
Theorem AXIOMS:13.
Theorem AXIOMS:14.
Theorem AXIOMS:15.
Theorem AXIOMS:16.
Theorem AXIOMS:17.
Theorem AXIOMS:18.
Theorem AXIOMS:19.
Theorem AXIOMS:20.
Theorem AXIOMS:21.
Theorem AXIOMS:22.
Theorem AXIOMS:23.
Theorem AXIOMS:24.
Theorem AXIOMS:25.

Theorem AXIOMS:26.
stxeY)&forx,ystx e X&yecYholdsxyexzstforx,ystxeX&yeY
holds x <z & z < y.

Theorem AXIOMS:27.
Theorem AXIOMS:28.

Theorem AXIOMS:29.
€ A holds NAT C A.

Theorem AXIOMS:30.

X+y = y+x.
x+(y+z) =
x+0 = x.
X'y = yX.
x-(yz) =
x-1=x.

(x+y)+z.

(x-y)-2.

x-(y+z) = xy+x-z.

ex y st x+y = 0.

x # 0 implies ex y st x'y = 1.
x <y &y < ximpliesx =y.

/

y & y < z implies x < z.
yory < Xx.

IN NN

y implies x+z < y+z.

ST T T
N

<y & 0 < z implies xz < y-z.
for X, Y being Subset of REAL st (ex x st x € X) & (ex x

x is Real.
x € NAT implies x+1 € NAT.
for A being set of Real st 0 € A & for x st x € A holds x+1

x € NAT implies x is Nat.



Chapter 4

BOOLE

Boolean Properties of Sets

by
Zinaida Trybulec *
Warsaw University (Biatystok)

Halina Swie czkowska 2

Warsaw University (Bialystok)

Summary. The text includes a number of theorems about Boolean operations
on sets: union, intersection, difference, symmetric difference; and relations on sets:
meets (having non-empty intersection), misses (being disjoint) and C (inclusion).

The symbols used in this article are introduced in vocabularies FAM_OP and BOOLE.
The terminology and notation used here have been introduced in article TARSKI.

reserve x, y, z for Any, X, Y, Z, V for set.
scheme Separation{A() — set, P[Any]}: ex X st for x holds x € X iff x € A() &
P[x].
Definition
func ) — set means not ex x st x € it.

let X, Y.

!Supported by RPBP.III-24.C1.
2Supported by RPBP.IT1-24.C1.
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func XUY - setmeansx citiff x e Xorx e Y.

func XNY —w setmeansx citif xe X &xeY.

func X\Y - setmeansx €citiff x e X & not x € Y.

pred X meets Y meansex xst x e X & x € Y.

pred X misses Y means for x holds x € X implies not x € Y.

Definition

let X, Y.

func X+-Y — set means it = (X\Y)U(Y~X).

Theorem BOOLE:1.
Theorem BOOLE:2.
Theorem BOOLE:3.
Theorem BOOLE:4.
Theorem BOOLE:5.
Theorem BOOLE:6.
Theorem BOOLE:7.

Definition

let X, Y.

redefine

Z = () iff not ex x st x € Z.

Z =XUY iff for x holdsx € Ziff x € Xorx €Y.
Z=XNY iff forxholdsx e Ziff x e X & x €Y.

Z =X\Y iff for x holds x € Z iff x € X & not x € Y.
X C Y iff for x holds x € X implies x € Y.

X meets Yiffexxstxe X &xeY.

X misses Y iff for x holds x € X implies not x € Y.

pred X =Y means X C Y & Y C X.

Theorem BOOLE:S.
Theorem BOOLE:9.

Theorem BOOLE:10.
Theorem BOOLE:11.
Theorem BOOLE:12.
Theorem BOOLE:13.
Theorem BOOLE:14.
Theorem BOOLE:15.
Theorem BOOLE:16.
Theorem BOOLE:17.
Theorem BOOLE:18.
Theorem BOOLE:19.
Theorem BOOLE:20.
Theorem BOOLE:21.
Theorem BOOLE:22.
Theorem BOOLE:23.

xeXUYiffxe Xorxey.
xeXNYiffxe X &xeY.
xeX\Yiff xe X &notxeY.
x e X & X CYimpliesx € Y.
x € X & X misses Y implies not x € Y.
x € X & x € Y implies X meets Y.
x € X implies X # 0.
X meets Y impliesex xst x e X & x € Y.
(for x st x € X holds x € Y) implies X C Y.
for x st x € X holds not x € Y) implies X misses Y.
for x holds x € X iff x € Y or x € Z) implies X = YUZ.
for x holds x € X iff x € Y & x € Z) implies X = YNZ.
for x holds x € X iff x € Y & not x € Z) implies X = Y\Z.
not (ex x st x € X) implies X = ().
(for x holds x € X iff x € Y) implies X =Y.
x € X=Y iff not (x € X iff x € Y).

(
(
(
(
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Y~

Theorem BOOLE:24.
Theorem BOOLE:25.

Z.

Theorem BOOLE:26.
Theorem BOOLE:27.
Theorem BOOLE:28.
Theorem BOOLE:29.
Theorem BOOLE:30.
Theorem BOOLE:31

Theorem BOOLE:32.
Theorem BOOLE:33.
Theorem BOOLE:34.
Theorem BOOLE:35.
Theorem BOOLE:36.
Theorem BOOLE:37.
Theorem BOOLE:38.
Theorem BOOLE:39.
Theorem BOOLE:40.
Theorem BOOLE:41.
Theorem BOOLE:42.
Theorem BOOLE:43.
Theorem BOOLE:44.
Theorem BOOLE:45.
Theorem BOOLE:46.
Theorem BOOLE:47.
Theorem BOOLE:48.
Theorem BOOLE:49.
Theorem BOOLE:50.
Theorem BOOLE:51.
Theorem BOOLE:52.
Theorem BOOLE:53.
Theorem BOOLE:54.
Theorem BOOLE:55.
Theorem BOOLE:56.

XCV.

CHAPTER 4. BOOLE

x € X & x € Y implies XNY # .
(for x holds not x € X iff (x € Y iff x € Z)) implies X =

=P

& Y C X implies X =Y.

Y & Y C Z implies X C Z.

X C 0 implies X = (.

X C XUY &Y C XUY.

X CZ&Y CZimplies XUY C Z.

X C Y implies XUZ C YUZ & ZUX C ZUY.
X CY & Z C Vimplies XUZ C YUV.

X CY implies XUY =Y & YUX =Y.
XUY =Y or YUX =Y implies X C Y.
XNY C X &XNY CY.

XNY C XUZ.

Z CX &7 CY implies Z C XNY.

X C Y implies XNZ C YNZ & ZNX C ZNY.
X CY &Z C Vimplies XNZ C YNV.

X C Y implies XNY =X & YNX = X.
XNY = X or YNX = X implies X C Y.

X C Z implies XUYNZ = (XUY)NZ.
XNY=0iff XCY.

X C Y implies X\7Z C Y~\Z.

X C Y implies Z\Y C Z~X.

XCY &Z CVimplies X\V C Y\Z.
X\Y C X.

X C Y~ X implies X = (.
XCY&XCZ&YNZ = () implies X = (.
X C YUZ implies X~\Y CZ & X~NZ CY.
(XNY)U(XNZ) = X implies X C YUZ.
X CY implies Y = XU(Y~X) &Y =
X CY & YNZ = 0 implies XNZ = ().
X=YUZITYCX&ZCX&for Vst Y CV &ZCV holds

><><‘S:><
N N 1IN N

(Y~X)UX.



Theorem BOOLE:57.

V CX.

Theorem BOOLE:58.
Theorem BOOLE:59.
Theorem BOOLE:60.
Theorem BOOLE:61.
Theorem BOOLE:62.
Theorem BOOLE:63.
Theorem BOOLE:64.
Theorem BOOLE:65.
Theorem BOOLE:66.
Theorem BOOLE:67.
Theorem BOOLE:68.

NX = X.

Theorem BOOLE:69.

uXx = X.

Theorem BOOLE:70.
Theorem BOOLE:71.
Theorem BOOLE:72.
Theorem BOOLE:73.
Theorem BOOLE:74.
Theorem BOOLE:75.
Theorem BOOLE:76.
Theorem BOOLE:77.
Theorem BOOLE:78.
Theorem BOOLE:79.
Theorem BOOLE:80.
Theorem BOOLE:81.
Theorem BOOLE:82.
Theorem BOOLE:83.
Theorem BOOLE:84.
Theorem BOOLE:85.
Theorem BOOLE:86.
Theorem BOOLE:S87.
Theorem BOOLE:S8S.

19

X=YNZiff XCY&XCZ&for Vst VCY &V CZholds

X\Y C X-Y.

XUY =0iff X=0&Y = 0.
XUph =X & PUX = X.

XNh =0 & PnX = (.

XuX = X.

XUY = YUX.
(XUY)UZ = Xu(YUZ).
XNnX = X.

XNY = YNX.

(XNY)NZ = XN(YNZ).
XNXUY) = X & (XUY)NX = X & XN(YUX) = X & (YUX)

XU(XNY) = X & (XNY)UX = X & XU(YNX) = X & (YNX)

XN(YUZ) = XNYUXNZ & (YUZ)NX = YNXUZNX.
XUYNZ = (XUY)N(XUZ) & YNZUX = (YUX)N(ZUX).
(XNY)U(YNZ)u(ZNX) = (XUY)N(YUZ)N(ZUX).

X\X =

XN(XUY) =0 & XN (YUX) = 0.
XNXNY = XNY & XNYNX = XNY.
(XN\Y)NY =0 & YN(XNY) = 0.
XU(Y~X) = XUY & (Y~X)UX = YUX.
XNYU(XNY) = X & (XNY)UXNY = X.
XN(YNZ) = (XNY)UXNZ.

XN(XNY) = XNY.

(XUY)NY = X\Y.

XNY = 0 iff X\Y = X.

XN (YUZ) = (XNY)N(XNZ).

XN(YNZ) = (XNY)U(XNZ).
(XUY)N(XNY) = (XNY)U(YNX).
(XNY)NZ = XN (YVUZ).
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Theorem BOOLE:89.
Theorem BOOLE:90.
Theorem BOOLE:91.
Theorem BOOLE:92.
Theorem BOOLE:93.
Theorem BOOLE:94.
Theorem BOOLE:95.
Theorem BOOLE:96.
Theorem BOOLE:97.
Theorem BOOLE:98.
Theorem BOOLE:99.
Theorem BOOLE:100
Theorem BOOLE:101
Theorem BOOLE:102
Theorem BOOLE:103

Theorem BOOLE:104.
Theorem BOOLE:105.
Theorem BOOLE:106.
Theorem BOOLE:107.
Theorem BOOLE:108.
Theorem BOOLE:109.
Theorem BOOLE:110.
Theorem BOOLE:111.
Theorem BOOLE:112.
Theorem BOOLE:113.
Theorem BOOLE:114.
Theorem BOOLE:115.
Theorem BOOLE:116.
Theorem BOOLE:117.

Theorem BOOLE:118
Theorem BOOLE:119
Theorem BOOLE:120
Theorem BOOLE:121
Theorem BOOLE:122

CHAPTER 4.

(XUY)NZ = (XNZ2)U(YNZ).

X\Y = Y~ X implies X =Y.

XY = (XNY)U(Y~X).
X=X & 0-X =X.

X=X = 0.

XY =Y=-X.

XUY = (X=Y)uXnyY.

X=Y = (XUY)~\XNY.

(X=Y)NZ = (XN (YUZ)U(Y N (XUZ)).
XN(Y=Z) = XN (YUZ)UXNYNZ.

(X=Y)=~Z = X=(Y=Z).

. X meets YUZ iff X meets Y or X meets Z.

. X meets Y & Y C Z implies X meets Z.

. X meets YNZ implies X meets Y & X meets Z.
. X meets Y implies Y meets X.

not (X meets ) or ) meets X).

X misses Y iff not X meets Y.

X misses YUZ iff X misses Y & X misses Z.

X misses Z & Y C Z implies X misses Y.

X misses Y or X misses Z implies X misses YNZ.
X misses () & () misses X.

X meets X iff X # ).

XNY misses X\Y.

XNY misses X~-Y.

X meets Y\Z implies X meets Y.
XCY&XCZ&Y misses Z implies X = ().
X\NY CZ & Y~X C Z implies X~Y C Z.
XN(YNZ) = (XNY)\Z.

. X misses Y iff XNY = (.

. X meets Y iff XNY # 0.

. X C (YVUZ) & XNZ = () implies X C Y.
.Y CX & XNY = implies Y = 0.

. X misses Y implies Y misses X.

XN(YNZ) = XNY~XNZ & (YNZ)NX = YNXNZNX.

BOOLE



Chapter 5

ZFMISC 1

Some Basic Properties of Sets

by
Czestaw Byliniski *
Warsaw University (Biatystok)

Summary. In this article some basic theorems about singletons, pairs, power sets,
unions of families of sets, and the cartesian product of two sets are proved.

The symbols used in this article are introduced in vocabularies BOOLE and FAM_OP.
The articles TARSKI and BOOLE provide the terminology and notation for this article.

Theorem ZFMISC_1:1. bool ) = {0}.

Theorem ZFMISC_1:2. O = 0.

reserve v, x, x1, x2, y, yl, y2, z for Any.
reserve A, B, X, X1, X2, Y, Y1, Y2, Z for set.
Theorem ZFMISC_1:3. {x} # 0.

Theorem ZFMISC_1:4. {x, y} # 0.

Theorem ZFMISC_1:5. {x} = {x, x}.

Theorem ZFMISC_1:6. {x} = {y} implies x =y.
Theorem ZFMISC_1:7. {x1, x2} = {x2, x1}.
Theorem ZFMISC_1:8. {x} = {yl, y2} implies x = yl & x = y2.
!Supported by RPBP.IT1-24.C1.
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Theorem ZFMISC_1:9.

Theorem ZFMISC_1:10.

yl or x2 = y2).

Theorem ZFMISC_1:11.
Theorem ZFMISC_1:12.
Theorem ZFMISC_1:13.
Theorem ZFMISC_1:14.
Theorem ZFMISC_1:15.
Theorem ZFMISC_1:16.
Theorem ZFMISC_1:17.
Theorem ZFMISC_1:18.
Theorem ZFMISC_1:19.

& {x, yin{y} = {y}

Theorem ZFMISC_1:20.
Theorem ZFMISC_1:21.
Theorem ZFMISC_1:22.
Theorem ZFMISC_1:23.
Theorem ZFMISC_1:24.
Theorem ZFMISC_1:25.
Theorem ZFMISC_1:26.
Theorem ZFMISC_1:27.
Theorem ZFMISC_1:28.

yl or x2 = y2).

z]}.

Theorem ZFMISC_1:29.
Theorem ZFMISC_1:30.
Theorem ZFMISC_1:31.
Theorem ZFMISC_1:32.
Theorem ZFMISC_1:33.
Theorem ZFMISC_1:34.
Theorem ZFMISC_1:35.
Theorem ZFMISC_1:36.

Theorem ZFMISC_1:37.
Theorem ZFMISC_1:38.

Theorem ZFMISC_1:39

CHAPTER 5. ZFMISC_1

{x} = {yl, y2} implies yl = y2.
{x1, x2} = {y1, y2} implies (x1 =yl or x1 = y2) & (x2

{x1, x2} = {x1}u{x2}.

{x} S {x, vy} &{y} € {x v}

{x}U{y} = {x} or {x}U{y} = {y} implies x = y.

{x}U{x, vy} = {x, v} & {x, y}U{x} = {x, y}.

{yiufx, v} = {x, v} & {x, y}uly} = {x, y}.

{x}n{y} =0 or {y}n{x} = 0 implies x # y.

x # y implies {x}N{y} = 0 & {y}n{x} = 0.

{x}n{y} = {x} or {x}n{y} = {y} implies x = y.

{x}nfx, v} = {x} & {y}n{x, v} = {y} & {x, yIn{x} = {x}

{x{y} ={x}tiffx #y.

{x}~{y} = 0 implies x = y.

{xIn{x, v} =0 & {yin{x, v} = 0.

x # y implies {x, y}\{y} = {x} & {x, y}{x} = {y}.
{x} C {y} implies {x} = {y}.

{z} C {x, y} implies z = x or z = y.

{x, v} C {z} impliesx =z & y = z.

{x, y} C {2z} implies {x, y} = {z}.

{x1, x2} C {yl, y2} implies (x1 = yl or x1 = y2) & (x2

x #y implies {x}~{y} = {x, y}.

bool {x} = {0, {x}}.

U{x} = x.

Ul{x} {v}} = {x v}

[x1, x2] = [yl, y2] implies x1 = yl & x2 = y2.

x, y] € [{x1}, {y1}] iff x =x1 &y = yl.

[{x}s {3 = {13

[{xh Ay, 23] = {lx vl [x 2} & [ix, v}, {23 = {[x, 7], [y,

{x} CXiff x € X.
{x1,x2} CZiff xl € Z & x2 € Z.
YC{x}iff Y=0orY = {x}.



Theorem ZFMISC_1:40
Theorem ZFMISC_1:41

Theorem ZFMISC_1:42
x2}.

Theorem ZFMISC_1:43.

{z} or X ={z} &Y = (.

Theorem ZFMISC_1:44.
Theorem ZFMISC_1:45.
Theorem ZFMISC_1:46.
Theorem ZFMISC_1:47.
Theorem ZFMISC_1:48.
Theorem ZFMISC_1:49.
Theorem ZFMISC_1:50.
Theorem ZFMISC_1:51.
Theorem ZFMISC_1:52.
Theorem ZFMISC_1:53.

v}

Theorem ZFMISC_1:54.
Theorem ZFMISC_1:55.

€ 7.

Theorem ZFMISC_1:56.
Theorem ZFMISC_1:57.

Theorem ZFMISC_1:58.
Theorem ZFMISC_1:59.

X =Y.

Theorem ZFMISC_1:60.

XN{x, vy} = {x}.

Theorem ZFMISC_1:61.

X =Y.

Theorem ZFMISC_1:62.

Xn{x, y} = {y}.

Theorem ZFMISC_1:63.

y € X.

Theorem ZFMISC_1:64.
Theorem ZFMISC_1:65.
Theorem ZFMISC_1:66.

23

.Y C X & not x € Y implies Y C X~ {x}.
X #{x} &xeXimpliesexysty € X &y # x.
.ZC{x1,x2}iffZ=0or Z = {x1} or Z = {x2} or Z = {x1,

{z} = XUY implies X = {z} & Y ={z} or X =0 & Y

{z} = XUY & X # Y implies X = or Y = 0.

{x}UX = X or XU{x} = X implies x € X.

x € X implies {x}UX = X & XU{x} = X.

{x, y}JUZ =Z or ZU{x,y} = Z impliesx € Z & y € Z.

x € Z &y € Zimplies {x, y}UZ = Z & ZU{x, y} = Z.
{x}UX # 0 & XU{x} # 0.

{x, y}UX # 0 & XU{x, y} # 0.

XN{x} = {x} or {x}NX = {x} implies x € X.

x € X implies XN{x} = {x} & {x}nX = {x}.

x € Z &y € Zimplies {x, y}NZ = {x, y} & {x, y} = Zn{x,

{x}nX = 0 or XN{x} = 0 implies not x € X.
{x, y}NZ = 0 or ZN{x, y} = () implies not x € Z & not y

not x € X implies {x}NX = 0 & Xn{x} = 0.
not x € Z & not y € Z implies {x, y}NZ =0 & Zn{x, y} =

{x}nX =0 or {x}nX = {x} & XN{x} = {x}.
{x, y}NX = {x} or XN{x, y} = {x} implies not y € X or

x € X & (not y € X or x = y) implies {x, y}nX = {x} &
{x, y}nX = {y} or XN{x, y} = {y} implies not x € X or
y € X & (not x € X or x = y) implies {x, y}NX = {y} &
{x, y}nX = {x, y} or XN{x, y} = {x, y} implies x € X &

z € Xn{x}iff z € X & z # x.
X~{x} = X iff not x € X.
X~ {x} = 0 implies X = () or X = {x}.
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Theorem ZFMISC_1:67. {x}\X = {x} iff not x € X.

Theorem ZFMISC_1:68. {x}\X = () iff x € X.

Theorem ZFMISC_1:69. {x}"X = 0 or {x}\X = {x}.

Theorem ZFMISC_1:70. {x, y}\X = {x} iff not x € X & (y € X or x = y).

Theorem ZFEMISC_1:71. {x, y}\X = {y} iff (x € Xorx =y) & not y € X.

Theorem ZFMISC_1:72. {x, y}\X = {x, y} iff not x € X & not y € X.

Theorem ZFMISC_1:73. {x, y\X =0iff x e X &y € X.

Theorem ZFMISC_1:74. {x, y}\X = 0 or {x, y}\X = {x} or {x, y}\X = {y} or {x,
YIX = {x, v}

Theorem ZFMISC_1:75. X~\{x,y} =0 iff X =0 or X = {x} or X = {y} or X = {x,
y}-

Theorem ZFMISC_1:76. () € bool A.

Theorem ZFMISC_1:77. A € bool A.

Theorem ZFMISC_1:78. bool A # ().

Theorem ZFMISC_1:79. A C B implies bool A C bool B.

Theorem ZFMISC_1:80. {A} C bool A.

Theorem ZFMISC_1:81. bool AUbool B C bool (AUB).

Theorem ZFMISC_1:82. bool AUbool B = bool (AUB) implies A C B or B C A.

Theorem ZFMISC_1:83. bool (ANB) = bool ANbool B.

Theorem ZFMISC_1:84. bool (ANB) C {#}U(bool Axbool B).

Theorem ZFMISC_1:85. X € bool (ANB) iff X C A & X misses B.

Theorem ZFMISC_1:86. bool (A~B)Ubool (B\NA) C bool (A=B).

Theorem ZFMISC_1:87. X € bool (A=B) iff X C AUB & X misses ANB.

Theorem ZFMISC_1:88. X € bool A & Y € bool A implies XUY € bool A.

Theorem ZFMISC_1:89. X € bool A or Y € bool A implies XNY € bool A.

Theorem ZFMISC_1:90. X € bool A implies X\Y € bool A.

Theorem ZFMISC_1:91. X € bool A & Y € bool A implies X+Y € bool A.

Theorem ZFMISC_1:92. X € A implies X C [JA.

Theorem ZFMISC_1:93. [J{X, Y} = XUY.

Theorem ZFMISC_1:94. (for X st X € A holds X C Z) implies (JA C Z.

Theorem ZFMISC_1:95. A C B implies [JA C |JB.

Theorem ZFMISC_1:96. |J(AUB) = [JAUUB.

Theorem ZFMISC_1:97. |J(ANB) € JANUB.

Theorem ZFMISC_1:98. (for X st X € A holds XNB = () implies [ J(A)NB = {.

Theorem ZFMISC_1:99. (Jbool A = A.



Theorem ZFMISC_1:100
Theorem ZFMISC_1:101
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. A C bool JA.
. (for X, Yst X#Y & X € AUB & Y € AUB holds XNY

= ) implies |J(ANB) = [JANB.

Theorem ZFMISC_1:102.

Theorem ZFMISC_1:103
z =[x, y].

Theorem ZFMISC_1:104.

XINX2 &y € YINY2.
Theorem ZFMISC_1:105

Theorem ZFMISC_1:106.
Theorem ZFMISC_1:107.
Theorem ZFMISC_1:108.

z € [X, Y] implies ex x, y st [x, y] = z.
CACIX, Y& z€ Aimpliesexx, ystxe X &yeY &

z € [X1, Y1]N[X2, Y2] implies ex x, y st z = [x, y] & x €

. [X, Y] € bool bool (XUY).

x,y] € [X,Y]iff xe X &ye€Y.

[x, y] € [X, Y] implies [y, x] € [Y, X].

(for x, y holds [x, y] € [X1, Y1] iff [x, y] € [X2, Y2])

implies [X1, Y1] = [X2, Y2].

Theorem ZFMISC_1:109
implies A C B.

. A C[X, Y] & (for x, y st [x, y] € A holds [x, y] € B)

Theorem ZFMISC_1:110. A C [X1, Y1] & B C [X2, Y2] & (for x, y holds [x, y] € A

iff [x, y] € B) implies A =
Theorem ZFMISC_1:111

B.
. (forzstze Aexx,ystz=][x,y]) & (for x, y st [x, y] €

A holds [x, y] € B) implies A C B.

Theorem ZFMISC_1:112
x,y st z =[x, y]) & (for x,

Theorem ZFMISC_1:113.
Theorem ZFMISC_1:114.
Theorem ZFMISC_1:115.
Theorem ZFMISC_1:116.
Theorem ZFMISC_1:117.

Theorem ZFMISC_1:118.
Theorem ZFMISC_1:119.
Theorem ZFMISC_1:120.
Theorem ZFMISC_1:121.

Y2].

Theorem ZFMISC_1:122.
Theorem ZFMISC_1:123.
Theorem ZFMISC_1:124.
Theorem ZFMISC_1:125.
Theorem ZFMISC_1:126.

. (forzstze€ Aexx,ystz=[x,y]) & (for zst z € B ex
y holds [x, y] € A iff [x, y] € B) implies A = B.
[X,Y]=0if X =0 or Y = 0.
X#A0&Y #0&[X, Y] = [Y, X] implies X = Y.
[X, X] =[Y, Y] implies X =Y.
X C [X, X] implies X = {.
7 40 & ([X, 2] C [Y, 7] or [, X] C [Z, Y]) implies X C

X C Y implies [X, Z] C [Y, 7] & [Z, X] C [Z, Y].

X1 C Y1 & X2 C Y2 implies [X1, X2] C [Y1, Y2[.
[XUY, Z] = [X, Z]U[Y, Z] & [Z, XUY] = [Z, X]U[Z, Y].
[X1UX2, YIUY2] = [X1, Y1JU[X1, Y2JU[X2, Y1]U[X2,

[XNY, Z] = [X, Z]N[Y, Z] & [Z, XNY] = [Z, X]N[Z, Y].
[X1NX2, YINY2] = [X1, Y1]N[X2, Y2].

A C X & B C Y implies [A, Y]N[X, B] = [A, B].

[X\Y, Z] = [X, ZIN]Y, Z] & [Z, X\Y] = [Z, X]\]Z, Y]
[X1, X2]~[Y1, Y2] = [XI\Y1, X2JU[X1, X2\ Y2].
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Theorem ZFMISC_1:127. X1NX2 = 0 or YINY2 = () implies [X1, Y1JN[X2, Y2] =

Theorem ZFMISC_1:128. [x, y] € [{z}, Y] iff x =z & y € Y.

Theorem ZFMISC_1:129. [x, y] € [X, {z}] if x e X & y = z.

Theorem ZFMISC_1:130. X # 0 implies [{x}, X] # 0 & [X, {x}] # 0.

Theorem ZFMISC_1:131. x # y implies [{x}, X]N[{y}, Y] = 0 & [X, {x}]N[Y, {y}]
= 0.

Theorem ZFMISC_1:132. [{x, y}, X] = [{x}, X[U[{y}, X] & [X, {x, y}] = [X, {x}]
UIX, {y}]-

Theorem ZFMISC_1:133. Z = [X, Y] iff for zholds z € Z iffex x, yst x e X & y €
Y &z =[x, y]

Theorem ZFMISC_1:134. X1 # 0 & Y1 # 0 & [X1, Y1] = [X2, Y2] implies X1 =
X2& Yl =Y2.

Theorem ZFMISC_1:135. X C [X, Y] or X C [Y, X] implies X = (.



Chapter 6

ENUMSET1

Enumerated Sets

by
Andrzej Trybulec !

Warsaw University (Bialystok)

Summary. We prove basic facts about enumerated sets: definitional theorems and
their immediate consequences, some theorems related to the decomposition of an
enumerated set into union of two sets, facts about removing elements that occur
more than once, and facts about permutations of enumerated sets (with the length
< 4). The article includes also schemes enabling instantiation of up to nine universal
quantifiers.

The symbols used in this article are introduced in vocabularies BOOLE and FAM_OP.
The articles TARSKI and BOOLE provide the terminology and notation for this article.

reserve x, x1, x2, x3, x4, x5, x6, x7, x8, y, yl, y2, y3, y4, yb, yb, y7, y8, z, zl, 22, z3,
z4, 75, 76, z7, z8 for Any.

reserve X, X1, X2, Y, Y1, Y2, Z, Z1, Z2 for set.

scheme UI1{x1() — Any, P[Any]}: P[x1()] provided A: for x1 holds P[x1].

scheme UI2{x1() — Any, x2() — Any, P[Any, Any]}: P[x1(), x2()] provided A: for
x1, x2 holds P[x1, x2].

scheme UI3{x1() — Any, x2() — Any, x3() — Any, P[Any, Any, Any]}: P[x1(), x2(),
x3()] provided A: for x1, x2, x3 holds P[x1, x2, x3].

!Supported by RPBP.III-24.C1.
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scheme Ul4{x1() — Any, x2() — Any, x3() — Any, x4() — Any, P[Any, Any, Any,
Anyl}: P[x1(), x2(), x3(), x4()] provided A: for x1, x2, x3, x4 holds P[x1, x2, x3, x4].

scheme UI5{x1() = Any, x2() — Any, x3() — Any, x4() — Any, x5() — Any, P[Any,
Any, Any, Any, Any]}: P[x1(), x2(), x3(), x4(), x5()] provided A: for x1, x2, x3, x4, x5
holds P[x1, x2, x3, x4, x5].

scheme UI6{x1() — Any, x2() — Any, x3() — Any, x4() — Any, x5() — Any, x6() —
Any, P[Any, Any, Any, Any, Any, Any]}: P[x1(), x2(), x3(), x4(), x5(), x6()] provided A:
for x1, x2, x3, x4, x5, x6 holds P[x1, x2, x3, x4, x5, x6].

scheme UI7{x1() — Any, x2() = Any, x3() — Any, x4() — Any, x5() — Any, x6() —
Any, x7() = Any, P[Any, Any, Any, Any, Any, Any, Any]}: P[x1(), x2(), x3(), x4(), x5(),
x6(), x7()] provided A: for x1, x2, x3, x4, x5, x6, x7 holds P[x1, x2, x3, x4, x5, x6, x7].

scheme UI8{x1() — Any, x2() — Any, x3() — Any, x4() — Any, x5() — Any, x6() —
Any, x7() — Any, x8() — Any, P[Any, Any, Any, Any, Any, Any, Any, Any|}: P[x1(), x2(),
x3(), x4(), x5(), x6(), x7(), x8()] provided A: for x1, x2, x3, x4, x5, x6, x7, x8 holds
P[x1, x2, x3, x4, x5, x6, x7, x8].

scheme UI9{x1() — Any, x2() — Any, x3() — Any, x4() — Any, x5() — Any, x6() —
Any, x7() — Any, x8() — Any, x9() — Any, P[Any, Any, Any, Any, Any, Any, Any, Any,
Anyl}: P[x1(), x2(), x3(), x4(), x5(), x6(), x7(), x8(), x9()] provided A: for x1, x2, x3,
x4, x5, x6, x7, x8, x9 being Any holds P[x1, x2, x3, x4, x5, x6, x7, x8, x9].

Theorem ENUMSET1:1. for x1, X holds X = {x1} iff for x holds x € X iff x = x1.
Theorem ENUMSET1:2. for x1, x holds x € {x1} iff x = x1.

Theorem ENUMSET1:3. x € {x1} implies x = x1.

Theorem ENUMSET1:4. x € {x}.

Theorem ENUMSET1:5. for x1, X st for x holds x € X iff x = x1 holds X = {x1}.
Theorem ENUMSET1:6. for x1, x2, X holds X = {x1, x2} iff for x holds x € X iff

x = x1 or x = x2.

Theorem ENUMSET1:7. for x1, x2 holds for x holds x € {x1, x2} iff x = x1 or x

= x2.
Theorem ENUMSET1:8. x € {x1, x2} implies x = x1 or x = x2.
Theorem ENUMSET1:9. x = x1 or x = x2 implies x € {x1, x2}.

Theorem ENUMSET1:10. for x1, x2, X st for x holds x € X iff x = x1 or x = x2
holds X = {x1, x2}.

Definition
let x1, x2, x3.

func {x1, x2, x3} — set means x € it iff x = x1 or x = x2 or x = x3.

Theorem ENUMSET1:11. for x1, x2, x3, X holds X = {x1, x2, x3} iff for x holds x
€ X iff x = x1 or x = x2 or x = x3.
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Theorem ENUMSET1:12. for x1, x2, x3 holds for x holds x € {x1, x2, x3} iff x =

x1l or x = x2 or x = x3.

Theorem ENUMSET1:13. x € {x1, x2, x3} implies x = x1 or x = x2 or x = x3.

Theorem ENUMSET1:14. x = x1 or x = x2 or x = x3 implies x € {x1, x2, x3}.

Theorem ENUMSET1:15. for x1, x2, x3, X st for x holds x € X iff x = x1 or x =
x2 or x = x3 holds X = {x1, x2, x3}.
Definition

let x1, x2, x3, x4.

func {x1, x2, x3, x4} — set means x € it iff x = x1 or x = x2 or x = x3 or x

= x4.

Theorem ENUMSET1:16. for x1, x2, x3, x4, X holds X = {x1, x2, x3, x4} iff for x
holds x € X iff x = x1 or x = x2 or x = x3 or x = x4.

Theorem ENUMSET1:17. for x1, x2, x3, x4 holds for x holds x € {x1, x2, x3, x4}
iff x = x1 or x = x2 or x = x3 or x = x4.

Theorem ENUMSET1:18. x € {x1, x2, x3, x4} implies x = x1 or x = x2 or x = x3
or x = x4.

Theorem ENUMSET1:19. x = x1 or x = x2 or x = x3 or x = x4 implies x € {x1,
x2, x3, x4}.

Theorem ENUMSET1:20. for x1, x2, x3, x4, X st for x holds x € X iff x = x1 or x
= x2 or x = x3 or x = x4 holds X = {x1, x2, x3, x4}.
Definition

let x1, x2, x3, x4, x5.

func {x1, x2, x3, x4, x5} — set means x € it iff x = x1 or x = x2 or x = x3

or x = x4 or x = x5.

Theorem ENUMSET1:21. for x1, x2, x3, x4, x5 for X being set holds X = {x1, x2,
x3, x4, xb} iff for x holds x € X iff x = x1 or x = x2 or x = x3 or x = x4 or x = xb.

Theorem ENUMSET1:22. x € {x1, x2, x3, x4, x5} iff x = xl or x = x2 or x = x3 or
x = x4 or x = x5.

Theorem ENUMSET1:23. x € {x1, x2, x3, x4, x5} implies x = x1 or x = x2 or x =
x3 or x = x4 or x = x5.

Theorem ENUMSET1:24. x = x1 or x = x2 or x = x3 or x = x4 or x = xb implies
x € {x1, x2, x3, x4, x5}.

Theorem ENUMSET1:25. for X being set st for x holds x € X iff x = x1 or x = x2
or x = x3 or x = x4 or x = x5 holds X = {x1, x2, x3, x4, x5}.
Definition

let x1, x2, x3, x4, x5, x6.

func {x1, x2, x3, x4, x5, x6} — set means x € it iff x = x] or x = x2 or x =
x3 or x = x4 or x = xb or x = x6.
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Theorem ENUMSET1:26. for x1, x2, x3, x4, x5, x6 for X being set holds X = {xl1,
x2, x3, x4, x5, x6} iff for x holds x € X iff x = x1 or x = x2 or x = x3 or x = x4 or x
= x5 or x = x6.

Theorem ENUMSET1:27. x € {x1, x2, x3, x4, x5, x6} iff x = x1 or x = x2 or x = x3
or x = x4 or x = x5 or x = x0.

Theorem ENUMSET1:28. x € {x1, x2, x3, x4, x5, x6} implies x = x1 or x = x2 or
x = x3 or x = x4 or x = x5 or x = x6.

Theorem ENUMSET1:29. x =xl orx =x20orx =x3 or x = x4 or x = x5 or x =
x6 implies x € {x1, x2, x3, x4, x5, x6}.

Theorem ENUMSET1:30. for X being set st for x holds x € X iff x = x1 or x = x2
or x =x3 or x = x4 or x = x5 or x = x6 holds X = {x1, x2, x3, x4, x5, x6}.
Definition

let x1, x2, x3, x4, x5, x6, x7.

func {x1, x2, x3, x4, x5, x6, x7} — set means x € it iff x = x1 or x = x2 or x
=x3orx=x4o0rx=x5orx=x06orx=xT.

Theorem ENUMSET1:31. for x1, x2, x3, x4, x5, x6, x7 for X being set holds X =
{x1, x2, x3, x4, x5, x6, x7} iff for x holds x € X iff x =xl or x = x2 or x = x3 or x =
x4 or x = xb or x = xb6 or x = xT.

Theorem ENUMSET1:32. x € {x1, x2, x3, x4, x5, x6, x7} iff x = x1 or x = x2 or x
=x3orx=x4o0rx=x5o0rx=x06orx=xT.

Theorem ENUMSET1:33. x € {x1, x2, x3, x4, x5, x6, x7} implies x = x1 or x = x2
orx =x3orx=3x4o0rx=x5orx=x6orx=x7.

Theorem ENUMSET1:34. x =xl or x =x2 or x =x3 or x = x4 or x = x5 or x =
x6 or x = x7 implies x € {x1, x2, x3, x4, x5, x6, x7}.

Theorem ENUMSET1:35. for X being set st for x holds x € X iff x = x1 or x = x2
or x =x3 or x = x4 or x = x5 or x = x6 or x = x7 holds X = {x1, x2, x3, x4, x5, x6,
x7}.

Definition
let x1, x2, x3, x4, x5, x6, x7, x8.
func {x1, x2, x3, x4, x5, x6, x7, x8} — set means x € it iff x = x1 or x = x2
orx =x3orx=3x4o0rx=x5orx=x6orx=x7orx=x8.

Theorem ENUMSET1:36. for x1, x2, x3, x4, x5, x6, x7, x8 for X being set holds X
= {x1, x2, x3, x4, x5, x6, x7, x8} iff for x holds x € X iff x = x1 or x = x2 or x = x3
or x = x4 or x = x5 or x = x6 or x = X7 or x = x8.

Theorem ENUMSET1:37. x € {x1, x2, x3, x4, x5, x6, x7, x8} iff x = x1 or x = x2 or
x=x3orx=x4o0rx=x5o0rx=x06orx=x7orx=x8.

Theorem ENUMSET1:38. x € {x1, x2, x3, x4, x5, x6, x7, x8} implies x = x1 or x =
x2orx =x3orx=x4or x=xborx=x06orx=x7orx=x8.
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Theorem ENUMSET1:39. x =xlorx=x2orx=x30orx =x40or x =xbor x =
x6 or x = x7 or x = x8 implies x € {x1, x2, x3, x4, x5, x6, x7, x8}.

Theorem ENUMSET1:40. for X being set st for x holds x € X iff x = x1 or x = x2
or x =x3 or x =x4 or x = x5 or x = x6 or x = x7 or x = x8 holds X = {x1, x2, x3,
x4, x5, x6, x7, x8}.

Theorem ENUMSET1:41. {x1, x2} = {x1}U{x2}.

Theorem ENUMSET1:42. {x1, x2, x3} = {x1}U{x2, x3}.

Theorem ENUMSET1:43. {x1, x2, x3} = {x1, x2}U{x3}.

Theorem ENUMSET1:44. {x1, x2, x3, x4} = {x1}U{x2, x3, x4}.

Theorem ENUMSET1:45. {x1, x2, x3, x4} = {x1, x2}U{x3, x4}.

Theorem ENUMSET1:46. {x1, x2, x3, x4} = {x1, x2, x3}U{x4}.

Theorem ENUMSET1:47. {x1, x2, x3, x4, x6} = {x1}U{x2, x3, x4, x5}.

Theorem ENUMSET1:48. {x1, x2, x3, x4, x5} = {x1, x2}U{x3, x4, x5}.

Theorem ENUMSET1:49. {x1, x2, x3, x4, x5} = {x1, x2, x3}U{x4, x5}.

Theorem ENUMSET1:50. {x1, x2, x3, x4, x5} = {x1, x2, x3, x4}U{x5}.

Theorem ENUMSET1:51. {x1, x2, x3, x4, x5, x6} = {x1}U{x2, x3, x4, x5, x6}.

Theorem ENUMSET1:52. {x1, x2, x3, x4, x5, x6} = {x1, x2}U{x3, x4, x5, x6}.

Theorem ENUMSET1:53. {x1, x2, x3, x4, x5, x6} = {x1, x2, x3}U{x4, x5, x6}.

Theorem ENUMSET1:54. {x1, x2, x3, x4, x5, x6} = {x1, x2, x3, x4}U{x5, x6}.

Theorem ENUMSET1:55. {x1, x2, x3, x4, x5, x6} = {x1, x2, x3, x4, x5}U{x6}.

Theorem ENUMSET1:56. {x1, x2, x3, x4, x5, x6, x7} = {x1}U{x2, x3, x4, x5, x6,
xT7}.

Theorem ENUMSET1:57. {x1, x2, x3, x4, x5, x6, x7} = {x1, x2}U{x3, x4, x5, x6,
xT7}.

Theorem ENUMSET1:58. {x1, x2, x3, x4, x5, x6, x7} = {x1, x2, x3}U{x4, x5, x6,
xT7}.

Theorem ENUMSET1:59. {x1, x2, x3, x4, x5, x6, x7} = {x1, x2, x3, x4}U{x5, x6,
xT7}.

Theorem ENUMSET1:60. {x1, x2, x3, x4, x5, x6, x7} = {x1, x2, x3, x4, x5}U{x6,
x7}.

Theorem ENUMSET1:61. {x1, x2, x3, x4, x5, x6, x7} = {x1, x2, x3, x4, x5, x6}U
{x7}.

Theorem ENUMSET1:62. {x1, x2, x3, x4, x5, x6, x7, x8} = {x1}U{x2, x3, x4, x5, x6,
X7, x8}.

Theorem ENUMSET1:63. {x1, x2, x3, x4, x5, x6, x7, x8} = {x1, x2}U{x3, x4, x5, x6,
X7, x8}.
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Theorem ENUMSET1:64.
X7, x8}.

Theorem ENUMSET1:65.
X7, x8}.

Theorem ENUMSET1:66.
X7, x8}.

Theorem ENUMSET1:67.
{x7, x8}.

Theorem ENUMSET1:68.

x7}U{x8}.
Theorem ENUMSET1:69.
Theorem ENUMSET1:70.
Theorem ENUMSET1:71.
Theorem ENUMSET1:72.
Theorem ENUMSET1:73.
Theorem ENUMSET1:74.
Theorem ENUMSET1:75.
X7}
Theorem ENUMSET1:76.
Theorem ENUMSET1:77.
Theorem ENUMSET1:78.
Theorem ENUMSET1:79.
Theorem ENUMSET1:80.
Theorem ENUMSET1:81.
Theorem ENUMSET1:82.
Theorem ENUMSET1:83.
Theorem ENUMSET1:84.
Theorem ENUMSET1:85.
Theorem ENUMSET1:86.
Theorem ENUMSET1:87.
Theorem ENUMSET1:88.
Theorem ENUMSET1:89.
Theorem ENUMSET1:90.
Theorem ENUMSET1:91.
Theorem ENUMSET1:92.
Theorem ENUMSET1:93.
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{x1, x2, x3, x4, x5, x6, x7, x8} = {x1, x2, x3}U{x4, x5, x6,

{x1, x2, x3, x4, x5, x6, x7, x8} = {x1, x2, x3, x4}U{x5, x6,

{x1, x2, x3, x4, x5, x6, x7, x8} = {x1, x2, x3, x4, x5}U{x6,

{x1, x2, x3, x4, x5, x6, x7, x8} = {x1, x2, x3, x4, x5, x6}U

{x1, x2, x3, x4, x5, x6, x7, x8} = {x1, x2, x3, x4, x5, x6,

fxL,
xL,
xL,
xL,
xL,
xL,
xL,

{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,
{x1,

x1} = {x1}.

x1, x2} = {x1, x2}.

x1, x2, x3} = {x1, x2, x3}.

x1, x2, x3, x4} = {x1, x2, x3, x4}.

x1, x2, x3, x4, xb} = {x1, x2, x3, x4, xb}.

x1, x2, x3, x4, x5, x6} = {x1, x2, x3, x4, x5, x6}.
x1, x2, x3, x4, x5, x6, x7} = {x1, x2, x3, x4, x5, x6,
x1, x1} = {x1}.

x1, x1, x2} = {x1, x2}.

x1, x1, x2, x3} = {x1, x2, x3}.

x1, x1, x2, x3, x4} = {x1, x2, x3, x4}.

x1, x1, x2, x3, x4, xb} = {x1, x2, x3, x4, x5}.

x1, x1, x2, x3, x4, x5, x6} = {x1, x2, x3, x4, x5, x6}.
x1, x1, x1} = {x1}.

x1, x1, x1, x2} = {x1, x2}.

x1, x1, x1, x2, x3} = {x1, x2, x3}.

x1, x1, x1, x2, x3, x4} = {x1, x2, x3, x4}.

x1, x1, x1, x2, x3, x4, xb} = {x1, x2, x3, x4, x5}.
x1, x1, x1, x1} = {x1}.

x1, x1, x1, x1, x2} = {x1, x2}.

x1, x1, x1, x1, x2, x3} = {x1, x2, x3}.

x1, x1, x1, x1, x2, x3, x4} = {x1, x2, x3, x4}.

x1, x1, x1, x1, x1} = {x1}.

x1, x1, x1, x1, x1, x2} = {x1, x2}.

x1, x1, x1, x1, x1, x2, x3} = {x1, x2, x3}.



Theorem ENUMSET1:94. {x1, x1, x1, x1, x1, x1, x1} = {x1}.
Theorem ENUMSET1:95. {x1, x1, x1, x1, x1, x1, x1, x2} = {x1, x2}.
Theorem ENUMSET1:96. {x1, x1, x1, x1, x1, x1, x1, x1} = {x1}.
Theorem ENUMSET1:97. {x1, x2} = {x2, x1}.

Theorem ENUMSET1:98. {x1, x2, x3} = {x1, x3, x2}.
Theorem ENUMSET1:99. {x1, x2, x3} = {x2, x1, x3}.
Theorem ENUMSET1:100. {x1, x2, x3} = {x2, x3, x1}.
Theorem ENUMSET1:101. {x1, x2, x3} = {x3, x1, x2}.
Theorem ENUMSET1:102. {x1, x2, x3} = {x3, x2, x1}.
Theorem ENUMSET1:103. {x1, x2, x3, x4} = {x1, x2, x4, x3}.
Theorem ENUMSET1:104. {x1, x2, x3, x4} = {x1, x3, x2, x4}.
Theorem ENUMSET1:105. {x1, x2, x3, x4} = {x1, x3, x4, x2}.
Theorem ENUMSET1:106. {x1, x2, x3, x4} = {x1, x4, x2, x3}.
Theorem ENUMSET1:107. {x1, x2, x3, x4} = {x1, x4, x3, x2}.
Theorem ENUMSET1:108. {x1, x2, x3, x4} = {x2, x1, x3, x4}.
Theorem ENUMSET1:109. {x1, x2, x3, x4} = {x2, x1, x4, x3}.
Theorem ENUMSET1:110. {x1, x2, x3, x4} = {x2, x3, x1, x4}.
Theorem ENUMSET1:111. {x1, x2, x3, x4} = {x2, x3, x4, x1}.
Theorem ENUMSET1:112. {x1, x2, x3, x4} = {x2, x4, x1, x3}.
Theorem ENUMSET1:113. {x1, x2, x3, x4} = {x2, x4, x3, x1}.
Theorem ENUMSET1:114. {x1, x2, x3, x4} = {x3, x1, x2, x4}.
Theorem ENUMSET1:115. {x1, x2, x3, x4} = {x3, x1, x4, x2}.
Theorem ENUMSET1:116. {x1, x2, x3, x4} = {x3, x2, x1, x4}.
Theorem ENUMSET1:117. {x1, x2, x3, x4} = {x3, x2, x4, x1}.
Theorem ENUMSET1:118. {x1, x2, x3, x4} = {x3, x4, x1, x2}.
Theorem ENUMSET1:119. {x1, x2, x3, x4} = {x3, x4, x2, x1}.
Theorem ENUMSET1:120. {x1, x2, x3, x4} = {x4, x1, x2, x3}.
Theorem ENUMSET1:121. {x1, x2, x3, x4} = {x4, x1, x3, x2}.
Theorem ENUMSET1:122. {x1, x2, x3, x4} = {x4, x2, x1, x3}.
Theorem ENUMSET1:123. {x1, x2, x3, x4} = {x4, x2, x3, x1}.
Theorem ENUMSET1:124. {x1, x2, x3, x4} = {x4, x3, x1, x2}.
Theorem ENUMSET1:125. {x1, x2, x3, x4} = {x4, x3, x2, x1}.



Chapter 7

SUBSET 1

Properties of Subsets

by
Zinaida Trybulec *

Warsaw University (Bialystok)

Summary. The text includes theorems concerning properties of subsets, and some
operations on sets. The functions yielding improper subsets of a set, i.e. the empty
set and the set itself are introduced. Functions and predicates introduced for sets
are redefined. Some theorems about enumerated sets are proved.

The symbols used in this article are introduced in vocabularies BOOLE and SUB_OP.
The terminology and notation used in this article have been introduced in the following
articles: TARSKI, BOOLE, and ENUMSETL.

reserve E, X for set.

reserve x, y for Any.

Theorem SUBSET_1:1. E # () implies (x is Element of E iff x € E).
Theorem SUBSET _1:2. x € E implies x is Element of E.

Theorem SUBSET_1:3. X is Subset of E iff X C E.

Definition
let E.

func ) E — Subset of E means it = 0.

!Supported by RPBP.III-24.C1.
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func QE — Subset of E means it = E.

Theorem SUBSET_1:4. ) is Subset of X.

Theorem SUBSET _1:5. X is Subset of X.

reserve A, B, C for Subset of E.

Theorem SUBSET _1:6. x € A implies x is Element of E.

Theorem SUBSET_1:7.
implies A C B.

(for x being Element of E holds x € A implies x € B)

Theorem SUBSET_1:8. (for x being Element of E holds x € A iff x € B) implies A

= B.

Theorem SUBSET _1:9. x € A implies x € E.

Theorem SUBSET_1:10.

Definition
let E.

let A.

A # ) iff ex x being Element of E st x € A.

func A¢ — Subset of E means it = ExXA.

let B.

redefine

func AUB — Subset of E.
func ANB — Subset of E.
func A~NB — Subset of E.
func A-B — Subset of E.

Theorem SUBSET_1:11.
Theorem SUBSET_1:12.
Theorem SUBSET_1:13.
Theorem SUBSET_1:14.
Theorem SUBSET_1:15.

implies A = BUC.

Theorem SUBSET_1:16.

implies A = BNC.

Theorem SUBSET_1:17.

€ C) implies A = B~\C.

Theorem SUBSET_1:18.

€ C)) implies A = B=C.

Theorem SUBSET_1:19.
Theorem SUBSET_1:20.
Theorem SUBSET_1:21.

x € ANB implies x is Element of A & x is Element of B.
x € AUB implies x is Element of A or x is Element of B.
x € ANB implies x is Element of A.

x € A=B implies x is Element of A or x is Element of B.

(for x being Element of E holds x € A iff x € Bor x € C)
(for x being Element of E holds x € A iff x € B & x € C)
(for x being Element of E holds x € A iff x € B & not x

(for x being Element of E holds x € A iff not (x € B iff x

DE =0.
QFE = E.
0 E = (QE)-.
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Theorem SUBSET _1:22. QE = (0 E)°.
Theorem SUBSET_1:23. A¢ = ExXA.
Theorem SUBSET _1:24. A€ = A.

Theorem SUBSET_1:25.
Theorem SUBSET _1:26.
Theorem SUBSET_1:27.
Theorem SUBSET _1:28.
Theorem SUBSET_1:29.
Theorem SUBSET_1:30.
Theorem SUBSET _1:31.
Theorem SUBSET _1:32.
Theorem SUBSET _1:33.
Theorem SUBSET _1:34.
Theorem SUBSET_1:35.
Theorem SUBSET_1:36.
Theorem SUBSET_1:37.
Theorem SUBSET_1:38.
Theorem SUBSET_1:39.
Theorem SUBSET_1:40.
Theorem SUBSET _1:41.
Theorem SUBSET _1:42.
Theorem SUBSET_1:43.
Theorem SUBSET_1:44.
Theorem SUBSET_1:45.
Theorem SUBSET_1:46.
Theorem SUBSET _1:47.

AUAC = QE & A°UA = QE.
ANA =0 E & ANA =) E.
ANVE=0E & 0 ENA =0 E.
AUQE = QE & QEUA = QE.
(AUB)¢ = A°NBe.

(ANB)¢ = A“UB®.

A C Biff B¢ C A¢.

A~B = AnB¢.

(ANB)¢ = A°UB.

(A=B)¢ = ANBUANB".

A C B¢ implies B C A°.

A¢ C B implies B¢ C A.

0 E CE.

ACA“iIfA=0E.

A C Aiff A = QFE.

X C A& X CA¢implies X = ).
(AUB)¢ C A & (AUB)“ C B“.
A¢ C (ANB)¢ & B C (ANB)“.

A misses B iff A C B°.

A misses B¢ iff A C B.

A misses A€.

A misses B & A€ misses B¢ implies A = B€.
A C B & C misses B implies A C C¢.

Theorem SUBSET_1:48. (for a being Element of A holds a € B) implies A C B.
Theorem SUBSET_1:49. (for x being Element of E holds x € A) implies E = A.
Theorem SUBSET_1:50. E # () implies for A, B holds A = B¢ iff for x being

Element of E holds x € A iff not x € B.

Theorem SUBSET_1:51. E # ( implies for A, B holds A =

Element of E holds not x € A iff x € B.

Theorem SUBSET_1:52. E # () implies for A, B holds A =

Element of E holds not (x € A iff x € B).

Theorem SUBSET _1:53. x € A¢ implies not x € A.

B¢ iff for x being

B¢ iff for x being
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reserve x1, x2, x3, x4, x5, x6, x7, x8 for Element of X.

Theorem SUBSET_1:54. X # () implies {x1} is Subset of X.

Theorem SUBSET_1:55. X # () implies {x1, x2} is Subset of X.

Theorem SUBSET_1:56. X # () implies {x1, x2, x3} is Subset of X.

Theorem SUBSET_1:57. X # () implies {x1, x2, x3, x4} is Subset of X.

Theorem SUBSET_1:58. X # () implies {x1, x2, x3, x4, x5} is Subset of X.
Theorem SUBSET_1:59. X # () implies {x1, x2, x3, x4, x5, x6} is Subset of X.
Theorem SUBSET_1:60. X # () implies {x1, x2, x3, x4, x5, x6, x7} is Subset of X.
Theorem SUBSET_1:61. X # () implies {x1, x2, x3, x4, x5, x6, x7, x8} is Subset of

reserve x1, x2, x3, x4, x5, x6, x7, x8 for Any.
Theorem SUBSET_1:62. x1 € X implies {x1} is Subset of X.
Theorem SUBSET_1:63. x1 € X & x2 € X implies {x1, x2} is Subset of X.

Theorem SUBSET_1:64. x1 € X & x2 € X & x3 € X implies {x1, x2, x3} is Subset
of X.

Theorem SUBSET_1:65. x1 € X & x2 € X & x3 € X & x4 € X implies {x1, x2, x3,
x4} is Subset of X.

Theorem SUBSET 1:66. x1 € X & x2 € X & x3 € X & x4 € X & xb € X implies
{x1, x2, x3, x4, x5} is Subset of X.

Theorem SUBSET_1:67. x1 e X & x2 e X & x3 e X & x4 e X &xbe X &x6 € X
implies {x1, x2, x3, x4, x5, x6} is Subset of X.

Theorem SUBSET_1:68. x1 e X & x2 e X & x3 e X & x4 e X &xbe X &x6 € X
& x7 € X implies {x1, x2, x3, x4, x5, x6, x7} is Subset of X.

Theorem SUBSET 1:69. x1 e X & x2 € X &x3 e X &x4 e X &xhbe X &x6eX
& x7 € X & x8 € X implies {x1, x2, x3, x4, x5, x6, x7, x8} is Subset of X.

scheme Subset_Ex{A() — set, P[Any|}: ex X being Subset of A() st for x holds x
e Xiff x € A() & P[x].



Chapter 8

FUNCT 1

Functions and Their Basic Properties

by
Czestaw Byliriski !
Warsaw University (Biatystok)

Summary. The definitions of the mode Function and the graph of a function are
introduced. The graph of a function is defined to be identical with the function.
The following concepts are also defined: the domain of a function, the range of
a function, the identity function, the composition of functions, the 1-1 function,
the inverse function, the restriction of a function, the image and the inverse image.
Certain basic facts about functions and the notions defined in the article are proved.

The symbols used in this article are introduced in the following vocabularies: FAM_OP,
BOOLE, REAL_1, FUNC_REL, and FUNC. The articles TARSKI and BOOLE provide the
terminology and notation for this article.

reserve X, X1, X2, Y, Y1, Y2 for set, p, x, x1, X2, vy, yl, y2, z, zl1, z2 for Any.

Definition
mode Function — Any means ex F being set st it = F & (for pst p € F ex
X,y st [x, y] = p) & (for x, yl, y2 st [x, y1] € F & [x, y2] € F holds yl = y2).
reserve f, fl, f2, g, g1, g2, h for Function.

Definition
let f.

!Supported by RPBP.III-24.C1.
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func graph f — set means f = it.

Theorem FUNCT_1:1. graph f = f.

Theorem FUNCT_1:2. for F being set st (for pst p € Fex x, yst [x,y] =p) &
(for x, y1, y2 st [x, y1] € F & [x, y2] € F holds y1 = y2) ex f being Function st graph f
=F.

Theorem FUNCT_1:3. p € graph f implies ex x, y st [x, y] = p.

Theorem FUNCT_1:4. [x, yl1] € graph f & [x, y2| € graph f implies yl = y2.

Theorem FUNCT_1:5. graph f = graph g implies f = g.

scheme GraphFunc{A() — set, P[Any, Any]}: ex f st for x, y holds [x, y] € graph f
iff x € A() & P[x, y] provided A: for x, y1, y2 st P[x, y1] & P[x, y2] holds yl = y2.
Definition

let f.

func dom f — set means for x holds x € it iff ex y st [x, y| € graph f.
Theorem FUNCT_1:6. X = dom f{ iff for x holds x € X iff ex y st [x, y| € graph {.

Definition
let f, x.

assume x € dom f.

func f.x — Any means [x, it] € graph f.

Theorem FUNCT_1:7. x € dom f implies (y = f.x iff [x, y] € graph f).

Theorem FUNCT_1:8. [x, y] € graph fiff x € dom f & y = f.x.

Theorem FUNCT_1:9. X = dom f & X = dom g & (for x st x € X holds f.x = g.x)
implies f = g.
Definition

let f.

func rng f — set means for y holds y € it iff ex x st x € dom f & y = f.x.

Theorem FUNCT_1:10. Y = rng fiff for y holdsy € Yiffex x st x e dom f & y =
f.x.

Theorem FUNCT_1:11. y € rng fiff ex x st x € dom f & y = f.x.

Theorem FUNCT_1:12. x € dom f implies f.x € rng f.

Theorem FUNCT_1:13. dom f = () iff rng f = ().

Theorem FUNCT_1:14. dom f = {x} implies rng f = {f.x}.

scheme FuncEx{A() — set, P[Any, Any]}: ex f st dom f = A() & for x st x € A()
holds P[x, f.x] provided A: for x, yl, y2 st x € A() & P[x, yl] & P[x, y2] holds y1 =
y2 and B: for x st x € A() ex y st P[x, y].

scheme Lambda{A() — set, F(Any) — Any}: ex f being Function st dom f = A() &
for x st x € A() holds fx = F(x).
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Theorem FUNCT_1:15. X # () implies for y ex f st dom f = X & rng f = {y}.

Theorem FUNCT_1:16. (for f, g st dom f = X & dom g = X holds f = g) implies X
= 0.

Theorem FUNCT_1:17. dom f = dom g & mg f = {y} & rng g = {y} implies f = g.

Theorem FUNCT_1:18. Y # 0 or X = () implies ex f st X =dom f & rng f C Y.

Theorem FUNCT_1:19. (for y st y € Y ex x st x € dom f & y = f.x) implies Y C
rng f.

Definition
let f, g.

func g-f — Function means (for x holds x € dom it iff x € dom f & f.x € dom

g) & (for x st x € dom it holds it.x = g.(f.x)).

Theorem FUNCT_1:20. h = g-f iff (for x holds x € dom h iff x € dom f & f.x € dom
g) & (for x st x € dom h holds h.x = g.(fx)).

Theorem FUNCT_1:21. x € dom (g-f) iff x € dom f & f.x € dom g.

Theorem FUNCT_1:22. x € dom (g-f) implies (g-f).x = g.(f.x).

Theorem FUNCT_1:23. x € dom f & f.x € dom g implies (g-f).x = g.(f.x).

Theorem FUNCT_1:24. dom (g-f) C dom f.

Theorem FUNCT_1:25. z € rng (g-f) implies z € rng g.

Theorem FUNCT_1:26. rng (g-f) C rng g.

Theorem FUNCT_1:27. rng f C dom g iff dom (g-f) = dom f.

Theorem FUNCT_1:28. dom g C rng f implies rng (g-f) = rng g.

Theorem FUNCT_1:29. rng f = dom g implies dom (g-f) = dom f & rng (g-f) = rng g.

Theorem FUNCT_1:30. h-(g-f) = (h-g)-f.

Theorem FUNCT_1:31. rng f C dom g & x € dom f implies (g-f).x = g.(f.x).

Theorem FUNCT_1:32. rng f = dom g & x € dom f implies (g-f).x = g.(f.x).

Theorem FUNCT_1:33. rng fC Y & (for g, hst domg=Y & domh =Y & gf = hf
holds g = h) implies Y = rng {.
Definition

let X.

func Id X — Function means dom it = X & for x st x € X holds it.x = x.

Theorem FUNCT_1:34. f = Id X iff dom f = X & for x st x € X holds f.x = x.
Theorem FUNCT_1:35. x € X implies (Id X).x = x.

Theorem FUNCT_1:36. dom Id X = X & rng Id X = X.

Theorem FUNCT_1:37. dom (f-(Id X)) = dom fnX.

Theorem FUNCT_1:38. x € dom fNX implies f.x = (f-(Id X)).x.

Theorem FUNCT_1:39. dom f C X implies f-(ld X) = {.
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Theorem FUNCT_1:40. x € dom ((Id Y)-f) iff x e domf & fx € Y.
Theorem FUNCT_1:41. rng f C Y implies (Id Y)-f = f.

Theorem FUNCT_1:42. f-(Id dom f) = f & (Id rng f)-f = {.
Theorem FUNCT_1:43. (Id X)-(Id Y) = Id (XNY).

Theorem FUNCT_1:44. dom f = X & g f = X & dom g = X & gf = f implies g =
Id X.

Definition
let f.

pred fis 1-1 means for x1, x2 st x1 € dom f & x2 € dom f & f.x1 = f.x2 holds

x1 = x2.

Theorem FUNCT_1:45. fis 1-1 iff for x1, x2 st x1 € dom f & x2 € dom f & f.x1 =
f.x2 holds x1 = x2.

Theorem FUNCT_1:46. fis 1-1 & g is 1-1 implies g-f is 1-1.

Theorem FUNCT_1:47. g-fis 1-1 & rng f C dom g implies f is 1-1.

Theorem FUNCT_1:48. g-fis 1-1 & rng f = dom g implies fis 1-1 & g is 1-1.

Theorem FUNCT_1:49. fis 1-1 iff (for g, h st rng g C dom f & rng h C dom f & dom
g =dom h & f-g = f-h holds g = h).

Theorem FUNCT_1:50. dom f =X & domg=X & mgg C X & fisll & fg="f
implies g = Id X.

Theorem FUNCT_1:51. rng (g-f) = rng g & g is 1-1 implies dom g C rng f.

Theorem FUNCT_1:52. Id X is 1-1.

Theorem FUNCT_1:53. (ex g st g-f = Id dom f) implies f is 1-1.

Definition
let f.

assume fis 1-1.
func f~! — Function means dom it = rng f & for y, x holds y € mg f & x =

ityiff x e domf &y = fx.

Theorem FUNCT_1:54. fis 1-1 implies (g = ! iff dom g = rng f & for y, x holds
yemgtf&x=gyiff x € domf & y = fx).

Theorem FUNCT_1:55. fis 1-1 implies rng f = dom (f~!) & dom f = rng (f71).

Theorem FUNCT_1:56. fis 1-1 & x € dom f implies x = (f71).(fx) & x = (f~1.f).x.

Theorem FUNCT_1:57. fis 1-1 & y € rng f implies y = f.((f"!).y) & y = (ff71).y.

Theorem FUNCT_1:58. fis 1-1 implies dom (f !-f) = dom f & rng (f !-f) = dom f.

Theorem FUNCT_1:59. fis 1-1 implies dom (f-f 1) = rng f & rng (f-f 1) = g f.

Theorem FUNCT_1:60. fis 1-1 & dom f = rng g & rng f = dom g & (for x, y st x €
dom f & y € dom g holds f.x = y iff g.y = x) implies g = f~!.
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Theorem FUNCT_1:61.
Theorem FUNCT_1:62.
Theorem FUNCT_1:63.
Theorem FUNCT_1:64.
Theorem FUNCT_1:65.
Theorem FUNCT_1:66.
Theorem FUNCT_1:67.

Definition

let £, X.

CHAPTER 8. FUNCT-1

fis 1-1 implies f~!-f = Id dom f & f-f~! = Id rng f.

fis 1-1 implies ! is 1-1.

fis 1-1 & rng f = dom g & g-f = Id dom f implies g = 1.
fis 1-1 & rng g = dom f & f-g = Id rng f implies g = 1.
fis 1-1 implies (f~1)~! = f.

fis 1-1 & g is 1-1 implies (gf) ' = f t.g L.

(Id X)~! = (Id X).

func f[X — Function means dom it = dom fNX & for x st x € dom it holds
it.x = fx.

Theorem FUNCT_1:68.

g.x = f.x.

Theorem FUNCT_1:69.
Theorem FUNCT_1:70.
Theorem FUNCT_1:71.
Theorem FUNCT_1:72.
Theorem FUNCT_1:73.
Theorem FUNCT_1:74.
Theorem FUNCT_1:75.
Theorem FUNCT_1:76.
Theorem FUNCT_1:77.
Theorem FUNCT_1:78.
Theorem FUNCT_1:79.
Theorem FUNCT_1:80.
Theorem FUNCT_1:81.
Theorem FUNCT_1:82.
Theorem FUNCT_1:83.
Theorem FUNCT_1:84.

Definition

let Y, f.

g = fIX iff dom g = dom fNX & for x st x € dom g holds

dom (f[X) = dom fNX.

x € dom (f[X) implies (f[X).x = fx.

x € dom fNX implies (f/X).x = f.x.

x € dom f & x € X implies (f[X).x = f.x.
x € dom f & x € X implies f.x € rng (f[X).
X C dom f implies dom (f[X) = X.

dom (f]X) C X.

dom (f]X) C dom f & rng (f[X) C rng f.
f1X = f-(Id X).

dom f C X implies f[X = f.

ff(dom f) = f.

(1X)[Y = £1(XNY).

(f1X)1X = fIX.

X C Y implies (f]X)]Y = f]X & (f]Y)[X
(&)X = g (f1X).

fis 1-1 implies f[X is 1-1.

f1X.

func Y[f — Function means (for x holds x € dom it iff x € dom f & fx € Y)
& (for x st x € dom it holds it.x = f.x).

Theorem FUNCT_1:85.

g = Y|f iff (for x holds x € dom g iff x € dom f & fx € Y)

& (for x st x € dom g holds g.x = f.x).



Theorem FUNCT_1:86.
Theorem FUNCT_1:87.
Theorem FUNCT_1:88.
Theorem FUNCT_1:89.
Theorem FUNCT_1:90.
Theorem FUNCT_1:91.
Theorem FUNCT_1:92.
Theorem FUNCT_1:93.
Theorem FUNCT_1:94.
Theorem FUNCT_1:95.
Theorem FUNCT_1:96.
Theorem FUNCT_1:97.
Theorem FUNCT_1:98.
Theorem FUNCT_1:99.
Theorem FUNCT_1:100

Definition

let f, X.
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x € dom (Y[f) iff x e domf & fx € Y.
x € dom (Y[f) implies (Y[f).x = f.x.
mg (Y[f) C Y.

dom (Y[f) C dom f & rng (Y[f) C rng f.
rmg (Y[f) = rng NY.

Y C rng f implies g (Y[f) =Y.
YIf = (Id Y)-f.

rng f C Y implies Y[f = {.

(g f)1f = f.

Y[(X]f) = (YNX)IE.

YY) = Y[t

X C Y implies Y [(X|f) = X|f & X[(Y]f)
Yi(gf) = (YIg)t

fis 1-1 implies Y|[fis 1-1.

C(YI)IX = YI(£X).

func £.X — set means for y holds y € it iffex x st x e domf & x e X &y

= fx.

Theorem FUNCT_1:101

X&y=1fx.

Theorem FUNCT_1:102

Theorem FUNCT_1:103.
Theorem FUNCT_1:104.
Theorem FUNCT_1:105.
Theorem FUNCT_1:106.
Theorem FUNCT_1:107.
Theorem FUNCT_1:108.
Theorem FUNCT_1:109.
Theorem FUNCT_1:110.
Theorem FUNCT_1:111.
Theorem FUNCT_1:112.
Theorem FUNCT_1:113.
Theorem FUNCT_1:114.
Theorem FUNCT_1:115.

.Y ={fXiff for y holdsy € Yiff ex x st x € domf & x €

.yetXiffexxstxedomf&xeX &y =fx
X Crngf.

f.(X) = f.(dom fNX).

f.(dom f) = rng {.

£.X C f.(dom f).

mg (f|X) = £.X.

£.X = 0 iff dom fNX = 0.

£ = 0.

X # 0 & X C dom f implies £.X # 0.
X1 C X2 implies £.X1 C f.X2.
f.(X1UX2) = f.X1Uf.X2.

£(X1NX2) C £.XINEX2.

£XINEX2 C f(X1\X2).

(g-f).X = g.(f.X).
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Theorem FUNCT_1:116.
Theorem FUNCT_1:117.
Theorem FUNCT_1:118.
Theorem FUNCT_1:119.
Theorem FUNCT_1:120.
Theorem FUNCT_1:121.
Theorem FUNCT_1:122.
Theorem FUNCT_1:123.
Theorem FUNCT_1:124.
Theorem FUNCT_1:125.
Theorem FUNCT_1:126.

Definition

let f, Y.
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mg (g-f) = g.(rng ).

x € dom f implies f.{x} = {fx}.

x1l € dom f & x2 € dom f implies f.{x1, x2} = {f.x1, f.x2}.
(f]Y).X C £.X.

(Y[f).X C £.X.

fis 1-1 implies f.(X1NX2) = f.X1N£.X2.

(for X1, X2 holds f.(X1NX2) = £.X1Nf.X2) implies f is 1-1.
fis 1-1 implies £.(X1~X2) = £X1~£.X2.

(for X1, X2 holds f.(X1\X2) = £.X1~\f.X2) implies f is 1-1.
XNY =0 & fis 1-1 implies £XNLY = 0.

(Y[f).X = YNEX.

func f~'Y — set means for x holds x € it iff x € dom f & f.x € Y.

Theorem FUNCT_1:127

Theorem FUNCT_1:128.
Theorem FUNCT_1:129.
Theorem FUNCT_1:130.
Theorem FUNCT_1:131.
Theorem FUNCT_1:132.
Theorem FUNCT_1:133.
Theorem FUNCT_1:134.
Theorem FUNCT_1:135.
Theorem FUNCT_1:136.
Theorem FUNCT_1:137.
Theorem FUNCT_1:138.
Theorem FUNCT_1:1309.
Theorem FUNCT_1:140.
Theorem FUNCT_1:141.
Theorem FUNCT_1:142.
Theorem FUNCT_1:143.
Theorem FUNCT_1:144.

Theorem FUNCT_1:145
Theorem FUNCT_1:146
Theorem FUNCT_1:147

. X =Y iff for x holds x € X iff x € dom f & f.x € Y.
x € flYiffx € domf& fx € Y.

f=1Y C dom f.

=Y = f~(rng NY).

f~!(rng f) = dom f.

10 = 0.

1Y = () iff rng fNY = 0.

Y C rng f implies (f 'Y = 0 iff Y = 0).

Y1 C Y2 implies f~'Y1 C f~1Y2.

f~1(Y1UY2) = f-ly1uf-tye.

f=1(Y1NY2) = f-lYinf-ly2.

fLHYINY2) = f Y1 fLy2.

(£1X)~1Y = XN(E1Y).

(gf) 'Y =f1(g 1Y)

dom (g-f) = f~!(dom g).

y € rg fiff f~{y} # 0.

(for y st y € Y holds f~'{y} # () implies Y C rng f.
(for y sty € g fex x st f1{y} = {x}) iff fis 1-1.
CRELY) C Y.

. X C dom f implies X C f }(£.X).

. Y C rng f implies f.(f"'Y) = Y.
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Theorem FUNCT_1:148. f.(f~'Y) = YNf.(dom f).

Theorem FUNCT_1:149. f.(XNf~1Y) C (£X)NY.

Theorem FUNCT_1:150. f.(XNf 1Y) = (£X)NY.

Theorem FUNCT_1:151. XNf 1Y C f }(£.XNY).

Theorem FUNCT_1:152. fis 1-1 implies f~!(£.X) C X.

Theorem FUNCT_1:153. (for X holds f !(£.X) C X) implies f is 1-1.

Theorem FUNCT_1:154. fis 1-1 implies £.X = (f 1) !X,

Theorem FUNCT_1:155. fis 1-1 implies f~'Y = (f7!).Y.

Theorem FUNCT_1:156. Y = mgf& domg=Y & domh =Y & gf = h-fimplies g
= h.

Theorem FUNCT_1:157. £.X1 C £.X2 & X1 C dom f & fis 1-1 implies X1 C X2.

Theorem FUNCT_1:158. £~'Y1 C £~'Y2 & Y1 C rng f implies Y1 C Y2.

Theorem FUNCT_1:159. fis 1-1 iff for y ex x st f }{y} C {x}.

Theorem FUNCT_1:160. rng f C dom g implies f X C (g-f) !(g.X).



Chapter 9

FUNCT 2

Functions from a Set to a Set.

by
Czestaw Byliriski !

Warsaw University (Bialystok)

Summary. The article is a continuation of Functions and Their Basic Properties
(FUNCT_1). We define the following concepts: a function from a set X into a set
Y, denoted by “Function of X,Y”, the set of all functions from a set X into a set
Y, denoted by Funcs(X,Y), and the permutation of a set (mode Permutation of X,
where X is a set). Theorems and schemes included in the article are reformulations
of the theorems of FUNCT_L in the new terminology. Also some basic facts about
functions of two variables are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
FUNC_REL, REAL_1, FUNC, and FUNC2. The terminology and notation used in this article
have been introduced in the following articles: TARSKI, BOOLE, and FUNCT_1.

reserve P, Q, X, X1, X2, Y, Y1, Y2, Z for set.
reserve p, q, X, x1, x2, y, yl, y2, z, z1, z2 for Any.

Definition
let X, Y.

assume Y = () implies X = ().
mode Function of X, Y — Function means X = dom it & rng it C Y.

!Supported by RPBP.III-24.C1.
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Theorem FUNCT_2:1. (Y = () implies X = ()) implies for f being Function holds f
is Function of X, Y iff X =dom f& rng f C Y.

Theorem FUNCT_2:2. for f being Function of X, Y st Y = () implies X = () holds
X=domf&mgfCY.

Theorem FUNCT_2:3. for f being Function holds f is Function of dom f, rng f.

Theorem FUNCT_2:4. for f being Function st rng f C Y holds f is Function of dom
f,Y.

Theorem FUNCT_2:5. for f being Function st dom f = X & for x st x € X holds f.x
€ Y holds f is Function of X, Y.

Theorem FUNCT_2:6. for f being Function of X, Y st Y # () & x € X holds fx €
rng f.

Theorem FUNCT_2:7. for f being Function of X, Y st Y # () & x € X holds f.x € Y.

Theorem FUNCT_2:8. for f being Function of X, Y st (Y = () implies X = 0)) & rng
f C Z holds f is Function of X, Z.

Theorem FUNCT_2:9. for f being Function of X, Y st (Y = () implies X = () & Y
C Z holds f is Function of X, Z.

scheme FuncEx1{X() — set, Y() — set, P[Any, Any|}: ex f being Function of X(),
Y() st for x st x € X() holds P[x, f.x] provided Al: for x st x € X() ex y st y € Y()
& P[x, y] and A2: for x, y1, y2 st x € X() & P[x, yl] & P[x, y2] holds y1 = y2.

scheme Lambdal{X() — set, Y() — set, F(Any) — Any}: ex f being Function of
X(), Y() st for x st x € X() holds f.x = F(x) provided A: for x st x € X() holds F(x)
€ Y().

Definition
let X, Y.

func Funcs (X, Y) — set means x € it iff ex f being Function st x = f & dom
f=X&mgfCy.
Theorem FUNCT_2:10. for F being set holds F = Funcs (X, Y) iff for x holds x €
F iff ex f being Function st x =f & dom f =X & rng f C Y.

Theorem FUNCT_2:11. for f being Function of X, Y st Y = () implies X = () holds
f € Funcs (X, Y).

Theorem FUNCT_2:12. for f being Function of X, X holds f € Funcs (X, X).
Theorem FUNCT_2:13. for f being Function of (), X holds f € Funcs (0, X).
Theorem FUNCT _2:14. X # () implies Funcs (X, 0) = 0.

Theorem FUNCT_2:15. Funcs (X, Y) = () implies X # 0 & Y = 0.

Theorem FUNCT_2:16. for f being Function of X, Y st Y #) & for yst y € Y ex
xstxeX&y=fxholdsmgf=Y.

Theorem FUNCT _2:17. for f being Function of X, Ysty € Y & mgf=Y ex x st x
eX&fx=y.
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Theorem FUNCT_2:18. for f1, {2 being Function of X, Y st Y # 0 & for x st x € X
holds fl.x = f2.x holds fl = 2.

Theorem FUNCT_2:19. for f being Function of X, Y for g being Function of Y, Z st
(Z = 0 implies Y = 0) & (Y = 0 implies X = ()) holds g-f is Function of X, Z.

Theorem FUNCT_2:20. for f being Function of X, Y for g being Function of Y, Z st
Y#D&ZAD&mgt=Y & rng g = Z holds mg (g-f) = Z.

Theorem FUNCT _2:21. for f being Function of X, Y for g being Function of Y, Z st
Y#0D&Z#0D & x € X holds (gf).x = g.(fx).

Theorem FUNCT_2:22. for f being Function of X, Y st Y # () holds rmg f = Y iff
for Z st Z # () for g, h being Function of Y, Z st g-f = h-f holds g = h.

Theorem FUNCT_2:23. for f being Function of X, Y st Y = () implies X = () holds
f(ldX)=1f& (Id Y)f =1

Theorem FUNCT_2:24. for f being Function of X, Y for g being Function of Y, X
st Y #0D&fg=1dY holds mgf=1.

Theorem FUNCT_2:25. for f being Function of X, Y st Y = () implies X = () holds
fis 1-1 iff for x1, x2 st x1 € X & x2 € X & f.x1 = f.x2 holds x1 = x2.

Theorem FUNCT_2:26. for f being Function of X, Y for g being Function of Y, Z st
(Z = 0 implies Y = 0) & (Y = 0 implies X = )) & g-fis 1-1 holds f is 1-1.

Theorem FUNCT_2:27. for f being Function of X, Y st X # () & Y # ) holds f is
1-1 iff for Z for g, h being Function of Z, X st f-g = f-h holds g = h.

Theorem FUNCT _2:28. for f being Function of X, Y for g being Function of Y, Z st
Z#D&Y #0 & mg (gf) =Z & gis 1-1 holds g f =Y.

Theorem FUNCT_2:29. for f being Function of X, Y for g being Function of Y, X
st X#A#0D &Y #0 & gf =1d X holds fis 1-1 & rng g = X.

Theorem FUNCT_2:30. for f being Function of X, Y for g being Function of Y, Z st
(Z =0 implies Y = 0) & g-fis 1-1 & rng f =Y holds fis 1-1 & g is 1-1.

Theorem FUNCT_2:31. for f being Function of X, Y st fis 1-1 & (X =0 iff Y = ()
& rng f = Y holds f~! is Function of Y, X.

Theorem FUNCT_2:32. for f being Function of X, Y st Y #0 & fis 1-1 & x € X
holds (f!).(fx) = x.

Theorem FUNCT_2:33. for f being Function of X, Yst mgf=Y & fisl-l1&yeY
holds f.((f 1).y) = y.

Theorem FUNCT_2:34. for f being Function of X, Y for g being Function of Y, X
st XZDP&Y AP &mgf=Y &fisl-l1&fory,xholdsye Y& gy=xif xe X &
fx =y holds g = f~.

Theorem FUNCT_2:35. for f being Function of X, Yst Y 20 & mgf=Y & fis 1-1
holds f 'f=I1d X & f-f ! =1d Y.

Theorem FUNCT_2:36. for f being Function of X, Y for g being Function of Y, X
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st XZD&Y #D&rmgf=Y & gf=1dX & fis 1-1 holds g = f~!.

Theorem FUNCT _2:37. for f being Function of X, Y st Y # () & ex g being Function
of Y, X st gf =Id X holds fis 1-1.

Theorem FUNCT_2:38. for f being Function of X, Y st (Y = () implies X = () & Z
C X holds f[Z is Function of Z, Y.

Theorem FUNCT_2:39. for f being Function of X, Yst Y #0 & x e X & x € Z
holds (f]Z).x = f.x.

Theorem FUNCT_2:40. for f being Function of X, Y st (Y = () implies X = ) & X
C 7 holds f|Z = f.

Theorem FUNCT _2:41. for f being Function of X, Yst Y #) & x e X & fx € Z
holds (Z[f).x = f.x.

Theorem FUNCT_2:42. for f being Function of X, Y st (Y = () implies X = )) & Y
C 7 holds Z[f = .

Theorem FUNCT_2:43. for f being Function of X, Y st Y # () for y holds y € f.P
iffexxstxeX&xeP &y=1fx

Theorem FUNCT_2:44. for f being Function of X, Y st Y = () implies X = () holds
P CY.

Theorem FUNCT_2:45. for f being Function of X, Y st Y = () implies X = () holds
X =rngf.

Theorem FUNCT_2:46. for f being Function of X, Y st Y # () for x holds x € f~'Q
iffxe X&fxeQ.

Theorem FUNCT_2:47. for f being Function of X, Y st Y = () implies X = () holds
f1Q C X.

Theorem FUNCT_2:48. for f being Function of X, Y st Y = () implies X = () holds
1y = X.

Theorem FUNCT_2:49. for f being Function of X, Y st Y # () holds (for y st y € Y
holds f *{y} # () if mg f =Y.

Theorem FUNCT_2:50. for f being Function of X, Y st (Y = () implies X = )) & P
C X holds P C f~(£.P).

Theorem FUNCT_2:51. for f being Function of X, Y st Y = () implies X = () holds
f~1(t.X) = X.

Theorem FUNCT_2:52. for f being Function of X, Y st (Y = ) implies X = () &
rng f = Y holds f.(f"'Y) = Y.

Theorem FUNCT_2:53. for f being Function of X, Y for g being Function of Y, Z st
(Z = ) implies Y = () & (Y = ) implies X = (}) holds f 'Q C (g-f) }(g.Q).

Theorem FUNCT_2:54. for f being Function of (), Y holds dom f = ) & g { = 0.

Theorem FUNCT_2:55. for f being Function st dom f = () holds f is Function of 0,
Y.
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Theorem FUNCT_2:56. for fl1 being Function of (), Y1 for {2 being Function of 0,
Y2 holds fl = 2.

Theorem FUNCT_2:57. for f being Function of (), Y for g being Function of Y, Z st
Z = () implies Y = () holds g-f is Function of (), Z.

Theorem FUNCT_2:58. for f being Function of (), Y holds fis 1-1.

Theorem FUNCT_2:59. for f being Function of (), Y holds f.P = 0.

Theorem FUNCT_2:60. for f being Function of (), Y holds f~'Q = .

Theorem FUNCT_2:61. for f being Function of {x}, Y st Y # () holds fx € Y.
Theorem FUNCT_2:62. for f being Function of {x}, Y st Y # ) holds rng f = {f.x}.
Theorem FUNCT_2:63. for f being Function of {x}, Y st Y # () holds fis 1-1.
Theorem FUNCT_2:64. for f being Function of {x}, Y st Y # () holds £.P C {f.x}.
Theorem FUNCT_2:65. for f being Function of X, {y} st x € X holds f.x = y.
Theorem FUNCT_2:66. for f1, {2 being Function of X, {y} holds fl = f2.

Definition
let X.

let f, g being Function of X, X.
redefine
func g-f — Function of X, X.
Definition
let X.
redefine
func Id X — Function of X, X.
Theorem FUNCT_2:67. for f being Function of X, X holds dom f = X & rng f C X.

Theorem FUNCT_2:68. for f being Function st dom f = X & rng f C X holds f is
Function of X, X.

Theorem FUNCT_2:69. for f being Function of X, X st x € X holds fx € X.

Theorem FUNCT_2:70. for f, g being Function of X, X st x € X holds (gf).x = g.
(fx).

Theorem FUNCT_2:71. for f being Function of X, X for g being Function of X, Y
st Y #0 & x € X holds (g-f).x = g.(f.x).

Theorem FUNCT_2:72. for f being Function of X, Y for g being Function of Y, Y
st Y #0 & x € X holds (g-f).x = g.(f.x).

Theorem FUNCT_2:73. for f, g being Function of X, X st mgf =X & mgg =X
holds rng (g'f) = X.

Theorem FUNCT_2:74. for f being Function of X, X holds f-(Ild X) = f & (Id X)-f =
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Theorem FUNCT_2:75. for f, g being Function of X, X st g-f = f & rng f = X holds
g=Id X.

Theorem FUNCT_2:76. for f, g being Function of X, X st f.g = f & fis 1-1 holds g
= Id X.

Theorem FUNCT_2:77. for f being Function of X, X holds f is 1-1 iff for x1, x2 st
xl € X & x2 € X & fx1 = f.x2 holds x1 = x2.

Theorem FUNCT_2:78. for f being Function of X, X holds {.P C X.

Definition
let X.

let f be Function of X, X.
let P.
redefine
func f.P — Subset of X.
Theorem FUNCT_2:79. for f being Function of X, X holds f.X = rng f.
Theorem FUNCT_2:80. for f being Function of X, X holds f'1Q C X.

Definition
let X.

let f be Function of X, X.
let Q.
redefine
func f~'Q — Subset of X.
Theorem FUNCT_2:81. for f being Function of X, X st rng f = X holds f.(f"!X) =
X.
Theorem FUNCT_2:82. for f being Function of X, X holds f }(f.X) = X.

Definition
let X.

mode Permutation of X — Function of X, X means it is 1-1 & rng it = X.
Theorem FUNCT_2:83. for f being Function of X, X holds f is Permutation of X iff
fis1-1 & rng f = X.
Theorem FUNCT_2:84. for f being Permutation of X holds fis 1-1 & rng f = X.

Theorem FUNCT_2:85. for f being Permutation of X for x1, x2 st x1 € X & x2 € X
& f.x1 = f.x2 holds x1 = x2.

Definition
let X.

let f, g be Permutation of X.

redefine
func g-f — Permutation of X.
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Definition
let X.

redefine
func Id X — Permutation of X.
Definition
let X.
let f be Permutation of X.
redefine
func f~! — Permutation of X.
Theorem FUNCT_2:86. for f, g being Permutation of X st g-f = g holds f = Id X.
Theorem FUNCT_2:87. for f, g being Permutation of X st g-f = Id X holds g = f~.

Theorem FUNCT_2:88. for f being Permutation of X holds (f~!)-f = Id X & f-(f71)
=Id X.

Theorem FUNCT_2:89. for f being Permutation of X holds (f~!)~! = f.
Theorem FUNCT_2:90. for f, ¢ being Permutation of X holds (g-f)~! = f~!.g~!.
Theorem FUNCT _2:91. for f being Permutation of X st PNQ = () holds f.PNf.Q =

Theorem FUNCT_2:92. for f being Permutation of X st P C X holds f.(f"!P) = P
& t7L1(£t.P) = P.

Theorem FUNCT_2:93. for f being Permutation of X holds f.P = (f !)"'P & P
= (f~1).p.

reserve C, D, E for DOMAIN.

Definition
let X, D, E.

let f be Function of X, D.
let g be Function of D, E.
redefine
func g-f — Function of X, E.
Definition
let X, D.
redefine
mode Function of X, D means X = dom it & rng it C D.
Theorem FUNCT_2:94. for f being Function of X, D holds dom f = X & rng f C D.

Theorem FUNCT_2:95. for f being Function st dom f = X & rng f C D holds f is
Function of X, D.

Theorem FUNCT_2:96. for f being Function of X, D st x € X holds f.x € D.
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Theorem FUNCT_2:97. for f being Function of {x}, D holds fx € D.

Theorem FUNCT_2:98. for fl, f2 being Function of X, D st for x st x € X holds
fl.x = f2.x holds f1 = f2.

Theorem FUNCT_2:99. for f being Function of X, D for g being Function of D, E
st x € X holds (g-f).x = g.(f.x).

Theorem FUNCT_2:100. for f being Function of X, D holds f(Id X) = f & (Id D)-f
=f.

Theorem FUNCT _2:101. for f being Function of X, D holds f is 1-1 iff for x1, x2 st
xl € X & x2 € X & f.x1 = f.x2 holds x1 = x2.

Theorem FUNCT_2:102. for f being Function of X, D for y holds y € f.P iff ex x st
xeX&xeP &y=1fx

Theorem FUNCT_2:103. for f being Function of X, D holds f.P C D.

Definition
let X, D.

let f be Function of X, D.
let P.
redefine
func f.P — Subset of D.
Theorem FUNCT _2:104. for f being Function of X, D holds f.X = rng {.
Theorem FUNCT_2:105. for f being Function of X, D st £.X = D holds rng (f) = D.

Theorem FUNCT_2:106. for f being Function of X, D for x holds x € f1Q iff x €
X&fx e Q.

Theorem FUNCT_2:107. for f being Function of X, D holds f'Q C X.

Definition
let X, D.

let f be Function of X, D.

let Q.

redefine

func f 'Q — Subset of X.

Theorem FUNCT_2:108. for f being Function of X, D holds f~!D = X.

Theorem FUNCT_2:109. for f being Function of X, D holds (for y st y € D holds
=Yy} £ 0) iff rng f = D.

Theorem FUNCT_2:110. for f being Function of X, D holds f!(£.X) = X.

Theorem FUNCT _2:111. for f being Function of X, D st rng f = D holds f.(f D) =
D.

Theorem FUNCT_2:112. for f being Function of X, D for g being Function of D, E
holds f7'Q C (g-) 7' (g.Q).
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reserve c, cl, c2 for Element of C.
reserve d, d1, d2 for Element of D.

Definition
let C, D.

let f be Function of C, D.
let c.

redefine
func f.c — Element of D.

scheme FuncExD{C() - DOMAIN, D() — DOMAIN, P[Any, Any|}: ex f being Func-
tion of C(), D() st for x being Element of C() holds P[x, f.x] provided Al: for x being
Element of C() ex y being Element of D() st P[x, y] and A2: for x being (Element of
C()), y1, y2 being Element of D() st P[x, y1] & P[x, y2] holds y1 = y2.

scheme LambdaD{C() — DOMAIN, D() — DOMAIN, F((Element of C())) — Element
of D()}: ex f being Function of C(), D() st for x being Element of C() holds f.x = F(x).

Theorem FUNCT _2:113. for {1, {2 being Function of C, D st for ¢ holds fl.c = f2.c
holds f1 = 2.

Theorem FUNCT_2:114. (Id C).c = c.

Theorem FUNCT_2:115. for f being Function of C, D for g being Function of D, E
holds (g-f).c = g.(f.c).

Theorem FUNCT_2:116. for f being Function of C, D for d holds d € f.P iff ex c st
ceP&d="fc

Theorem FUNCT_2:117. for f being Function of C, D for ¢ holds ¢ € f71Q iff f.c €
Q.

Theorem FUNCT_2:118. for f1, {2 being Function of [X, Y], Zst Z # 0 & for x, y
st x € X & y € Y holds fl.[x, y] = f2.[x, y] holds {1 = f2.

Theorem FUNCT_2:119. for f being Function of [X, Y], Zstx € X &ye Y & Z #
0 holds f.[x, y] € Z.

scheme FuncEx2{X() — set, Y() — set, Z() — set, P[Any, Any, Any]}: ex f being
Function of [X(), Y()], Z() st for x, y st x € X() & y € Y() holds P[x, y, f.[x, y]] provided
Al: forx,ystx € X() &y € Y() exzst z € Z() & P[x, y, z] and A2: for x, y, zl, z2
st x € X() &y € Y() & P[x, y, z1] & P[x, y, 2] holds z1 = z2.

scheme Lambda2{X() — set, Y() — set, Z() — set, F(Any, Any) — Any}: ex f being
Function of [X(), Y()], Z() st for x, y st x € X() & y € Y() holds f.[x, y] = F(x, y)
provided A: for x, y st x € X() & y € Y() holds F(x, y) € Z().

Theorem FUNCT_2:120. for f1, f2 being Function of [C, D], E st for c, d holds fl1.
[c, d] = f2.[c, d] holds fl = 2.

scheme FuncEx2D{X() — DOMAIN, Y() — DOMAIN, Z() — DOMAIN, P[Any, Any,
Any]}: ex f being Function of [X(), Y()], Z() st for x being Element of X() for y being
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Element of Y() holds P[x, y, f.[x, y|]] provided Al: for x being Element of X() for y
being Element of Y() ex z being Element of Z() st P[x, y, z] and A2: for x being
Element of X() for y being Element of Y() for z1, z2 being Element of Z() st Px, y, z1]
& P[x, y, z2] holds z1 = z2.

scheme Lambda2D{X() — DOMAIN, Y() — DOMAIN, Z() — DOMAIN, F((Element
of X()), Element of Y()) — Element of Z()}: ex f being Function of [X(), Y()], Z() st
for x being Element of X() for y being Element of Y() holds f.[x, y] = F(x, y).



Chapter 10

FUNCT 3

Basic Functions and Operations on Functions

by
Czestaw Bylifiski !
Warsaw University (Biatystok)

Summary. We define the following mappings: the characteristic function of a
subset of a set, the inclusion function (injection or embedding), the projections
from a cartesian product onto its arguments and diagonal function (inclusion of
a set into its cartesian square). Some operations on functions are also defined:
the products of two functions (the complex function and the more general product-
function), the function induced on power sets by the image and inverse-image. Some
simple propositions related to the introduced notions are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
BINOP, FUNC, FUNC_REL, REAL_1, FUNC3, and FAM_OP. The terminology and nota-
tion used in this article have been introduced in the following articles: TARSKI, BOOLE,
FUNCT_1, and FUNCT_2.

reserve p, q, X, x1, x2, y, yl, y2, z, z1, z2 for Any.

reserve A, B, V, X, X1, X2, Y, Y1, Y2, Z, P for set.

reserve C, C1, C2, D, D1, D2 for DOMAIN.

Theorem FUNCT_3:1. A C Y implies Id A = (Id Y)[A.

Theorem FUNCT_3:2. for f, g being Function st X C dom (g-f) holds £.X C dom g.

!Supported by RPBP.III-24.C1.

56



o7

Theorem FUNCT_3:3. for f, g being Function st X C dom f & £.X C dom g holds X
dom (g-f).
Theorem FUNCT_3:4. for f, g being Function st Y C rng (g-f) & g is 1-1 holds g~'Y
rng f.
Theorem FUNCT_3:5. for f, g being Function st Y C rng g & g 'Y C rng f holds Y
g (g£).
scheme FuncEx_3{A() — set, B() — set, P[Any, Any, Any]}: ex f being Function st
dom f = [A(), B()] & for x, y st x € A() & y € B() holds P[x, y, f.[x, y]] provided A:
for x,y,z1, 22 st x € A() &y € B() & P[x, y, z1] & P[x, y, 22| holds z1 = z2 and B: for
x,ystx € A() &y € B() exz st P[x, y, z].
scheme Lambda_3{A() — set, B() — set, F(Any, Any) — Any}: ex f being Function
st dom f = [A(), B()] & for x, y st x € A() & y € B() holds f.[x, y] = F(x, y).
Theorem FUNCT_3:6. for f, g being Function st dom f = [X, Y] & dom g = [X, Y]
& for x, y st x € X & y € Y holds f.[x, y] = g.[x, y] holds f = g.
Definition
let f be Function.

M

M

N

func.f — Function means dom it = bool dom f & for X st X € bool dom f holds
it.X = £.X.

Theorem FUNCT_3:7. for f, g being Function holds g =.f iff dom g = bool dom f &
for X st X € bool dom f holds g.X = f.X.

Theorem FUNCT_3:8. for f being Function st X € dom (.f) holds (.f).X = £.X.

Theorem FUNCT_3:9. for f being Function holds (.f).0 = 0.

Theorem FUNCT_3:10. for f being Function holds rng (.f) C bool rng f.

Theorem FUNCT_3:11. for f being Function holds Y € (.f).A iff ex X st X € dom
() &EXeA&Y = ()X

Theorem FUNCT_3:12. for f being Function holds (.f).A C bool rng f.
Theorem FUNCT_3:13. for f being Function holds (.f) !B C bool dom f.
Theorem FUNCT_3:14. for f being Function of X, D holds (.f)™'B C bool X.
Theorem FUNCT_3:15. for f being Function holds [J((.f).A) C f.(A).

Theorem FUNCT_3:16. for f being Function st A C bool dom f holds f.((JA) = J((.f)
A).
Theorem FUNCT_3:17. for f being Function of X, D st A C bool X holds f.(| JA) =
U((-).A).

Theorem FUNCT_3:18. for f being Function holds |J((.f)~'B) C f~!(|JB).

Theorem FUNCT_3:19. for f being Function st B C bool rng f holds f~}(B) =
U(H)~'B).

Theorem FUNCT_3:20. for f, g being Function holds.(g-f) =.g-.f.
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Theorem FUNCT_3:21. for f being Function holds.f is Function of bool dom £, bool
rng f.

Theorem FUNCT_3:22. for f being Function of X, Y st Y = () implies X = ) holds.f
is Function of bool X, bool Y.

Definition
let X, D.

let f be Function of X, D.
redefine
func.f — Function of bool X, bool D.
Definition
let f be Function.
func—!'f — Function means dom it = bool rng f & for Y st Y € bool rng f holds
it.Y = f71Y.
Theorem FUNCT_3:23. for g, f being Function holds g = !f iff dom g = bool g f
& for Y st Y € bool rng f holds g.Y = f~'Y.
Theorem FUNCT_3:24. for f being Function st Y € dom (~!f) holds ("!f).Y = f'Y.
Theorem FUNCT_3:25. for f being Function holds rng (~'f) C bool dom f.

Theorem FUNCT_3:26. for f being Function holds X € (“'f).A iffex Y st Y € dom
() &Y e A&X=("H).Y.

Theorem FUNCT_3:27. for f being Function holds (~!f).B C bool dom f.
Theorem FUNCT_3:28. for f being Function holds (7*f)~'A C bool rng f.
Theorem FUNCT_3:29. for f being Function holds [J((~'f).B) C f }(B).

Theorem FUNCT_3:30. for f being Function st B C bool rng f holds [J((7!f).B) =
f-1(UB).

Theorem FUNCT_3:31. for f being Function holds [J((7'f)71A) C f.(JA).

Theorem FUNCT_3:32. for f being Function st A C bool dom f & f is 1-1 holds
U(H)~1A) = £(UA).

Theorem FUNCT_3:33. for f being Function holds (~'f).B C (.f)~!B.

Theorem FUNCT_3:34. for f being Function st fis 1-1 holds (~!f).B = (.f) !B.

Theorem FUNCT_3:35. for f being Function, A be set st A C bool dom { holds
(TH) A C (.f).A.

Theorem FUNCT_3:36. for f being Function, A be set st f is 1-1 holds (.f).A C
(Tf) AL

Theorem FUNCT_3:37. for f being Function, A be set st fis 1-1 & A C bool dom f
holds (~!f) 'A = (.f).A.

Theorem FUNCT_3:38. for f, g being Function st g is 1-1 holds~!(g-f) =—'f-~!g.
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Theorem FUNCT_3:39. for f being Function holds~!f is Function of bool rng f, bool
dom f.

Definition
let A, X.

func x(A, X) — Function means dom it = X & for x st x € X holds (x € A

implies it.x = 1) & (not x € A implies it.x = 0).

Theorem FUNCT_3:40. for f being Function holds f = x(A, X) iff dom f = X & for
x st x € X holds (x € A implies fx = 1) & (not x € A implies fx = 0).

Theorem FUNCT_3:41. A C X & x € A implies x(A, X).x = 1.

Theorem FUNCT_3:42. x € X & x(A, X).x = 1 implies x € A.

Theorem FUNCT_3:43. x € X\ A implies x(A, X).x = 0.

Theorem FUNCT_3:44. x € X & x(A, X).x = 0 implies not x € A.

Theorem FUNCT_3:45. x € X implies x(0, X).x = 0.

Theorem FUNCT_3:46. x € X implies x(X, X).x = 1.

Theorem FUNCT. 3:47. A C X & B C X & x(A, X) = x(B, X) implies A = B.

Theorem FUNCT_3:48. rng x(A, X) C {0, 1}.

Theorem FUNCT_3:49. for f being Function of X, {0, 1} holds f = x(f {1}, X).

Definition
let A, X.

redefine
func x(A, X) — Function of X, {0, 1}.
Theorem FUNCT_3:50. for d being Element of D holds x(A, D).d = 1iffd € A.

Theorem FUNCT_3:51. for d being Element of D holds x(A, D).d = 0 iff not d €
A.

Definition
let Y.

let A be Subset of Y.
func incl (A) — Function of A, Y means it = Id A.

Theorem FUNCT_3:52. for A being Subset of Y holds incl A = Id A.

Theorem FUNCT_3:53. for A being Subset of Y holds incl A = (Id Y)[A.

Theorem FUNCT_3:54. for A being Subset of Y holds dom incl A = A & rng incl A
= A.

Theorem FUNCT_3:55. for A being Subset of Y st x € A holds (incl A).x = x.

Theorem FUNCT_3:56. for A being Subset of Y st x € A holds incl (A).x € Y.

Definition
let X, Y.
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func 7 (X, Y) — Function means dom it = [X, Y] & for x, yst x € X & y €
Y holds it.[x, y] = x.

func m2(X, Y) — Function means dom it = [X, Y] & for x, yst x € X & y €
Y holds it.[x, y] = y.
Theorem FUNCT_3:57. for f being Function holds f = m;(X, Y) iff dom f = [X, Y]
& forx,yst x € X & y € Y holds f.[x, y] = x.

Theorem FUNCT_3:58. for f being Function holds f = m(X, Y) iff dom f = [X, Y]
& for x,yst x € X & y € Y holds f.[x, y] = y.

Theorem FUNCT_3:59. rng 71 (X, Y) C X.
Theorem FUNCT_3:60. Y # () implies rng (X, Y) = X.
Theorem FUNCT_3:61. rng m2(X, Y) C Y.
Theorem FUNCT_3:62. X # () implies rng m2(X, Y) =Y.

Definition
let X, Y.

redefine
func m (X, Y) — Function of [X, Y], X.

func (X, Y) — Function of [X, Y], Y.
Theorem FUNCT_3:63. for dl being Element of D1 for d2 being Element of D2
holds 7 (D1, D2).[d1, d2] = d1.
Theorem FUNCT_3:64. for dl being Element of D1 for d2 being Element of D2
holds 72(D1, D2).[d1, d2] = d2.
Definition
let X.
func 6(X) — Function means dom it = X & for x st x € X holds it.x = [x, x].
Theorem FUNCT_3:65. for f being Function holds f = /X iff dom f = X & for x st
x € X holds fx = [x, x].
Theorem FUNCT_3:66. rng 6X C [X, X].

Definition
let X.

redefine
func §(X) — Function of X, [X, X].

Definition
let f, g be Function.
func [f, g) — Function means dom it = dom fndom g & for x st x € dom it
holds it.x = [f.x, g.x].

Theorem FUNCT_3:67. for f, g, fg being Function holds fg = [f, g)] iff dom fg = dom
fNndom g & for x st x € dom fg holds fg.x = [f.x, g.x].
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Theorem FUNCT_3:68. for f, g being Function st x € dom fNdom g holds [f, g].x =
[f.x, g.x].

Theorem FUNCT_3:69. for f, g being Function st dom f=X & domg=X & x € X
holds [f, g)].x = [f.x, g.x].

Theorem FUNCT_3:70. for f, g being Function st dom f = X & dom g = X holds
dom [f, g]] = X.

Theorem FUNCT_3:71. for f, g being Function holds rng [f, g)] C [rng £, rng g].

Theorem FUNCT_3:72. for f, g being Function st dom f =dom g & rngf C Y & rng
g C Z holds 71 (Y, 2)-[f, g)] = f & ma(Y, Z)-[f, g)] = g

Theorem FUNCT_3:73. [ (X, Y), (X, Y)] = Id [X, Y].

Theorem FUNCT_3:74. for f, g, h, k being Function st dom f = dom g & dom k =
dom h & [, g)] = [k, h)] holds f =k & g = h.

Theorem FUNCT_3:75. for f, g, h being Function holds [f-h, g-h)] = [f, g)-h.

Theorem FUNCT_3:76. for f, g being Function holds [f, g).A C [f.A, g.A].

Theorem FUNCT_3:77. for f, g being Function holds [, g]~}[B, C] = f~!Bng~!C.

Theorem FUNCT_3:78. for f being Function of X, Y for g being Function of X, Z st
(Y = 0 implies X = ) & (Z = () implies X = (}) holds [f, g} is Function of X, [Y, Z].
Definition

let X, D1, D2.

let f1 be Function of X, D1.

let 2 be Function of X, D2.

redefine

func [f1, f2)] — Function of X, [D1, D2].

Theorem FUNCT_3:79. for fl being Function of C, D1 for f2 being Function of C,
D2 for c being Element of C holds [f1, f2).c = [fl.c, f2.c].

Theorem FUNCT_3:80. for f being Function of X, Y for g being Function of X, Z st
(Y = 0 implies X = ) & (Z = () implies X = () holds g [f, g)] C [Y, Z].

Theorem FUNCT_3:81. for f being Function of X, Y for g being Function of X, Z st
(Y = 0 implies X = 0) & (Z = () implies X = () holds m (Y, Z)-[f, g)] = f & ma(Y, Z)-
(f; &) = &

Theorem FUNCT_3:82. for f being Function of X, D1 for g being Function of X, D2
holds (D1, D2)-[f, g)] = f & m2(D1, D2)-[f, g) = g.

Theorem FUNCT_3:83. for fl, f2 being Function of X, Y for gl, g2 being Function
of X, Z st (Y = 0 implies X = )) & (Z = 0 implies X = 0)) & [f1, gl)] = [(f2, g2)] holds
fl =12 &gl = g2.

Theorem FUNCT_3:84. for f1, f2 being Function of X, D1 for gl, g2 being Function
of X, D2 st [fl, gl)] = [{2, g2) holds fl = 2 & gl = g2.
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Definition
let f, g be Function.

func [f, g] — Function means dom it = [dom f, dom g] & for x, y st x € dom

f & y € dom g holds it.[x, y] = [f.x, g.y].

Theorem FUNCT_3:85. for f, g, fg being Function holds fg = [f, g] iff dom fg = [dom
f, dom g] & for x, y st x € dom f & y € dom g holds fg.[x, y] = [fx, g.y].

Theorem FUNCT_3:86. for f, g being Function, x, y st [x, y] € [dom f, dom g] holds
[f; g].[x, y] = [fx, gy]-

Theorem FUNCT_3:87. for f, g being Function holds [f, g] = [f-7;(dom f, dom g), g
mo(dom £, dom g)).

Theorem FUNCT_3:88. for f, g being Function holds rng [f, g] = [rng £, rg g].

Theorem FUNCT_3:89. for f, g being Function st dom f = X & dom g = X holds [f,
gl = [f, g]-(6X).

Theorem FUNCT_3:90. [Id X, Id Y] = Id [X, Y].

Theorem FUNCT_3:91. for f, g, h, k being Function holds [f, h]-[g, k)] = [fg, h-k).

Theorem FUNCT_3:92. for f, g, h, k being Function holds [f, h]-[g, k] = [f-g, h-k].

Theorem FUNCT_3:93. for f, g being Function holds [f, g].[B, C] = [f.B, g.C].

Theorem FUNCT_3:94. for f, g being Function holds [f, g] "}[B, C] = [f !B, g 'C].

Theorem FUNCT_3:95. for f being Function of X, Y for g being Function of V, Z st
(Y = 0 implies X = () & (Z = 0 implies V = 0) holds [f, g] is Function of [X, V], [Y,
Z].
Definition

let X1, X2, D1, D2.

let f1 be Function of X1, D1.
let 2 be Function of X2, D2.
redefine
func [f1, £2] — Function of [X1, X2], [D1, D2].

Theorem FUNCT_3:96. for fl being Function of C1, D1 for f2 being Function of
C2, D2 for cl being Element of C1 for c2 being Element of C2 holds [fl, £2].[cl, c2] =
[fl.cl, f2.c2].

Theorem FUNCT_3:97. for fl being Function of X1, Y1 for {2 being Function of X2,
Y2 st (Y1 = () implies X1 = 0) & (Y2 = () implies X2 = () holds [f1, 2] = [(f1-m (X1,
X2), £2-19(X1, X2)J.

Theorem FUNCT_3:98. for fl1 being Function of X1, D1 for {2 being Function of X2,
D2 holds [f1, 2] = [f1-m (X1, X2), f2-m9(X1, X2)].

Theorem FUNCT_3:99. for fl being Function of X, Y1 for f2 being Function of X,
Y2 st (Y1 = 0 implies X = 0)) & (Y2 = () implies X = §)) holds [(f1, £2)] = [f1, 2]-(6X).
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Theorem FUNCT_3:100. for fl1 being Function of X, D1 for {2 being Function of X,
D2 holds [f1, f2)] = [f1, f2]-(0X).



Chapter 11

BINOP 1

Binary Operations.

by
Czestaw Byliriski !
Warsaw University (Biatystok)

Summary. In this paper we define binary and unary operations on domains. We
also define the following predicates concerning the operations: is commutative, is
associative, is the unity of, and is distributive wrt. A number of schemes useful in
justifying the existence of the operations are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
BINOP, FUNC, FUNC_REL, and COORD. The terminology and notation used in this article
have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, and FUNCT_2.

Definition
let f be Function.

let a, b be Any.
func f.(a, b) — Any means it = f.[a, b].
Theorem BINOP_1:1. for f being Function for a, b being Any holds f.(a, b) = f.[a,
b].
reserve A, B, C for DOMAIN.

!Supported by RPBP.III-24.C1.
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Definition

let A, B, C.

let f be Function of [A, B], C.

let a be Element of A.

let b be Element of B.

redefine

func f.(a, b) — Element of C.

Theorem BINOP_1:2. for f1, f2 being Function of [A, B], C st for a being Element

of A for b being Element of B holds fl.(a, b) = {2.(a, b) holds {1 = f2.

Definition
let A.

mode UnOp of A — Function of A, A means not contradiction.

mode BinOp of A — Function of [A, A], A means not contradiction.

Theorem BINOP_1:3. for f being Function of A, A holds f is UnOp of A.

reserve u, u’ for UnOp of A.

Theorem BINOP_1:4. for f being Function of [A, A], A holds f is BinOp of A.

scheme UnOpEx{A() — DOMAIN, P[(Element of A()), Element of A()]}: ex u being
UnOp of A() st for x being Element of A() holds P[x, u.x] provided Al: for x being
Element of A() ex y being Element of A() st P[x, y] and A2: for x, yl, y2 being Element
of A() st P[x, yl] & P[x, y2] holds yl1 = y2.

scheme UnOpLambda{A() — DOMAIN, F((Element of A())) — Element of A()}: ex
u being UnOp of A() st for x being Element of A() holds u.x = F(x).

reserve o, o' for BinOp of A.
reserve a, al, a2, b, bl, b2, ¢, e, el, e2 for Element of A.
Definition
let A, o, a, b.
redefine
func o.(a, b) — Element of A.

scheme BinOpEx{A() — DOMAIN, P[(Element of A()), (Element of A()), Element of
A()]}: ex o being BinOp of A() st for a, b being Element of A() holds PJa, b, o.(a, b)]
provided Al: for x, y being Element of A() ex z being Element of A() st P[x, y, z] and
A2: for x, y being Element of A() for zl, z2 being Element of A() st P[x, y, z1] & Px,
y, 22| holds z1 = z2.

scheme BinOpLambda{A() — DOMAIN, O((Element of A()), Element of A()) —
Element of A()}: ex o being BinOp of A() st for a, b being Element of A() holds o.(a,
b) = O(a, b).
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Definition
let A, o.

pred o is commutative means for a, b holds o.(a, b) = o.(b, a).
pred o is associative means for a, b, ¢ holds o.(a, o.(b, ¢)) = o.(o.(a, b), ¢).

pred o is an idempotent means for a holds o.(a, a) = a.

Theorem BINOP_1:5. o is commutative iff for a, b holds o.(a, b) = o.(b, a).

Theorem BINOP_1:6. o is associative iff for a, b, ¢ holds o.(a, o.(b, ¢)) = o.(o.(a, b),
c).
Theorem BINOP_1:7. o is an idempotent iff for a holds o.(a, a) = a.

Definition
let A, e, o.

pred e is a left unity wrt o means for a holds o.(e, a) = a.
pred e is a right unity wrt o means for a holds o.(a, ¢) = a.
Definition
let A, e, o.

pred e is a unity wrt o means e is a left unity wrt o & e is a right unity wrt o.

Theorem BINOP_1:8. e is a left unity wrt o iff for a holds o.(e, a) = a.
Theorem BINOP_1:9. e is a right unity wrt o iff for a holds o.(a, ) = a.
Theorem BINOP _1:10. e is a unity wrt o iff e is a left unity wrt o & e is a right unity wrt

Theorem BINOP_1:11. e is a unity wrt o iff for a holds o.(e, a) = a & o.(a, €) = a.

Theorem BINOP_1:12. o is commutative implies (e is a unity wrt o iff for a holds o.
(e, a) = a).

Theorem BINOP_1:13. o is commutative implies (e is a unity wrt o iff for a holds o.
(a, €) = a).

Theorem BINOP_1:14. o is commutative implies (e is a unity wrt o iff e is a left unity
wrt o).

Theorem BINOP_1:15. o is commutative implies (e is a unity wrt o iff e is a right unity
wrt o).

Theorem BINOP_1:16. o is commutative implies (e is a left unity wrt o iff e is a right
unity wrt o).

Theorem BINOP_1:17. el is a left unity wrt o & €2 is a right unity wrt o implies el =
e2.

Theorem BINOP_1:18. el is a unity wrt o & e2 is a unity wrt o implies el = e2.

Definition
let A, o.
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assume ex e st e is a unity wrt o.
func the unity wrt o — Element of A means it is a unity wrt o.
Theorem BINOP_1:19. (ex e st e is a unity wrt o) implies for e holds e = the unity
wrt o iff e is a unity wrt o.
Definition
let A, o, o.
pred o' is left distributive wrt 0 means for a, b, ¢ holds o'.(a, o.(b, ¢)) = o0.(0'.
(a, b), o'.(a, ¢)).
pred o is right distributive wrt 0 means for a, b, ¢ holds o'.(o.(a, b), ¢) = o.
(0'.(a, c), o'.(b, ¢)).
Definition
let A, o, o.
pred o is distributive wrt 0 means o' is left distributive wrt o & o is right dis-
tributive wrt o.
Theorem BINOP_1:20. o' is left distributive wrt o iff for a, b, ¢ holds o.(a, o.(b, ¢))
= 0.(0'.(a, b), 0'.(a, ¢)).
Theorem BINOP_1:21. o is right distributive wrt o iff for a, b, ¢ holds o'.(o.(a, b), ¢)
= 0.(0".(a, ¢), o'.(b, ¢)).
Theorem BINOP_1:22. o’ is distributive wrt o iff o’ is left distributive wrt o & o' is right
distributive wrt o.
Theorem BINOP_1:23. o is distributive wrt o iff for a, b, ¢ holds o'.(a, o.(b, ¢)) = o.
(o'.(a, b), o'.(a, ¢)) & o.(o.(a, b), ¢) = 0.(0".(a, ¢), o'.(b, ¢)).
Theorem BINOP_1:24. o' is commutative implies (0’ is distributive wrt o iff for a, b, ¢
holds o'.(a, 0.(b, ¢)) = 0.(0".(a, b), 0'.(a, ¢))).
Theorem BINOP_1:25. o' is commutative implies (0’ is distributive wrt o iff for a, b, ¢
holds o’.(0.(a, b), ¢) = 0.(0'.(a, ¢), o'.(b, ¢))).
Theorem BINOP_1:26. o' is commutative implies (o’ is distributive wrt o iff o' is left
distributive wrt o).

Theorem BINOP_1:27. o' is commutative implies (0o’ is distributive wrt o iff o' is right
distributive wrt o).

Theorem BINOP_1:28. o' is commutative implies (o is right distributive wrt o iff o' is
left distributive wrt o).

Definition
let A, u, o.

pred u is distributive wrt 0 means for a, b holds u.(o.(a, b)) = o.((u.a), (u.b)).
0.

Theorem BINOP_1:29. u is distributive wrt o iff for a, b holds u.(o.(a, b)) = o.((u.a),
(u.b)).



Chapter 12

RELAT 1

Relations and Their Basic Properties

by
Edmund Woronowicz *

Warsaw University (Bialystok)

Summary. We define here: mode Relation as a set of pairs, the domain, the
codomain, and the field of relation; the empty and the identity relations, the com-
position of relations, the image and the inverse image of a set under a relation. Two
predicates, = and C, and three functions, N, U,and ~\ are redefined. Basic facts
about the above mentioned notions are presented.

The symbols used in this article are introduced in the following vocabularies: FAM_OP,
BOOLE, REAL_1, FUNC_REL, and RELATION. The articles TARSKI and BOOLE provide the
terminology and notation for this article.

reserve A, B, X, X1, X2, Y, Y1, Y2 for set.
reserve a, b, c, d, x, y, z for Any.
Definition
mode Relation — set means x € it implies ex y, z st x = [y, z].
Theorem RELAT_1:1. for R being set st (for x st x € R holds ex y, z st x = [y, z|)
holds R is Relation.
reserve P, P1, P2, Q, R, S for Relation.

!Supported by RPBP.III-24.C1.
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Theorem RELAT_1:2. x € R implies ex y, z st x = [y, z].
Theorem RELAT 1:3. A C R implies A is Relation.
Theorem RELAT 1:4. {[x, y]} is Relation.

Theorem RELAT_1:5. {[a, b], [c, d]} is Relation.

Theorem RELAT_1:6. [X, Y] is Relation.

scheme Rel Existence{A() — set, B() — set, P[Any, Any|}: ex R being Relation st
for x, y holds [x, y] e Riff x € A() & y € B() & P[x, y].

Definition
let P, R.

redefine
pred P = R means for a, b holds [a, b] € P iff [a, b] € R.
Theorem RELAT_1:7. P = R iff for a, b holds [a, b] € P iff [a, b] € R.

Definition
let P, R.

redefine
func PNR — Relation.

func PUR — Relation.
func P~ R — Relation.
pred P C R means for a, b holds [a, b] € P implies [a, b] € R.

Theorem RELAT_1:8. P C R iff for a, b holds [a, b] € P implies [a, b] € R.
Theorem RELAT_1:9. XNR is Relation & RNX is Relation.
Theorem RELAT_1:10. R~X is Relation.

Definition
let R.

func dom R — set means x € it iff ex y st [x, y] € R.

Theorem RELAT_1:11. X = dom R iff for x holds x € X iff ex y st [x, y] € R.
Theorem RELAT 1:12. x € dom R iff ex y st [x, y] € R.

Theorem RELAT_1:13. dom (PUR) = dom Pudom R.

Theorem RELAT_1:14. dom (PNR) C dom Pndom R.

Theorem RELAT_1:15. dom P~dom R C dom (P\R).

Definition
let R.

func rng R — set means y € it iff ex x st [x, y] € R.

Theorem RELAT_1:16. X = rng R iff for x holds x € X iff ex y st [y, x] € R.
Theorem RELAT_1:17. x € rng R iff ex y st [y, x| € R.
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Theorem RELAT 1:18. x € dom R implies ex y st y € rng R.

Theorem RELAT_1:19. y € rng R implies ex x st x € dom R.

Theorem RELAT _1:20. [x, y] € R implies x € dom R & y € rng R.

Theorem RELAT 1:21. R C [dom R, rng R].

Theorem RELAT_1:22. RN[dom R, rng R] = R.

Theorem RELAT_1:23. R = {[x, y|} implies dom R = {x} & mg R = {y}.

Theorem RELAT_1:24. R = {[a, b], [x, y|} implies dom R = {a, x} & rng R = {b,
Y}

Theorem RELAT_1:25. P C R implies dom P C dom R & rng P C rng R.

Theorem RELAT _1:26. rng (PUR) = rng PUrng R.

Theorem RELAT _1:27. rng (PNR) C rng PNirng R.

Theorem RELAT_1:28. rng P~rng R C rng (P\R).

Definition
let R.

func field R — set means it = dom RUrng R.

Theorem RELAT_1:29. field R = dom RUrng R.

Theorem RELAT_1:30. [a, b] € R implies a € field R & b € field R.
Theorem RELAT_1:31. P C R implies field P C field R.

Theorem RELAT 1:32. R = {[x, y]} implies field R = {x, y}.
Theorem RELAT_1:33. field (PUR) = field PUfield R.

Theorem RELAT_1:34. field (PNR) C field PNfield R.

Definition
let R.

func R~ — Relation means [x, y] € it iff [y, x] € R.

Theorem RELAT_1:35. R = P~ iff for x, y holds [x, y] € Riff [y, x] € P.
Theorem RELAT 1:36. [x, y] € P~ iff [y, x] € P.

Theorem RELAT 1:37. (R=)~ = R.

Theorem RELAT_1:38. field R = field (R™).

Theorem RELAT_1:39. (PNR)~ = P~"NR~.

Theorem RELAT_1:40. (PUR)~™ = P~UR™.

Theorem RELAT 1:41. (P\R)~ = P~"~\R™.

Definition
let P, R.

func P-R — Relation means [x, y] € it iff ex z st [x,z] € P & [z, y] € R.
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Theorem RELAT 1:42. Q = P-R iff for x, y holds [x, y] € Qiffexzst [x,z] € P &
[z, y] € R.

Theorem RELAT_1:43. [x, y] € P-Riffex z st [x, z] € P & [z, y] € R.
Theorem RELAT 1:44. dom (P-R) C dom P.
Theorem RELAT _1:45. rng (P-R) C rng R.
Theorem RELAT _1:46. rng R C dom P implies dom (R-P) = dom R.
Theorem RELAT_1:47. dom P C rng R implies rng (R-P) = rng P.
Theorem RELAT_1:48. P C R implies Q-P C Q-R.
Theorem RELAT 1:49. P C Q implies P-R C Q-R.
Theorem RELAT_1:50. P C R & Q C S implies P-Q C R-S.
Theorem RELAT_1:51. P-(RUQ) = (P-R)U(P-Q).
Theorem RELAT_1:52. P-(RNQ) C (P-R)N(P-Q).
Theorem RELAT_1:53. (P-R)~(P-Q) C P-(R\Q).
Theorem RELAT_1:54. (P-R)~ = R~-P~.
Theorem RELAT_1:55. (P-R)-Q = P-(R-Q).
Definition
func ()— Relation means not [x, y] € it.
Theorem RELAT_1:56. R = Qiff for x, y holds not [x, y] € R.
Theorem RELAT_1:57. not [x, y] € 0.
Theorem RELAT_1:58. 0C [A, BJ.
Theorem RELAT_1:59. fC R.
Theorem RELAT_1:60. dom ()= () & rng (= (.
Theorem RELAT_1:61. §NR = 0& PUR = R.
Theorem RELAT_1:62. (-R = 0& R-0= 0.
Theorem RELAT _1:63. R-0= ()-R.
Theorem RELAT_1:64. dom R = ) or rng R = () implies R = {).
Theorem RELAT_1:65. dom R = ) iff rng R = ).
Theorem RELAT_1:66. ()~ = ().
Theorem RELAT _1:67. rng RNdom P = () implies R-P = ().

Definition
let X.

func AX — Relation means [x, y] € itiff x e X & x =y.
Theorem RELAT_1:68. P = AX iff for x, y holds [x, y] e Piff x e X & x = y.
Theorem RELAT_1:69. [x,y] € AX iff x e X & x =y.
Theorem RELAT _1:70. x € X iff [x, x] € AX.
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Theorem RELAT _1:71. dom AX = X & g AX = X.
Theorem RELAT_1:72. (AX)~ = AX.

Theorem RELAT _1:73. (for x st x € X holds [x, x] € R) implies AX C R.
Theorem RELAT_1:74. [x, y] € (AX)-Riff x € X & [x, y] € R.
Theorem RELAT_1:75. [x, y] € RAY iff y € Y & [x, y] € R.
Theorem RELAT 1:76. R-(AX) C R & (AX)-R C R.

Theorem RELAT_1:77. dom R C X implies (AX)-R = R.
Theorem RELAT 1:78. (Adom R)-R = R.

Theorem RELAT_1:79. rng R C Y implies R-(AY) = R.
Theorem RELAT _1:80. R-(Arng R) = R.

Theorem RELAT_1:81. A( = 0.

Theorem RELAT_1:82. dom R = X & rng P2 C X & P2-R = A(dom P1) & R-P1 =
AX implies P1 = P2.

Theorem RELAT_1:83. dom R = X & rng P2 = X & P2-R = A(dom P1) & R-P1 =
AX implies P1 = P2.

Definition
let R, X.

func R[X — Relation means [x, y] € it iff x € X & [x, y] € R.

Theorem RELAT _1:84. P = R[X iff for x, y holds [x, y] e P iff x € X & [x, y] € R.
Theorem RELAT_1:85. [x, y] € R[X iff x € X & [x, y] € R.
Theorem RELAT _1:86. x € dom (R[X) iff x € X & x € dom R.
Theorem RELAT _1:87. dom (R[X) C X.

Theorem RELAT _1:88. R[X C R.

Theorem RELAT _1:89. dom (R[X) C dom R.

Theorem RELAT _1:90. dom (R[X) = dom RNX.

Theorem RELAT_1:91. X C dom R implies dom (R[X) = X.
Theorem RELAT 1:92. (R[X)-P C R-P.

Theorem RELAT_1:93. P-(R[X) C P-R.

Theorem RELAT 1:94. R|X = (AX)-R.

Theorem RELAT_1:95. R[X = (iff (dom R)NX = 0.

Theorem RELAT 1:96. R|X = RN[X, rng R].

Theorem RELAT_1:97. dom R C X implies R[X = R.
Theorem RELAT 1:98. Rjdom R = R.

Theorem RELAT_1:99. rng (R]X) C rng R.

Theorem RELAT_1:100. (R[X)[Y = R[(XNY).



Theorem RELAT_1:101.
Theorem RELAT_1:102.
Theorem RELAT _1:103.
Theorem RELAT _1:104.
Theorem RELAT_1:105.
Theorem RELAT_1:106.
Theorem RELAT_1:107.
Theorem RELAT _1:108.
Theorem RELAT _1:109.
Theorem RELAT _1:110.
Theorem RELAT_1:111.
Theorem RELAT_1:112.

Definition

let Y, R.
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(RIX)[X = R[X.

X C Y implies (R[X)]Y = R[X.

Y C X implies (R[X)[Y = RJY.

X C Y implies R[X C RJY.

P C R implies P[X C R[X.

P CR & X CY implies P[X C RJY.

RI(XUY) = (RIX)U(R]Y).
RI(XNY) = (RIX)N(R]Y).
RI(X\Y) = RIX~R]Y.
R0 = 0.

01X = 0.
(P-R)IX = (P1X)-R

func Y/R — Relation means [x, y] € it iffy € Y & [x, y] € R.

Theorem RELAT _1:113.
Theorem RELAT_1:114.
Theorem RELAT_1:115.
Theorem RELAT_1:116.
Theorem RELAT _1:117.
Theorem RELAT _1:118.
Theorem RELAT _1:119.
Theorem RELAT_1:120.
Theorem RELAT_1:121.
Theorem RELAT_1:122.
Theorem RELAT _1:123.
Theorem RELAT _1:124.
Theorem RELAT _1:125.
Theorem RELAT _1:126.
Theorem RELAT _1:127.
Theorem RELAT_1:128.
Theorem RELAT _1:129.
Theorem RELAT _1:130.
Theorem RELAT _1:131.
Theorem RELAT _1:132.

P =YJRiff for x, y holds [x, y] e Piffy € Y & [x, y] € R.
x,y] € YIRiffyeY & [x,y] € R.
yemg (YIR)iffy e Y &y € rng R.
mg (YIR) C Y.

YIR C R.

mg (Y[R) C rng R.

mg (Y[R) = rng RNY.

Y C rng R implies rng (Y[R) =Y.
(YIR)-P C R-P.

P-(Y[R) C P-R.

YR = R-(AY).

YR = RN[dom R, Y].

rng R C Y implies Y[R = R.

rng RIR = R.

Y[(X[R) = (YNX)|R.

Y[(Y[R) = Y[R.

X C Y implies Y[(X[R) = XR.

Y C X implies Y[(X|R) = Y|R.
i .

X C Y implies X[R C Y[R
P1 C P2 implies Y[P1 C Y[P2.
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Theorem RELAT_1:133.
Theorem RELAT_1:134.
Theorem RELAT _1:135.
Theorem RELAT _1:136.
Theorem RELAT _1:137.
Theorem RELAT_1:138.
Theorem RELAT_1:139.
Theorem RELAT _1:140.

Definition
let R, X.

func R.X — set means y € it iff ex x st [x, y] € R & x € X.

Theorem RELAT_1:141. Y = R.X iff for y holds y € Y iffex x st [x,y] e R & x €
X.

Theorem RELAT 1:142. y € R.X iff ex x st [x,y] e R & x € X.
Theorem RELAT 1:143. y € R.X iff ex x st x e dom R & [x, y] € R & x € X.

Pl C P2 & Y1 C Y2 implies Y1[P1 C Y2[P2.
(XUY)[R = (X]R)U(YR).

(XNY)[R = X]RNY[R.

(X~Y)[R = XR Y]R.

Theorem RELAT_1:144.
Theorem RELAT _1:145.
Theorem RELAT _1:146.
Theorem RELAT_1:147.
Theorem RELAT_1:148.
Theorem RELAT_1:149.
Theorem RELAT_1:150.
Theorem RELAT _1:151.
Theorem RELAT_1:152.
Theorem RELAT_1:153.
Theorem RELAT _1:154.
Theorem RELAT _1:155.
Theorem RELAT _1:156.
Theorem RELAT_1:157.
Theorem RELAT_1:158.
Theorem RELAT _1:159.
Theorem RELAT_1:160.
Theorem RELAT _1:161.
Theorem RELAT_1:162.
Theorem RELAT_1:163.

R.X C rng R.

R.X = R.(dom RNX).

R.dom R = rng R.

R.X C R.(dom R).

mg (R1X) = R.X.

R.O = 0.

0.X =0.

R.X = () iff dom RNX = (.

X # () & X C dom R implies R.X # (.
R.(XUY) = R.XUR.Y.

R.(XNY) C R.XNR.Y.

RX\R.Y C R.(X\Y).

X C Y implies R.X C R.Y.

P C R implies P.X C R.X.

P CR & X C Y implies P.X C R.Y.
(P-R).X = R.(P.X).

rmg (P-R) = R.(rng P).

(RIX).Y C R.Y.

R|X = Piff (dom R)NX = 0.

(dom R)NX C (R™).(R.X).



Definition

let R, Y.
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func R'Y — set means x € it iffexyst [x,y] e R& y € Y.

Theorem RELAT_1:164.
€Y.

Theorem RELAT _1:165.
Theorem RELAT _1:166.
Theorem RELAT_1:167.
Theorem RELAT_1:168.
Theorem RELAT _1:169.
Theorem RELAT_1:170.
Theorem RELAT_1:171.
Theorem RELAT _1:172.
Theorem RELAT _1:173.
Theorem RELAT_1:174.
Theorem RELAT_1:175.
Theorem RELAT _1:176.
Theorem RELAT _1:177.
Theorem RELAT_1:178.
Theorem RELAT_1:179.
Theorem RELAT _1:180.
Theorem RELAT _1:181.
Theorem RELAT_1:182.
Theorem RELAT_1:183.

X =R !Yifffor x holdsx € Xiffexyst[x,y] e R&y

x e R Yiffexyst[x,y]eR&y €Y.
xR YiffexystyemgR& [x,y] ER&y €Y.
R™'Y C dom R.
R7'Y = R7}(rng RNY).
R~! rng R = dom R.
R7'Y C R7!
_10 = 0.

= 0.
R! :(Z)lﬁ'rngRﬂY—@
Y # 0 & Y C g R implies R™'Y # 0.
R™Y(XUY) = R7'XUR™'Y.
R-YXNY) € R YYNRY.
RIXNRYY C RHXNY).
X C Y implies R™'X C R7'Y.
P C R implies P~'Y C R7'Y.
P CR & X CY implies P7'X C R71Y.
(PR)"LY = P~ L(RLY).
dom (P-R) = P~!(dom R).
(mg R)NY C (R7)~HRLY).

rng R.

S



Chapter 13

GRFUNC 1

Graphs of Functions.

by
Czestaw Byliriski !

Warsaw University (Biatystok)

Summary. The graph of a function is defined in Functions and their Basic Prop-
erties (FUNCT_1). In this paper the graph of a function is redefined as a Relation.
Operations on functions are interpreted as the corresponding operations on rela-
tions. Some theorems about graphs of functions are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
REAL_l, FUNC_REL, RELATION, and FUNC. The terminology and notation used in this
article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, and
RELAT_1.

reserve X, X1, X2, Y, Y1, Y2, Z, Z1, Z2 for set, p, x, x1, x2, y, yl, y2, z, zl, z2 for
Any.

reserve f, fl, 2, g, g1, g2, h, h1, h2 for Function.
Definition

let f.

redefine
func graph f — Relation.

!Supported by RPBP.III-24.C1.
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Theorem GRFUNC_1:1.

77

for R being Relation st for x, y1, y2 st [x, y1] € R & [x, y2]

€ R holds y1 = y2 holds ex f st graph f = R.

Theorem GRFUNC_1:2.

Theorem GRFUNC_1:3.

Theorem GRFUNC_1:4.

Theorem GRFUNC_1:5.
fl = 2.

Theorem GRFUNC_1:6.

Theorem GRFUNC_1:7.

Theorem GRFUNC_1:8.
holds f.x = g.x).

Theorem GRFUNC_1:9.
Theorem GRFUNC_1:10
graph g.

Theorem GRFUNC_1:11.
Theorem GRFUNC_1:12.

graph g.

Theorem GRFUNC_1:13.

(h-g) C graph (f-g).

Theorem GRFUNC_1:14.

(82-2) C graph (gl-f1).

Theorem GRFUNC_1:15.
Theorem GRFUNC_1:16.
Theorem GRFUNC_1:17.
Theorem GRFUNC_1:18.
Theorem GRFUNC_1:19.

yl = y2).

Theorem GRFUNC_1:20.
Theorem GRFUNC_1:21.
Theorem GRFUNC_1:22.
Theorem GRFUNC_1:23.
Theorem GRFUNC_1:24.
Theorem GRFUNC_1:25.

f holds x1 = x2.

Theorem GRFUNC_1:26.
Theorem GRFUNC_1:27.

£).

y € rng fiff ex x st [x, y] € graph f.

dom graph f = dom f & rng graph f = rng f.

graph f C [dom f, rng {].

(for x, y holds [x, y] € graph {1 iff [x, y| € graph {2) implies

for G being set st G C graph f holds ex g st graph g = G.
graph f C graph g implies dom f C dom g & rng f C rng g.
graph f C graph g iff dom f C dom g & (for x st x € dom f

dom f = dom g & graph f C graph g implies f = g.

. [x, z] € graph (gf) iff ex y st [x, y] € graph f & [y, z] €

(graph f)-(graph g) = graph (g-f).
[x, z] € graph (g-f) implies [x, f.x] € graph f & [f.x, z] €

graph h C graph f implies graph (g-h) C graph (g-f) & graph
graph g2 C graph gl & graph f2 C graph fl implies graph

ex fst graph f = {[x, y]}.

graph f = {[x, y|} implies fx =y.

graph f = {[x, y]} implies dom f = {x} & rng f = {y}.
dom f = {x} implies graph f = {[x, f.x]}.

(ex fst graph f = {[x1, y1], [x2, y2]}) iff (x1 = x2 implies

ex f st graph f = 0.

graph f = () implies dom f = () & rng { = ().

mg { = () or dom f = () implies graph f = .

rng fNdom g = () implies graph (g-f) = 0.

graph g = () implies graph (g-f) = () & graph (f'g) = 0.

fis 1-1 iff for x1, x2, y st [x1, y] € graph f & [x2, y] € graph

graph g C graph f & fis 1-1 implies g is 1-1.
(ex g st graph g = graph fNX) & (ex g st graph g = XNgraph
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Theorem GRFUNC_1:28.

& rng h C rng fNirng g.

Theorem GRFUNC_1:29.

& hx =gx.

Theorem GRFUNC_1:30.

is 1-1.

Theorem GRFUNC_1:31.

g.

Theorem GRFUNC_1:32.

graph hl = graph fUugraph g.

Theorem GRFUNC_1:33.

g & rng h = g fUrng g.

Theorem GRFUNC_1:34.
Theorem GRFUNC_1:35.
Theorem GRFUNC_1:36.

or hx = gx.

Theorem GRFUNC_1:37.

g = 0 implies h is 1-1.

Theorem GRFUNC_1:38.
Theorem GRFUNC_1:39.
Theorem GRFUNC_1:40.
Theorem GRFUNC_1:41.
Theorem GRFUNC_1:42.
Theorem GRFUNC_1:43.
Theorem GRFUNC_1:44.
Theorem GRFUNC_1:45.
Theorem GRFUNC_1:46.
Theorem GRFUNC_1:47.

€ graph f.

Theorem GRFUNC_1:48.
Theorem GRFUNC_1:49.
Theorem GRFUNC_1:50.
Theorem GRFUNC_L:51.
Theorem GRFUNC_1:52.
Theorem GRFUNC_1:53.
Theorem GRFUNC_1:54.

(gf).
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graph h = graph fngraph g implies dom h C dom fNdom g
graph h = graph fngraph g & x € dom h implies h.x = f.x
(fis 1-1 or g is 1-1) & graph h = graph fngraph g implies h
dom fNdom g = () implies ex h st graph h = graph fUgraph
graph f C graph h & graph g C graph h implies ex hl st
graph h = graph (f)Ugraph (g) implies dom h = dom fUdom

x € dom f & graph h = graph fUgraph g implies h.x = f.x.
x € dom g & graph h = graph fUgraph g implies h.x = g.x.
x € dom h & graph h = graph fUgraph g implies h.x = fx

fis 1-1 & gis 1-1 & graph h = graph fUgraph g & rng fnrng

ex g st graph g = graph (f)~X.

[x,y] € graph Id (X) iff x € X & x = y.

graph Id X = AX.

x € X iff [x, x] € graph Id (X).

[x, y] € graph (f1d (X)) iff x € X & [x, y] € graph .

[x, y] € graph (Id (Y)-f) iff [x, y] € graphf& y € Y.

graph (f-d (X)) C graph f & graph (ld (X)-f) C graph (f).
graph Id O = 0.

graph f = () implies f is 1-1.

fis 1-1 implies for x, y holds [y, x| € graph (f7!) iff [x, y]

fis 1-1 implies graph (f~!) = (graph f)~.
graph f = () implies graph (f~!) = 0.
[x, y] € graph (f|X) iff x € X & [x, y] € graph f.
graph (f1X) = (graph f)[X.
x € dom f & x € X iff [x, £.x] € graph ({[X).
graph (f1X) C graph f.
graph ((f1X)-h) C graph (f-h) & graph (g-(f[X)) C graph



Theorem GRFUNC_1:55.
Theorem GRFUNC_1:56.
Theorem GRFUNC_1:57.
Theorem GRFUNC_1:58.
graph (2]X2).

Theorem GRFUNC_1:59.
Theorem GRFUNC_1:60.
Theorem GRFUNC_1:61.
Theorem GRFUNC_1:62.
Theorem GRFUNC_1:63.
Theorem GRFUNC_1:64.
Theorem GRFUNC_1:65.
Theorem GRFUNC_1:66.
Theorem GRFUNC_1:67.
Theorem GRFUNC_1:68.
Theorem GRFUNC_1:69.
(gf).

Theorem GRFUNC_1:70.
Theorem GRFUNC_1:71.
Theorem GRFUNC_1:72.
Theorem GRFUNC_1:73.
graph (Y2[12).

Theorem GRFUNC_1:74.
Theorem GRFUNC_1:75.
Theorem GRFUNC_1:76.
Theorem GRFUNC_1:77.
Theorem GRFUNC_1:78.
Theorem GRFUNC_1:79.
Theorem GRFUNC_1:80.
Theorem GRFUNC_1:81.
Theorem GRFUNC_1:82.
Theorem GRFUNC_1:83.
Theorem GRFUNC_1:84.
Theorem GRFUNC_1:85.
Theorem GRFUNC_1:86.
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graph (f1X) = graph (f)N[X, rng {].

X C Y implies graph (f[X) C graph (f]Y).

graph f1 C graph 2 implies graph (f1[X) C graph (£2]X).
graph f1 C graph 2 & X1 C X2 implies graph (f1]X1) C

graph (f[(XUY)) = graph (fIX)Ugraph (f]Y).
graph (f[(XNY)) = graph (f|X)Ngraph (f]Y).
graph (f[(X\Y)) = graph (f[X)~graph (f]Y).

graph (f10) = 0.

graph f = () implies graph (f|X) = 0.

graph g C graph f implies f[dom g = g.

[x, y] € graph (Y[f) iff y € Y & [x, y] € graph {.

graph (Y[f) = Y[(graph f).

x € dom f & fx € Y iff [x, f.x] € graph (Y]f).

graph (Y[f) C graph (f).

graph ((Y[f)-h) C graph (fh) & graph (g-(Y[f)) C graph

graph (Y[f) = graph (f)N[dom f, Y].

X C Y implies graph (X[f) C graph (Y][f).

graph f1 C graph 2 implies graph (Y [fl) C graph (Y [f2).
graph f1 C graph 2 & Y1 C Y2 implies graph (Y1[fl) C

graph ((XUY)f) = graph (X[f)Ugraph (Y[f)
graph ((XNY)[f) = graph (X[f)Ngraph (Y[f)
graph ((X\Y)[f) = graph (X[f)~graph (Y]f).
graph (0[f) = 0.

graph f = () implies graph (Y[f) = 0.

graph g C graph f & fis 1-1 implies rng g[f = g.

y € tX iff ex x st [x, y] € graph f & x € X.

£.X = (graph f).X.

graph f = () implies f.X = .

graph f1 C graph 2 implies f1.X C {2.X.

graph f1 C graph 2 & X1 C X2 implies f1.X1 C 2.X2.
xeflYiffex yst [x,y] € graphf& y €Y.

f=1Y = (graph f)7'Y.
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Theorem GRFUNC_1:87.
Theorem GRFUNC_1:88.
Theorem GRFUNC_1:89.
Theorem GRFUNC_1:90.

CHAPTER 13. GRFUNC-1

x € 1Y iff [x, f.x] € graph f & f.x € Y.

graph f = () implies f~'Y = 0.

graph f1 C graph {2 implies f1-'Y C f271Y.

graph f1 C graph f2 & Y1 C Y2 implies f1-'Y1 C f271Y2.



Chapter 14

RELAT 2

Properties of Binary Relations

by
Edmund Woronowicz !
Warsaw University (Bialystok)
Anna Zalewska 2

Warsaw University (Bialystok)

Summary. The paper contains definitions of some properties of binary relations:
reflexivity, irreflexivity, symmetry, asymmetry, antisymmetry, connectedness, strong
connectedness, and transitivity. Basic theorems relating the above mentioned no-

tions are given.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
REAL_l, FUNC_REL, RELATION, and REL_REL. The terminology and notation used in this
article have been introduced in the following articles: TARSKI, BOOLE, and RELAT_1.

reserve X, Y for set.
reserve a, b, ¢, x, y, z for Any.
reserve P, R for Relation.

Definition
let R, X.

!Supported by RPBP.111-24.C1.
2Supported by RPBP.III-24.C1.
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pred R is reflexive in X means x € X implies [x, x| € R.
pred R is irreflexive in X means x € X implies not [x, x] € R.

pred R is symmetric in X means x € X & y € X & [x, y] € R implies [y, x] €
R.

pred R is antisymmetricin X meansx € X &y e X & [x,y] € R & [y, x] € R
implies x = y.

pred R is asymmetric in X means x € X & y € X & [x, y] € R implies not [y,
x] € R.

pred R is connected in X means x € X & y € X & x # y implies [x, y] € R or
ly, x] € R.

pred R is strongly connected in X means x € X & y € X implies [x, y] € R or
[y, x] € R.

pred R is transitive in X means x e X &y e X &ze X & [x,y] € R & [y, 7]
€ R implies [x, z] € R.
Theorem RELAT 2:1. R is reflexive in X iff for x st x € X holds [x, x| € R.
Theorem RELAT 2:2. R is irreflexive in X iff for x st x € X holds not [x, x] € R.

Theorem RELAT 2:3. R is symmetricin X iff for x, yst x e X &y e X & [x,y] € R
holds [y, x] € R.

Theorem RELAT 2:4. R is antisymmetric in X iff for x, y st x € X & y € X & [x, y]
€ R& [y, x] € R holds x =y.

Theorem RELAT_2:5. R is asymmetric in X iff for x, yst x e X &y € X & [x, y] €
R holds not [y, x] € R.

Theorem RELAT_2:6. R is connected in X iff for x, y st x e X &y e X &x #y
holds [x, y] € R or [y, x] € R.

Theorem RELAT 2:7. R is strongly connected in X iff for x, y st x € X & y € X holds
[x, y] € Ror [y, x] € R.

Theorem RELAT 2:8. R is transitive in X iff for x, y,zst x e X &ye X &ze X &
[x, y] € R& [y, z] € R holds [x, z] € R.

Definition
let R.

pred R is reflexive means R is reflexive in field R.

pred R is irreflexive means R is irreflexive in field R.

pred R is symmetric means R is symmetric in field R.

pred R is antisymmetric means R is antisymmetric in field R.
pred R is asymmetric means R is asymmetric in field R.
pred R is connected means R is connected in field R.

pred R is strongly connected means R is strongly connected in field R.
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pred R is transitive means R is transitive in field R.

Theorem RELAT _2:9. R is reflexive iff R is reflexive in field R.

Theorem RELAT 2:10. R is irreflexive iff R is irreflexive in field R.

Theorem RELAT_2:11. R is symmetric iff R is symmetric in field R.

Theorem RELAT_2:12. R is antisymmetric iff R is antisymmetric in field R.
Theorem RELAT 2:13. R is asymmetric iff R is asymmetric in field R.

Theorem RELAT_2:14. R is connected iff R is connected in field R.

Theorem RELAT_2:15. R is strongly connected iff R is strongly connected in field R.
Theorem RELAT 2:16. R is transitive iff R is transitive in field R.

Theorem RELAT_2:17. R is reflexive iff Afield R C R.

Theorem RELAT 2:18. R is irreflexive iff A(field R)NR = 0.

Theorem RELAT 2:19. R is antisymmetric in X iff RNAX is asymmetric in X.
Theorem RELAT_2:20. R is asymmetric in X implies RUAX is antisymmetric in X.
Theorem RELAT 2:21. R is antisymmetric in X implies R\NAX is asymmetric in X.
Theorem RELAT 2:22. R is symmetric & R is transitive implies R is reflexive.
Theorem RELAT_2:23. AX is symmetric & AX is transitive.

Theorem RELAT 2:24. AX is antisymmetric & AX is reflexive.

Theorem RELAT _2:25. R is irreflexive & R is transitive implies R is asymmetric.
Theorem RELAT_2:26. R is asymmetric implies R is irreflexive & R is antisymmetric.
Theorem RELAT 2:27. R is reflexive implies R~ is reflexive.

Theorem RELAT _2:28. R is irreflexive implies R~ is irreflexive.

Theorem RELAT _2:29. R is reflexive implies dom R = dom (R~) & rng R = rng (R™).
Theorem RELAT 2:30. R is symmetric iff R = R~

Theorem RELAT _2:31. P is reflexive & R is reflexive implies PUR is reflexive & PNR
is reflexive.

Theorem RELAT _2:32. P is irreflexive & R is irreflexive implies PUR is irreflexive &
PNR is irreflexive.

Theorem RELAT 2:33. P is irreflexive implies P\ R is irreflexive.
Theorem RELAT_2:34. R is symmetric implies R~ is symmetric.

Theorem RELAT 2:35. P is symmetric & R is symmetric implies PUR is symmetric &
PNR is symmetric & P~\R is symmetric.

Theorem RELAT 2:36. R is asymmetric implies R~ is asymmetric.

Theorem RELAT 2:37. P is asymmetric & R is asymmetric implies PNR is asymmetric.
Theorem RELAT_2:38. P is asymmetric implies PN\ R is asymmetric.

Theorem RELAT 2:39. R is antisymmetric iff RN(R~) C A(dom R).
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Theorem RELAT 2:40. R is antisymmetric implies R~ is antisymmetric.

Theorem RELAT 2:41. P is antisymmetric implies PNR is antisymmetric & P\R is
antisymmetric.

Theorem RELAT 2:42. R is transitive implies R~ is transitive.

Theorem RELAT 2:43. P is transitive & R is transitive implies PNR is transitive.
Theorem RELAT _2:44. R is transitive iff R-R C R.

Theorem RELAT 2:45. R is connected iff [field R, field R[\A(field R) C RUR™.
Theorem RELAT 2:46. R is strongly connected implies R is connected & R is reflexive.
Theorem RELAT 2:47. R is strongly connected iff [field R, field R] = RUR™.



Chapter 15

RELSET 1

Relations Defined on Sets

by
Edmund Woronowicz !

Warsaw University (Bialystok)

Summary. The article includes theorems concerning properties of relations defined
as a subset of the Cartesian product of two sets (mode Relation of XY where XY
are sets). Some notions, introduced in RELAT _1 such as domain, codomain, field
of a relation, composition of relations, image and inverse image of a set under a
relation are redefined.

The symbols used in this article are introduced in the following vocabularies: FAM_OP,
BOOLE, REAL_1l, FUNC_REL, and RELATION. The terminology and notation used in this
article have been introduced in the following articles: TARSKI, BOOLE, and RELAT_1.

reserve A, B, X, X1, X2, Y, Y1, Y2, Z, W for set.
reserve a, b, ¢, d, x, y, z for Any.

Definition
let X, Y.

mode Relation of X, Y — Relation means it C [X, Y].

Theorem RELSET_1:1. for R being Relation holds R C [X, Y] iff R is Relation of
X, V.

!Supported by RPBP.III-24.C1.
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reserve P, P1, P2, Q, R for Relation of X, Y.

Theorem RELSET _1:2. A C R implies A C [X, Y].

Theorem RELSET_1:3. A C [X, Y] implies A is Relation of X, Y.

Theorem RELSET_1:4. A C R implies A is Relation of X, Y.

Theorem RELSET_1:5. [X, Y] is Relation of X, Y.

Theorem RELSET_1:6. a € R impliesex x,ysta=[x,y] &xe X &y €Y.

Theorem RELSET_1:7. [x, y] € Rimpliesx € X &y € Y.

Theorem RELSET_1:8. x € X & y € Y implies {[x, y|} is Relation of X, Y.

Theorem RELSET_1:9. for R being Relation st dom R C X holds R is Relation of
X, mg R.

Theorem RELSET _1:10. for R being Relation st rng R C Y holds R is Relation of
dom R, Y.

Theorem RELSET_1:11. for R being Relation st dom R C X & rng R C Y holds R
is Relation of X, Y.

Theorem RELSET_1:12. dom R C X & mg R C Y.
Theorem RELSET_1:13. dom R C X1 implies R is Relation of X1, Y.
Theorem RELSET_1:14. rng R C Y1 implies R is Relation of X, Y1.
Theorem RELSET_1:15. X C X1 implies R is Relation of X1, Y.
Theorem RELSET_1:16. Y C Y1 implies R is Relation of X, Y1.
Theorem RELSET_1:17. X C X1 & Y C Y1 implies R is Relation of X1, Y1.
Definition

let X, Y, P, R.
redefine

func PUR — Relation of X, Y.

func PNR — Relation of X, Y.

func PN\R — Relation of X, Y.

Theorem RELSET_1:18. RN[X, Y] = R.

Definition
let X, Y, R.

redefine
func dom R — Subset of X.

func rng R — Subset of Y.

Theorem RELSET_1:19. field R C XUY.

Theorem RELSET_1:20. for R being Relation holds R is Relation of dom R, rng R.
Theorem RELSET_1:21. dom R C X1 & rng R C Y1 implies R is Relation of X1, Y1.
Theorem RELSET 1:22. (for x st x € X ex y st [x, y] € R) iff dom R = X.



Theorem RELSET_1:23. (for ysty € Yexxst [x,y] € R)iffrngR =Y.

Definition
let X, Y, R.

redefine

func R~ — Relation of Y, X.

Definition
let X, Y, Z.

let P be Relation of X, Y.
let R be Relation of Y, Z.

redefine

func P-R — Relation of X, Z.

Theorem RELSET _1:24.
Theorem RELSET_1:25.
Theorem RELSET_1:26.
Theorem RELSET_1:27.
Theorem RELSET_1:28.
Theorem RELSET_1:29.
Theorem RELSET_1:30.
Theorem RELSET_1:31.
Theorem RELSET_1:32.

Definition
let X, Y, R, A.

redefine

dom (R~) = mg R & rng (R~) = dom R.
(is Relation of X, Y.

R is Relation of §), Y implies R = 0.

R is Relation of X, () implies R = 0.

AX C [X, X].

AX is Relation of X, X.

AA C R implies A C dom R & A C rng R.
AX C R implies X = dom R & X C rng R.
AY C R implies Y C dom R & Y = rng R.

func R[A — Relation of X, Y.

Definition
let X, Y, B, R.
redefine

func BIR — Relation of X, Y.

Theorem RELSET_1:33.
Theorem RELSET_1:34.
Theorem RELSET_1:35.
Theorem RELSET_1:36.

Definition
let X, Y, R, A.

redefine

R[X1 is Relation of X1, Y.
X C X1 implies R[X1 = R.
Y1JR is Relation of X, Y1.
Y C Y1 implies Y1[R = R.

func R.A — Subset of Y.

87
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func R~'A — Subset of X.

Theorem RELSET_1:37. R.A C Y & R7!'A C X.

Theorem RELSET_1:38. R.X = rng R & R!Y = dom R.

Theorem RELSET_1:39. R.(R7'Y) = rg R & R7}(R.X) = dom R.

scheme Rel On_Set_Ex{A() — set, B() — set, P[Any, Any|}: ex R being Relation of
A(), B() st for x, y holds [x,y] € Riff x € A() & y € B() & P[x, y].
Definition

let X.

mode Relation of X — Relation of X, X means it C [X, X].

Theorem RELSET_1:40. for R being Relation of X, X holds R C [X, X] iff R is
Relation of X.

reserve P, Q, R for Relation of X.

Theorem RELSET_1:41. [X, X] is Relation of X.

Theorem RELSET_1:42. for R being Relation of X, X st dom R = X & rng R = X
holds R is Relation of X.

Theorem RELSET 1:43. AX is Relation of X.

Theorem RELSET_1:44. AX C R implies X = dom R & X = rng R.

Theorem RELSET_1:45. R-(AX) = R & (AX)-R =R.

reserve D, D1, D2, E, E1, F for DOMAIN.

reserve P, P1, Q, R for Relation of D, E.

reserve a, x, x1 for Element of D.

reserve b, y, yl for Element of E.

reserve c, z for Element of F.

Theorem RELSET_1:46. AD # 0.

Definition
let D, E, R.
redefine
func dom R — Element of bool D.

func rng R — Element of bool E.

Theorem RELSET 1:47. for x being Element of D holds x € dom R iff ex y being
Element of E st [x, y] € R.

Theorem RELSET_1:48. for y being Element of E holds y € rng R iff ex x being
Element of D st [x, y] € R.

Theorem RELSET_1:49. for x being Element of D holds x € dom R implies ex y
being Element of E st y € rng R.
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Theorem RELSET_1:50. for y being Element of E holds y € rng R implies ex x
being Element of D st x € dom R.

Theorem RELSET_1:51. for P being (Relation of D, E), R being (Relation of E, F)
for x being (Element of D), z being Element of F holds [x, z] € P-R iff ex y being
Element of E st [x, y] € P & [y, z] € R.

Definition
let D, E, R, D1.
redefine
func R.D1 — Element of bool E.

func R~1D1 — Element of bool D.

Theorem RELSET _1:52. y € R.D1 iff ex x being Element of D st [x, y] € R & x €
D1.

Theorem RELSET_1:53. x € R™!D2 iff ex y being Element of Est [x, y] € R& y €
D2.

scheme Rel On_Dom Ex{A() — DOMAIN, B() — DOMAIN, P[Any, Any]}: ex R
being Relation of A(), B() st for x being (Element of A()), y being Element of B()
holds [x, y] € Riff x € A() &y € B() & P[x, y].



Chapter 16

WELLORDI1

The Well Ordering Relations

by
Grzegorz Bancerek !

Warsaw University (Biatystok)

Summary. Some theorems about well ordering relations are proved. The goal of
the article is to prove that any two well ordering relations are either isomorphic or
one of them is isomorphic to a segment of the other. The following concepts are
defined: the segment of a relation induced by an element, well founded relations,
well ordering relations, the restriction of a relation to a set, and the isomorphism
of two relations. A number of simple facts is presented.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
FAM_OP, REAL_l, FUNC_REL, RELATION, REL_REL, WELLORD, and FUNC. The terminology
and notation used in this article have been introduced in the following articles: TARSKI,
BOOLE, ENUMSET1, RELAT_1, RELAT_2, and FUNCT_L.

reserve a, b, c, d, e, x, y, z for Any, X, Y, Z for set.

scheme Extensionality{A() — set, B() — set, P[Any]}: A() = B() provided A: for
a holds a € A() iff P[a] and B: for a holds a € B() iff PJ[a].

reserve R, S, T for Relation.

Definition
let R, a.

!Supported by RPBP.III-24.C1.
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func R-Seg(a) — set means x € it iff x # a & [x, a] € R.
Theorem WELLORDI:1. for R, Y, a holds Y = R-Seg(a) iff for b holds b € Y iff
b # a & [b, a] € R.
Theorem WELLORD1:2. x € field R or R-Seg(x) = 0.

Definition
let R.

pred R is well founded means for Y st Y Cfield R& Y #A#DexastacY &
R-Seg(a)NY = 0.
let X.
pred R is well founded in X means for Yst YC X & Y #fexastaecY &
R-Seg(a)NY = 0.
Theorem WELLORD1:3. for R holds R is well founded iff for Y st Y C field R& Y
# 0 exastaecY & R-Seg(a)NY = 0.
Theorem WELLORD1:4. for R, X holds R is well founded in X iff for Y st Y C X &
Y #0exastacyY & R-Seg(a)NY = 0.
Theorem WELLORD1:5. R is well founded iff R is well founded in field R.
Definition
let R.
pred R is well-ordering-relation means R is reflexive & R is transitive & R is
antisymmetric & R is connected & R. is well founded.
let X.

pred R well orders X means R is reflexive in X & R is transitive in X & R is
antisymmetric in X & R is connected in X & R is well founded in X.

Theorem WELLORDI1:6. for R holds R is well-ordering-relation iff R is reflexive & R
is transitive & R is antisymmetric & R is connected & R is well founded.

Theorem WELLORDI1:7. for R, X holds R well orders X iff R is reflexive in X & R is
transitive in X & R is antisymmetric in X & R is connected in X & R is well founded in X.

Theorem WELLORD1:8. R well orders field R iff R is well-ordering-relation.

Theorem WELLORDI1:9. R well orders X implies for Yst Y C X & Y #Dexasta
€Y & for bst b € Y holds [a, b] € R.

Theorem WELLORDI1:10. R is well-ordering-relation implies for Y st Y C field R &
Y#ODexastacyY & for bstb € Y holds [a, b] € R.

Theorem WELLORDI:11. for R st R is well-ordering-relation & field R # () ex a st a
€ field R & for b st b € field R holds [a, b] € R.

Theorem WELLORDI:12. for R st R is well-ordering-relation & field R # ) for a st a
€ field R holds (for b st b € field R holds [b, a] € R) or (ex b st b € field R & [a, b] €
R & for c st c € field R & [a, ¢c] € R holds ¢ = a or |b, c] € R).
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reserve F, G, H for Function.

Theorem WELLORD1:13.

Definition

let R, Y.

R-Seg(a) C field R.

func R[?Y — Relation means it = RN[Y, Y].

Theorem WELLORD1:14.
Theorem WELLORD1:15.
Theorem WELLORD1:16.
Theorem WELLORD1:17.
Theorem WELLORD1:18.
Theorem WELLORD1:19.
Theorem WELLORD1:20.
Theorem WELLORD1:21.
Theorem WELLORD1:22.
Theorem WELLORD1:23.
Theorem WELLORD1:24.
Theorem WELLORD1:25.
Theorem WELLORD1:26.
Theorem WELLORD1:27.
Theorem WELLORD1:28.
Theorem WELLORD1:29.
Theorem WELLORD1:30.
Theorem WELLORD1:31.
Theorem WELLORD1:32.

RJ?Y = RN[Y, Y].

RI?2X C R & RI*’X C [X, X].

x € RI’X iff x € R & x € [X, X].

R|?X = X|R[X.

R?X = X[(R]X).

x € field (R]?X) implies x € field R & x € X.
field (R]2X) C field R & field (R]%2X) C X.
(R[?X)-Seg(a) C R-Seg(a).

R is reflexive implies R[%2X is reflexive.

R is connected implies R[?Y is connected.

R is transitive implies R|?Y is transitive.

R is antisymmetric implies R[?Y is antisymmetric.
(RIZX)]?Y = RI2(XNY).

(RIZX)[2Y = (RI2Y)[2X.

(RI2Y) %Y = RJ?Y.

Z C Y implies (R]%Y)[?Z = R|?Z.

R|%field R = R.

R is well founded implies R[?X is well founded.

R is well-ordering-relation implies R[?Y is well-ordering-

relation.

Theorem WELLORD1:33.
R-Seg(b) C R-Seg(a).

Theorem WELLORD1:34.
ordering-relation.

Theorem WELLORDI1:35. R is well-ordering-relation & a € field R & b € R-Seg(a)
implies (R|%(R-Seg(a)))-Seg(b) = R-Seg(b).

Theorem WELLORD1:36. R is well-ordering-relation & Y C field R implies (Y = field
Ror (ex astac field R & Y = R-Seg(a)) iff for ast a € Y for b st [b, a] € R holds b
€Y).

Theorem WELLORDI1:37. R is well-ordering-relation & a € field R & b € field R implies
([a, b] € R iff R-Seg(a) C R-Seg(b)).

R is well-ordering-relation implies R-Seg(a) C R-Seg(b) or

R is well-ordering-relation implies R[?(R-Seg(a)) is well-
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Theorem WELLORD1:38. R is well-ordering-relation & a € field R & b € field R implies
(R-Seg(a) C R-Seg(b) iff a = b or a € R-Seg(b)).

Theorem WELLORD1:39. R is well-ordering-relation & X C field R implies field (R[?X)
= X.

Theorem WELLORDI1:40. R is well-ordering-relation implies field (R[?R-Seg(a)) =
R-Seg(a).

Theorem WELLORD1:41. R is well-ordering-relation implies for Z st for a st a €
field R & R-Seg(a) C Z holds a € Z holds field R C Z.

Theorem WELLORD1:42. R is well-ordering-relation & a € field R & b € field R & (for
c st ¢ € R-Seg(a) holds [c, b] € R & ¢ # b) implies [a, b] € R.

Theorem WELLORD1:43. R is well-ordering-relation & dom F = field R & rng F C field
R & (for a, b st [a, b] € R & a # b holds [F.a, F.b] € R & F.a # F.b) implies for a st
a € field R holds [a, F.a] € R.

Definition
let R, S, F.
pred F is isomorphism of R, S means dom F = field R & rng F = field S & F is
1-1 & for a, b holds [a, b] € R iff a € field R & b € field R & [F.a, F.b] € S.
Theorem WELLORD1:44. F is isomorphism of R, S iff dom F = field R & rng F = field
S & Fis 1-1 & for a, b holds [a, b] € R iff a € field R & b € field R & [F.a, F.b] € S.

Theorem WELLORD1:45. F is isomorphism of R, S implies for a, b st [a, b] € R &
a # b holds [F.a, F.b] € S & F.a # F.b.

Definition
let R, S.

pred R, S are isomorphic means ex F st F is isomorphism of R, S.

Theorem WELLORDI1:46. R, S are isomorphic iff ex F st F is isomorphism of R, S.
Theorem WELLORD1:47. Id (field R) is isomorphism of R, R.

Theorem WELLORD1:48. R, R are isomorphic.

Theorem WELLORD1:49. F is isomorphism of R, S implies F~! is isomorphism of S,

Theorem WELLORDI1:50. R, S are isomorphic implies S, R are isomorphic.

Theorem WELLORDI1:51. F is isomorphism of R, S & G is isomorphism of S, T implies
G-F is isomorphism of R, T.

Theorem WELLORD1:52. R, S are isomorphic & S, T are isomorphic implies R, T are
isomorphic.

Theorem WELLORD1:53. F is isomorphism of R, S implies (R is reflexive implies
S is reflexive) & (R is transitive implies S is transitive) & (R is connected implies S is

connected) & (R is antisymmetric implies S is antisymmetric) & (R is well founded implies
S is well founded).
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Theorem WELLORDI1:54. R is well-ordering-relation & F is isomorphism of R, S implies
S is well-ordering-relation.

Theorem WELLORD1:55. R is well-ordering-relation implies for F, G st F is isomor-
phism of R, S & G is isomorphism of R, S holds F = G.
Definition

let R, S.

assume R is well-ordering-relation & R, S are isomorphic.

func canonical isomorphism of (R, S) — Function means it is isomorphism of R,

Theorem WELLORDI1:56. R is well-ordering-relation & R, S are isomorphic implies (F
= canonical isomorphism of (R, S) iff F is isomorphism of R, S).

Theorem WELLORD1:57. R is well-ordering-relation implies for a st a € field R holds
not R, R[?(R-Seg(a)) are isomorphic.

Theorem WELLORD1:58. R is well-ordering-relation & a € field R & b € field R & a
# b implies not R|?(R-Seg(a)), R|?(R-Seg(b)) are isomorphic.

Theorem WELLORD1:59. R is well-ordering-relation & Z C field R & F is isomorphism
of R, S implies F[Z is isomorphism of R|?Z, S[?(F.Z) & R[?Z, S[?(F.Z) are isomorphic.

Theorem WELLORD1:60. R is well-ordering-relation & F is isomorphism of R, S implies
for a st a € field R ex b st b € field S & F.(R-Seg(a)) = S-Seg(b).

Theorem WELLORDI1:61. R is well-ordering-relation & F is isomorphism of R, S implies
for a st a € field R ex b st b € field S & RJ%(R-Seg(a)), S[?(S-Seg(b)) are isomorphic.

Theorem WELLORD1:62. R is well-ordering-relation & S is well-ordering-relation & a €
field R & b € field S & ¢ € field S & R, S[?(S-Seg(b)) are isomorphic & R [?(R-Seg(a)), S|?
(S-Seg(c)) are isomorphic implies S-Seg(c) C S-Seg(b) & [c, b] € S.

Theorem WELLORD1:63. R is well-ordering-relation & S is well-ordering-relation im-
plies R, S are isomorphic or (ex a st a € field R & R[?(R-Seg(a)), S are isomorphic) or
(ex a st a € field S & R, S[?(S-Seg(a)) are isomorphic).

Theorem WELLORDI1:64. Y C field R & R is well-ordering-relation implies R, R[?Y
are isomorphic or ex a st a € field R & RJ%(R-Seg(a)), R2Y are isomorphic.



Chapter 17

SETFAM 1

Families of Sets

by
Beata Padlewska !

Warsaw University (Bialystok)

Summary. The article contains definitions of the following concepts: family of
sets, family of subsets of a set, the intersection of a family of sets. Functions N, U,
and \ are redefined for families of subsets of a set. Some properties of these notions
are presented.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
FAM_OP, SUB_OP, and SFAMILY. The terminology and notation used in this article have
been introduced in the following articles: TARSKI, BOOLE, ENUMSET]1, and SUBSET_1.

reserve X, X1, X2, X3, Y, %, Z1, Z2, D for set, x, y, z for Any.

Definition
let X.
func ()X — set means for x holds x € it iff (for Y holds Y € X implies x
€Y) if X # () otherwise it = (.
Theorem SETFAM _1:1. X # () implies for x holds x € (X iff for Y st Y € X holds
x €Y.
Theorem SETFAM_1:2. N0 = 0.

!Supported by RPBP.III-24.C1.
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Theorem SETFAM_1:3. X C UX.
Theorem SETFAM_1:4. Z € X implies (X C Z.
Theorem SETFAM_1:5. () € X implies (X = 0.
Theorem SETFAM_1:6. X # () & (for Z1 st Z1 € X holds Z C Z1) implies Z C X.
Theorem SETFAM_1:7. X # () & X C Y implies Y C NX.
Theorem SETFAM_1:8. X € Y & X C Z implies (Y C Z.
Theorem SETFAM_1:9. X € Y & XNZ = () implies (\YNZ = 0.
Theorem SETFAM_1:10. X # () & Y # 0 implies ((XUY) = NXNNY.
Theorem SETFAM_1:11. N{x} = x.
Theorem SETFAM_1:12. N{X, Y} = XnNY.
Definition
mode Set-Family — set means not contradiction.
reserve SFX, SFY, SFZ for Set-Family.
Theorem SETFAM 1:13. x is Set-Family.
Theorem SETFAM_1:14. SFX = SFY iff (for X holds X € SFX iff X € SFY).

Definition
let SFX, SFY.

pred SFX is finer than SFY means for X st X € SFX ex Y st Y € SFY & X
CcY.

pred SFX is coarser than SFY means for Y st Y € SFY ex X st X € SFX &
XCYy.

Theorem SETFAM_1:15. SEX is finer than SFY iff for X st X € SFX ex Yst Y €
SFY & X C Y.

Theorem SETFAM_1:16. SFX is coarser than SFY iff for Y st Y € SFY ex X st X €
SFX & X C Y.

Theorem SETFAM 1:17. SFX C SFY implies SFX is finer than SFY.
Theorem SETFAM_1:18. SFX is finer than SFY implies [ JSFX C [ JSFY.

Theorem SETFAM_1:19. SFY # () & SFX is coarser than SFY implies (SFX C
NSFY.

Definition
redefine
func () — Set-Family.

let x.

func {x} — Set-Family.
let y.

func {x, y} — Set-Family.
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Theorem SETFAM_1:20. 0 is finer than SFX.
Theorem SETFAM_1:21. SFX is finer than () implies SFX = ().
Theorem SETFAM_1:22. SFX is finer than SFX.

Theorem SETFAM _1:23. SFX is finer than SFY & SFY is finer than SFZ implies SFX
is finer than SFZ.

Theorem SETFAM_1:24. SFX is finer than {Y} implies for X st X € SFX holds X
cY.

Theorem SETFAM_1:25. SFX is finer than {X, Y} implies for Z st Z € SFX holds
ZCXorZCY.

Definition
let SFX, SFY.

func U(SFX, SFY) — Set-Family means Z c it iff ex X, Y st X € SFX & Y €
SFY & Z = XUY.

func M(SFX, SFY) — Set-Family means Z € it iff ex X, Yst X € SFX & Y €
SFY & 7Z = XNY.

func ~(SFX, SFY) — Set-Family means Z € it iff ex X, Y st X € SFX & Y
€ SFY & Z = X\Y.
Theorem SETFAM_1:26. Z € U(SFX, SFY) iff ex X, Yst X € SFX & Y € SFY & Z
= XUY.

Theorem SETFAM_1:27. Z € m(SFX, SFY) iff ex X, Y st X € SFX & Y € SFY & Z
= XNY.

Theorem SETFAM_1:28. Z € ~(SFX, SFY) iffex X, Yst X € SFX & Y € SFY &
Z = X\Y.

Theorem SETFAM_1:29.
Theorem SETFAM_1:30.

SFX is finer than U(SFX, SFX).
M(SFX, SFX) is finer than SFX.

Theorem SETFAM_1:31.
Theorem SETFAM_1:32.
Theorem SETFAM_1:33.
Theorem SETFAM_1:34.
Theorem SETFAM_1:35.
Theorem SETFAM_1:36.
Theorem SETFAM_1:37.
Theorem SETFAM_1:38.
Theorem SETFAM_1:39.

Theorem SETFAM_1:40.
SFY).

X\ (SFX, SFX) is finer than SFX.

U(SFX, SFY) = U(SFY, SFX).

M(SFX, SFY) = m(SFY, SFX).

SFXNSFY #  implies NSFXNNSFY = NA(SFX, SFY).
SFY #  implies XUNSFY = NU({X}, SFY).

XNYSFY = Um({X}, SFY).

SFY # 0 implies X~\JSFY = N~ ({X}, SFY).

SFY # 0 implies X~\[SFY = U~ ({X}, SFY).

UR(SFX, SFY) C [JSFXNJSFY.

SFX # 0 & SFY # 0 implies (SFXUNSFY C NU(SFX,
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Theorem SETFAM_1:41. SFX # () & SFY # ) implies [~ (SFX, SFY) C NSFX\
NSFY.

Definition
let D be set.

mode Subset-Family of D — Subset of bool D means not contradiction.
Theorem SETFAM_1:42. for F being Subset of bool D holds F is Subset-Family of
D.
reserve F, G for Subset-Family of D.
reserve P, ) for Subset of D.

Definition
let D, F, G.

redefine
func FUG — Subset-Family of D.

func FNG — Subset-Family of D.
func F\G — Subset-Family of D.

Theorem SETFAM_1:43. X € F implies X is Subset of D.

Definition
let D, F.

redefine
func (JF — Subset of D.
Definition
let D, F.
redefine
func (F — Subset of D.
Theorem SETFAM_1:44. F = G iff (for P holds P € Fiff P € G).

scheme SubFamEx{A() — set, P[Subset of A()]}: ex F being Subset-Family of A()
st for B being Subset of A() holds B € F iff P[B].

Definition
let D, F.

func F¢ — Subset-Family of D means for P being Subset of D holds P € it
iff P¢ € F.
Theorem SETFAM_1:45. for P holds P € F¢ iff P¢ € F.
Theorem SETFAM_1:46. F # () implies F¢ # 0.
Theorem SETFAM_1:47. F # () implies QD~UF = N(F°).
Theorem SETFAM_1:48. F # () implies [ JF¢ = QD~F.



Chapter 18

MCART 1

Tuples, Projections and Cartesian Products

by
Andrzej Trybulec !

Warsaw University (Biatystok)

Summary. The purpose of this article is to define projections of ordered pairs,
and to introduce triples and quadruples, and their projections. The theorems in
this paper may be roughly divided into two groups: theorems describing basic
properties of introduced concepts and theorems related to the regularity, analogous
to those proved for ordered pairs in Some Basic Properties of Sets by Cz. Byliriski
(ZFMISC_1). Cartesian products of subsets are redefined as subsets of Cartesian
products.

The symbols used in this article are introduced in the following vocabularies: FAM_OP,
BOOLE, and COORD. The terminology and notation used in this article have been in-
troduced in the following articles: TARSKI, BOOLE, ENUMSET]1, SUBSET_1, FUNCT_1, and
ORDINALI.

reserve v, x, x1, x2, x3, x4, y, yl, y2, y3, y4, z, z1, z2 for Any, X, X1, X2, X3, X4,
X5, X6, Y, Y1, Y2, Y3, Y4, Y5, Z, Z1, 72, 73, 74, Z5 for set.
Theorem MCART_1:1. X # () implies ex Y st Y € X & Y misses X.

Theorem MCART_1:2. X # () impliesex Y st Y € X & for Y1 st Y1 € Y holds Y1
misses X.

!Supported by RPBP.III-24.C1.
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Theorem MCART_1:3. X # () impliesex Y st Y € X & for Y1, Y2st Y1 € Y2 &
Y2 € Y holds Y1 misses X.

Theorem MCART_1:4. X # () implies ex Y st Y € X & for Y1, Y2, Y3 st Y1 € Y2
& Y2 € Y3 & Y3 € Y holds Y1 misses X.

Theorem MCART_1:5. X # ) impliesex Y st Y € X & for Y1, Y2, Y3, Ydst Y1 €
Y2& Y2€Y3& Y3 €Y4& Y4 €Y holds Y1 misses X.

Theorem MCART_1:6. X # () implies ex Y st Y € X & for Y1, Y2, Y3, Y4, Y5 st
Y1eY2&Y2€Y3&Y3€Y4& Y4eY5&YH €Y holds Y1 misses X.

Definition
let x.

given x1, x2 being Any such that x = [x1, x2].
func x; means x = [yl, y2| implies it = yl.
func x2 means x = [yl, y2| implies it = y2.
Theorem MCART_1:7. [x, y) =x & [x, y]2 = y.
Theorem MCART_1:8. (ex x, y st z = [x, y|) implies [z, 23] = z.
Theorem MCART_1:9. X # () impliesex vst ve X & not exx,yst (x € Xory €
X) & v =[x,y]
Theorem MCART_1:10. z € [X, Y] implies z; € X & z3 € Y.
Theorem MCART_1:11. (ex x,y st z =[x, y]) & 721 € X & 72 € Y implies z € [X,
Y].
Theorem MCART_1:12. z € [{x}, Y] implies z; = x & z2 € Y.
Theorem MCART_1:13. z € [X, {y}] implies z; € X & z2 = y.
Theorem MCART _1:14. z € [{x}, {y}] implies z; = x & z2 = y.
Theorem MCART_1:15. z € [{x1, x2}, Y] implies (z; = xl or z; =x2) &z € Y.
Theorem MCART_1:16. z € [X, {yl, y2}] implies z; € X & (z2 = yl or z3 = y2).
Theorem MCART_1:17. z € [{x1, x2}, {y}] implies (z; = x1 or z; = x2) & 23 =y.
Theorem MCART_1:18. z € [{x}, {yl, y2}] implies z; = x & (22 = yl or zy = y2).

Theorem MCART_1:19. z € [{x1, x2}, {yl, y2}] implies (z; = x1 or z; = x2) & (2
=yl or zz = y2).

Theorem MCART _1:20. (ex y, z st x = [y, z]) implies x # x; & x # xo.

reserve xx, xx1, xx2 for Element of X.

N

N

N

N

N

N

N

reserve yy, yyl, yy2 for Element of Y.

Theorem MCART _1:21. X # 0 & Y # 0 implies [xx, yy] € [X, Y].

Theorem MCART _1:22. X # 0 & Y # 0 implies [xx, yy] is Element of [X, Y].
Theorem MCART_1:23. x € [X, Y] implies x = [x;, x2].
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Theorem MCART _1:24. X # 0 & Y # () implies for x being Element of [X, Y] holds
x = [x1, X2].
Theorem MCART_1:25. [{x1, x2}, {y1, y2}] = {[x1, y1], [x1, y2], [x2, y1], [x2, ¥2]}.

Theorem MCART_1:26. X # () & Y # () implies for x being Element of [X, Y] holds
X # x1 & X # Xo.
Definition

let x1, x2, x3.

func [x1, x2, x3] means it = [[x1, x2], x3].
Theorem MCART_1:27. [x1, x2, x3] = [[x1, x2], x3].
Theorem MCART _1:28. [x1, x2, x3] = [y1, y2, y3] implies x1 = yl & x2 = y2 & x3
=y3.
Theorem MCART_1:29. X # () impliesex vst v € X & not ex x, y, z st (x € X or
yeX)&v=Ix,y,z.
Definition
let x1, x2, x3, x4.
func [x1, x2, x3, x4] means it = [[x1, x2, x3|, x4].
Theorem MCART_1:30. [x1, x2, x3, x4] = [[x1, x2, x3], x4].
Theorem MCART_1:31. [x1, x2, x3, x4] = [[[x1, x2], x3], x4].
Theorem MCART _1:32. [x1, x2, x3, x4] = [[x1, x2], x3, x4].

Theorem MCART_1:33. [x1, x2, x3, x4] = [y1, y2, y3, y4] implies x1 = yl & x2 =
y2 & x3 = y3 & x4 = y4.

Theorem MCART_1:34. X # () implies ex v st v € X & not ex x1, x2, x3, x4 st (x1
€ Xorx2 e X) & v = [xl, x2, x3, x4].

Theorem MCART_1:35. X1 # 0 & X2 # () & X3 # 0 iff [X1, X2, X3] # 0.
reserve xx1 for (Element of X1), xx2 for (Element of X2), xx3 for (Element of X3).

Theorem MCART_1:36. X1 # 0 & X2 # 0 & X3 # () implies ([X1, X2, X3] = [Y1,
Y2, Y3] implies X1 = Y1 & X2 = Y2 & X3 = Y3).

Theorem MCART_1:37. [X1, X2, X3] # 0 & [X1, X2, X3] = [Y1, Y2, Y3] implies
XI=Y1& X2=Y2& X3 =Y3.

Theorem MCART_1:38. [X, X, X] =[Y, Y, Y] implies X =Y.

Theorem MCART_1:39. [{x1}, {x2}, {x3}] = {[x1, x2, x3]}.

Theorem MCART _1:40. [{x1, y1}, {x2}, {x3}] = {[x1, x2, x3], [y, x2, x3]}.

Theorem MCART_1:41. [{x1}, {x2, y2}, {x3}] = {[x1, x2, x3], [x1, y2, x3]}.

Theorem MCART _1:42. [{x1}, {x2}, {x3, y3}] = {[x1, x2, x3], [x1, x2, y3]}.

Theorem MCART_1:43. [{x1, yl}, {x2, y2}, {x3}] = {[x1, x2, x3], [y1, x2, x3], [x1,
y2, x3], [v1, y2, x3]}.
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Theorem MCART 1:44. [{x1, yl}, {x2}, {x3, y3}] = {[x1, x2, x3], [yl, x2, x3], [x1,
x2, y3], [v1, x2, y3]}.

Theorem MCART _1:45. [{x1}, {x2, y2}, {x3, y3}] = {[x1, x2, x3], [x1, y2, x3], [x1,
x2, y3], [x1, y2, y3]}.

Theorem MCART_1:46. [{x1, yl}, {x2, y2}, {x3, y3}] = {[x1, x2, x3], [x1, y2, x3],
[x1, x2, y3], [x1, y2, y3], [y1, x2, x3], [y1, y2, x3], [y1, x2, y3], [y1, y2, y3]}.
Definition

let X1, X2, X3.

assume X1 # 0 & X2 # () & X3 # (.
let x be Element of [X1, X2, X3].
func x; — Element of X1 means x = [x1, x2, x3] implies it = x1.
func xo — Element of X2 means x = [x1, x2, x3| implies it = x2.
func x3 — Element of X3 means x = [x1, x2, x3| implies it = x3.
Theorem MCART _1:47. X1 # 0 & X2 # () & X3 # () implies for x being Element of
[X1, X2, X3] for x1, x2, x3 st x = [x1, x2, x3] holds x; = x1 & x5 = x2 & x3 = x3.

Theorem MCART _1:48. X1 # 0 & X2 # () & X3 # () implies for x being Element of
[X1, X2, X3] holds x = [x1, x2, X3].

Theorem MCART_1:49. X C [X, Y, Z] or X C [Y, Z, X] or X C [Z, X, Y] implies
X = 0.

Theorem MCART_1:50. X1 # () & X2 # () & X3 # () implies for x being Element of
[X1, X2, X3] holds x; = (x qua Any)11 & x2 = (x qua Any)i2 & x3 = (x qua Any)s.

Theorem MCART_1:51. X1 # 0 & X2 # () & X3 # () implies for x being Element of
[X1, X2, X3] holds x # x; & x # x2 & x # x3.

Theorem MCART_1:52. [X1, X2, X3] meets [Y1, Y2, Y3] implies X1 meets Y1 & X2
meets Y2 & X3 meets Y3.

Theorem MCART_1:53. [X1, X2, X3, X4] = [[[X1, X2], X3], X4].
Theorem MCART_1:54. [[X1, X2], X3, X4] = [X1, X2, X3, X4].

Theorem MCART_1:55. X1 # 0 & X2 £ 0 & X3 # 0 & X4 # 0 iff [X1, X2, X3, X4]
# 0.

Theorem MCART_1:56. X1 # 0 & X2 # () & X3 # 0 & X4 # () implies ([X1, X2,
X3, X4] = [Y1, Y2, Y3, Y4] implies X1 = Y1 & X2 = Y2 & X3 = Y3 & X4 = Y4).

Theorem MCART_1:57. [X1, X2, X3, X4] # 0 & [X1, X2, X3, X4] = [YL, Y2, Y3,
Y4] implies X1 = Y1 & X2 =Y2 & X3 = Y3 & X4 = Y4

Theorem MCART_1:58. [X, X, X, X] =[Y, Y, Y, Y] implies X =Y.

reserve xx4 for Element of X4.

Definition
let X1, X2, X3, X4.
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assume X1 # 0 & X2 £ 0 & X3 # 0 & X4 # ).
let x be Element of [X1, X2, X3, X4].

func x; — Element of X1 means x = [x1, x2, x3, x4| implies it = x1.
[x1, x2, x3, x4]
[ ]
[ ]

func xs — Element of X2 means x = implies it = x2.

func x3 — Element of X3 means x = [x1, x2, x3, x4
func x4 — Element of X4 means x = [x1, x2, x3, x4] implies it = x4.

Theorem MCART_1:59. X1 # () & X2 # 0 & X3 # 0 & X4 # () implies for x being
Element of [X1, X2, X3, X4] for x1, x2, x3, x4 st x = [x], x2, x3, x4] holds x; = x1 &
X9 = x2 & x3 = x3 & x4 = x4.

Theorem MCART_1:60. X1 # () & X2 # ) & X3 # () & X4 # () implies for x being
Element of [X1, X2, X3, X4] holds x = [x1, X2, X3, X4].

Theorem MCART_1:61. X1 # () & X2 # ) & X3 # () & X4 # () implies for x being
Element of [X1, X2, X3, X4] holds x; = (x qua Any);11 & x2 = (x qua Any)j19 & x3 =
(x qua Any)i2 & x4 = (x qua Any)s.

Theorem MCART_1:62. X1 # (0 & X2 # 0 & X3 # 0 & X4 # () implies for x being
Element of [X1, X2, X3, X4] holds x # x1 & x # x2 & x # x3 & x # x4.

Theoremn MCART_1:63. X1 C [X1, X2, X3, X4] or X1 C [X2, X3, X4, X1] or X1 C
[X3, X4, X1, X2] or X1 C [X4, X1, X2, X3] implies X1 = 0.

Theorem MCART _1:64. [X1, X2, X3, X4] meets [Y1, Y2, Y3, Y4] implies X1 meets
Y1 & X2 meets Y2 & X3 meets Y3 & X4 meets Y4.

Theorem MCART_1:65. [{x1}, {x2}, {x3}, {x4}] = {[x1, x2, x3, x4]}.

Theorem MCART_1:66. [X, Y] # 0 implies for x being Element of [X, Y] holds x
# x1 & x # Xo.

Theorem MCART_1:67. x € [X, Y] implies x # x; & x # xo.

reserve Al for (Subset of X1), A2 for (Subset of X2), A3 for (Subset of X3), A4 for
Subset of X4.

reserve x for Element of [X1, X2, X3].

Theorem MCART_1:68. X1 # () & X2 # () & X3 # () implies for x1, x2, x3 st x =
[x1, x2, x3] holds x; = x1 & x9 = x2 & x3 = x3.

Theorem MCART_1:69. X1 # 0 & X2 # () & X3 # () & (for xx1, xx2, xx3 st x =
[xx1, xx2, xx3] holds y1 = xx1) implies yl = x;.

Theorem MCART_1:70. X1 # 0 & X2 # () & X3 # () & (for xx1, xx2, xx3 st x =
[xx1, xx2, xx3] holds y2 = xx2) implies y2 = x.

Theorem MCART_1:71. X1 # 0 & X2 # () & X3 # () & (for xx1, xx2, xx3 st x =
[xx1, xx2, xx3] holds y3 = xx3) implies y3 = x3.

Theorem MCART_1:72. z € [X1, X2, X3] implies ex x1, x2, x3 st x1 € X1 & x2 €
X2 & x3 € X3 & z = [x1, x2, x3].

implies it = x3.
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Theorem MCART _1:73. [x1, x2, x3] € [X1, X2, X3] iff x1 € X1 & x2 € X2 & x3 €
X3.

Theorem MCART_1:74. (for z holds z € Z iff ex x1, x2, x3 st x1 € X1 & x2 € X2 &
x3 € X3 & z = [x1, x2, x3]) implies Z = [X1, X2, X3].

Theorem MCART_1:75. X1 # 0 & X2 AP & X3 £ D& Y1 #0D & Y2 #D & Y3 #0D
implies for x being (Element of [X1, X2, X3]), y being Element of [Y1, Y2, Y3] holds
x =y implies x;1 = y; & x9 = y9 & x3 = y3.

Theorem MCART_1:76. for x being Element of [X1, X2, X3] st x € [Al, A2, A3]
holds x; € Al & x9 € A2 & x3 € A3.

Theorem MCART_1:77. X1 C Y1 & X2 C Y2 & X3 C Y3 implies [X1, X2, X3] C
[Y1, Y2, Y3].

reserve x for Element of [X1, X2, X3, X4].

Theorem MCART _1:78. X1 # ) & X2 # () & X3 # 0 & X4 # () implies for x1, x2,
x3, x4 st x = [x1, x2, x3, x4] holds x; = x1 & x2 = x2 & x3 = x3 & x4 = x4.

Theorem MCART_1:79. X1 # 0 & X2 # () & X3 # () & X4 # ) & (for xx1, xx2, xx3,
xx4 st x = [xx1, xx2, xx3, xx4| holds yl = xx1) implies yl = x;.

Theorem MCART_1:80. X1 # 0 & X2 # 0 & X3 # 0 & X4 # 0 & (for xx1, xx2, xx3,
xx4 st x = [xx1, xx2, xx3, xx4] holds y2 = xx2) implies y2 = x».

Theorem MCART_1:81. X1 # 0 & X2 # 0 & X3 # 0 & X4 # 0 & (for xx1, xx2, xx3,
xx4 st x = [xx1, xx2, xx3, xx4] holds y3 = xx3) implies y3 = x3.

Theorem MCART_1:82. X1 # ) & X2 # () & X3 # () & X4 # ) & (for xx1, xx2, xx3,
xx4 st x = [xx1, xx2, xx3, xx4| holds y4 = xx4) implies y4 = x4.

Theorem MCART_1:83. z € [X1, X2, X3, X4] implies ex x1, x2, x3, x4 st x1 € X1
& x2e€X2&x3€X3&x4eX4&z=[xl,x2, x3, x4].

Theorem MCART _1:84. [x1, x2, x3, x4] € [X1, X2, X3, X4] iff x] € X1 & x2 € X2 &
x3 € X3 & x4 € X4.

Theorem MCART_1:85. (for z holds z € Z iff ex x1, x2, x3, x4 st x1 € X1 & x2 €
X2 & x3 € X3 & x4 € X4 & z = [x1, x2, x3, x4]) implies Z = [X1, X2, X3, X4].

Theorem MCART 1:86. X1 # 0 & X2 £ 0 & X3 £ D& X4 £ D& Y1 £ D& Y2 #£0 &
Y3 # 0 & Y4 # () implies for x being (Element of [X1, X2, X3, X4]), y being Element
of [Y1, Y2, Y3, Y4] holds x = y implies x; = y; & x9 = y2 & x3 = y3 & x4 = y3.

Theorem MCART_1:87. for x being Element of [X1, X2, X3, X4] st x € [Al, A2,
A3, A4] holds x; € Al & xo € A2 & x3 € A3 & x4 € Ad.

Theorem MCART_1:88. X1 C Y1 & X2 C Y2 & X3 C Y3 & X4 C Y4 implies [X1,
X2, X3, X4] € [Y1, Y2, Y3, Y4].
Definition

let X1, X2, Al, A2.
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redefine
func [A1l, A2] — Subset of [X1, X2].

Definition
let X1, X2, X3, Al, A2, A3.
redefine
func [Al, A2, A3] — Subset of [X1, X2, X3].
Definition
let X1, X2, X3, X4, Al, A2, A3, A4.

redefine
func [A1l, A2, A3, A4] — Subset of [X1, X2, X3, X4].



Chapter 19

REAL 1

Basic Properties of Real Numbers

by
Krzysztof Hryniewiecki !

Warsaw University

Summary. Basic facts of arithmetics of real numbers are presented: definitions
and properties of the complement element, the inverse element, subtraction and
division; some basic properties of the set REAL (e.g. density), and the scheme of
separation for sets of reals.

The symbols used in this article are introduced in vocabularies REAL_1 and BOOLE.
The articles TARSKI and BOOLE provide the terminology and notation for this article.

reserve X, y, z, t for Real.
reserve a, b, c, d for Element of REAL.
reserve r for Any.

Definition
let x, y.

redefine
func x+y — Real.

func x-y — Real.
Theorem REAL_1:1. r is Real iff r € REAL.
!Supported by RPBP.III-24.C1.
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Theorem REAL_1:2.
Theorem REAL_1:3.
Theorem REAL_1:4.
Theorem REAL_1:5.
Theorem REAL_1:6.
Theorem REAL_1:7.
Theorem REAL_1:8.
Theorem REAL_1:9.
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X+y = y+x.
x+(y+z) = (x+y)+z.
x+0 =x & 0+x = x.
X'y = y-X.

x-(yz) = (xy)z

(x+y)z = xz+yz & 7-(x+y) = zx+zy.
(z#0&x #y)implies (xz £yz & z2x # yz & zx # 2y &

Xz # zy).
Theorem REAL_1:10. (z4+x = z+y or x+z = y+z or z+x = y+z or x+z = z+y)
implies x = y.

Theorem REAL_1:11. x # y iff x+z # y+z.

Theorem REAL_1:12. (z # 0 & (xz = y'z or z:Xx = z'y Or X'Z = Z'y O z-X = y-7))
implies x = y.
Definition
let x.
func—x — Real means x+it = 0.
assume x # 0.
func x~! — Real means x-it = 1.
Definition
let x, y.
func x—y — Real means it = x+(—y).
assume y # 0.

func x/y — Real means it = x-y~'.

Theorem REAL_1:13.
Theorem REAL_1:14.

x+—x=0&—=x+x = 0.
X—y = X+-y.

Theorem REAL_1:15.
Theorem REAL_1:16.
Theorem REAL_1:17.
Theorem REAL_1:18.
Theorem REAL_1:19.
Theorem REAL_1:20.
Theorem REAL_1:21.
Theorem REAL_1:22.
Theorem REAL_1:23.

x # 0 implies xx7 ! =1 & x~'x = 1.

y # 0 implies (x/y = xy~! & x/y = y~!x).
x+y—z = x+(y—2).
—(—x) = x.

0—x =—x.

x0=0& 0x=0.
(=x)y ==(xy) & x(-y)
x # 0 iff—x # 0.
xy=0iff(x =0o0ry =0).

—(xy) & (—x)y =x(-y).
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Theorem REAL_1:24.
Theorem REAL_1:25.
Theorem REAL_1:26.
Theorem REAL _1:27. x—
Theorem REAL_1:28. x—
Theorem REAL_1:29.
Theorem REAL_1:30.
Theorem REAL_1:31.
Theorem REAL_1:32.
Theorem REAL_1:33.
Theorem REAL_1:34.
Theorem REAL_1:35.
Theorem REAL_1:36.
Theorem REAL_1:37.
Theorem REAL_1:38.
Theorem REAL_1:39.
Theorem REAL_1:40.
Theorem REAL_1:41.

(x-t—2zy)/(y-t))-

Theorem REAL _1:42.
Theorem REAL_1:43.
Theorem REAL_1:44.
Theorem REAL_1:45.

Theorem REAL_1:46.
Theorem REAL_1:47.
Theorem REAL_1:48.
Theorem REAL_1:49.
Theorem REAL_1:50.

Theorem REAL_1:51.
xz < zvy).

Theorem REAL_1:52.
7y < X°7).

Theorem REAL_1:53.
Theorem REAL_1:54.

y # 0 & t # 0 implies (x/y+z/t =

CHAPTER 19.

x# 0 &y # 0 implies x 1.y~ ! =
x—0 = x.

-0 =0.

(y+z) = x—y—=z.

(7—2) = x-y+5

x(y—2) = xy—xz & (y—2)x = y-x—zX.
x+z =y implies (x = y—z & z = y—x).
x # 0 implies x ! # 0.

=1 =x

x # 0 implies x~
x # 0 implies (1/x =x7! & 1/x7! = x).

x # 0 implies x-(1/x) =1 & (1/x)x = 1.

(v # 0 & t # 0) implies (x/y)-(/) = (x:2)/(y-t)

x—x = 0.

x # 0 implies x/x = 1.

y # 0 & z # 0 implies x/y = (x-2)/(y-2).

y # 0 implies (—x/y = (=x)/y & x/(-y) =—x/y)
z # 0 implies (x/z+y/z = (x+y)/2)
(o) ()

y # 0 & z # 0 implies x/(y/z) =
y # 0 implies x/y-y = x.
for x, y ex z st (x = y+z & x = z+y).

(x2)/y.

forx,ysty #0exzst (x=yz&x=2zy).
x <y &y <ximpliesx =y.
y&y<z

yory < X.

implies x < z.

>

™

implies (x+z < y+z & x—z < y—2z).

KoM
NN NN N

y
y iff—y <—x.
y

]

z < 0 implies (yz < xz & z'y <

REAL_1

& (x/2=y/z = (x=y)/2).
& (x/y—z/t

\
& 0 < z implies (xz < yz&zx<zy&zx<yz &

zx & yz <zx &
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Theorem REAL_1:55. (x <y & z < t) implies (x+z < y+t & x+z < t+y & z+x <
t+y & z4x < y+t).
Theorem REAL_1:56. x < x.

Definition

let x, y.
pred x < ymeans x <y & x #y.

Theorem REAL_1:57. x < y iff (x <y & x #y).

Theorem REAL1:58. (x < y&y<z)or(x<y&y<z)or(x<y&ky<<z)
implies x < z.

Theorem REAL_1:59. x < y implies (x+z < y+z & x—z < y—z & z+x < z+y & x+2z
< zty & z+x < y+z).

Theorem REAL_1:60. (x+z < y+z or z+x < z+y or x+z < z+y or z+x < y+z or
x—z < y—z) implies x < y.

Theorem REAL_1:61. x # y implies x < y or y < x.

Theorem REAL_1:62. not x < y iff y < x.

Theorem REAL_1:63. x < yory <xorx =y.

Theorem REAL_1:64. x < y implies not y < x.

Theorem REAL_1:65. 0 < 1.

Theorem REAL_1:66. x < 0 iff 0 <—x.

Theorem REAL_1:67. (x <y &z<t)or(x<y&z<t)or (x<y&z<t))
implies (x+z < y+t & z+x < y+t & z+x < t+y & x+z < t+y).

Theorem REAL_1:68. x < y iff—y <—x.

Theorem REAL_1:69. for x, y st 0 < x holds y < y+x.

Theorem REAL_1:70. 0 < z & x < y implies (xz < yz & zx < zy & xz < zy &
zx < yz).

Theorem REAL_1:71. z < 0 & x < y implies (yz < xz & zy < zx & yz < zx &
zy < X°7).

Theorem REAL_1:72. 0 < z implies 0 < z~!.

Theorem REAL_1:73. 0 < z implies (x < y iff x/z < y/z).

Theorem REAL_1:74. z < 0 implies (x <y iff y/z < x/z).

Theorem REAL_1:75. x < y impliesexzst x <z & z < y.

Theorem REAL_1:76. for x ex y st x < y.

Theorem REAL_1:77. for x ex y st y < x.

Theorem REAL_1:78. for X, Y being Subset of REAL st (ex x st x € X) & (ex x st
xeEY)&forx,ystx e X&yeceVYholdsx<yexzstforx,ystxeX&yeY
holds x <z & z < y.
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scheme SepReal{P[Real]}: ex X being set of Real st for x holds x € X iff P[x].

Theorem REAL_1:79. y =—x iff x+y = 0.

Theorem REAL_1:80. for x, y st x # 0 holds y = x ! iff x-y = 1.

Theorem REAL_1:81. for x, y st x # 0 & y # 0 holds (x/y) ! = y/x.

Theorem REAL_1:82. for x, y,z, t st y # 0 & z # 0 & t # 0 holds (x/y)/(z/t) =
(x:6)/(y2).

Theorem REAL_1:83. —(x—y) = y—x.

Theorem REAL_1:84. ( -y)

Theorem REAL_1:85. ( —X)

Theorem REAL_1:86. (x g g )

Theorem REAL_1:87. (x < y+z iff x—z < y).

Theorem REAL_1:88. (x+y < z iff x < z—y).

Theorem REAL_1:89. (x+y < z iff y < z—x).

Theorem REAL_1:90. (x < z+y iff x—z < y).
Theorem REAL_1:91. (x < y+z iff x—z < y).

(

Theorem REAL_1:92. ((x <y &z < t) implies x—t <y—z) & ((x <y &z < t) or
(xgy&z<t)0r(x<y&z<t))1mp11esxt<y z).
Theorem REAL_1:93. 0 < xx



Chapter 20

ORDINAL1

The Ordinal Numbers

Transfinite Induction and Defining by Transfinite Induction

by
Grzegorz Bancerek '

Warsaw University (Bialystok)

Summary. We introduce some consequences of the regularity axiom, the successor
of a set, e-transitivity and €-connectedness, the definition and basic properties of
ordinal numbers and sets of ordinals, transfinite sequences, transfinite induction,
and schemes of defining by transfinite induction.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
FAM_OP, REAL_l, FUNC_REL, FUNC, and ORDINAL. The terminology and notation used
in this article have been introduced in the following articles: TARSKI, BOOLE, ENUMSET1,
and FUNCT_1.

reserve X, Y, Z, A, B, C, X1, X2, X3, X4, X5, X6 for set, x, y, z, a, b, ¢ for Any.

Theorem ORDINALI:1. not X € X.

Theorem ORDINALIL:2. not (X € Y & Y € X).

Theorem ORDINALL:3. not (X € Y& Y € Z & Z € X).

Theorem ORDINALL:4. not (X1 € X2 & X2 € X3 & X3 € X4 & X4 € X1).

Theorem ORDINALIL:5. not (X1 € X2 & X2 € X3 & X3 € X4 & X4 € X5 & X5 €
X1).

!Supported by RPBP.IT1-24.C1.
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Theorem ORDINALL:6. not (X1 € X2 & X2 € X3 & X3 € X4 & X4 € X5 & X5 €
X6 & X6 € X1).

Theorem ORDINALL:7. Y € X implies not X C Y.

scheme Comprehension{A() — set, P[set]}: ex B st for Z being set holds Z € B iff
Z € A() & P[Z].

Theorem ORDINALIL:8. (for X holds X € A iff X € B) implies A = B.

Definition
let X.

func succ X — set means it = XU{X}.

Theorem ORDINALL:9. succ X = XU{X}.

Theorem ORDINAL1:10. X € succ X.

Theorem ORDINALI1:11. succ X # 0.

Theorem ORDINAL1L:12. succ X = succ Y implies X =Y.
Theorem ORDINALIL:13. x € succ X iff x € X or x = X.
Theorem ORDINALIL:14. X # succ X.

reserve a, b, c, d for Any, X, Y, Z, x, vy, z for set.

Definition
let X.

pred X is E-transitive means for x st x € X holds x C X.
pred X is €-connected means for x, yst x €« X & ye X holdsx € yorx =y
ory € X.
Theorem ORDINALIL:15. X is €-transitive iff for x st x € X holds x C X.

Theorem ORDINALL:16. X is €-connected iff for x, y st x € X & y € X holds x € y
or x =yoryecx.

Definition
mode Ordinal — set means it is €-transitive & it is €-connected.

reserve A, B, C, D for Ordinal.
Theorem ORDINAL1L:17. X is Ordinal iff X is €-transitive & X is €-connected.
Theorem ORDINALL:18. x € A implies x C A.
Theorem ORDINALI1:19. A € B & B € C implies A € C.
Theorem ORDINALL:20. x € A&y € Aimpliesx€eyorx=yorye€x.
Theorem ORDINALIL:21. for x, A being Ordinal st x C A & x # A holds x € A.
Theorem ORDINALIL:22. A C B & B € C implies A € C.
Theorem ORDINALL:23. a € A implies a is Ordinal.
Theorem ORDINALL:24. A€ Bor A=BorB € A.
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Theorem ORDINALI1:25. A C Bor B C A.
Theorem ORDINALIL:26. A C Bor B € A.
Theorem ORDINAL1:27. () is Ordinal.
Definition
func 0 — Ordinal means it = (.
Theorem ORDINAL1:28. 0 = ().
Theorem ORDINALIL:29. x is Ordinal implies succ x is Ordinal.
Theorem ORDINALL:30. x is Ordinal implies | Jx is Ordinal.

Definition
let A.

redefine
func succ A — Ordinal.

func (JA — Ordinal.
Theorem ORDINALI1:31. (for x st x € X holds x is Ordinal & x C X) implies X is
Ordinal.

Theorem ORDINALIL:32. X C A & X # () implies ex Cst C € X & for Bst B € X
holds C C B.

Theorem ORDINALIL:33. A € B iff succ A C B.
Theorem ORDINALIL:34. A € succ C iff A C C.

scheme Ordinal Min{P[Ordinal]}: ex A st P[A] & for B st P[B] holds A C B pro-
vided A: ex A st P[A].

scheme Transfinite_Ind{P[Ordinal]}: for A holds P[A] provided A: for A st for C
st C € A holds P[C] holds P[A].

Theorem ORDINALIL:35. for X st for a st a € X holds a is Ordinal holds [ JX is
Ordinal.

Theorem ORDINALIL:36. for X st for a st a € X holds a is Ordinal ex A st X C A.
Theorem ORDINAL1:37. not ex X st for x holds x € X iff x is Ordinal.
Theorem ORDINAL1L:38. not ex X st for A holds A € X.

Theorem ORDINAL1:39. for X ex A st not A € X & for B st not B € X holds A
C B.

Definition
let A.

pred A is limit ordinal means A = [ JA.

Theorem ORDINAL1:40. A is limit ordinal iff A = [JA.

Theorem ORDINALI1:41. for A holds A is limit ordinal iff for C st C € A holds succ
CeA.
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Theorem ORDINAL1L:42. not A is limit ordinal iff ex B st A = succ B.
reserve F, G, H for Function.
Definition
mode transfinite sequence — Function means ex A st dom it = A.
Definition
let Z.

mode transfinite sequence of Z — transfinite sequence means rng it C Z.

Theorem ORDINALIL:43. F is transfinite sequence iff ex A st dom F = A.

Theorem ORDINAL1:44. F is transfinite sequence of Z iff F is transfinite sequence &
rng F C Z.

Theorem ORDINALI1:45. () is transfinite sequence of Z.

reserve L, L1, L2 for transfinite sequence.

Theorem ORDINALL:46. dom F is Ordinal implies F is transfinite sequence of rng F.
Definition

let L.

redefine
func dom L — Ordinal.

Theorem ORDINAL1:47. X C Y implies for L being transfinite sequence of X holds
L is transfinite sequence of Y.

Definition
let L, A.

redefine
func L[A — transfinite sequence of rng L.

Theorem ORDINAL1:48. for L being transfinite sequence of X for A holds LA is
transfinite sequence of X.

Theorem ORDINALIL:49. (for a st a € X holds a is transfinite sequence) & (for L1,
L2 st L1 € X & L2 € X holds graph L1 C graph L2 or graph L2 C graph L1) implies
JX is transfinite sequence.

scheme TS_Uniq{A() — Ordinal, H(transfinite sequence) — Any, L1() — transfinite
sequence, L2() — transfinite sequence}: L1() = L2() provided B: dom L1() = A() & for
B,LstBeA() &L =L1()[B holds L1().B = H(L) and C: dom L2() = A() & for B, L
st B € A() & L = L2()|B holds L2().B = H(L).

scheme TS_Exist{A() — Ordinal, H(transfinite sequence) — Any}: ex L st dom L =
A() & for B, L1 st B € A() & L1 = L|B holds L.B = H(L1).

scheme Func_TS{L() — transfinite sequence, F(Ordinal) — Any, H(transfinite sequence)
— Any}: for B st B € dom L() holds L().B = H(L()[B) provided A: for A, a holds a
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=F(A) iffex Lst a=H(L) & dom L = A & for B st B € A holds L.B = H(L|B) and
B: for A st A € dom L() holds L().A = F(A).



Chapter 21

NAT 1

The Fundamental Properties of Natural Numbers

by
Grzegorz Bancerek !

Warsaw University (Bialystok)

Summary. Some fundamental properties of addition, multiplication, order rela-
tions, exact division, the remainder, divisibility, the least common multiple, the
greatest common divisor are presented. A proof of Euclid algorithm is also given.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
REAL_1, and NAT_1. The terminology and notation used in this article have been intro-
duced in the following articles: TARSKI, BOOLE, and REAL_1.

reserve X, y, z for Real, k, I, m, n, u, w, v for Nat, X, Y, Z for set of Real.
Theorem NAT _1:1. x is Nat implies x+1 is Nat.
Theorem NAT_1:2. for X st 0 € X & for x st x € X holds x+1 € X for k holds k €

Theorem NAT_1:3. k+n = n+k.
Theorem NAT_1:4. k+m+n = k+(m+n).
Theorem NAT_1:5. k+0 = k & 0+k = k.
Theorem NAT_1:6. k-n = n-k.

!Supported by RPBP.III-24.C1.
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Theorem NAT_1:7. k-(m-n) = (k-m)-n.

Theorem NAT_1:8. k-1 =k & 1.k = k.

Theorem NAT_1:9. k-(n+m) = k-n+k-m & (n+m)-k = n-k+m-k.

Theorem NAT_1:10. k+m = n+m or k+m = m+n or m+k = m+n implies k = n.
Theorem NAT_1:11. k-0 =0 & 0-k = 0.

Definition
let n, k.
redefine
func n+k — Nat.

scheme Ind{P[Nat]}: for k holds P[k] provided A: P[0] and B: for k st P[k] holds
Plk+1].
Definition

let n, k.

redefine
func n-k — Nat.

Theorem NAT_1:12. k < n & n < k implies k = n.

Theorem NAT_1:13. k < n & n < m implies k < m.

Theorem NAT_1:14. k < norn < k.

Theorem NAT_1:15. k < k.

Theorem NAT_1:16. k < n implies k+m < n+m & k+m < m+n & m+k < m+n &

m+k < n+m.

Theorem NAT_1:17. k4+m < n+m or k+m < m+n or m+k < m+n or m+k < n+m
implies k < n.

Theorem NAT_1:18. for k holds 0 < k.
Theorem NAT_1:19. 0 # k implies 0 < k.

Theorem NAT_1:20. k < n implies km < n'm & k'm < m'n & mk < n'm & mk <
m-n.

Theorem NAT_1:21. 0 # k+1.

Theorem NAT _1:22. k = 0 or ex n st k = n+1.

Theorem NAT_1:23. k+n = 0 impliesk =0 & n = 0.

Theorem NAT_1:24. k # 0 & (n'k = m'k or n-k = k-m or k-n = k-m) implies n = m.
Theorem NAT_1:25. k-n = 0 implies k = 0 or n = 0.

scheme Def_by_Ind{N() — Nat, F(Nat, Nat) — Nat, P[Nat, Nat|}: (for k ex n st P[k,
n]) & for k, n, m st P[k, n|] & P[k, m] holds n = m provided A: for k, n holds P[k, n]
iff k=0&n=N()orexm,lstk=m+1& P[m, 1] &n=F(k,]l.

Theorem NAT_1:26. for k, n st k < n+1 holds k < n or k = n+1.
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Theorem NAT_1:27. for n, k st n < k & k < n+1 holds n = k or k = n+1.
Theorem NAT_1:28. for k, n st k <

Theorem NAT 1:29. n = k+m implies k < n.

Theorem NAT 1:30. k < niff k < n & k # n.

Theorem NAT_1:31. not k < 0.

scheme Comp_Ind{P[Nat]}: for k holds P[k] provided A: for k st for n st n < k
holds P[n] holds P[k].

scheme Min{P[Nat]}: ex k st P[k] & for n st P[n] holds k < n provided A: ex k
st P[k].

scheme Max{P[Nat], N() — Nat}: ex k st P[k] & for n st P[n] holds n < k provided
A: for k st P[k] holds k < N() and B: ex k st P[k].

Theorem NAT_1:32. not (k < n & n < k).

Theorem NAT 1:33. k < n & n < m implies k < m.
Theorem NAT_1:34. k <nork =norn < k.
Theorem NAT_1:35. not k < k.

Theorem NAT_1:36. k < n implies k+m < n+m & k+m < m+n & m+k < m+n &
m+k < n+m.

Theorem NAT_1:37. k < n implies k < n+m.
Theorem NAT_1:38. k < n+1 iff k < n.

Theorem NAT_1:39. k <n& n<mork<n&n<mork<né&n < mimplies k
< m.

Theorem NAT_1:40. k'n = 1 impliesk =1 & n = 1.
Theorem NAT_1:41. k+1 < n iff k < n.

scheme Regr{P[Nat]}: P[0] provided A: ex k st P[k] and B: for k st k # 0 & P[k]
exnstn <k& Pln.

reserve k1, t, t1 for Nat.
Theorem NAT_1:42. for m st 0 < m for n ex k, t st n = (m-k)+t & t < m.

Theorem NAT 1:43. for n, m, k, k1, t, t1 st n = mk+t & t < m & n = m-kl+tl &
t1 < m holds k = k1 & t = t1.

Definition
let k, 1 be Nat.

func k+1 — Nat means (ex t st k = Lit+t &t <l)orit =0& 1= 0.
func k mod 1 — Nat means (ex t st k =1-t+it & it <l)orit =0 & 1= 0.

Theorem NAT_1:44. for k, 1, n being Nat holds n = k=1 iff (ex t st k = l'n+t & ¢
<lDorn=0&1=0.

nex mstn=k+m.
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Theorem NAT_1:45. for k, 1, n being Nat holds n = k mod | iff (ex t st k = l-t+n
&Zn<lorn=0&1=0.

Theorem NAT_1:46. for m, n st 0 < m holds n mod m < m.
Theorem NAT_1:47. for n, m st 0 < m holds n = m-(n+m)+(n mod m).

Definition
let k, 1 be Nat.

pred k | ] means ex t st | = k-t.

Theorem NAT_1:48. for k, 1 being Nat holds k | l iff ex t st 1 = k-t.
Theorem NAT_1:49. for n, m holds m | n iff n = m-(n+m).
Theorem NAT_1:50. for n holds n | n.

Theorem NAT_1:51. for n, m,lst n | m & m |l holds n | 1.
Theorem NAT_1:52. for n, m st n | m & m | n holds n = m.
Theorem NAT_1:53. k | 0 & 1 | k.

Theorem NAT_1:54. for n, m st 0 < m & n | m holds n < m.
Theorem NAT_1:55. for n, m,1st n | m & n |1 holds n | m+1L
Theorem NAT_1:56. n | k implies n | k-m.

Theorem NAT_1:57. for n, m,1st n | m & n | m+! holds n | L
Theorem NAT_1:58. n | m & n | k implies n | m mod k.

Definition
let k, n.

func k lcm n — Nat means k | it & n | it & for m st k | m & n | m holds it |
m.

Definition
let k, n.

func k gcd n - Nat means it |k & it [ n & form st m | k & m | n holds m |
it.
scheme Euklides{Q(Nat) — Nat, a() — Nat, b() — Nat}: ex n st Q(n) = a() ged b()
& Q(n+1) = 0 provided A: 0 < b() & b() < a() and B: Q(0) = a() & Q(1) = b() and
C: for n holds Q(n+2) = Q(n) mod Q(n+1).



Chapter 22

FINSEQ 1

Segments of Natural Numbers and Finite
Sequences
by
Grzegorz Bancerek !
Warsaw University (Bialystok)
Krzysztof Hryniewiecki 2

Warsaw University

Summary. We define the notion of an initial segment of natural numbers and
prove a number of their properties. Using this notion we introduce finite sequences,
subsequences, the empty sequence, a sequence of a domain, and the operation of
concatenation of two sequences.

The symbols used in this article are introduced in the following vocabularies: FINSEQ,
FUNC_REL, FUNC, BOOLE, REAL_1, and NAT_1. The terminology and notation used in this
article have been introduced in the following articles: TARSKI, BOOLE, FUNCT_1, REAL_I,
and NAT_1.

reserve k, I, m, n, k1, k2 for Nat, X, Y, Z for set, x, y, z, yl, y2 for Any, f, g, h for
Function.

!Supported by RPBP.III-24.C1.
2Supported by RPBP.IT1-24.C1.

120



121

Definition
let n.

func Seg n — set of Nat means it = {k: 1 <k & k < n}.

Theorem FINSEQ_1:1. Seg n = {k: 1 < k & k < n}.

Theorem FINSEQ_1:2. x € Seg n implies x is Nat.

Theorem FINSEQ 1:3. k € Segniff 1 <k & k < n.

Theorem FINSEQ_1:4. Seg 0 = () & Seg 1 = {1} & Seg 2 = {1, 2}.

Theorem FINSEQ_1:5. n = 0 or n € Seg n.

Theorem FINSEQ_1:6. n+1 € Seg (n+1).

Theorem FINSEQ_1:7. n < m iff Seg n C Seg m.

Theorem FINSEQ_1:8. Seg n = Seg m implies n = m.

Theorem FINSEQ_1:9. k < n implies Seg k = Seg kNSeg n & Seg k = Seg nNSeg k.
Theorem FINSEQ_1:10. (Seg k = Seg kNSeg n or Seg k = Seg nNSeg k) implies k <

Theorem FINSEQ_1:11. Seg nU{n+1} = Seg (n+1).
Definition
mode FinSequence — Function means ex n st dom it = Seg n.
reserve p, q, I, s, t, v for FinSequence.

Definition
let p.

func len p — Nat means Seg it = dom p.
Theorem FINSEQ_1:12. for f being Function holds f is FinSequence iff ex n st dom
f = Seg n.
Theorem FINSEQ_1:13. k = len p iff Seg k = dom p.
Theorem FINSEQ_1:14. ) is FinSequence.
Theorem FINSEQ_1:15. (ex k st dom f C Seg k) implies ex p st graph f C graph p.

scheme SeqEx{A() — Nat, P[Any, Any]}: ex p st dom p = Seg A() & for k st k €
Seg A() holds P[k, p.k] provided A: for k, yl, y2 st k € Seg A() & P[k, yl] & P[k, y2]
holds yl = y2 and B: for k st k € Seg A() ex x st P[k, x].

scheme SeqLambda{A() — Nat, F(Any) — Any}: ex p being FinSequence st len p
= A() & for k st k € Seg A() holds p.k = F(k).

Theorem FINSEQ_1:16. z € graph p implies ex k st (k € dom p & z = [k, p.k]).

Theorem FINSEQ_1:17. X = dom p & X = dom q & (for k st k € X holds p.k = q.k)
implies p = q.

Theorem FINSEQ_1:18. for p, q st (len p =len q) & for k st 1 < k & k < len p holds
p-k = q.k holds p = q.
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Theorem FINSEQ_1:19. p[(Seg n) is FinSequence.
Theorem FINSEQ_1:20. (rng p C dom f) implies (f-p is FinSequence).

Theorem FINSEQ_1:21. k < len p & q = p[(Seg k) implies len q = k & dom q = Seg
k.

Definition
let D be DOMAIN.

mode FinSequence of D — FinSequence means rng it C D.

reserve D, D1, D2 for DOMAIN.
Theorem FINSEQ_1:22. p is FinSequence of D iff rng p C D.

Theorem FINSEQ_1:23. for D, k for p being FinSequence of D holds p[(Seg k) is
FinSequence of D.

Theorem FINSEQ_1:24. ex p being FinSequence of D st len p = k.

Definition
func ¢ — FinSequence means len it = 0.

Theorem FINSEQ_1:25.
Theorem FINSEQ_1:26.
Theorem FINSEQ_1:27.
Theorem FINSEQ_1:28.
Theorem FINSEQ_1:29.

p=cifflenp =0.

p = ¢ iff dom p = 0.
p=ciffrngp = 0.

graph e = ().

for D holds ¢ is FinSequence of D.

Definition
let D be DOMAIN.

func (D) — FinSequence of D means it = ¢.

Theorem FINSEQ_1:30. p = ¢(D) iff dom p = 0.

Theorem FINSEQ_1:31. £(D)

Theorem FINSEQ_1:32. p = ¢(D) iff len p = 0.

Theorem FINSEQ_1:33. p = ¢(D) iff rng p = 0.
Definition

let p, q.
func p—q — FinSequence means dom it = Seg (len p+len q) & (for k st k €
dom p holds it.k = p.k) & (for k st k € dom q holds it.(len p+k) = q.k).

Theorem FINSEQ_1:34. r = p—q iff (dom r = Seg (len p+len q) & (for k st k € dom
p holds r.k = p.k) & (for k st k € dom q holds r.(len p+k) = q.k)).

Theorem FINSEQ_1:35. len (p™q) = len p+len q.

Theorem FINSEQ_1:36. for k st len p+1 < k & k < len p+len q holds (p™q).k = q.
(k—len p).

Theorem FINSEQ_1:37. len p < k & k < len (p™q) implies (p~q).k = q.(k—len p).

= &.



Theorem FINSEQ_1:38

& k = len p+n)).

Theorem FINSEQ_1:39.
Theorem FINSEQ_1:40.
Theorem FINSEQ_1:41.
Theorem FINSEQ_1:42.
Theorem FINSEQ_1:43.
Theorem FINSEQ_1:44.

Theorem FINSEQ_1:45

Theorem FINSEQ_1:46.
Theorem FINSEQ_1:47.

Theorem FINSEQ_1:48

Definition

let D.
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. k € dom (p7Tq) implies (k € dom p or (ex n st n € dom q

dom p C dom (p™q).

x € dom ¢ implies ex k st k = x & len p+k € dom (p™q).
k € dom q implies len p+k € dom (p7q).

rng p € mg (p™q).

rng q C rng (p™q).

rng (p~q) = rng purng q.

P r=p"(q"1).

pr=q rorrp=r"qimplies p = q.
pe=p&eTp=p.
.pTq=cimpliesp=¢ & q=c¢.

let p, q be FinSequence of D.

redefine

func pTq — FinSequence of D.

Theorem FINSEQ_1:49. for p, q being FinSequence of D holds p™q is FinSequence
of D.

Definition
let x.

func (x) — FinSequence means dom it = Seg 1 & it.1 = x.

Theorem FINSEQ_1:50. p—q is FinSequence of D implies p is FinSequence of D & q
is FinSequence of D.

Definition

let x, y.

func (x, y) — FinSequence means it = (x)"(y).

let z.

func (x, y, z) —
Theorem FINSEQ_1:51
Theorem FINSEQ_1:52

Theorem FINSEQ_1:53.
Theorem FINSEQ_1:54.

Theorem FINSEQ_1:55
Theorem FINSEQ_1:56

FinSequence means it = (x) " (y) " (z).
.p=(x)iffdomp =Segl & p.l =x.

. graph (x) = {[1, x]}.

(x,y) = ()7 )

%y, 2) = (X7 {y) (=)

(x) iff dom p = Seg 1 & rng p = {x}.

.p=
.p=(x)ifflenp=1& rmgp = {x}.



124 CHAPTER 22. FINSEQ-1

Theorem FINSEQ_1:57. p = (x) iff lenp =1 & p.1 = x.
Theorem FINSEQ_1:58. (

Theorem FINSEQ_1:59. (p™(x)).(len p+1) = x.

Theorem FINSEQ_1:60. (x,y, z) = (x)"(y, z2) & (x, y, z) = (x, y)" ().

Theorem FINSEQ_1:61. p = (x, y) ifflenp =2 & p.l =x & p.2 =y.

Theorem FINSEQ_1:62. p = (x, y, z) iff lenp=3 & p.l=x & p2=y & p.3 ==z
Theorem FINSEQ_1:63. for p st p # ¢ holds ex q, x st p = q~ (x).

Definition
let D.

let x be Element of D.

redefine
func (x) — FinSequence of D.

(x)"p).l =x.

Definition
let D.

let S be SUBDOMAIN of D.
let x be Element of S.
redefine
func (x) — FinSequence of S.
Definition
let S be SUBDOMAIN of REAL.
let x be Element of S.
redefine
func (x) — FinSequence of S.
scheme IndSeq{P[FinSequence]}: for p holds P[p| provided A: P[¢] and B: for p,
x st P[p| holds P[p™(x)].

Theorem FINSEQ_1:64. for p, q, r, s being FinSequence st p7q =r"s & len p < len
r ex t being FinSequence st p™t =r.

Definition
let D.

func D* — DOMAIN means x € it iff x is FinSequence of D.

Theorem FINSEQ_1:65. x € D* iff x is FinSequence of D.
Theorem FINSEQ_1:66. ¢ € D*.

scheme SepSeq{D() — DOMAIN, P[FinSequence|}: ex X st (for x holds x € X iff
ex p st (p € D()* & P[p] & x = p)).
Definition
mode FinSubsequence — Function means ex k st dom it C Seg k.
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Theorem FINSEQ_1:67. f is FinSubsequence iff ex k st dom f C Seg k.
Theorem FINSEQ_1:68. for p being FinSequence holds p is FinSubsequence.

Theorem FINSEQ_1:69. for p, X holds (p[X is FinSubsequence & X|p is FinSubse-
quence).

reserve p’, ¢’ for FinSubsequence.

Definition
let X.

given k such that X C Seg k.
func Sgm X — FinSequence of NAT means rng it = X & for 1, m, k1, k2 st (1
<1& 1 <m&m < lenit & k1l =it.]l & k2 = it.m) holds k1 < k2.

Theorem FINSEQ_1:70. (ex k st X C Seg k) implies for p being FinSequence of
NAT holds (p = Sgm X iff mgp =X & for |, m, k1, k2st (1 <l&l<m& m < lenp
& k1 = p.l & k2 = p.m) holds k1 < k2).

Theorem FINSEQ_1:71. rng Sgm dom p’ = dom p'.
Definition
let p'.
func Seq p’ — FinSequence means it = p’-Sgm (dom p’).

Theorem FINSEQ_1:72. for X st ex k st X C Seg k holds Sgm X = ¢ iff X = ().



Chapter 23

FINSET 1

Finite Sets

by
Agata Darmochwal!

Warsaw University (Biatystok)

Summary. The article contains the definition of a finite set based on the notion
of finite sequence. Some theorems about properties of finite sets and finite families
of sets are proved.

The symbols used in this article are introduced in the following vocabularies: FINSEQ,
BOOLE, FAM_OP, COORD, FUNC, FUNC_REL, FINITE, NAT_1, REAL_1, and SFAMILY. The
terminology and notation used in this article have been introduced in the following articles:
TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, ORDINAL]l, MCART_1, REAL_1, NAT_1,
FINSEQ_1, and SETFAM_L.

Definition
let A be set.

pred A is finite means ex p being FinSequence st rng p = A.
reserve A, B, C, D, X, Y, Y1, Y2, Z for set.
reserve p, q for FinSequence.
reserve X, y, z, x1, x2, x3, x4, x5, x6, x7, x8, yl, y2 for Any.

reserve f, g for Function.

!Supported by RPBP.III-24.C1.
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reserve n for Nat.

Theorem FINSET 1:1. A is finite iff ex p being FinSequence st rng p = A.
Theorem FINSET_1:2. for p being FinSequence holds rng p is finite.
Theorem FINSET_1:3. Seg n is finite.

Theorem FINSET_1:4. () is finite.

Theorem FINSET_1:5. {x} is finite.

Theorem FINSET_1:6. {x, y} is finite.

Theorem FINSET_1:7. {x, y, z} is finite.

Theorem FINSET_1:8. {x1, x2, x3, x4} is finite.

Theorem FINSET_1:9. {x1, x2, x3, x4, x5} is finite.

Theorem FINSET 1:10. {x1, x2, x3, x4, x5, x6} is finite.

Theorem FINSET _1:11. {x1, x2, x3, x4, x5, x6, x7} is finite.

Theorem FINSET_1:12. {x1, x2, x3, x4, x5, x6, x7, x8} is finite.
Theorem FINSET_1:13. A C B & B is finite implies A is finite.
Theorem FINSET_1:14. A is finite & B is finite implies AUB is finite.
Theorem FINSET 1:15. A is finite implies ANB is finite & BNA is finite.
Theorem FINSET _1:16. A is finite implies A~B is finite.

Theorem FINSET_1:17. A is finite implies f.A is finite.

Theorem FINSET_1:18. A is finite implies for X being Subset-Family of A st X # ()
ex x being set st x € X & for B being set st B € X holds x C B implies B = x.

scheme Finite{A() — set, P[set]}: P[A()] provided A: A() is finite and B: P[})] and
C: for x, B being set st x € A() & B C A() & P[B] holds P[BU{x}].

Theorem FINSET _1:19. A is finite & B is finite implies [A, B] is finite.

Theorem FINSET_1:20. A is finite & B is finite & C is finite implies [A, B, C] is finite.

Theorem FINSET _1:21. A is finite & B is finite & C is finite & D is finite implies [A,
B, C, D] is finite.

Theorem FINSET_1:22. B # () & [A, B] is finite implies A is finite.

Theorem FINSET_1:23. A # () & [A, B] is finite implies B is finite.

Theorem FINSET _1:24. A is finite iff bool A is finite.

Theorem FINSET_1:25. A is finite & (for X st X € A holds X is finite) iff [JA is finite.

Theorem FINSET_1:26. dom f is finite implies rng f is finite.

Theorem FINSET_1:27. Y C rng f & f 1Y is finite implies Y is finite.



Chapter 24

DOMAIN 1

Domains and Their Cartesian Products

by
Andrzej Trybulec !
Warsaw University (Biatystok)

Summary. The article includes: theorems related to domains, theorems related
to Cartesian products presented earlier in various articles and simplified here by
substituting domains for sets and omitting the assumption that the sets involved
must not be empty. Several schemes and theorems related to Fraenkel operator are
given. We also redefine subset yielding functions such as the pair of elements of a
set and the union of two subsets of a set.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
COORD, and SUB_OP. The terminology and notation used in this article have been intro-
duced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, ORDI-
NAL1, and MCART_1.

reserve a, b, ¢, d for Any, A, B, C for set.
reserve D, X1, X2, X3, X4, Y1, Y2, Y3, Y4 for DOMAIN.

reserve x1, yl, z1 for (Element of X1), x2, y2, z2 for (Element of X2), x3, y3, z3 for
(Element of X3), x4, y4, z4 for (Element of X4).

Theorem DOMAIN_1:1. A is DOMAIN iff A # 0.
Theorem DOMAIN_1:2. D # 0.
!Supported by RPBP.III-24.C1.
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Theorem DOMAIN _1:3. a is Element of D implies a € D.

reserve Al, Bl for Subset of X1.

Theorem DOMAIN_1:4. A1 = B1¢ iff for x1 holds x1 € Al iff not x1 € B1.
Theorem DOMAIN_1:5. A1 = B1¢ iff for x1 holds not x1 € Al iff x1 € B1.
Theorem DOMAIN_1:6. Al = B1¢ iff for x1 holds not (x1 € Al iff x1 € Bl).
Theorem DOMAIN_1:7. [x1, x2] € [X1, X2].

Theorem DOMAIN_1:8. [x1, x2] is Element of [X1, X2].

Theorem DOMAIN_1:9. a € [X1, X2] implies ex x1, x2 st a = [x1, x2].
reserve x for Element of [X1, X2].

Theorem DOMAIN_1:10. x = [x3, x2].

Theorem DOMAIN_1:11. x # x; & x # x2.

Theorem DOMAIN_1:12. for x, y being Element of [X1, X2] st x; = y; & x3 = y2
holds x = y.

Theorem DOMAIN_1:13. [A, D] C [B, D] or [D, A] C [D, B] implies A C B.
Theorem DOMAIN_1:14. [X1, X2] = [A, B] implies X1 = A & X2 = B.

Definition
let X1, X2, x1, x2.

redefine
func [x1, x2] — Element of [X1, X2].
Definition
let X1, X2.
let x be Element of [X1, X2].

redefine
func x; — Element of X1.

func x9 — Element of X2.

Theorem DOMAIN_1:15. a € [X1, X2, X3] iff ex x1, x2, x3 st a = [x1, x2, x3].

Theorem DOMAIN_1:16. (for a holds a € D iff ex x1, x2, x3 st a = [x], x2, x3])
implies D = [X1, X2, X3].

Theorem DOMAIN_1:17. D = [X1, X2, X3] iff for a holds a € D iff ex x1, x2, x3 st
a = [x1, x2, x3].

Theorem DOMAIN_1:18. [X1, X2, X3] = [Y1, Y2, Y3] implies X1 = Y1 & X2 = Y2
& X3 = Y3.

reserve x, y for Element of [X1, X2, X3].
Theorem DOMAIN_1:19. x = [a, b, ¢] implies x; =a & x2 =b & x3 = c.
Theorem DOMAIN_1:20. x = [x], X2, X3].
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Theorem DOMAIN_1:21. x; = (x qua Any);; & x2 = (x qua Any);2 & x3 = (x qua
Any)s.

Theorem DOMAIN_1:22. x # x; & x # x2 & x # x3.

Theoremn DOMAIN_1:23. [x1, x2, x3] € [X1, X2, X3].

Definition
let X1, X2, X3, x1, x2, x3.

redefine
func [x1, x2, x3] — Element of [X1, X2, X3].
Definition
let X1, X2, X3.
let x be Element of [X1, X2, X3].

redefine
func x; — Element of XI1.

func xo — Element of X2.
func x3 — Element of X3.

Theorem DOMAIN_1:24. a = x; iff for x1, x2, x3 st x = [x1, x2, x3] holds a = x1.

Theorem DOMAIN_1:25. b = xy iff for x1, x2, x3 st x = [x1, x2, x3] holds b = x2.

Theorem DOMAIN_1:26. ¢ = x3 iff for x1, x2, x3 st x = [x1, x2, x3] holds ¢ = x3.

Theorem DOMAIN_1:27. [x1, x2, X3] = x.

Theorem DOMAIN_1:28. x1 = y; & X9 = y2 & x3 = y3 implies x = y.

Theorem DOMAIN_1:29. [x1, x2, x3]; = x1 & [x1, x2, x3]2 = x2 & [x1, x2, x3]3 = x3.

Theorem DOMAIN_1:30. for x being (Element of [X1, X2, X3]), y being Element of
[Y1, Y2, Y3] holds x = y implies x; = y; & x9 = y2 & x3 = y3.

Theorem DOMAIN_1:31. a € [X1, X2, X3, X4] iff ex x1, x2, x3, x4 st a = [x1, x2,
x3, x4].

Theorem DOMAIN_1:32. (for a holds a € D iff ex x1, x2, x3, x4 st a = [x1, x2, x3,
x4]) implies D = [X1, X2, X3, X4].

Theorem DOMAIN_1:33. D = [X1, X2, X3, X4] iff for a holds a € D iff ex x1, x2,
x3, x4 st a = [x1, x2, x3, x4].

reserve x, y for Element of [X1, X2, X3, X4].

Theoremn DOMAIN_1:34. [X1, X2, X3, X4] = [Y1, Y2, Y3, Y4] implies X1 = Y1 &
X2=Y2& X3 =Y3 & X4 =Y4.

Theorem DOMAIN_1:35. x = [a, b, ¢, d] implies x; =a & xo =b & x3=c & x4 =
d.

Theorem DOMAIN_1:36. x = [x1, X2, X3, X4].

Theorem DOMAIN_1:37. x; = (x qua Any)111 & x2 = (x qua Any)y12 & x3 = (x qua
Any)iz & x4 = (x qua Any)y.
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Theorem DOMAIN_1:38. x # x1 & x # X2 & x # x3 & x # x4.

Theorem DOMAIN_1:39. [x1, x2, x3, x4] € [X1, X2, X3, X4].
Definition

let X1, X2, X3, X4, x1, x2, x3, x4.

redefine

func [x1, x2, x3, x4] — Element of [X1, X2, X3, X4].

Definition

let X1, X2, X3, X4.

let x be Element of [X1, X2, X3, X4].

redefine
func x; — Element of X1.

func x9 — Element of X2.
func x3 — Element of X3.
func x4 — Element of X4.
Theorem DOMAIN_1:40. a = x; iff for x1, x2, x3, x4 st x = [x1, x2, x3, x4] holds a
= xl1.
Theorem DOMAIN_1:41. b = x5 iff for x1, x2, x3, x4 st x = [x1, x2, x3, x4] holds b
= x2.
Theorem DOMAIN_1:42. ¢ = x3 iff for x1, x2, x3, x4 st x = [x1, x2, x3, x4] holds ¢
= x3.
Theorem DOMAIN_1:43. d = x4 iff for x1, x2, x3, x4 st x = [x1, x2, x3, x4] holds d
= x4.
Theorem DOMAIN_1:44. for x being Element of [X1, X2, X3, X4] holds [xi, x2, x3,
xq4] = x.
Theorem DOMAIN_1:45. for x, y being Element of [X1, X2, X3, X4] st x; = y; &
X9 =y2 & x3 =y3 & x4 = y4 holds x = y.
Theorem DOMAIN_1:46. [x1, x2, x3, x4]; = x1 & [x1, x2, x3, x4]» = x2 & [x1, x2, x3,
x4]s = x3 & [x1, x2, x3, x4]4 = x4.
Theorem DOMAIN_1:47. for x being (Element of [X1, X2, X3, X4]), y being Element
of [Y1, Y2, Y3, Y4] holds x = y implies x; =y; & xo = y2 & x3 = y3 & x4 = yau.
reserve A2 for (Subset of X2), A3 for (Subset of X3), A4 for Subset of X4.
scheme Fraenkell{P[Any]}: for X1 holds {x1: P[x1]} is Subset of X1.
scheme Fraenkel2{P[Any, Any]}: for X1, X2 holds {[x1, x2]: P[x1, x2]} is Subset of
[X1, X2].

scheme Fraenkel3{P[Any, Any, Any|}: for X1, X2, X3 holds {[x1, x2, x3]: P[x1, x2,
x3]} is Subset of [X1, X2, X3].
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scheme Fraenkel4{P[Any, Any, Any, Any]}: for X1, X2, X3, X4 holds {[x1, x2, x3,
x4]: P[x1, x2, x3, x4]} is Subset of [X1, X2, X3, X4].

scheme Fraenkel5{P[Any], Q[Any]}: for X1 st for x1 holds P[x1] implies Q[x1]
holds {yl: Plyl]} C {zl: Q[zl]}.

scheme Fraenkel6{P[Any], Q[Any]}: for X1 st for x1 holds P[x1] iff Q[x1] holds
[yl PIy1]} = {21s QLa1]}.

Theorem DOMAIN_1:48. X1 = {x1: not contradiction}.

Theorem DOMAIN_1:49. [X1, X2] = {[x1, x2]: not contradiction}.

Theorem DOMAIN_1:50. [X1, X2, X3] = {[x1, x2, x3]: not contradiction}.

Theorem DOMAIN_1:51. [X1, X2, X3, X4] = {[x1, x2, x3, x4]: not contradiction}.

Theorem DOMAIN_1:52. Al = {x1: x1 € Al}.

Definition
let X1, X2, Al, A2.

redefine
func [A1l, A2] — Subset of [X1, X2].
Theorem DOMAIN_1:53. [A1, A2] = {[x1, x2]: x1 € Al & x2 € A2}.
Definition
let X1, X2, X3, Al, A2, A3.
redefine
func [Al, A2, A3] — Subset of [X1, X2, X3].
Theorem DOMAIN_1:54. [A1, A2, A3] = {[x1, x2, x3]: x1 € Al & x2 € A2 & x3 €
A3}.
Definition
let X1, X2, X3, X4, Al, A2, A3, A4.
redefine
func [Al, A2, A3, A4] — Subset of [X1, X2, X3, X4].
Theorem DOMAIN_1:55. [A1l, A2, A3, A4] = {[x1, x2, x3, x4]: x1 € Al & x2 € A2
& x3 € A3 & x4 € A4},
Theorem DOMAIN_1:56. () X1 = {x1: contradiction}.
Theorem DOMAIN_1:57. Al¢ = {x1: not x1 € Al}.
Theorem DOMAIN_1:58. AINB1 = {x1: x1 € Al & x1 € B1}.
Theorem DOMAIN_1:59. A1UB1 = {x1: x1 € Al or x1 € Bl1}.
Theorem DOMAIN_1:60. A1I~\B1 = {x1: x1 € Al & not x1 € Bl1}.

Theorem DOMAIN_1:61. A1-B1 = {x1: x1 € Al & not x1 € Bl or not x1 € Al &
x1 € B1}.

Theorem DOMAIN_1:62. A1-B1 = {x1: not x1 € Al iff x1 € B1}.
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Theorem DOMAIN_1:63. A1-B1 = {x1: x1 € Al iff not x1 € Bl1}.
Theorem DOMAIN_1:64. A1=B1 = {x1: not (xl € Al iff x1 € B1)}.

reserve x1, x2, x3, x4, x5, x6, x7, x8 for Element of D.

Theorem DOMAIN_1:65.
Theorem DOMAIN_1:66.
Theorem DOMAIN_1:67.
Theorem DOMAIN_1:68.
Theorem DOMAIN_1:69.
Theorem DOMAIN_1:70.
Theorem DOMAIN_1:71.
Theorem DOMAIN_1:72.

Definition
let D.

redefine
let x1 be Element of D.

{x1} is Subset of D.

{x1, x2} is Subset of D.

{x1, x2, x3} is Subset of D.

{x1, x2, x3, x4} is Subset of D.

{x1, x2, x3, x4, x5} is Subset of D.

{x1, x2, x3, x4, x5, x6} is Subset of D.

{x1, x2, x3, x4, x5, x6, x7} is Subset of D.
{x1, x2, x3, x4, x5, x6, x7, x8} is Subset of D.

func {x1} — Subset of D.

let x2 be Element of D.

func {x1, x2} — Subset of D.

let x3 be Element of D.

func {x1, x2, x3} — Subset of D.

let x4 be Element of D.

func {x1, x2, x3, x4} — Subset of D.

let x5 be Element of D.

func {x1, x2, x3, x4, x5} — Subset of D.

let x6 be Element of D.

func {x1, x2, x3, x4, x5, x6} — Subset of D.

let x7 be Element of D.

func {x1, x2, x3, x4, x5, x6, x7} — Subset of D.

let x8 be Element of D.

func {x1, x2, x3, x4, x5, x6, x7, x8} — Subset of D.

Definition
let X1, Al.

redefine

func A1¢ — Subset of X1.

let B1.
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func A1UB1 — Subset of X1.
func A1INB1 — Subset of X1.
func A1~\B1 — Subset of X1.
func A1-B1 — Subset of X1.

CHAPTER 24. DOMAIN_1



Chapter 25

FINSUB 1

Boolean Domains

by
Andrzej Trybulec !
Warsaw University (Bialystok)
Agata Darmochwat?

Warsaw University (Bialystok)

Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union and
difference. This condition is equivalent to being closed under symmetric difference
and one of the following operations: union, intersection or difference. We introduce
the set of all finite subsets of a set A, denoted by Fin A. The mode Finite Subset
of a set A is introduced with the mother type: Element of Fin A. In consequence,
“Finite Subset of ...” is an elementary type, therefore one may use such types as
“set of Finite Subset of A”, “[(Finite Subset of A), Finite Subset of A]”, and so on.
The article begins with some auxiliary theorems that belong really to BOOLE
or ORDINALI1 but are missing there. Moreover, bool A is redefined as a SET
DOMAIN, for an arbitrary set A.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
FINITE, and BOOLEDOM. The terminology and notation used in this article have been
introduced in the following articles: TARSKI, BOOLE, FUNCT_1, REAL_1, NAT_1, FINSEQ_1,
ENUMSET1, SUBSET_1, ORDINAL], MCART_1, SETFAM_1, FINSET_1, and DOMAIN_I.

!Supported by RPBP.111-24.C1.
2Supported by RPBP.III-24.C1.
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reserve X, Y for set.

Theorem FINSUB_1:1. X misses Y implies X\Y = X & Y~ X =Y.

Theorem FINSUB_1:2. X misses Y implies (XUY)\Y = X & (XUY)\X =Y.
Theorem FINSUB_1:3. XUY = X=(Y\X).

Theorem FINSUB_1:4. XUY = X=Y=XNY.

Theorem FINSUB_1:5. X\Y = X~(XNY).

Theorem FINSUB_1:6. XNY = X=-Y=(XUY).

Theorem FINSUB_1:7. (for x being set st x € X holds x € Y) implies X C Y.

Definition
let X.

redefine
func bool X — SET DOMAIN.
Theorem FINSUB_1:8. for Y being Element of bool X holds Y C X.

Definition
mode BOOLE DOMAIN — SET DOMAIN means for X, Y being Element of it
holds XUY € it & X\Y € it.

Theorem FINSUB_1:9. for A being SET DOMAIN holds A is BOOLE DOMAIN iff
for X, Y being Element of A holds XUY € A & X\Y € A.

reserve A for BOOLE DOMAIN.

Theorem FINSUB_1:10. X € A & Y € A implies XUY € A & X\Y € A.

Theorem FINSUB_1:11. X is Element of A & Y is Element of A implies XUY is
Element of A.

Theorem FINSUB_1:12. X is Element of A & Y is Element of A implies X\Y is
Element of A.

Definition
let A.

let X, Y be Element of A.

redefine
func XUY — Element of A.

func X\Y — Element of A.
Theorem FINSUB_1:13. X is Element of A & Y is Element of A implies XNY is
Element of A.

Theorem FINSUB_1:14. X is Element of A & Y is Element of A implies X+Y is
Element of A.

Theorem FINSUB_1:15. for A being SET DOMAIN st for X, Y being Element of A
holds X+-Y € A & X\Y € A holds A is BOOLE DOMAIN.
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Theorem FINSUB_1:16. for A being SET DOMAIN st for X, Y being Element of A
holds X-Y € A & XNY € A holds A is BOOLE DOMAIN.

Theorem FINSUB_1:17. for A being SET DOMAIN st for X, Y being Element of A
holds X+-Y € A & XUY € A holds A is BOOLE DOMAIN.

Definition
let A.

let X, Y be Element of A.

redefine
func XNY — Element of A.

func X=Y — Element of A.

Theorem FINSUB_1:18. f € A.
Theorem FINSUB_1:19. () is Element of A.
Theorem FINSUB_1:20. bool A is BOOLE DOMAIN.

Theorem FINSUB_1:21. for A, B being BOOLE DOMAIN holds ANB is BOOLE
DOMAIN.

reserve A, B, P for set.
reserve x, y for Any.

Definition
let A.

func Fin A — BOOLE DOMAIN means for X being set holds X € it iff X C
A & X is finite.

Theorem FINSUB_1:22. B € Fin A iff B C A & B is finite.
Theorem FINSUB_1:23. A C B implies Fin A C Fin B.
Theorem FINSUB_1:24. Fin (ANB) = Fin ANFin B.
Theorem FINSUB_1:25. Fin AUFin B C Fin (AUB).
Theorem FINSUB_1:26. Fin A C bool A.

Theorem FINSUB_1:27. A is finite implies Fin A = bool A.
Theorem FINSUB_1:28. Fin () = {0}.

Definition
let A.

mode Finite Subset of A — Element of Fin A means not contradiction.
Theorem FINSUB_1:29. for X being Element of Fin A holds X is Finite Subset of A.

Definition
let A.

let X, Y be Finite Subset of A.
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redefine
func XUY — Finite Subset of A.

func XNY — Finite Subset of A.
func X\Y — Finite Subset of A.
func X=Y — Finite Subset of A.

Theorem FINSUB_1:30. for X being Finite Subset of A holds X is finite.
Theorem FINSUB_1:31. for X being Finite Subset of A holds X C A.

Theorem FINSUB_1:32. for X being Finite Subset of A holds X is Subset of A.
Theorem FINSUB_1:33. ) is Finite Subset of A.

Theorem FINSUB_1:34. A is finite implies for X being Subset of A holds X is Finite
Subset of A.



Chapter 26

INCSP 1

Axioms of Incidency

by
Wojciech A. Trybulec !

Warsaw University

Summary. This text is a translation into Mizar of a small part of Foundations
of Geometry by K. Borsuk and W. Szmielew related to the axioms of incidency.
(Remark: The fourth axiom of incidency is weakened in this text. In the source
text it has the form: for any plane there exist three non-collinear points in the
plane and in this text: for any plane there exists one point in the plane. The
original axiom is proved in the text.) The article includes: theorems concerning
collinearity of points and coplanarity of points and lines, basic theorems concerning
lines and planes, fundamental existence theorems, theorems concerning intersection
of lines and planes.

The symbols used in this article are introduced in the following vocabularies: INCSP_1,
BOOLE, and RELATION. The terminology and notation used in this article have been
introduced in the following articles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, RELAT_1,
MCART_1, DOMAIN_1, and RELSET_1.

struct IncStruct ((Points, Lines, Planes — DOMAIN, Incl1 — (Relation of the Points,
the Lines), Inc2 — (Relation of the Points, the Planes), Inc3 — Relation of the Lines, the
Planes)).

!Supported by RPBP.III-24.C1.
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Definition
let S be IncStruct.

mode POINT of S — Element of the Points of S means not contradiction.
mode LINE of S — Element of the Lines of S means not contradiction.

mode PLANE of S — Element of the Planes of S means not contradiction.

reserve S for IncStruct.

reserve A for Element of the Points of S.
reserve L for Element of the Lines of S.
reserve P for Element of the Planes of S.
Theorem INCSP_1:1. A is POINT of S.
Theorem INCSP_1:2. L is LINE of S.
Theorem INCSP_1:3. P is PLANE of S.
reserve A, B, C, D, E for POINT of S.
reserve K, L, L1, L2 for LINE of S.
reserve P, P1, P2, Q for PLANE of S.
reserve F, G for Subset of the Points of S.

Definition
let S.

let A be (POINT of S), L be LINE of S.
pred A on L means [A, L] € the Incl of S.
Definition
let S.
let A be (POINT of S), P be PLANE of S.
pred A on P means [A, P] € the Inc2 of S.
Definition
let S.
let L be (LINE of S), P be PLANE of S.
pred L on P means [L, P| € the Inc3 of S.
Definition
let S.
let F be (set of POINT of S), L be LINE of S.
pred F on L means for A being POINT of S st A € F holds A on L.
Definition
let S.
let ' be (set of POINT of S), P be PLANE of S.
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pred F on P means for A st A € F holds A on P.
Definition
let S.
let F be set of POINT of S.
pred F is collinear means ex L st F on L.
Definition
let S.
let F be set of POINT of S.
pred F is coplanar means ex P st F on P.

Theorem INCSP_1:4. A on L iff [A, L] € the Incl of S.

Theorem INCSP_1:5. A on P iff [A, P] € the Inc2 of S.

Theorem INCSP_1:6. L on P iff [L, P] € the Inc3 of S.

Theorem INCSP_1:7. F on L iff for A st A € F holds A on L.
Theorem INCSP_1:8. F on P iff for A st A € F holds A on P.
Theorem INCSP_1:9. F is collinear iff ex L st F on L.

Theorem INCSP_1:10. F is coplanar iff ex P st F on P.

Theorem INCSP_1:11. {A, B} on Liff AonL & B on L.

Theorem INCSP_1:12. {A, B, C}onLiff AonL & BonL & Con L.
Theorem INCSP_1:13. {A, B} on P iff Aon P & B on P.

Theorem INCSP_1:14. {A, B, C} onPiff AonP & Bon P & Con P.
Theorem INCSP_1:15. {A, B, C,D} onPiff AonP & BonP & ConP & D on P.
Theorem INCSP_1:16. G C F & F on L implies G on L.

Theorem INCSP_1:17. G C F & F on P implies G on P.

Theorem INCSP_1:18. F on L & A on L iff FU{A} on L.

Theorem INCSP_1:19. F on P & A on P iff FU{A} on P.

Theorem INCSP_1:20. FUG on Liff F on L & G on L.

Theorem INCSP_1:21. FUG on P iff F on P & G on P.

Theorem INCSP_1:22. G C F & F is collinear implies G is collinear.
Theorem INCSP_1:23. G C F & F is coplanar implies G is coplanar.

Definition

mode IncSpace — IncStruct means (for L being LINE of it ex A, B being
POINT of it st A # B & {A, B} on L) & (for A, B being POINT of it ex L being LINE
of it st {A, B} on L) & (for A, B being (POINT of it), K, L being LINE of it st A # B
& {A, B} on K & {A, B} on L holds K = L) & (for P being PLANE of it ex A being
POINT of it st A on P) & (for A, B, C being POINT of it ex P being PLANE of it st
{A, B, C} on P) & (for A, B, C being (POINT of it), P, Q being PLANE of it st not
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{A, B, C} is collinear & {A, B, C} on P & {A, B, C} on Q holds P = Q) & (for L being
(LINE of it), P being PLANE of it st ex A, B being POINT of it st A # B & {A, B}
on L & {A, B} on P holds L on P) & (for A being (POINT of it), P, Q being PLANE
ofit st Aon P & A on Q ex B being POINT of it st AAB & BonP & Bon Q) & (ex
A, B, C, D being POINT of it st not {A, B, C, D} is coplanar) & (for A being (POINT
of it), L being (LINE of it), P being PLANE of it st A on L & L on P holds A on P).

Theorem INCSP_1:24. (for L being LINE of S ex A, B being POINT of Sst A # B
& {A, B} on L) & (for A, B being POINT of S ex L being LINE of S st {A, B} on L)
& (for A, B being (POINT of S), K, L being LINE of Sst A # B & {A, B} on K & {A,
B} on L holds K = L) & (for P being PLANE of S ex A being POINT of S st A on P)
& (for A, B, C being POINT of S ex P being PLANE of S st {A, B, C} on P) & (for A,
B, C being (POINT of S), P, Q being PLANE of S st not {A, B, C} is collinear & {A, B,
C}on P & {A, B, C} on Q holds P = Q) & (for L being (LINE of S), P being PLANE
of S st ex A, B being POINT of Sst A # B & {A, B} on L & {A, B} on P holds L on
P) & (for A being (POINT of S), P, Q being PLANE of Sst Aon P & A on Q ex B
being POINT of Sst A B & Bon P & Bon Q) & (ex A, B, C, D being POINT of S
st not {A, B, C, D} is coplanar) & (for A being (POINT of S), L being (LINE of S), P
being PLANE of S st A on L & L on P holds A on P) implies S is IncSpace.

reserve S for IncSpace.

reserve A, B, C, D, E for POINT of S.

reserve K, L, L1, L2 for LINE of S.

reserve P, P1, P2, Q for PLANE of S.

reserve F for Subset of the Points of S.

Theorem INCSP_1:25. ex A, Bst A # B & {A, B} on L.

Theorem INCSP_1:26. ex L st {A, B} on L.

Theorem INCSP_1:27. A # B & {A, B} on K & {A, B} on L implies K = L.

Theorem INCSP_1:28. ex A st A on P.

Theorem INCSP_1:29. ex P st {A, B, C} on P.

Theorem INCSP_1:30. not {A, B, C} is collinear & {A, B, C} on P & {A, B, C} on Q
implies P = Q.

Theorem INCSP_1:31. (ex A,Bst A # B & {A, B} onL & {A, B} on P) implies L
on P.

Theorem INCSP_1:32. A on P & A on Q implies (ex Bst A #B & Bon P & B on
Q).

Theorem INCSP_1:33. ex A, B, C, D st not {A, B, C, D} is coplanar.

Theorem INCSP_1:34. A on L & L on P implies A on P.

Theorem INCSP_1:35. F on L & L on P implies F on P.

Theorem INCSP_1:36. {A, A, B} is collinear.
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Theorem INCSP_1:37. {A, A, B, C} is coplanar.
Theorem INCSP_1:38. {A, B, C} is collinear implies {A, B, C, D} is coplanar.

Theorem INCSP_1:39. A # B & {A, B} on L & not C on L implies not {A, B, C}
is collinear.

Theorem INCSP_1:40. not {A, B, C} is collinear & {A, B, C} on P & not D on P
implies not {A, B, C, D} is coplanar.
Theorem INCSP_1:41. not (ex P st K on P & L on P) implies K # L.

Theorem INCSP_1:42. not (ex Pst Lon P & L1 on P & L2 on P) & (ex A st A on
L & A on L1 & A on L2) implies L # L1.

Theorem INCSP_1:43. L1 on P & L2 on P & not L on P & L1 # L2 implies not (ex
QstLonQ&LlonQ&L2on Q).

Theorem INCSP_1:44. ex P st Aon P & L on P.

Theorem INCSP_1:45. (ex A st A on K & A on L) implies (ex P st Kon P & L on
P).

Theorem INCSP_1:46. A # B implies ex L st for K holds {A, B} on K iff K = L.

Theorem INCSP_1:47. not {A, B, C} is collinear implies ex P st for Q holds {A, B,
C}on Qiff P = Q.

Theorem INCSP_1:48. not A on L implies ex P st for Q holds A on Q & L on Q
iff P = Q.

Theorem INCSP_1:49. K # L & (ex A st A on K & A on L) implies ex P st for Q
holds Kon Q & Lon Qiff P = Q.

Definition
let S.

let A, B.
assume A # B.
func Line (A, B) — LINE of S means {A, B} on it.
Definition
let S.
let A, B, C.
assume not {A, B, C} is collinear.
func Plane (A, B, C) — PLANE of S means {A, B, C} on it.
Definition
let S.
let A, L.
assume not A on L.
func Plane (A, L) — PLANE of S means A on it & L on it.
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Definition
let S.

let K, L.
assume that K # L
func Plane (K,

Theorem INCSP_1:50
Theorem INCSP_1:51

Theorem INCSP_1:52.

Q).

Theorem INCSP_1:53.

(A, B, Q).

Theorem INCSP_1:54.
Theorem INCSP_1:55.
Theorem INCSP_1:56.

L) & L on Plane (K, L).

Theorem INCSP_1:57.
Theorem INCSP_1:58.

C, B).

Theorem INCSP_1:59.

A, Q).

Theorem INCSP_1:60.

C, A).

Theorem INCSP_1:61.

A, B).

Theorem INCSP_1:62.

B, A).
Theorem INCSP_1:63
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and (ex A st Aon K & A on L).
L) — PLANE of S means K on it & L on it.

. A # B implies {A, B} on Line (A, B).

. A # B & {A, B} on K implies K = Line (A, B).

not {A, B, C} is collinear implies {A, B, C} on Plane (A, B,
not {A, B, C} is collinear & {A, B, C} on Q implies Q = Plane

not A on L implies A on Plane (A, L) & L on Plane (A, L).
not AonL & Aon Q & L on QQ implies Q = Plane (A, L).
K#L & (ex Ast Aon K & A on L) implies K on Plane (K,

A # B implies Line (A, B) = Line (B, A).
not {A, B, C} is collinear implies Plane (A, B, C) = Plane (A,

not {A, B, C} is collinear implies Plane (A, B, C) = Plane (B,
not {A, B, C} is collinear implies Plane (A, B, C) = Plane (B,
not {A, B, C} is collinear implies Plane (A, B, C) = Plane (C,
not {A, B, C} is collinear implies Plane (A, B, C) = Plane (C,

.K#L& (ex Ast Aon K& AonL) & Kon Q & Lon Q

implies Q = Plane (K, L).

Theorem INCSP_1:64
Plane (L, K).

Theorem INCSP_1:65

Theorem INCSP_1:66
= Line (A, C).

Theorem INCSP_1:67
Line (A, B)).

Theorem INCSP_1:68
B, C, D} is coplanar.

.K#L& (ex Ast AonK & A on L) implies Plane (K, L) =

. A # B & Con Line (A, B) implies {A, B, C} is collinear.
. A#B&A#C&{A, B, C} is collinear implies Line (A, B)

. not {A, B, C} is collinear implies Plane (A, B, C) = Plane (C,

. not {A, B, C} is collinear & D on Plane (A, B, C) implies {A,



Theorem INCSP_1:69.
Plane (A, B, C).

Theorem INCSP_1:70.
(Line (A, B), Line (A, C)).

Theorem INCSP_1:71.
Theorem INCSP_1:72.
Theorem INCSP_1:73.
Theorem INCSP_1:74.

Theorem INCSP_1:75.
is coplanar.

Theorem INCSP_1:76.
Theorem INCSP_1:77.
Theorem INCSP_1:78.
Theorem INCSP_1:79.
Theorem INCSP_1:80.
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not ConL & {A, B} on L & A # B implies Plane (C, L) =
not {A, B, C} is collinear implies Plane (A, B, C) = Plane

ex A, B, Cst {A, B, C} on P & not {A, B, C} is collinear.
ex A, B, C,D st AonP &not {A, B, C, D} is coplanar.
exBst A#B & BonlL.

A # B implies ex C st C on P & not {A, B, C} is collinear.
not {A, B, C} is collinear implies ex D st not {A, B, C, D}

ex B, Cst {B, C} on P & not {A, B, C} is collinear.

A # B implies (ex C, D st not {A, B, C, D} is coplanar).
ex B, C, D st not {A, B, C, D} is coplanar.

ex Lstnot AonL & L on P.

A on P implies (ex L, L1, L2 st L1 # L2 & L1 on P & L2 on

P&notLonP & AonL & A on Ll & A on L2).

Theorem INCSP_1:81.

ex L, L1, L2st AonL & AonLl & A on L2 & not (ex P st

LonP & LlonP & L2on P).

Theorem INCSP_1:82.
Theorem INCSP_1:83.
Theorem INCSP_1:84.
Theorem INCSP _1:85.
Theorem INCSP _1:86.
Theorem INCSP_1:87.
Theorem INCSP_1:88.

ex P st AonP & not L on P.

ex Ast Aon P & not AonL.

ex K st not (ex Pst Lon P & Kon P).

exP, QstP#AQ&LonP &LonQ.

K #L & {A, B} on K & {A, B} on L implies A = B.

not Lon P & {A, B} on L & {A, B} on P implies A = B.
P # Q implies not (ex A st A on P & A on Q) or (ex L st

for B holds Bon P & B on Q iff B on L).



Chapter 27

LATTICES

Introduction to Lattice Theory

by
Stanistaw Zukowski

Warsaw University (Biatystok)

Summary. A lattice is defined as an algebra on a nonempty set with binary
operations join and meet which are commutative and associative, and satisfy the
absorption identities. The following kinds of lattices are considered: distributive,
modular, bounded (with zero and unit elements), complemented, and Boolean (with
complement). The article includes also theorems which immediately follow from
definitions.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
COORD, FUNC, SUB_OP, BINOP, FUNC_REL, BOOLEDOM, and LATTICES. The terminology
and notation used in this article have been introduced in the following articles: TARSKI,
BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, MCART_1, DOMAIN_1, FUNCT_2, BINOP_1, FIN-
SET_1, and FINSUB_1.

scheme BooleDomBinOpLambda{A() — BOOLE DOMAIN, O((Element of A()), Ele-
ment of A()) — Element of A()}: ex o being BinOp of A() st for a, b being Element of
A() holds o.(a, b) = O(a, b).

struct LattStr (L carrier — DOMAIN, L join, L meet — BinOp of the L carrier)).

reserve G for LattStr.

!Supported by RPBP.III-24.C1.
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reserve p, q, r for Element of the L carrier of G.

Definition
let G, p, q.

func plUq — Element of the L carrier of G means it = (the L join of G).(p, q).
func prfgq — Element of the L carrier of G means it = (the L meet of G).(p,

q)-
Theorem LATTICES:1. pUq = (the L join of G).(p, q).
Theorem LATTICES:2. plfq = (the L meet of G).(p, q).
Definition

let G, p, g.
pred p C q means plLiq = q.
Theorem LATTICES:3. p C q iff plq = q.

Definition

mode Lattice — LattStr means (for a, b being Element of the L carrier of it
holds allb = bUa) & (for a, b, ¢ being Element of the L carrier of it holds all(bLic) =
(allb)uc) & (for a, b being Element of the L carrier of it holds (anb)Ub = b) & (for a,
b being Element of the L carrier of it holds arlb = blla) & (for a, b, ¢ being Element of
the L carrier of it holds ar(brc) = (alb)Mc) & (for a, b being Element of the L carrier
of it holds ar(allb) = a).

Theorem LATTICES:4. (for p, q holds pLiq = qUp) & (for p, q, r holds pU(qLr) =
(pUqg)ur) & (for p, q holds (prq)lUq = q) & (for p, q holds pfq = qp) & (for p, q, r
holds pri(qrr) = (pMq)Mr) & (for p, q holds pr(pUq) = p) implies G is Lattice.

reserve L for Lattice.

reserve a, b, c, cl, c2 for Element of the L carrier of L.

Theorem LATTICES:5. allb = bla.

Theorem LATTICES:6. allb = blMa.

Theorem LATTICES:7. all(blUc¢) = (alb)Uc.

Theorem LATTICES:8. ar(bric) = (arnb)c.

Theorem LATTICES:9. (arb)Ub = b & bU(alb) = b & bU(bMa) = b & (bMa)Lb =

Theorem LATTICES:10. al(allb) = a & (alb)Ma = a & (bUa)Ma = a & all(bla) =
a.
Definition
mode D Lattice — Lattice means for a, b, c being Element of the L carrier of
it holds an(bUc) = (anb)U(allc).

Theorem LATTICES:11. (for a, b, ¢ holds af(bUc) = (amb)U(allc)) implies L is D
Lattice.
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Definition
mode M Lattice — Lattice means for a, b, c being Element of the L carrier of
it st a C ¢ holds all(blMc) = (alb)Mc.

Theorem LATTICES:12. (for a, b, ¢ st a C ¢ holds aU(bMc) = (alb)Mc) implies L
is M Lattice.
Definition
mode 0 Lattice — Lattice means ex c being Element of the L carrier of it st
for a being Element of the L carrier of it holds cMa = c.
Theorem LATTICES:13. (ex c st for a holds cMa = c) implies L is 0 Lattice.

Definition
mode 1 Lattice — Lattice means ex ¢ being Element of the L carrier of it st
for a being Element of the L carrier of it holds clla = c.
Theorem LATTICES:14. (ex ¢ st for a holds cla = ¢) implies L is 1 Lattice.
Definition
mode 01 Lattice — Lattice means it is 0 Lattice & it is 1 Lattice.
Theorem LATTICES:15. (L is 0 Lattice & L is 1 Lattice) implies L is 01 Lattice.

Definition
let L.

assume ex ¢ st for a holds cMa = c.
func LL — Element of the L carrier of L means itMa = it.
Definition
let L be 0 Lattice.
redefine
func LL — Element of the L carrier of L.
Definition
let L.
assume ex ¢ st for a holds cla = c.
func TL — Element of the L carrier of L means itlLla = it.
Definition
let L be 1 Lattice.
redefine
func TL — Element of the L carrier of L.
Definition
let L be 01 Lattice.

redefine
func LL — Element of the L carrier of L.
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func TL — Element of the L carrier of L.
Definition
let L, a, b.
assume L is 01 Lattice.
pred a is a complement b means allb = TL & alb = LL.
Definition

mode C Lattice — 01 Lattice means for b being Element of the L carrier of it
ex a being Element of the L carrier of it st a is a complement b.

Definition
mode B Lattice — C Lattice means it is D Lattice.
Theorem LATTICES:16. allb = b iff allb = a.
Theorem LATTICES:17. alla = a.
Theorem LATTICES:18. alla = a.

Theorem LATTICES:19. for L holds (for a, b, ¢ holds all(blic) = (alb)U(allc)) iff
(for a, b, ¢ holds all(brc) = (allb)M(allc)).

Theorem LATTICES:20. a C b iff allb = b.

Theorem LATTICES:21. a T b iff arlb = a.

Theorem LATTICES:22. a C allb.

Theorem LATTICES:23. arb C a.

Theorem LATTICES:24. a C a.

Theorem LATTICES:25. a C b & b C ¢ implies a C c.
Theorem LATTICES:26. a C b & b C a implies a = b.
Theorem LATTICES:27. a C b implies al'lc C bllc.
Theorem LATTICES:28. a C b implies clla C clb.

Theorem LATTICES:29. (for a, b, ¢ holds (arb)u(brc)U(cMa) = (alb)r(bLic)m
(cUa)) implies L is D Lattice.

reserve L for D Lattice.
reserve a, b, c for Element of the L carrier of L.

Theorem LATTICES:30. for L holds (for a, b, ¢ holds all(bUc) = (alb)U(allc)) &
(for a, b, ¢ holds (bUc)Ma = (bMa)U(cMa)).

Theorem LATTICES:31. for L holds (for a, b, ¢ holds al(blMc) = (aUb)M(alc)) &
(for a, b, ¢ holds (brc)Ua = (bUa)M(cla)).

Theorem LATTICES:32. cMa = clMb & cla = cUb implies a = b.
Theorem LATTICES:33. allc = bllc & allc = bUc implies a = b.
Theorem LATTICES:34. (allb)M(bUc)M(cla) = (alb)U(bMc)U(cMa).



150 CHAPTER 27. LATTICES

Theorem LATTICES:35. L is M Lattice.

reserve L for M Lattice.

reserve a, b, ¢ for Element of the L carrier of L.
Theorem LATTICES:36. a C ¢ implies all(bMc) = (allb)Mc.
Theorem LATTICES:37. ¢ C a implies all(blUc) = (alb)Uc.
reserve L for 0 Lattice.

reserve a, b, c for Element of the L carrier of L.
Theorem LATTICES:38. ex c st for a holds clMa = c.
Theorem LATTICES:39. 1 LUa = a & alllLL = a.
Theorem LATTICES:40. 1LMa = LL & allL = LL.
Theorem LATTICES:41. LL C a.

reserve L for 1 Lattice.

reserve a, b, c for Element of the L carrier of L.
Theorem LATTICES:42. ex c st for a holds clla = c.
Theorem LATTICES:43. TLMa = a & allTL = a.
Theorem LATTICES:44. TLUa = TL & alUTL = TL.
Theorem LATTICES:45. a T TL.

reserve L for C Lattice.

reserve a, b, c for Element of the L carrier of L.
Theorem LATTICES:46. ex a st a is a complement b.
reserve L for Lattice.

reserve a, b, ¢ for Element of the L carrier of L.

Definition
let L.

let x be Element of the L carrier of L.
assume L is B Lattice.
func x¢ — Element of the L carrier of . means it is a complement x.
Definition
let L be B Lattice.
let x be Element of the L carrier of L.
redefine
func x® — Element of the L carrier of L.
reserve L for B Lattice.
reserve a, b, c for Element of the L carrier of L.
Theorem LATTICES:47. a‘Ma = 1L & ala® = LL.



Theorem LATTICES:48.
Theorem LATTICES:49.
Theorem LATTICES:50.
Theorem LATTICES:51.
Theorem LATTICES:52.
Theorem LATTICES:53.

a‘la = TL & alJa® = TL.
aCC
(alb)¢ = a‘LIb®.
(aldb)¢ = a‘r1b®.
bMa = LL iff b C a“.

a C b implies b® C a“.

= a.
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Chapter 28

PRE TOPC

Topological Spaces and Continuous Functions

by
Beata Padlewska !
Warsaw University (Biatystok)
Agata Darmochwal?

Warsaw University (Biatystok)

Summary. The article contains a definition of topological space. The following
notions are defined: point of topological space, subset of topological space, subspace
of topological space, and continuous function.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
FUNC, FUNC_REL, REAL_1, SUB_OP, FAM_OP, SFAMILY, and TOPCON. The terminology
and notation used in this article have been introduced in the following articles: TARSKI,
BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, ORDINAL], MCART_1, DOMAIN_1, FUNCT_2, and
SETFAM_1.

struct TopStruct {(carrier - DOMAIN, topology — Subset-Family of the carrier)).
reserve T for TopStruct.

reserve p, q for Subset of the carrier of T.

!Supported by RPBP.III-24.C1.
2Supported by RPBP.IT1-24.C1.
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reserve x for Any.

Definition

mode TopSpace — TopStruct means () € the topology of it & the carrier of it
€ the topology of it & (for a being Subset-Family of the carrier of it st a C the topology
of it holds Ja € the topology of it) & (for a, b being Subset of the carrier of it st a €
the topology of it & b € the topology of it holds anb € the topology of it).

Theorem PRE_TOPC:1. () € the topology of T & the carrier of T € the topology of
T & (for a being Subset-Family of the carrier of T st a C the topology of T holds Ja €
the topology of T) & (for p, q being Subset of the carrier of T st p € the topology of
T & q € the topology of T holds pNq € the topology of T)) implies T is TopSpace.

reserve T, S, GX, GY for TopSpace.

Definition
let T.

mode Point of T — Element of the carrier of T means not contradiction.

Theorem PRE_TOPC:2. for x being Element of the carrier of T holds x is Point of
T.

Definition
let T.

mode Subset of T — set of Point of T' means not contradiction.

Theorem PRE_TOPC:3. for P being Subset of the carrier of T holds P is Subset of
T.

reserve P, Q, R for Subset of T.
reserve p, ¢, r for Point of T.

Definition
let T.

mode Subset-Family of T' — Subset-Family of the carrier of T' means not con-
tradiction.

Theorem PRE_-TOPC:4. for F being Subset-Family of the carrier of T holds F is
Subset-Family of T.
reserve F for Subset-Family of T.

scheme SubFamEx1{A() — TopSpace, P[Subset of A()]}: ex F being Subset-Family
of A() st for B being Subset of A() holds B € F iff P[B].

Theorem PRE_TOPC:5. () € the topology of T.
Theorem PRE_TOPC:6. the carrier of T € the topology of T.

Theorem PRE_TOPC:7. for a being Subset-Family of T st a C the topology of T
holds | Ja € the topology of T.
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Theorem PRE_TOPC:8. P € the topology of T & Q € the topology of T implies
PNQ € the topology of T.

Definition
let T.

func ()(T) — Subset of T means it = () the carrier of T.
func Q(T) — Subset of T means it = Qthe carrier of T.

Theorem PRE_TOPC:9. () T = ) the carrier of T.
Theorem PRE_TOPC:10. QT = Qthe carrier of T.
Theorem PRE_TOPC:11. §(T) = 0.

Theorem PRE_TOPC:12. Q(T) = the carrier of T.

Definition
let T, P.

func P¢ — Subset of T means it = P¢.
Definition
let T, P, Q.

redefine
func PUQ — Subset of T.

func PNQ — Subset of T.
func P~.Q — Subset of T.
func P=Q — Subset of T.

Theorem PRE_TOPC:13.
Theorem PRE_TOPC:14.
Theorem PRE_TOPC:15.

Theorem PRE_TOPC:16.

Theorem PRE_TOPC:17.
Theorem PRE_TOPC:18.
Theorem PRE_TOPC:19.
Theorem PRE_TOPC:20.
Theorem PRE_TOPC:21.
Theorem PRE_TOPC:22.
Theorem PRE_TOPC:23.
Theorem PRE_TOPC:24.
Theorem PRE_TOPC:25.
Theorem PRE_TOPC:26.

p € T).

P C Q(T).

PNQ(T) = P.

for A being set holds A C Q(T) implies A is Subset of

P¢ = Q(T)\P.

PUP® = Q(T).

P C Qiff Q° C P“.

P = P

P C Q°iff PNQ = 0.

Q(T)N((T)\P) = P.

P # Q(T) iff Q(T)\P # 0.

Q(T)\P = Q implies Q(T) = PUQ.

Q(T) = PUQ & PNQ = 0 implies Q = Q(T)\P.
PNP¢ = §(T).
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Theorem PRE_TOPC:27. (T) = (§ T)-.
Theorem PRE_TOPC:28. P~\Q = PNQ°.
Theorem PRE_TOPC:29. P = Q implies Q(T)~\P = Q(T)\Q.

Definition
let T, P.

pred P is open means P € the topology of T.
Theorem PRE_TOPC:30. P is open iff P € the topology of T.

Definition
let T, P.

pred P is closed means Q(T)\P is open.

Theorem PRE_TOPC:31. P is closed iff Q(T)\P is open.

Definition
let T, P.

pred P is open closed means P is open & P is closed.

Theorem PRE_TOPC:32. P is open closed iff P is open & P is closed.

Definition
let T, F.

redefine
func JF — Subset of T.

Definition
let T, F.
redefine
func (F — Subset of T.
Definition
let T, F.
pred F is a cover of T means Q(T) = JF.

Theorem PRE_TOPC:33. F is a cover of T iff Q(T) = |JF.

Definition
let T.
mode SubSpace of T — TopSpace means 2(it) C Q(T) & for P being Subset
of it holds P € the topology of it iff ex Q being Subset of T st Q € the topology of T
& P = QNQ(it).
Theorem PRE_TOPC:34. (Q(S) C Q(T) & for P being Subset of S holds P € the

topology of S iff ex Q being Subset of T st Q € the topology of T & P = QNQ(S))
implies S is SubSpace of T.
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Theorem PRE_TOPC:35. for V being SubSpace of T holds (V) C Q(T) & for P
being Subset of V holds P € the topology of V iff ex Q being Subset of T st Q € the
topology of T & P = QNQ(V).

Definition
let T, P.
assume P # ()(T).
func T|P — SubSpace of T means Q(it) = P & ((it) = 0.
Theorem PRE_TOPC:36. P # ()(T) implies Q(T[P) =P & O(T|P) = 0.
Definition
let T, S.
mode map of T, S — Function of (the carrier of T), (the carrier of S) means
not contradiction.

Theorem PRE_TOPC:37. for f being Function of the carrier of T, the carrier of S
holds f is map of T, S.

reserve f, g for map of T, S.

reserve P1, Q1, R1 for Subset of S.

Definition
let T, S, f, P.
redefine
func f.P — (Subset of S).
Definition
let T, S, f, P1.
redefine
func f~'P1 — (Subset of T).
Definition
let T, S, f.
pred f is continuous means for P1 holds P1 is closed implies f 'P1 is closed.

Theorem PRE_TOPC:38. f is continuous iff (for P1 holds P1 is closed implies f~'P1

is closed).

scheme TopAbstr{A() — TopSpace, P[Point of A()]}: ex P being Subset of A() st
for x being Point of A() holds x € P iff P[x].

Theorem PRE_TOPC:39. for X' being SubSpace of GX for A being Subset of X’
holds A is Subset of GX.

Theorem PRE_TOPC:40. for A being (Subset of GX), x being Any st x € A holds
x is Point of GX.

Theorem PRE_TOPC:41. for A being Subset of GX st A # ()(GX) ex x being Point
of GX st x € A.
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Theorem PRE_TOPC:42. (GX) is closed.

Theorem PRE_TOPC:43. for X' being (SubSpace of GX), B being Subset of X'
holds B is closed iff ex C being Subset of GX st C is closed & CN(Q(X')) = B.

Theorem PRE_TOPC:44. for F being Subset-Family of GX st F # () & for A being
Subset of GX st A € F holds A is closed holds [F is closed.

Definition
let GX be TopSpace, A be Subset of GX.

func CI A — Subset of GX means for p being Point of GX holds p € it iff
for G being Subset of GX st G is open holds p € G implies ANG # 0(GX).
Theorem PRE_TOPC:45. for A being (Subset of GX), p being Point of GX holds
p € Cl A iff for C being Subset of GX st C is closed holds (A C C implies p € C).

Theorem PRE_TOPC:46. for A being (Subset of GX) ex F being Subset-Family of
GX st (for C being Subset of GX holds C € F iff Cis closed & A C C) & CI A = F.

Theorem PRE_TOPC:47. for X' being (SubSpace of GX), A being (Subset of GX),
Al being Subset of X’ st A = Al holds Cl A1 = (Cl A)N(Q(X")).

Theorem PRE_TOPC:48. for A being Subset of GX holds A C Cl A.
Theorem PRE_TOPC:49. for A, B being Subset of GX st A C B holds CI A C CI B.
Theorem PRE_TOPC:50. for A, B being Subset of GX holds Cl (AUB) = Cl AUCI

Theorem PRE_TOPC:51. for A, B being Subset of GX holds Cl (ANB) C (Cl A)NCl

Theorem PRE_TOPC:52. for A being Subset of GX holds A is closed iff CI| A = A.

Theorem PRE_TOPC:53. for A being Subset of GX holds A is open iff Cl (Q2(GX)
NA) = Q(GX)NA.

Theorem PRE_TOPC:54. for A being (Subset of GX), p being Point of GX holds p
€ Cl A iff for G being Subset of GX st G is open holds p € G implies ANG # ((GX).
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TOPS 1

Subsets of a Topological Space

by
Mirostaw Wysocki !
Warsaw University (Biatystok)
Agata Darmochwal?

Warsaw University (Biatystok)

Summary. The article contains some theorems about open and closed sets. The
following topological operations on sets are defined: closure, interior and frontier.
The following notions are introduced: dense set, boundary set, nowheredense set
and set being domain (closed domain and open domain), and some basic facts
concerning them are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
FUNC, FUNC_REL, REL_REL, REAL_1l, SUB_OP, FAM_OP, SFAMILY, TOPCON, and TOP1. The
terminology and notation used in this article have been introduced in the following arti-
cles: TARSKI, BOOLE, ENUMSET1, SUBSET_1, FUNCT_1, ORDINAL1, MCART_1, DOMAIN_1,
FUNCT_2, SETFAM_1, and PRE_TOPC.

reserve TS for TopSpace.

reserve x for Any.

!Supported by RPBP.III-24.C1.
2Supported by RPBP.IT1-24.C1.
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reserve X, Y, Z for

reserve P, Q, G for
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set.
Subset of T'S.

reserve p for Point of T'S.

Theorem TOPS_1:1.

Theorem TOPS_1:2.

Theorem TOPS_1:3.

Theorem TOPS_1:4.

Theorem TOPS_1:5.

Theorem TOPS_1:6.

Theorem TOPS_1:7.

Theorem TOPS_1:8.

Theorem TOPS_1:9.

Theorem TOPS_1:10.
Theorem TOPS_1:11.
Theorem TOPS_1:12.
Theorem TOPS_1:13.
Theorem TOPS_1:14.
Theorem TOPS_1:15.
Theorem TOPS_1:16.
Theorem TOPS_1:17.
Theorem TOPS_1:18.
Theorem TOPS_1:19.
Theorem TOPS_1:20.
Theorem TOPS_1:21.
Theorem TOPS_1:22.
Theorem TOPS_1:23.
Theorem TOPS_1:24.
Theorem TOPS_1:25.
Theorem TOPS_1:26.
Theorem TOPS_1:27.
Theorem TOPS_1:28.
Theorem TOPS_1:29.
Theorem TOPS_1:30.
Theorem TOPS_1:31.
Theorem TOPS_1:32.

x € P implies x is Point of TS.

PUQTS = QTS & QTSUP = QTS.
PNOQTS =P & QTSNP = P.

PN TS =0 TS & ) TSNP = § TS.

P¢ = QTS\P.

P¢ = (P qua Subset of the carrier of TS)“.
p € P¢iff not p € P.

(QTS)¢ = 0 TS.
QTS = () TS)°.
(P¢)e = P.

PuUP¢ = QTS & PeUP = QTS.
PNP¢ = () TS & P‘NP = ) TS.
(PUQ)® = (P)N(QS).

(PRQ)® = (PIU(Q).

P C Qiff Q¢ C P-.

P\Q = PNQ°.

(P~\Q)¢ = PUQ.

P C Q¢ implies Q C P¢.

P¢ C Q implies Q¢ C P.

P C Q iff PNQ¢ = 0.

P¢ = Q° implies P = Q.

0 TS is closed.
Cl (0 TS) =0 TS.
P C CIP.

P C Q implies CI P C CI Q.

Cl (CIP) =ClP.

Cl (QTS) = QTS.

QTS is closed.

P is closed iff P¢ is open.

P is open iff P€ is closed.

Q is closed & P C Q implies CI P C Q.
CIP\Cl Q C CI (P\NQ).
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Theorem TOPS_1:33.
Theorem TOPS_1:34.
Theorem TOPS_1:35.
Theorem TOPS_1:36.
Theorem TOPS_1:37.
Theorem TOPS_1:38.
Theorem TOPS_1:39.

Theorem TOPS_1:40.
Theorem TOPS_1:41.

Definition
let TS, P.

CHAPTER 29. TOPS_1

Cl (PNQ) C CI PNCI Q.

P is closed & Q is closed implies Cl (PNQ) = Cl PNCI Q.

P is closed & Q is closed implies PNQ) is closed.

P is closed & Q is closed implies PUQ) is closed.

P is open & Q is open implies PUQ is open.

P is open & Q is open implies PNQ is open.

p € Cl P iff for G st G is open holds (p € G implies PNG #

Q is open implies QNCI P C CI (QNP).
Q is open implies Cl (QNCI P) = Cl (QNP).

func Int P — Subset of T'S means it = (Cl (P¢))c.

Theorem TOPS_1:42.
Theorem TOPS_1:43.
Theorem TOPS_1:44.
Theorem TOPS_1:45.
Theorem TOPS_1:46.
Theorem TOPS_1:47.
Theorem TOPS_1:48.
Theorem TOPS_1:49.
Theorem TOPS_1:50.
Theorem TOPS_1:51.
Theorem TOPS_1:52.
Theorem TOPS_1:53.
Theorem TOPS_1:54.
Theorem TOPS_1:55.
Theorem TOPS_1:56.

Theorem TOPS_1:57.
&xeQ).

Theorem TOPS_1:58.
Theorem TOPS_1:59.

Definition
let TS, P.

Int P = (Cl P9)“.
Int (2TS) = QTS.
Int P C P.

Int (Int P) = Int P.

Int PNInt Q = Int (PNQ).

Int () TS) =0 TS.

P C Q implies Int P C Int Q.

Int PUInt Q C Int (PUQ).

Int (P~\Q) C Int PxInt Q.

Int P is open.

() TS is open.

QTS is open.
x€IntPiffex Qst Qisopen& QC P & x € Q.
P is open iff Int P = P.

Q is open & Q C P implies Q C Int P.

P is open iff (for x holds x € P iff ex Q st Q is open & Q C P

Cl (Int P) = CI (Int (CI (Int P))).
P is open implies CI (Int (Cl P)) = CI P.

func Fr P — Subset of TS means it = Cl| PNC| (P¢).



Theorem TOPS_1:60.
Theorem TOPS_1:61.

PnQ # 0)).

Theorem TOPS_1:62.
Theorem TOPS_1:63.
Theorem TOPS_1:64.
Theorem TOPS_1:65.
Theorem TOPS_1:66.
Theorem TOPS_1:67.
Theorem TOPS_1:68.
Theorem TOPS_1:69.
Theorem TOPS_1:70.
Theorem TOPS_1:71.
Theorem TOPS_1:72.
Theorem TOPS_1:73.
Theorem TOPS_1:74.
Theorem TOPS_1:75.
Theorem TOPS_1:76.
Theorem TOPS_1:77.

Definition

let TS, P.
pred P is dense

Theorem TOPS_1:78.
Theorem TOPS_1:79.
Theorem TOPS_1:80.
Theorem TOPS_1:81.

Fr P = CI PNCI (P°).
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p € Fr P iff (for Q st Q is open & p € Q holds (PNQ # 0 &

Fr P = Fr (P°).

FrP C CI P.

Fr P = Cl (P)NPU(CI P~P).
CI P = PUFr P.

Fr (PNQ) C Fr PUFr Q.

Fr (PUQ) C Fr PUFr Q.

Fr (Fr P) C Fr P.

P is closed implies Fr P C P.
Fr PUFr Q = Fr (PUQ)UFr (PNQ)U(Fr PNFr Q).
Fr (Int P) C Fr P.

Fr (CI P) C Fr P.

Int PNFr P = ).

Int P = P\ Fr P.

Fr (Fr (Fr P)) = Fr (Fr P).

P is open iff Fr P = Cl P\P.
P is closed iff Fr P = P~Int P.

means C| P = QTS.

P is dense iff CI P = QTS.
P is dense & P C Q implies Q is dense.

P is dense iff (for Q st Q # 0 & Q is open holds PNQ # 0).
P is dense implies (for Q holds Q is open implies Cl Q = Cl

(QNP)).
Theorem TOPS_1:82. P is dense & Q is dense & Q is open implies PNQ is dense.

Definition
let TS, P.

pred P is boundary means P°€ is dense.

Theorem TOPS_1:83. P is boundary iff P¢ is dense.
Theorem TOPS_1:84. P is boundary iff Int P = 0.

Theorem TOPS_1:85. P is boundary & Q is boundary & Q is closed implies PUQ is
boundary.
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Theorem TOPS_1:86. P is boundary iff (for Q st Q C P & Q is open holds Q = 0).

Theorem TOPS_1:87. P is closed implies (P is boundary iff for Q st Q # 0 & Q is
openex Gst GC Q& G # 0 & G is open & PNG = ).

Theorem TOPS_1:88. P is boundary iff P C Fr P.

Definition
let TS, P.

pred P is nowheredense means C| P is boundary.

Theorem TOPS_1:89. P is nowheredense iff Cl| P is boundary.

Theorem TOPS_1:90. P is nowheredense & Q is nowheredense implies PUQ is nowhere-
dense.

Theorem TOPS_1:91. P is nowheredense implies P¢ is dense.

Theorem TOPS_1:92. P is nowheredense implies P is boundary.

Theorem TOPS_1:93. Q is boundary & Q is closed implies Q is nowheredense.
Theorem TOPS_1:94. P is closed implies (P is nowheredense iff P = Fr P).
Theorem TOPS_1:95. P is open implies Fr P is nowheredense.

Theorem TOPS_1:96. P is closed implies Fr P is nowheredense.

Theorem TOPS_1:97. P is open & P is nowheredense implies P = ().

Definition
let TS, P.

pred P is domain means Int (CI P) C P & P C Cl (Int P).
pred P is closed domain means P = Cl (Int P).
pred P is open domain means P = Int (CI P).

Theorem TOPS_1:98. P is domain iff Int (CIP) C P & P C Cl (Int P).
Theorem TOPS_1:99. P is closed domain iff P = Cl (Int P).

Theorem TOPS_1:100. P is open domain iff P = Int (CI P).

Theorem TOPS_1:101. P is open domain iff P¢ is closed domain.
Theorem TOPS_1:102. P is closed domain implies Fr (Int P) = Fr P.
Theorem TOPS_1:103. P is closed domain implies Fr P C Cl (Int P).

Theorem TOPS_1:104. P is open domain implies Fr P = Fr (CI P) & Fr (CI P) = Cl
P~\P.

Theorem TOPS_1:105. P is open & P is closed implies (P is closed domain iff P is
open domain).

Theorem TOPS_1:106. P is closed & P is domain iff P is closed domain.

Theorem TOPS_1:107. P is open & P is domain iff P is open domain.

Theorem TOPS_1:108. P is closed domain & Q is closed domain implies PUQ is closed
domain.
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Theorem TOPS_1:109. P is open domain & Q is open domain implies PNQ is open
domain.

Theorem TOPS_1:110. P is domain implies Int (Fr P) = (.
Theorem TOPS_1:111. P is domain implies Int P is domain & CI P is domain.



Chapter 30

CONNSP 1

Connected Spaces

by
Beata Padlewska !

Warsaw University (Biatystok)

Summary. The following notions are defined: separated sets, connected spaces,
connected sets, components of a topological space, the component of a point. The
definition of the boundary of a set is also included. The singleton of a point of a
topological space is redefined as a subset of the space. Some theorems about these
notions are proved.

The symbols used in this article are introduced in the following vocabularies: BOOLE,
REAL_l, FUNC, FUNC_REL, REL_REL, SUB_OP, FAM_OP, SFAMILY, and TOPCON. The ter-
minology and notation used in this article have been introduced in the following articles:
TARSKI, BOOLE, ENUMSET1, FUNCT_1, SUBSET_1, SETFAM_1, ORDINALl, MCART_1, DO-
MAIN_1, FUNCT_2, PRE_TOPC, and TOPS_1.

reserve GX, GY for TopSpace.
reserve A, Al, B, Bl, C for Subset of GX.

Definition
let GX be TopSpace, A, B be Subset of GX.

pred A, B are separated means Cl ANB = ((GX) & ANCI B = (GX).

!Supported by RPBP.III-24.C1.

164



165

Theorem CONNSP_1:1. A, B are separated implies B, A are separated.
Theorem CONNSP_1:2. A, B are separated implies ANB = ()(GX).

Theorem CONNSP_1:3. ©(GX) = AUB & A is closed & B is closed & ANB = ((GX)
implies A, B are separated.

Theorem CONNSP_1:4. Q(GX) = AUB & A is open & B is open & ANB = ((GX)
implies A, B are separated.

Theorem CONNSP_1:5. Q(GX) = AUB & A, B are separated implies A is open closed
& B is open closed.

Theorem CONNSP_1:6. for X’ being (SubSpace of GX), P1, Q1 being (Subset of
GX), P, Q being Subset of X' st P = P1 & Q = Q1 holds P, Q are separated implies
P1, Q1 are separated.

Theorem CONNSP_1:7. for X’ being (SubSpace of GX), P, Q being (Subset of GX),
P1, Q1 being Subset of X' st P = P1 & Q = Q1 & PUQ C Q(X’) holds P, Q are separated
implies P1, Q1 are separated.

Theorem CONNSP _1:8. A, B are separated & A1 C A & Bl C B implies Al, Bl are
separated.

Theorem CONNSP_1:9. A, B are separated & A, C are separated implies A, BUC are
separated.

Theorem CONNSP_1:10. (A is closed & B is closed) or (A is open & B is open) implies
A~ B, B\ A are separated.

Definition
let GX be TopSpace.

pred GX is connected means for A, B being Subset of GX st 2(GX) = AUB
& A, B are separated holds A = (GX) or B = (GX).
Theorem CONNSP_1:11. GX is connected iff for A, B being Subset of GX st (GX)
= AUB & A # )(GX) & B # 0(GX) & A is closed & B is closed holds ANB # 0(GX).

Theorem CONNSP_1:12. GX is connected iff for A, B being Subset of GX st (GX)
= AUB & A # 0(GX) & B # (0(GX) & A is open & B is open holds ANB # ((GX).

Theorem CONNSP_1:13. GX is connected iff for A being Subset of GX st A # (GX)
& A # Q(GX) holds (Cl A)NCI (Q(GX)~A) £ H(GX).

Theorem CONNSP_1:14. GX is connected iff for A being Subset of GX st A is open
closed holds A = ((GX) or A = Q(GX).

Theorem CONNSP_1:15. for I being map of GX, GY st F is continuous & F.(©2(GX))
= Q(GY) & GX is connected holds GY is connected.

Definition
let GX be TopSpace, A be Subset of GX.

pred A is connected means GXTA is connected.
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Theorem CONNSP_1:16. A # ((GX) implies (A is connected iff for P, Q being
Subset of GX st A = PUQ & P, Q are separated holds P = §(GX) or Q = 0(GX)).

Theorem CONNSP_1:17. A is connected & A C BUC & B, C are separated implies A
CBor ACC.

Theorem CONNSP _1:18. A is connected & B is connected & not A, B are separated
implies AUB is connected.

Theorem CONNSP_1:19. C # ((GX) & C is connected & C C A & A C Cl C implies
A is connected.

Theorem CONNSP_1:20. A # ()(GX) & A is connected implies Cl A is connected.

Theorem CONNSP_1:21. GX is connected & A # 0(GX) & A is connected & Q(GX)
~NA = BUC & B, C are separated implies AUB is connected & AUC is connected.

Theorem CONNSP_1:22. Q(GX)\A = BUC & B, C are separated & A is closed implies
AUB is closed & AUC is closed.

Theorem CONNSP_1:23. C is connected & CNA # §(GX) & CNA # ((GX) implies
CnFr A # 0(GX).

Theorem CONNSP_1:24. for X’ being (SubSpace of GX), A being (Subset of GX),
B being Subset of X' st A # ((GX) & A = B holds A is connected iff B is connected.

Theorem CONNSP_1:25. ANB # ((GX) & A is closed & B is closed implies (AUB is
connected & ANB is connected implies A is connected & B is connected).

Theorem CONNSP_1:26. for F being Subset-Family of GX st (for A being Subset
of GX st A € F holds A is connected) & (ex A being Subset of GX st A # 0(GX) &
A € F & (for B being Subset of GX st B € F & B # A holds not A, B are separated))
holds F is connected.

Theorem CONNSP_1:27. for F being Subset-Family of GX st (for A being Subset
of GX st A € F holds A is connected) & NF # ((GX) holds |JF is connected.

Theorem CONNSP_1:28. Q(GX) is connected iff GX is connected.

Definition
let GX be TopSpace, x be Point of GX.

redefine
func {x} — Subset of GX.
Theorem CONNSP_1:29. for x being Point of GX holds {x} is connected.

Definition
let GX be TopSpace, x, y be Point of GX.

pred x, y are joined means ex C being Subset of GX st C is connected & x €
C&yelC.

Theorem CONNSP_1:30. (ex x being Point of GX st for y being Point of GX holds
X, y are joined) implies GX is connected.
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Theorem CONNSP_1:31. (ex x being Point of GX st for y being Point of GX holds
x, y are joined) iff (for x, y being Point of GX holds x, y are joined).

Theorem CONNSP_1:32. (for x, y being Point of GX holds x, y are joined) implies
GX is connected.

Theorem CONNSP_1:33. for x being (Point of GX), F being Subset-Family of GX
st for A being Subset of GX holds A € F iff A is connected & x € A holds F # 0.

Definition
let GX be TopSpace, A be Subset of GX.

pred A is a component of GX means A is connected & for B being Subset of

GX st B is connected holds A C B implies A = B.

Theorem CONNSP_1:34. A is a component of GX implies A # 0(GX).

Theorem CONNSP_1:35. A is a component of GX implies A is closed.

Theorem CONNSP_1:36. A is a component of GX & B is a component of GX implies
A = B or (A # B implies A, B are separated).

Theorem CONNSP_1:37. A is a component of GX & B is a component of GX implies
A = B or (A # B implies ANB = ()(GX)).

Theorem CONNSP_1:38. C is connected implies for S being Subset of GX st S is a
component of GX holds CNS = ((GX) or C C S.

Definition
let GX be TopSpace, A, B be Subset of GX.

pred B is a component of A means ex Bl being Subset of GX[A st Bl =B &
Bl is a component of (GX[A).
Theorem CONNSP_1:39. GX is connected & A # Q(GX) & A # O(GX) & A 'is
connected & C is a component of (2(GX)~\A) implies (©2(GX)~\C) is connected.

Definition
let GX be TopSpace, x be Point of GX.

func skl x — Subset of GX means ex F being Subset-Family of GX st (for A
being Subset of GX holds A € F iff A is connected & x € A) & JF = it.
reserve x, y for Point of GX.
Theorem CONNSP_1:40. x € skl x.
Theorem CONNSP_1:41. skl x is connected.
Theorem CONNSP_1:42. C is connected implies (skl x C C implies C = skl x).

Theorem CONNSP_1:43. A is a component of GX iff ex x being Point of GX st A =
skl x.

Theorem CONNSP_1:44. A is a component of GX & x € A implies A = skl x.

Theorem CONNSP_1:45. for S being Subset of GX st S = skl x holds (for p being
Point of GX st p # x & p € S holds skl p = S).
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Theorem CONNSP_1:46. for F being Subset-Family of GX st for A being Subset of
GX holds A € F iff A is a component of GX holds F is a cover of GX.

Theorem CONNSP_1:47. A, B are separated iff CI ANB = (GX) & ANCI B = §(GX).

Theorem CONNSP_1:48. GX is connected iff for A, B being Subset of GX st Q(GX)
= AUB & A, B are separated holds A = §(GX) or B = (GX).

Theorem CONNSP_1:49. A is connected iff GX[A is connected.

Theorem CONNSP_1:50. A is a component of GX iff A is connected & for B being
Subset of GX st B is connected holds A C B implies A = B.

Theorem CONNSP_1:51. B is a component of A iff ex Bl being Subset of GXJA st
Bl = B & Bl is a component of (GXTA).

Theorem CONNSP_1:52. B = skl x iff ex F being Subset-Family of GX st (for A
being Subset of GX holds A € F iff A is connected & x € A) & JF = B.



Chapter 31

SCHEMS 1

Some Basic Properties of Quantifiers

by
Stanistaw T. Czuba !

Warsaw University (Biatystok)

Summary. A number of schemes corresponding to simple tautologies of quantifier
calculus are presented.

This article is written in plain Mizar; no additional vocabularies or signatures are
referenced.

reserve a, b, ¢, d for Any.

scheme SchematO{P[Any|}: ex a st P[a] provided A: for a holds PJ[a].

scheme Schematla{P[Any|, T[|}: (for a holds P[a]) & T[] provided A: for a holds
(Pla] & T)).

scheme Schemat1lb{P[Any], T[]}: for a holds (P[a] & T[]) provided A: (for a holds
Pla]) & T]].

scheme Schemat2a{P[Any], T[]}: (ex a st P[a]) or T[] provided A: ex a st (P[a] or
T[)-

scheme Schemat2b{P[Any|, T[]}: ex a st (P[a] or T[]) provided A: (ex a st P[a])
or T

!Supported by RPBP.III-24.C1.
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scheme Schemat3{S[Any, Any]}: for b ex a st S[a, b] provided A: ex a st for b
holds S[a, b].

scheme Schemat4a{P[Any], Q[Any]}: (ex a st P[a]) or (ex a st Q[a]) provided A:
ex a st (P[a] or Q[a]).

scheme Schemat4b{P[Any], Q[Any]}: ex a st (P[a] or Q[a]) provided A: (ex a st
Pla]) or (ex a st Q[a]).

scheme Schemat5{P[Any], Q[Anyl]}: (ex a st P[a]) & (ex a st Q[a]) provided A: ex
a st (P[a] & QJa]).

scheme Schemat6a{P[Any], Q[Any]}: (for a holds Pla]) & (for a holds Q]a]) pro-
vided A: for a holds (P[a] & Q[a]).

scheme Schemat6b{P[Any], Q[Any]}: for a holds (P[a] & Q[a]) provided A: (for a
holds Pla]) & (for a holds Q[a]).

scheme Schemat7{P[Any], Q[Any]}: for a holds (P[a] or Q[a]) provided A: (for a
holds P[a]) or (for a holds QJa]).

scheme Schemat8{P[Any], Q[Any]}: (for a holds P[a]) implies (for a holds QJa])
provided A: for a holds P[a] implies Qla].

scheme Schemat9{P[Any], Q[Any]}: (for a holds PJa]) iff (for a holds Q[a]) pro-
vided A: for a holds (P[a] iff Q[a]).

scheme Schemat10a{T[]}: T[] provided A: for a holds T][].

scheme Schemat10b{T[]}: for a holds T[] provided A: TJ|.

scheme Schematlla{P[Any], T[]}: (for a holds P[a]) or T[] provided A: for a holds
(P[a] or T)).

scheme Schematllb{P[Any], T[]}: for a holds (P[a] or T[]) provided A: (for a
holds P[a]) or T|].

scheme Schemat12a{P[Any]|, T[]}: ex a st (T[] & P|a]) provided A: T[] & (ex a st
Plal).

scheme Schemat12b{P[Any], T[]}: T[] & (ex a st P[a]) provided A: ex a st (T[] &
Plal).

scheme Schematl3a{P[Any], T[]}: for a holds (T[] implies P[a]) provided A: T|]
implies (for a holds P[a]).

scheme Schemat13b{P[Any|, T[]}: T[] implies (for a holds P[a]) provided A: for
a holds (T[] implies P[a]).

scheme Schemat14{P[Any], T[]}: ex a st (T[] implies P[a]) provided A: T[] implies
(ex a st Pla]).

scheme Schemat15{P[Any], T[]}: for a holds (P[a] implies T[]) provided A: (ex a
st Pla]) implies T|].

scheme Schematl6{P[Any], T[]}: ex a st (P[a] implies T[]) provided A: (for a
holds Pla]) implies TJ].



scheme Schemat17{P[Any],
holds (P[a] implies TY]).

scheme Schemat18a{P[Any], Q[Any]}:

A: (ex a st P[a]) or (for b holds Q[b]).

scheme Schemat18b{P[Any], Q[Any]}:

A: ex a st (for b holds (P[a] or Q[b])).

scheme Schemat19a{P[Any], Q[Any]}:

A: (ex a st P[a]) or (for b holds Q[b]).
scheme Schemat19b{P[Any], Q[Any]}:
A: for b holds (ex a st (P[a] or Q[b])).
scheme Schemat20a{P[Any], Q[Any]}:
a st (for b holds (P[a] or Q[b])).
scheme Schemat20b{P[Any], Q[Any]}:
A: for b ex a st (P[a] or Q[b]).
scheme Schemat2la{P[Any], Q[Any]}:

(ex a st Pla]) & (for b holds Q[b]).

scheme Schemat21b{P[Any], Q[Any]}:

A: ex a st for b holds P[a] & QIb].

scheme Schemat22a{P[Any|, Q[Any]}:

a st Pla]) & (for b holds Q[b]).

scheme Schemat22b{P[Any], Q[Any]}:

A: for b ex a st (P[a] & Q[b]).
[

scheme Schemat23a{P[Any],
st for b holds P[a] & Q[b].

scheme Schemat23b{P[Any], Q[Any]}:

A: for b ex a st (P[a] & Q[b]).
scheme Schemat24a{S[Any, Any],

Q[Any]}:
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T[]}: (for a holds P[a]) implies T[] provided A: for a

ex a st (for b holds (P[a] or Q[b])) provided
(ex a st P[a]) or (for b holds Q[b]) provided
for b holds (ex a st (P[a] or Q[b])) provided
(ex a st P[a]) or (for b holds Q[b]) provided
for b ex a st (P[a] or Q[b]) provided A: ex
ex a st (for b holds (P[a] or Q[b])) provided
ex a st for b holds P[a] & Q[b] provided A:
(ex a st P[a]) & (for b holds Q[b]) provided
for b ex a st (P[a] & Q[b]) provided A: (ex
(ex a st P[a]) & (for b holds Q[b]) provided

for b ex a st Pla] & Q[b] provided A: ex a

ex a st for b holds (P[a] & Q[b]) provided

Q[Any]}: for a ex b st (S[a, b] implies Q[a])

provided A: for a holds ((for b holds S[a, b]) implies Q]a]).

scheme Schemat24b{S[Any, Any],

Q[Any]}: for a holds ((for b holds S[a, b]) implies

Q[a]) provided A: for a ex b st (S[a, b] implies Q[a]).

scheme Schemat25a{S[Any, Any],

Q[Any]}: for a, b holds (S[a, b] implies QJa])

provided A: for a holds ((ex b st S[a, b]) implies QJa]).

scheme Schemat25b{S[Any, Any],

Q[Any]}: for a holds ((ex b st S[a, b]) implies

Ql[a]) provided A: for a, b holds (S[a, b] implies Q]a]).
scheme Schemat26{S[Any, Any|}: ex a st for b holds S[a, b] provided A: for a, b

holds S[a, b].

scheme Schemat27{S[Any, Any]}: for a holds S[a, a] provided A: for a, b holds

Sla, b].
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scheme Schemat28{S[Any, Any|}:

holds S[a, b].

scheme Schemat29{S[Any, Any]}:
holds S|a, b].

scheme Schemat30{S[Any, Any]}:
S[a, b].

scheme Schemat31{S[Any, Any|}:
al.

scheme Schemat32{S[Any, Any]}:

scheme Schemat33{S[Any, Any|}:
al.

scheme Schemat34{S[Any, Any|}:
S[a, b].

scheme Schemat35{S[Any, Any]}:
holds S[a, b].

scheme Schemat36{S[Any, Any|}:
b].

scheme Schemat37{S[Any, Any]}:
scheme Schemat38{S[Any, Any|}:

b].
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ex b st for a holds S[a, b] provided A: for a, b
for b ex a st S[a, b] provided A: ex a st for b
ex a st S[a, a] provided A: ex a st for b holds
for a ex b st S[b, a] provided A: for a holds SJa,

ex a st S[a, a] provided A: for a holds S[a, a].
for a ex b st S[a, b] provided A: for a holds SJa,

ex b st S[b, b] provided A: ex b st for a holds
for a ex b st S[a, b] provided A: ex b st for a
ex a, b st S[a, b] provided A: for b ex a st S]a,

ex a, b st S[a, b] provided A: ex a st Sla, al.
ex a, b st S[a, b] provided A: for a ex b st S]a,



Chapter 32

ZF LANG

A Model of ZF Set Theory Language

by
Grzegorz Bancerek !

Warsaw University (Biatystok)

Summary. The goal of this article is to construct a language of the ZF set theory
and to develop a notational and conceptual base which facilitates a convenient usage
of the language.

The symbols used in this article are introduced in the following vocabularies: FINSEQ,
ZF_LANG, FUNC_REL, FUNC, BOOLE, REAL_1, and NAT_1. The terminology and nota-
tion used in this article have been introduced in the following articles: TARSKI, BOOLE,
FUNCT_1, REAL_1, NAT_1, and FINSEQ_1.

reserve k, I, m, n for Nat, X, Y, Z for set, D, D1, D2 for DOMAIN, a, b, ¢, d for
Any.
reserve p, q, I, p/, ' for FinSequence of NAT.
Definition
func VAR — SUBDOMAIN of NAT means it = {k: 5 < k}.
Theorem ZF_LANG:1. VAR = {k: 5 < k}.

Definition
mode Variable — Element of VAR means not contradiction.

!Supported by RPBP.III-24.C1.
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Theorem ZF_LANG:2. a is Variable iff a is Element of VAR.

Definition
let n.

func £n — Variable means it = 5+n.

Theorem ZF LANG:3. £&n = 5+n.
reserve X, y, z, t, s for Variable.

Definition
let x.

redefine
func (x) — FinSequence of NAT.
Definition
let x, y.
func x‘="y — FinSequence of NAT means it = (0)™ (x) " (y).
func x‘€’y — FinSequence of NAT means it = (1) (x) " (y).

Theorem ZF_LANG:4. x'="y = (0)"(x) " (y).
Theorem ZF_LANG:5. x*€’y = (1) (x) " (y).
Theorem ZF_LANG:6. x‘="y = z‘="t impliesx =z & y = t.
Theorem ZF LANG:7. x‘€’y = z‘€’t implies x =z & y = t.
Definition
let p.
func —p — FinSequence of NAT means it = (2)"p.
let q.
func pAq — FinSequence of NAT means it = (3) " p~q.

Theorem ZF_LANG:8. -p = (2)"p.
Theorem ZF_LANG:9. pAq = (3)"p"q.
Theorem ZF_LANG:10. —p = —q implies p = q.
Definition
let x, p.
func V(x, p) — FinSequence of NAT means it = (4)"(x) " p.

Theorem ZF_LANG:11. V(x, p) = (4)"(x) " p.
Theorem ZF_LANG:12. V(x, p) = VY(y, q) impliesx =y & p = q.

Definition

func WFF — DOMAIN means (for a st a € it holds a is FinSequence of NAT)
& (for x, y holds x‘="y € it & x‘€’y € it) & (for p st p € it holds —p € it) & (for p,
q st p € it & q € it holds pAq € it) & (for x, p st p € it holds V(x, p) € it) & for D
st (for a st a € D holds a is FinSequence of NAT) & (for x, y holds x‘="y € D & x‘€’y
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€ D) & (for pst p € D holds —p € D) & (for p, g st p € D & q € D holds pAq € D)
& (for x, p st p € D holds V(x, p) € D) holds it C D.

Theorem ZF_LANG:13. (for a st a € WFF holds a is FinSequence of NAT) & (for x,
y holds x'="y € WFF & x‘€’y € WFF) & (for p st p € WFF holds —p € WFF) & (for
p, g st p € WFF & q € WFF holds pAq € WFF) & (for x, p st p € WFF holds Y(x, p)
€ WFF) & for D st (for a st a € D holds a is FinSequence of NAT) & (for x, y holds
x'="y e D &x‘€’y € D) & (for pst p € D holds -p € D) & (for p, qst pe D & q €
D holds pAq € D) & (for x, p st p € D holds VY(x, p) € D) holds WFF C D.

Definition
mode ZF-formula — FinSequence of NAT means it is Element of WFF.
Theorem ZF_LANG:14. a is ZF-formula iff a € WFF.
Theorem ZF_LANG:15. a is ZF-formula iff a is Element of WFF.
reserve F, F1, G, G1, H, H1 for ZF-formula.

Definition

let x, y.

redefine
func x'="y — ZF-formula.

func x‘'€’y — ZF-formula.
Definition
let H.

redefine
func -H — ZF-formula.

let G.
func HAG — ZF-formula.
Definition
let x, H.
redefine
func V(x, H) — ZF-formula.
Definition
let H.
pred H is equality means ex x, y st H = x‘=’y.
pred H is membership means ex x, y st H = x‘€’y.
pred H is negative means ex H1 st H = —HI.
pred H is conjunctive means ex F, G st H = FAG.

pred H is universal means ex x, H1 st H = V(x, H1).
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Theorem ZF _LANG:16. (H is equality iff ex x, y st H = x'="y) & (H is membership
iff ex x, y st H = x‘€’y) & (H is negative iff ex H1 st H = —=H1) & (H is conjunctive iff
ex F, G st H = FAG) & (H is universal iff ex x, H1 st H = V(x, H1)).

Definition
let H.

pred H is atomic means H is equality or H is membership.

Theorem ZF_LANG:17. H is atomic iff H is equality or H is membership.

Definition
let F, G.

func FVG — ZF-formula means it = =(-FA-G).
func F=G — ZF-formula means it = =(FA-G).

Theorem ZF_LANG:18. FVG = —(—=FA-Q).
Theorem ZF_LANG:19. F=G = —(FA-G).

Definition
let F, G.

func F&G — ZF-formula means it = (F=G)A(G=F).
Theorem ZF_LANG:20. F&G = (F=G)A(G=F).

Definition
let x, H.

func 3(x, H) — ZF-formula means it = —V(x, —H).
Theorem ZF_LANG:21. 3(x, H) = =V(x, -H).

Definition
let H.

pred H is disjunctive means ex F, G st H = FVG.
pred H is conditional means ex F, G st H = F=G.
pred H is biconditional means ex F, G st H = F&G.
pred H is existential means ex x, H1 st H = 3(x, H1).
Theorem ZF_LANG:22. (H is disjunctive iff ex ', G st H = FVG) & (H is conditional

iffexF, G st H=F=G) & (H is biconditional iff ex I, G st H = F&G) & (H is existential
iff ex x, H1 st H = 3(x, H1)).

Definition
let x, y, H.

func V(x, y, H) — ZF-formula means it = V(x, V(y, H)).
func 3(x, y, H) — ZF-formula means it = 3(x, 3(y, H)).

Theorem ZF_LANG:23. V(x, y, H) = V(x, ¥(y, H)) & 3(x, y, H) = 3(x, A(y, H)).



Definition

let x, y, z, H.
func V(x,y, z, H
func 3(x,y, z, H

Theorem ZF_LANG:24

Theorem ZF_LANG:25. H is equality or H is membership or H is negative or H is
conjunctive or H is universal.
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) = ZF-formula means it = V(x, Y(y, z, H)).
) = ZF-formula means it = 3(x, 3(y, z, H)).

V(% y, 2, H) = V(x, Y(y, 2, H)) & 3(x, v, z, H) = 3(x, 3(y, z,

Theorem ZF_LANG:26. H is atomic or H is negative or H is conjunctive or H is universal.

Theorem ZF_LANG:27
Theorem ZF_LANG:28
Theorem ZF_LANG:29
Theorem ZF_LANG:30

. H is atomic implies len H = 3.
. H is atomic or ex H1 st len H1+1 < len H.
. 3 < len H.

. len H = 3 implies H is atomic.

reserve p, q, r for ZF-formula.

Theorem ZF_LANG:31
Theorem ZF_LANG:32
Theorem ZF_LANG:33
Theorem ZF_LANG:34
Theorem ZF_LANG:35
Theorem ZF_LANG:36
Theorem ZF_LANG:37
Theorem ZF_LANG:38
Theorem ZF_LANG:39
Theorem ZF_LANG:40

. for x, y holds (x'="y).1 =0 & (x‘€’y).1 = 1.

. for H holds (—H).1 = 2.

. for F, G holds (FAG).1 = 3.

. for x, H holds V(x, H).1 = 4.

. H is equality implies H.1 = 0.

. H is membership implies H.1 = 1.

. H is negative implies H.1 = 2.

. H is conjunctive implies H.1 = 3.

. H is universal implies H.1 = 4.

. His equality & H.1 = 0 or H is membership & H.1 =1 or H

is negative & H.1 = 2 or H is conjunctive & H.1 = 3 or H is universal & H.1 = 4.

Theorem ZF_LANG:41
Theorem ZF_LANG:42
Theorem ZF_LANG:43
Theorem ZF_LANG:44
Theorem ZF_LANG:45

. H.1 = 0 implies H is equality.

. H.1 =1 implies H is membership.
. H.1 = 2 implies H is negative.

. H.1 = 3 implies H is conjunctive.

. H.1 = 4 implies H is universal.

reserve sq, sq’ for FinSequence.

Theorem ZF_LANG:46
Theorem ZF_LANG:47
Theorem ZF_LANG:48
Theorem ZF_LANG:49

. H=F"sq implies H = F.

. HAG = H1IAGI implies H = H1 & G = GI1.
. FVG = F1VGl1 implies F = F1 & G = G1.

. F=G = F1=Gl implies F = F1 & G = G1.



178 CHAPTER 32. ZF_LANG

Theorem ZF _LANG:50. F&G = F1<G1 implies F = F1 & G = G1.
Theorem ZF_LANG:51. 3(x, H) = 3(y, G) implies x =y & H = G.
Definition
let H.
assume H is atomic.
func VariH — Variable means it = H.2.

func VarsH — Variable means it = H.3.

Theorem ZF_LANG:52. H is atomic implies VariH = H.2 & VaroH = H.3.
Theorem ZF_LANG:53. H is equality implies H = (Var H)‘="VarsH.
Theorem ZF_LANG:54. H is membership implies H = (Var H)‘€’VaryH.

Definition
let H.

assume H is negative.

func the argument of H — ZF-formula means —it = H.

Theorem ZF_LANG:55. H is negative implies H = —the argument of H.
Definition

let H.

assume H is conjunctive or H is disjunctive.

func the left argument of H — ZF-formula means ex H1 st itAH1 = Hif H is
conjunctive otherwise ex H1 st itVH1 = H.

func the right argument of H — ZF-formula means ex H1 st HIAit = Hif H is
conjunctive otherwise ex H1 st H1Vit = H.

Theorem ZF_LANG:56. H is conjunctive implies (F = the left argument of H iff ex G
st FAG = H) & (F = the right argument of H iff ex G st GAF = H).

Theorem ZF_LANG:57. H is disjunctive implies (F = the left argument of H iff ex G
st FVG = H) & (F = the right argument of H iff ex G st GVF = H).

Theorem ZF_LANG:58. H is conjunctive implies H = (the left argument of H)Athe
right argument of H.

Theorem ZF_LANG:59. H is disjunctive implies H = (the left argument of H)Vthe right
argument of H.
Definition

let H.

assume H is universal or H is existential.

func bound in H — Variable means ex H1 st V(it, H1) = H if H is universal
otherwise ex H1 st 3(it, H1) = H.
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func the scope of H — ZF-formula means ex x st V(x, it) = H if H is universal
otherwise ex x st 3(x, it) = H.

Theorem ZF_LANG:60. H is universal implies (x = bound in H iff ex HI st V(x, H1)
= H) & (H1 = the scope of H iff ex x st V(x, H1) = H).

Theorem ZF_LANG:61. H is existential implies (x = bound in H iff ex H1 st 3(x, H1)
= H) & (H1 = the scope of H iff ex x st 3(x, H1) = H).

Theorem ZF_LANG:62. H is universal implies H = V(bound in H, the scope of H).

Theorem ZF_LANG:63. H is existential implies H = J(bound in H, the scope of H).

Definition
let H.

assume H is conditional.
func the antecedent of H — ZF-formula means ex H1 st H = it=HI1.
func the consequent of H — ZF-formula means ex H1 st H = Hl=-it.
Theorem ZF_LANG:64. H is conditional implies (F = the antecedent of H iff ex G st
H = F=G) & (F = the consequent of H iff ex G st H = G=F).

Theorem ZF_LANG:65. H is conditional implies H = (the antecedent of H)=-the
consequent of H.

Definition
let H.

assume H is biconditional.
func the left side of H — ZF-formula means ex H1 st H = it<HI.
func the right side of H — ZF-formula means ex H1 st H = Hl<it.
Theorem ZF_LANG:66. H is biconditional implies (F = the left side of H iff ex G st
H = F&G) & (F = the right side of H iff ex G st H = G&F).

Theorem ZF_LANG:67. H is biconditional implies H = (the left side of H)<the right
side of H.

Definition
let H, F.

pred H is immediate constituent of F means F = —H or (ex H1 st F = HAH1

or ' = HIAH) or ex x st F = V(x, H).

Theorem ZF_LANG:68. H is immediate constituent of F iff F = —H or (ex H1 st F =
HAH1 or F = H1AH) or ex x st F = V(x, H).

Theorem ZF_LANG:69. not H is immediate constituent of x'=’y.

Theorem ZF_LANG:70. not H is immediate constituent of x‘€’y.

Theorem ZF _LANG:71. F is immediate constituent of —H iff F = H.

Theorem ZF_LANG:72. F is immediate constituent of GAH iff F = G or F = H.
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Theorem ZF_LANG:73. F is immediate constituent of V(x, H) iff F = H.
Theorem ZF_LANG:74. H is atomic implies not F is immediate constituent of H.

Theorem ZF_LANG:75. H is negative implies (F is immediate constituent of H iff F =
the argument of H).

Theorem ZF_LANG:76. H is conjunctive implies (F is immediate constituent of H iff
F = the left argument of H or F = the right argument of H).

Theorem ZF_LANG:77. H is universal implies (F is immediate constituent of H iff F
= the scope of H).

reserve L, L' for FinSequence, f for Function.

Definition
let H, F.

pred H is subformula of F means exn, Lst ]l <n&lenL=n& L1=H&
Ln=F &forkstl<<k&k<nexHI, FlstLk=HI & L.(k+1) = F1 & Hl is
immediate constituent of F1.

Theorem ZF _LANG:78. H is subformula of F iffex n, Lst l <n & len L =n & L.1
=H&Ln=F&forkstl <k&k <nexHI, F1stLk=H1&L.(k+1) =F1 & H1
is immediate constituent of F1.

Theorem ZF_LANG:79. H is subformula of H.

Definition
let H, F.

pred H is proper subformula of F means H is subformula of F & H # F.

Theorem ZF _LANG:80. H is proper subformula of F iff H is subformula of F & H # F.
Theorem ZF_LANG:81. H is immediate constituent of F implies len H < len F.

Theorem ZF_LANG:82. H is immediate constituent of F implies H is proper subformula
of F.

Theorem ZF_LANG:83. H is proper subformula of F implies len H < len F.

Theorem ZF_LANG:84. H is proper subformula of F implies ex G st G is immediate
constituent of F.

reserve j, j1, j2 for Nat.

Theorem ZF_LANG:85. F is proper subformula of G & G is proper subformula of H
implies F is proper subformula of H.

Theorem ZF_LANG:86. F is subformula of G & G is subformula of H implies F is
subformula of H.

Theorem ZF _LANG:87. G is subformula of H & H is subformula of G implies G = H.
Theorem ZF_LANG:88. not F is proper subformula of x‘="y.

Theorem ZF_LANG:89. not F is proper subformula of x‘€’y.

Theorem ZF_LANG:90. F is proper subformula of —H implies F is subformula of H.
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Theorem ZF _LANG:91. F is proper subformula of GAH implies F is subformula of G
or F is subformula of H.

Theorem ZF LANG:92. F is proper subformula of V(x, H) implies F is subformula of
H.

Theorem ZF_LANG:93. H is atomic implies not F is proper subformula of H.

Theorem ZF_LANG:94. H is negative implies the argument of H is proper subformula
of H.

Theorem ZF_LANG:95. H is conjunctive implies the left argument of H is proper
subformula of H & the right argument of H is proper subformula of H.

Theorem ZF LANG:96. H is universal implies the scope of H is proper subformula of

H.

Theorem ZF _LANG:97. H is subformula of x‘="y iff H = x‘="y.

Theorem ZF _LANG:98. H is subformula of x*€’y iff H = x‘€’y.
Definition

let H.

func Subformulae H — set means a € it iff ex F st F = a & F is subformula of

H.

Theorem ZF_LANG:99. a € Subformulae H iff ex F st F' = a & F is subformula of H.

Theorem ZF _LANG:100. G € Subformulae H implies G is subformula of H.

Theorem ZF_LANG:101. F is subformula of H implies Subformulae F C Subformulae
H.

Theorem ZF_LANG:102. Subformulae x'="y = {x‘="y}.

Theorem ZF_LANG:103. Subformulae x‘€’y = {x‘€’y}.

Theorem ZF_LANG:104. Subformulae —H = Subformulae HU{—H}.

Theorem ZF_LANG:105. Subformulae (HAF) = Subformulae HUSubformulae FU{HAF}.
Theorem ZF_LANG:106. Subformulae V(x, H) = Subformulae HU{V(x, H)}.

Theorem ZF_LANG:107. H is atomic iff Subformulae H = {H}.

Theorem ZF_LANG:108. H is negative implies Subformulae H = Subformulae the
argument of HU{H}.

Theorem ZF_LANG:109. H is conjunctive implies Subformulae H = Subformulae the
left argument of HUSubformulae the right argument of HU{H}.

Theorem ZF _LANG:110. H is universal implies Subformulae H = Subformulae the scope
of HU{H}.

Theorem ZF_LANG:111. (H is immediate constituent of G or H is proper subformula of
G or H is subformula of G) & G € Subformulae F implies H € Subformulae F.

scheme ZF Ind{P[ZF-formula]}: for H holds P[H] provided A: for H st H is atomic
holds P[H] and B: for H st H is negative & P[the argument of H| holds P[H] and C: for
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H st H is conjunctive & P[the left argument of H] & PJthe right argument of H] holds P[H]
and D: for H st H is universal & P[the scope of H] holds P[H].

scheme ZF_CompInd{P[ZF-formula]}: for H holds P[H] provided A: for H st for
F st F is proper subformula of H holds P[F] holds P[H].



Chapter 33

ZF MODEL

Models and Satisfiability

Defining by Structural Induction and Free Variables in ZF-formulae

by
Grzegorz Bancerek !

Warsaw University (Biatystok)

Summary. The article includes schemes of defining by structural induction, and
definitions and theorems related to: the set of variables which have free occurrences
in a ZF-formula, the set of all valuations of variables in a model, the set of all
valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula
in a model by a valuation, the validity of a ZF-formula in a model, the axioms of
ZF-language, the model of the ZF set theory.

The symbols used in this article are introduced in the following vocabularies: FINSEQ,
ZF_LANG, ZF_SAT, ZF_AXIOM, ORDINAL, FUNC_REL, FUNC, FAM_OP, BOOLE, REAL_1, and
NAT_1. The terminology and notation used in this article have been introduced in the fol-
lowing articles: TARSKI, BOOLE, FUNCT_1, REAL_1, NAT_1, FINSEQ_1, ZF_LANG, FUNCT_2,
ENUMSET1, and ORDINALIL.

reserve F, G, H, H' for ZF-formula, f, g, h for Function, x, y, z, t for Variable, a, b, c,
d for Any, A, X, Y, Z for set, D for DOMAIN.

scheme ZFsch_ex{F1(Variable, Variable) — Any, F2(Variable, Variable) — Any, F3(Any)
— Any, F4(Any, Any) — Any, F5(Variable, Any) — Any, H() — ZF-formula}: ex a, A st

!Supported by RPBP.III-24.C1.
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(for x, y holds [x‘="y, F1(x, y)] € A & [x'€y, F2(x, y)] € A) & [H(), a] € A & for H, a
st [H, a] € A holds (H is equality implies a = F1(Var H, VaroH)) & (H is membership
implies a = F2(Vari H, VaryH)) & (H is negative implies ex b st a = F3(b) & [the
argument of H, b] € A) & (H is conjunctive implies ex b, ¢ st (a = F4(b, ¢) & [the left
argument of H, b] € A) & [the right argument of H, ¢] € A) & (H is universal implies ex
b, x st x = bound in H & a = F5(x, b) & [the scope of H, b] € A).

scheme ZFsch_uniq{F1(Variable, Variable) — Any, F2(Variable, Variable) — Any, F3(Any)

— Any, F4(Any, Any) — Any, F5(Variable, Any) — Any, H() — ZF-formula, a() — Any, b()
— Any}: a() = b() provided A: ex A st (for x, y holds [x‘="y, F1(x, y)] € A & [x‘€y,
F2(x, y)] € A) & [H(), a()] € A & for H, a st [H, a] € A holds (H is equality implies
a = F1(VariH, VareH)) & (H is membership implies a = F2(Var H, VareH)) & (H is
negative implies ex b st a = F3(b) & [the argument of H, b] € A) & (H is conjunctive
implies ex b, ¢ st a = F4(b, c¢) & [the left argument of H, b] € A & [the right argument of
H, c] € A) & (H is universal implies ex b, x st x = bound in H & a = F5(x, b) & [the scope
of H, b] € A) and B: ex A st (for x, y holds [x‘="y, Fl(x, y)] € A & [x‘€y, F2(x, y)] €
A) & [H(), b()] € A & for H, a st [H, a] € A holds (H is equality implies a = F1(Var H,
VareH)) & (H is membership implies a = F2(Var H, VarsH)) & (H is negative implies
ex b st a = F3(b) & [the argument of H, b] € A) & (H is conjunctive implies ex b, c st a
= F4(b, ¢) & [the left argument of H, b] € A & [the right argument of H, ¢] € A) & (H is
universal implies ex b, x st x = bound in H & a = F5(x, b) & [the scope of H, b] € A).

scheme ZFsch_result{F1(Variable, Variable) — Any, F2(Variable, Variable) — Any,
F3(Any) — Any, F4(Any, Any) — Any, F5(Variable, Any) — Any, H() — ZF-formula,
f(ZF-formula) — Any}: (H() is equality implies f(H()) = F1(Var H(), Var:H())) & (H()
is membership implies f(H()) = F2(Var H(), VaraH())) & (H() is negative implies f(H())
= F3(f(the argument of H()))) & (H() is conjunctive implies for a, b st a = f(the left
argument of H()) & b = f(the right argument of H()) holds f(H()) = F4(a, b)) & (H() is
universal implies f(H()) = F5(bound in H(), f(the scope of H()))) provided A: for H', a
holds a = f(H') iff ex A st (for x, y holds [x‘="y, F1(x, y)] € A & [x‘€’y, F2(x, y)] €
A) & [H', a] € A & for H, a st [H, a] € A holds (H is equality implies a = F1(VarH,
VargH)) & (H is membership implies a = F2(Var H, VaroH)) & (H is negative implies
ex b st a = F3(b) & [the argument of H, b] € A) & (H is conjunctive implies ex b, c st a
= F4(b, ¢) & [the left argument of H, b] € A & [the right argument of H, ¢] € A) & (H is
universal implies ex b, x st x = bound in H & a = F5(x, b) & [the scope of H, b] € A).

scheme ZFsch_property{F1(Variable, Variable) — Any, F2(Variable, Variable) — Any,
F3(Any) — Any, F4(Any, Any) — Any, F5(Variable, Any) — Any, H() — ZF-formula, f(ZF-
formula) — Any, P[Any]}: P[f(H())] provided A: for H', a holds a = f(H') iff ex A st
(for x, y holds [x'="y, F1(x, y)] € A & [x‘€’y, F2(x, y)] € A) & [H', a] € A & for H, a
st [H, a] € A holds (H is equality implies a = F1(Var H, VaroH)) & (H is membership
implies a = F2(Vari H, VaryH)) & (H is negative implies ex b st a = F3(b) & [the
argument of H, b] € A) & (H is conjunctive implies ex b, ¢ st a = F4(b, ¢) & [the left
argument of H, b] € A & [the right argument of H, ¢] € A) & (H is universal implies ex b,
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x st x = bound in H & a = F5(x, b) & [the scope of H, b] € A) and B: for x, y holds
P[F1(x, y)] & P[F2(x, y)] and C: for a st P[a] holds P[F3(a)] and D: for a, b st P[a] &
P[b] holds P[F4(a, b)] and E: for a, x st P[a] holds P[F5(x, a)].
Definition

let H.

func Free H — Any means ex A st (for x, y holds [x‘="y, {x, y}] € A & [x‘€’y,
{x, y}] € A) & [H, it] € A & for H', a st [H', a] € A holds (H’ is equality implies a =
{VarH', VarsH'}) & (H' is membership implies a = {Var H', VaroH'}) & (H' is negative
implies ex b st a = b & [the argument of H', b] € A) & (H' is conjunctive implies ex b,
c st a=|J{b, c} & [the left argument of H', b] € A & [the right argument of H', c] € A) &
(H' is universal implies ex b, x st x = bound in H' & a = (|J{b})~{x} & [the scope of H',
b] € A).

Definition
let H.

redefine
func Free H — set of Variable.

Theorem ZF_MODEL:1. for H holds (H is equality implies Free H = {Var H,
VareH}) & (H is membership implies Free H = {Var H, VarsH}) & (H is negative im-
plies Free H = Free the argument of H) & (H is conjunctive implies Free H = Free the left
argument of HUFree the right argument of H) & (H is universal implies Free H = (Free the
scope of H)~{bound in H}).

Definition
let D be SET DOMAIN.
func VAL D — DOMAIN means a € it iff a is Function of VAR, D.

Definition
let D1 be SET DOMAIN, f be Function of VAR, D1.

let x.

redefine
func f.x — Element of D1.

reserve E for SET DOMAIN, f, g, h for (Function of VAR, E), v1, v2, v3, v4, v5, ul,
u2, u3, u4, ub for (Element of VAL E), S, T for Subset of [WFF, VAL E].

Definition
let H, E.

func St (H, E) — Any means ex A st (for x, y holds [x‘="y, {v1: for fst f =
vl holds f.x =fy}] € A & [x'€’y, {v2: for fst f = v2 holds fx € fy}] € A) & [H, it] €
A & for H', a st [H', a] € A holds (H' is equality implies a = {v3: for f st f = v3 holds
f.(VariH') = f.(VareH')}) & (H' is membership implies a = {v4: for { st f = v4 holds
f.(VariH') € f.(VareH')}) & (H' is negative implies ex b st a = (VAL E)~\|J{b} & [the



186 CHAPTER 33. ZF_MODEL

argument of H', b] € A) & (H' is conjunctive implies ex b, ¢ st a = ((J{b})NJ{c} & [the
left argument of H', b] € A & [the right argument of H', ¢] € A) & (H' is universal implies
ex b, x st x =bound in H & a = {v5: for X, fst X =b & f=v5 holds f € X & for g
st for y st g.y # f.y holds x = y holds g € X} & [the scope of H', b] € A).

Definition

let H, E.

redefine

func St (H, E) — Subset of VAL E.

Theorem ZF_MODEL:2. for x, y, f holds f.x = f.y iff f € St (x'="y, E).

Theorem ZF_MODEL:3. for x, y, f holds f.x € fy iff f € St (x‘€’y, E).

Theorem ZF_MODEL:4. for H, f holds not f € St (I, E) iff f € St (-H, E).

Theorem ZF_MODEL:5. for H, H', f holds f € St (H, E) & f € St (H, E) iff f € St
(HAH, E).

Theorem ZF_MODEL:6. for x, H, f holds (f € St (H, E) & for g st for y st g.y # f.y
holds x = y holds g € St (H, E)) iff f € St (V(x, H), E).

Theorem ZF_MODEL:7. H is equality implies for f holds f.(Var H) = f.(VarH) iff
f e St (H, E).

Theorem ZF_MODEL:8. H is membership implies for f holds f.(Var H) € f.(VaryH)
iff f € St (H, E).

Theorem ZF_MODEL:9. H is negative implies for f holds not f € St (the argument
of H, E) iff f € St (H, E).

Theorem ZF_MODEL:10. H is conjunctive implies for f holds f € St (the left argument
of H, E) & f € St (the right argument of H, E) iff f € St (H, E).

Theorem ZF_MODEL:11. H is universal implies for f holds (f € St (the scope of H,
E) & for g st for y st g.y # f.y holds bound in H = y holds g € St (the scope of H, E))
iff f € St (H, E).

Definition
let D be SET DOMAIN.
let f be Function of VAR, D.
let H.
pred D, f = H means f € St (H, D).
Theorem ZF_MODEL:12. for E, f, x, y holds E, f = x'="y iff fx = f.y.
Theorem ZF_MODEL:13. for E, f, x, y holds E, f = x‘€’y iff fx € fy.
Theorem ZF_MODEL:14. for E, f, H holds E, f = H iff not E, f = —H.

Theorem ZF_MODEL:15. for E, f, H, H' holds E, f = HAH' iff E, f E H& E, f |=
H'.
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Theorem ZF_MODEL:16. for E, f, H, x holds E, f = V(x, H) iff for g st for y st g.y
# f.y holds x = y holds E, g |= H.

Theorem ZF_MODEL:17. for E, f, H, H holds E, f | HVH' iff E, f = Hor E, f |
H'.

Theorem ZF_MODEL:18. for E, f, H, H holds E, f = H=H' iff (E, { = H implies
E, fEH).

Theorem ZF_MODEL:19. for E, f, H, H' holds E, f = HeH' iff (E, f = Hiff E, f =
H').

Theorem ZF_MODEL:20. for E, f, H, x holds E, f = 3(x, H) iff ex g st (for y st g.y
# fy holds x =y) & E, g = H.

Theorem ZF_MODEL:21. for E, {, x for e being Element of E ex g st g.x = e & for
z st z # x holds g.z = fz.

Theorem ZF_MODEL:22. E, f = V(x, y, H) iff for g st for z st g.z # f.z holds x = 2
ory =z holds E, g = H.

Theorem ZF_MODEL:23. E, f = 3(x, y, H) iff ex g st (for z st g.z # f.z holds x = z
ory=1z) &E,g=H.
Definition

let E, H.

pred E = H means for f holds E, f = H.

Theorem ZF_MODEL:24. E |= H iff for f holds E, f |= H.
Theorem ZF_MODEL:25. E |= V(x, H) iff E = H.
Definition
func the axiom of extensionality — ZF-formula means it = V(£0, £1, V(£2, £2'€’
0£2:€7€1)=£E0°=€1).
func the axiom of pairs — ZF-formula means it = V(£0, &1, 3(£2, V(£3, £3°€’
§2&(£3'="¢0vE3'=¢1)))).
func the axiom of unions — ZF-formula means it = V(£0, 3(£1, V(£2, £2°€¢1<
(€3, £2°€7¢3NE3€7€0)))).
func the axiom of infinity — ZF-formula means it = 3(£0, &1, £1°€’60AV(£2,
£2€760=3 (€3, E3'C7EON-EZ =IE2NY(E4, E4°E'E2=5£4°€7€3)))).
func the axiom of power sets — ZF-formula means it = V(£0, 3(£1, V(£2, £2'€’
E1eV(€3, £3°€762=£3€7£€0)))).
Definition
let H be ZF-formula.
assume {£0, £1, £2} misses Free H.

func the axiom of substitution for H — ZF-formula means it = V(¢3, 3(£0, V(¢4,
Heed ='¢0)))=V(e1, 3(E2, V(¢4, e4€'263(E3, E3€ELAH)))).
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Theorem ZF_MODEL:26. the axiom of extensionality = V(£0, £1, V(£2, £2'€’60<£2¢€’
£1)=£0'="¢1).

Theorem ZF_MODEL:27. the axiom of pairs = V(£0, £1, 3(£2, V(£3, £3°€’62<(£3°=
§0VE3'="¢1)))).

Theorem ZF_MODEL:28. the axiom of unions = V(£0, 3(£1, V(£2, £2°€’¢1<3(€3, £2€’
£3NE3°€7€0)))).

Theorem ZF_MODEL:29. the axiom of infinity = 3(£0, &1, £1°€’60AV(£2, £2°€E0=
(€3, £3°€7E0NES ="E2AV (£4, E4°€°62=E4°€7€3)))).

Theorem ZF_MODEL:30. the axiom of power sets = V(£0, 3(£1, V(£2, £2°€’¢1<V(£3,
£3°€°62=£3°€£0)))).

Theorem ZF_MODEL:31. {£0, €1, €2} misses Free H implies the axiom of substitution
for H = V(£3, 3(£0, V(€4, HeE4°=€0)))=V (€1, 3(€2, V(&4, €4'€’623(€3, £€3°€’61AH)))).
Definition

let E.

pred E is a model of ZF means E is €-transitive & E |= the axiom of pairs & E

= the axiom of unions & E = the axiom of infinity & E |= the axiom of power sets & for H
st {£0, &1, £2} misses Free H holds E = the axiom of substitution for H.

Theorem ZF_MODEL:32. E is a model of ZF iff E is &-transitive & E |= the axiom of
pairs & E = the axiom of unions & E k= the axiom of infinity & E k= the axiom of power sets
& for H st {€0, £1, €2} misses Free H holds E |= the axiom of substitution for H.



Chapter 34

ZF COLLA

The Contraction Lemma

by
Grzegorz Bancerek '

Warsaw University (Biatystok)

Summary. The article includes the proof of the contraction lemma which claims
that every class in which the axiom of extensionality is valid is isomorphic with a
transitive class. In this article the isomorphism (wrt membership relation) of two
sets is defined. It is based on Constructible sets by A. Mostowski.

The symbols used in this article are introduced in the following vocabularies: FIN-
SEQ, ZF_LANG, ZF_SAT, ZF_AXIOM, COLLAPS, ORDINAL, FUNC_REL, FUNC, BOOLE, FAM_OP,
REAL_1, and NAT_1. The terminology and notation used in this article have been intro-
duced in the following articles: TARSKI, BOOLE, FUNCT_1, REAL_1, NAT_1, FINSEQ_1,
ZF_LANG, FUNCT_2, ENUMSET1, ORDINALI, and ZF_MODEL.

reserve X, Y, Z for set, v, w, x, y, z for Any, E for SET DOMAIN, A, B, C for
Ordinal, L, L1 for transfinite sequence, f, f1, £2, g, h for Function, d, d1, d2, d’ for Element
of E.

Definition
let E, A.

!Supported by RPBP.III-24.C1.
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func Mu(E, A) — set means ex L st it = {d: for dl st dl € dex B st B €
dom L & d1 € [J{L.B}} & dom L = A & for B st B € A holds L.B = {d1: fordstd €
dl ex Cst C € dom (LB) & d € |J{L|B.C}}.

Definition
let f, X, Y.
pred fis €-isomorphism of X, Y meansdom f =X & rngf=Y & fis 1-1 & for
x,ystxe X&yecXholds (exZstZ=y&xecZ)iff (exZstfy=7Z& fx € Z).
Definition
let X, Y.

pred X, Y are €-isomorphic means ex f st f is €-isomorphism of X, Y.

reserve f, g h for (Function of VAR, E), u, v, w for (Element of E), x, y, z for Variable,
a, b, ¢ for Any.

Theorem ZF_COLLA:1. E = the axiom of extensionality implies for u, v st for w
holds w € uiff w € v holds u = v.

Theorem ZF_COLLA:2. E |= the axiom of extensionality implies ex X st X is e-
transitive & E, X are €-isomorphic.



Appendix A

Built-in Concepts

This article is written in plain Mizar; no additional vocabularies or signatures are referenced.

Definition
mode Any.

Definition
mode set — Any.

Definition
let x, y be Any.

pred x =Y.
Definition
let x be Any, X be set.
pred x € X.
Definition
let X be set.

mode Element of X.

Definition
mode DOMAIN — set.

Definition
let X be DOMAIN.
redefine
mode Element of X.
Definition
let X1, X2 be set.
func [X1, X2] — set.
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let X3 be set.
func [X1, X2, X3] — set.
let X4 be set.
func [X1, X2, X3, X4] — set.
Definition
let X1, X2 be DOMAIN.

redefine
func [X1, X2] — DOMAIN.

let X3 be DOMAIN.
func [X1, X2, X3] — DOMAIN.
let X4 be DOMAIN.
func [X1, X2, X3, X4] — DOMAIN.

Definition
let X1, X2 be DOMAIN.

BUILT-IN CONCEPTS

mode TUPLE of X1, X2 — Element of [X1, X2] means not contradiction.

let X3 be DOMAIN.

mode TUPLE of X1, X2, X3 — Element of [X1, X2, X3] means not contra-

diction.
let X4 be DOMAIN.

mode TUPLE of X1, X2, X3, X4 — Element of [X1, X2, X3, X4] means not

contradiction.
Definition
let X be set.
mode Subset of X — set.
func bool X — set.

Definition
mode SET DOMAIN — DOMAIN.

Definition
let D be DOMAIN.
redefine
func bool D — SET DOMAIN.
Definition
let D be SET DOMAIN.

redefine
mode Element of D — set.



Definition
let X be DOMAIN.

redefine

mode Subset of X — Element of bool X means not contradiction.

Definition
let X be DOMAIN.

mode SUBDOMAIN of X — DOMAIN.

Definition
func REAL — DOMAIN.

Definition
func NAT — SUBDOMAIN of REAL.

Definition
let x, y be Element of REAL.
func x+y — Element of REAL.
func x-y — Element of REAL.
pred x < y.
Definition

mode Real — Element of REAL means not contradiction.

Definition
let D be DOMAIN, X be SUBDOMAIN of D.
redefine
mode Element of X — Element of D.
Definition
let X be SUBDOMAIN of REAL.
redefine
mode Element of X — Real.

Definition
mode Nat — Element of NAT means not contradiction.
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The Grammar of Mizar Abstracts

Abstract = "environ" Environment "begin" Text-Proper .
Environment = { Directive } .
Directive =
"vocabulary" Vocabulary-File-Name ";"
"signature" Signature-File-Name ";"
Text-Proper = { Text-Item } .
Text-Item =
Reservation | Definition-Block |
Structure-Definition |
Theorem | Scheme .
Theorem = Compact-Statement .

Reservation =
"reserve" Reservation-Segment
{ "," Reservation-Segment } ";"
Reservation-Segment = Reserved-Identifiers-List "for" Type
Reserved-Identifiers-List = Identifier { "," Identifier } .

Definition-Block =
"definition" Definitions [ "redefine" Redefinitions ]

"end" ";".
Definitions = { Definition-Item } .
Redefinitions = { Definition-Item } .
Definition-Item =

Generalization |

Assumption |

Mode-Definition |
Function-Definition |
Predicate-Definition .
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Mode-Definition =
"mode" Mode-Pattern [ Specification ]
[ "means" Definiens ] ";"
Mode-Pattern = Mode-Symbol [ "of" Loci ]

Function-Definition =
"func" Function-Pattern [ Specification ]
[ "means" Definiens ] ";"
Function-Pattern =
[ Function-Loci ] Function-Symbol [ Function-Loci ] |
Left-Function-Bracket Loci Right-Function-Bracket |
ll{ll LOCl ll}ll |
n [ll Loci ll]ll.

Predicate-Definition =
"pred" Predicate-Pattern [ "means" Definiens ] ";"
Predicate-Pattern =
[ Loci ] Predicate-Symbol [ Loci ] |
Locus "=" Locus.

Structure-Definition =

"struct" Structure-Symbol " (#" Selector-List "#)" ";".

Selector-List = Selector-Segment { "," Selector-Segment }.
Selector-Segment =

Selector-Symbol { "," Selector-Symbol } Specification .

Function-Loci = Locus |"(" Loci ")".
Loci = Locus { "," Locus }.

Locus = Variable-Identifier.
Specification = "->" Type

Definiens = Simple-Definiens | Compound-Definiens

Simple-Definiens = Sentence .

Compound-Definiens = Partial-Definiens-List [ "otherwise" Sentence ]

Partial-Definiens-List =
Partial-Definiens { "," Partial-Definiens } .
Partial-Definiens = Sentence "if" Sentence

Scheme =

"scheme" Scheme-Identifier "{" Scheme-Parameter-List "}" ":
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Scheme-Conclusion
"provided" Scheme-Premise { "and" Scheme-Premise }
Justification ";"
Scheme-Conclusion = Sentence.
Scheme-Premise = Proposition .
Scheme-Parameter-List = Scheme-Parameter { "," Scheme-Parameter } .
Scheme-Parameter =
Local-Function-Pattern Specification |
Local-Predicate-Pattern .

Local-Function-Pattern =

Function-Identifier "(" [ Type-List ] ")"
Local-Predicate-Pattern =

Predicate-Identifier "[" [ Type-List ] "]"

Generalization = "let" Fixed-Variables .
Assumption =
Single-Assumption |
Collective-Assumption |
Existential-Assumption .

Single-Assumption = "assume" Sentence ";"
Collective-Assumption = "assume" Conditions ";"
Existential-Assumption = '"given'" Fixed-Variables ";"

Compact-Statement = Sentence ";"

Fixed-Variables = Qualified-Variables [ "such" Conditions ]
Conditions = "that" Sentence { "and" Sentence } .
Proposition = [ Label-Identifier ":" ] Sentence

Sentence = Formula .

Formula =
Atomic-Formula |
Quantified-Formula |
Formula "&" Formula |
Formula "or" Formula |
Formula "implies" Formula |
Formula "iff" Formula |
"not" Formula |
"contradiction"

Quantified-Formula =
"for" Qualified-Variables [ "st'" Formula ]
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( "holds" Formula | Quantified-Formula ) |
"ex" Qualified-Variables "st" Formula .

Atomic-Formula =
[ Term-List ] Predicate-Symbol [ Term-List 1 |

Term ( "<>" | "=" ) Term |
Predicate-Identifier "[" [ Term-List ] "1" |
Term "is" Type

Qualified-Variables =
Implicitly-Qualified-Variables |
Explicitly-Qualified-Variables |
Explicitly-Qualified-Variables ","

Implicitly-Qualified-Variables .

Explicitly-Qualified-Variables =
Qualified-Segment { "," Qualified-Segment }

Qualified-Segment = Variable-List Qualification .

Implicitly-Qualified-Variables = Variable-List .

Variable-List =
Variable-Identifier {"," Variable-Identifier }
Qualification = ("being" | "be" ) Type

Type = "(" Type ")" |
Mode-Symbol [ "of" Term-List ] |
Structure-Symbol |
"set" [ "of" Type ] |
"[" Type-List "]"
Type-List = Type { "," Type } .

Term = "(" Term ")" |
[ Argument-List ] Function-Symbol [ Argument-List ] |
Left-Function-Bracket Term-List Right-Function-Bracket |
Function-Identifier "(" [ Term-List 1 ")" |
"the" Selector-Symbol "of" Term |
"the" Selector-Symbol |
Structure-Symbol "," Term-List "." |
Variable-Identifier |
"[" Term-List "]1" |
"{" Term-List "1}" |
"{" Term ":" Sentence "}" |
Numeral |
"ig" |
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Term "qua" Type .
Term-List = Term { "," Term }
Argument-List = Term | " (" Term-List ")"

Variable-Identifier = Identifier .
Function-Identifier = Identifier .
Predicate-Identifier = Identifier .
Scheme-Identifier = Identifier .
Label-Identifier = Identifier .

Vocabulary-File-Name = File-Name .
Signature-File-Name = File-Name .
Definitions-File-Name = File-Name
Theorems-File-Name = File-Name .
Schemes-File-Name = File-Name .

File-Name = Identifier .

Structure-Symbol = Symbol .
Selector-Symbol = Symbol .
Predicate-Symbol = Symbol .
Function-Symbol = Symbol .
Mode-Symbol = Symbol .
Left-Function-Bracket = Symbol
Right-Function-Bracket = Symbol .
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Vocabularies

stands for a character from extended ASCII with code ddd > 127 .

Vocabulary BIN_OP

BinOp BinOp

UnOp UnOp

the_unity wrt the unity wrt
is_associative is associative
is_commutative is commutative

is_a unity wrt is a unity wrt

is_a left_unity_wrt is a left unity wrt
is_a right unity.wrt is a right unity wrt
is_an_idempotent is an idempotent
is_distributive wrt is distributive wrt
is_left_distributive wrt is left distributive wrt
is_right distributive wrt is right distributive wrt

Vocabulary BOOLE

U U
\ ~
c= -
237 0
239 N
246 =
meets meets
misses misses
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Vocabulary BOOLEDOM

BOOLE_DOMAIN

Vocabulary COLLAPS

M 230

i s—i somorphism_of
are—isomorphic

Vocabulary COORD

‘1
€2
‘3
‘4

Vocabulary EQUI_REL

247

Vocabulary FAM_oOP

meet
union

Vocabulary FINITE

Fin
is_finite
Finite_Subset

Vocabulary FINSEQ

FinSequence
FinSubsequence
Seg

len

Seq

Sgm

APPENDIX C. VOCABULARIES

BOOLE DOMAIN

Mgy
is €-isomorphism of
are €-isomorphic

22 =W N =

cD

Fin
is finite
Finite Subset

FinSequence
FinSubsequence
Seg

len



*
{237)
<x*
*>

Vocabulary FUNC

graph
id

Function
is_one-to-one

Vocabulary FUNC2

Funcs
Permutation

Vocabulary FUNC3

prl
pr2
delta
incl
chi
<:

D>

Vocabulary FUNC_REL

dom

rng
I
248

Vocabulary HIDDEN

Any
Element
DOMAIN
TUPLE

—

graph
Id

Function
is 1-1

Funcs
Permutation

et
2

incl

]

dom
mg

Any
Element
DOMAIN
TUPLE
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Subset
SUBDOMAIN
Real

Nat

bool

REAL

set

NAT

SET_DOMAIN

[:
1]

+
238
243
249

Vocabulary INCSP_1

IncStruct
Points
Lines
Planes
Inci

Inc2

Inc3

on
is_collinear
is_coplanar
POINT

LINE

PLANE
IncSpace
Line

Plane

Vocabulary LATTICES

Lattice

D_Lattice
M_Lattice
O_Lattice
1 _Lattice

Subset
SUBDOMAIN
Real

Nat

bool

REAL

set

NAT

SET DOMAIN

N M =

IncStruct
Points
Lines
Planes
Incl

Inc2

Inc3

on

is collinear
is coplanar
POINT
LINE
PLANE
IncSpace
Line
Plane

Lattice

D Lattice
M Lattice
0 Lattice
1 Lattice

APPENDIX C. VOCABULARIES



01 _Lattice
C_Lattice
B_Lattice
is_comp
192|217
218191
193
194
LattStr
L_carrier
L_join
L_meet

Vocabulary NAT_1

179
mod
div
lcm
hcf

Vocabulary ORDINAL

succ
zero

is| 238 |-transitive

is]238|-connected
is_limit_ordinal
Ordinal
T-Sequence

Vocabulary REAL_1

Vocabulary REL_REL

01 Lattice
C Lattice
B Lattice
C

is a complement
U

Il

il

T

LattStr

L carrier
L join

L meet

mod

lcm

gcd

succ
0

is E-transitive
is €-connected
is limit ordinal
Ordinal

transfinite sequence
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is_reflexive_in
is_irreflexive_in
is_symmetric_in
is_antisymmetric_in
is_asymmetric_in
is_connected_in
is_strongly_connected_in
is_transitive_in
is_reflexive
is_irreflexive
is_symmetric
is_antisymmetric
is_asymmetric
is_connected
is_strongly_connected
is_transitive

Vocabulary RELATION

Relation
empty
field
diagonal

Vocabulary SFAMILY

Set-Family
Subset-Family
is_finer_than
is_coarser_than
UNION
INTERSECTION
DIFFERENCE

Vocabulary SUB_OP

234

[4

Vocabulary Topr1

APPENDIX C. VOCABULARIES

is reflexive in

is irreflexive in

is symmetric in

is antisymmetric in
is asymmetric in

is connected in

is strongly connected in
is transitive in

is reflexive

is irreflexive

is symmetric

is antisymmetric

is asymmetric

is connected

is strongly connected

is transitive
Relation

0

field

A

Set-Family
Subset-Family
is finer than

is coarser than
U]

m

NN

Q

o



Int

is_domain
is_closed_domain
is_open_domain
is_dense
is_nowheredense
is_boundary

Vocabulary TOPCON

Cl

Fr

skl

carrier
topology
TopStruct
is_open
is_closed
is_open_closed
are_separated
is_continuous
are_joined
is_a_component_of
is_a_cover_of
TopSpace
Point
SubSpace

map

Vocabulary WELLORD

is_well_founded_in
is_well_founded
well_orders
is_well-ordering-relation
are_isomorphic
is_isomorphism of

-Seg

|

canonical_isomorphism of

Vocabulary zr_AXIOM
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Int

is domain

is closed domain
is open domain
is dense

is nowheredense
is boundary

Cl

Fr

skl

carrier
topology
TopStruct

is open

is closed

is open closed
are separated
is continuous
are joined

is a component of
is a cover of
TopSpace
Point
SubSpace
map

is well founded in

is well founded

well orders

is well-ordering-relation
are isomorphic

is isomorphism of

-Seg

I~2

canonical isomorphism of
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the_axiom of extensionality
the_axiom_of _pairs
the_axiom of unions
the_axiom_of_infinity
the_axiom_of _power_sets

the_axiom_of_substitution_for

Vocabulary zZzF_LANG

Variable
ZF-formula

-
]
-

M

the_argument_of
the_left_argument_of
the_right_argument_of
the_scope_of

bound_in
the_antecedent_of
the_consequent_of
the_left_side_of
the_right_side_of
is_immediate_constituent_of
is_subformula_of
is_proper_subformula_of
is_equality
is_membership

is_atomic

is_mnegative

APPENDIX C. VOCABULARIES

the axiom of extensionality
the axiom of pairs

the axiom of unions

the axiom of infinity

the axiom of power sets

the axiom of substitution for

Variable
ZF-formula

(9

m

ém@l}<<>J

FF

VAR

£

Subformulae

Vary

Vare

the argument of

the left argument of
the right argument of
the scope of

bound in

the antecedent of

the consequent of
the left side of

the right side of

is immediate constituent of
is subformula of

is proper subformula of
is equality

is membership

is atomic

is negative



is_conjunctive

is_universal

is_disjunctive
is_conditional
is_biconditional
is_existential

Vocabulary zr_SAT

Free
VAL
St

is_a_model_of_ZF

is conjunctive
is universal

is disjunctive
is conditional
is biconditional
is existential

Free
VAL
St
|:

is a model of ZF
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