INTRODUCTION

The present text includes the description of the basic constructions in the system
PC Mizar, but the description is not complete. The text consists of four chapters and
the annex containing a number of examples.

Chapter I discusses terminological issues and the symbolism used. Chapter II de-
scribes the fundamental constructions in Mizar, namely article and directives. Identifiers,
reserved words and symbols, and numerals are discussed, too. Chapter III is concerned
with formulas, and Chapter IV, with proofs of theorems.

The text is mainly concerned with the syntactics of Mizar. Elements of seman-
tics, indispensable for the explanation of certain rules of proofs, are discussed in III.7
”Semantic correlates”.

The text includes a number of examples (mainly from general topology), to be found
both in the annex and in the main text. This should facilitate one both to learn Mizar
and independently to write articles in that language.

The author is indebted to Dr A.Trybulec and to G.Bancerek for valuable suggestions
and comments, very helpful in writing of the present text.

PC Mizar system is implemented by A.Trybulec and Cz. Byliniski. Andrzej Trybulec
is the author of the Mizar language.



I. CONVENTIONS

Every Mizar article is a sequence consisting of ASCII symbols (ASCII: a fixed code
of signs arranged in a certain order) other than control signs, the sign No. 127 and No.
255. Fragments of Mizar articles presented in this text will, however, include signs not
represented in the ASCII code (such as §, &, §). Those signs are used in order to increase
the legibility of the text.

The table below lists the symbols not allowed in a Mizar article, which will be used
in the present paper, and their analogous in the standard ASCII.

Moreover the text includes inscriptions of the form:

list—...
which will be termed lists, as well as other inscriptions consisting of words linked by the
hyphen "7, e.g.,
segment—of-qualified—variables,
symbol-of—functor.
Hyphenation is intended to indicate that the words thus liked together form a certain
whole.

Further, certain words will be written in bold type. They will be words reserved for
Mizar, that is such whose meanings are rigorously determined by definition in the Mizar
language. That typographical distinction is to draw the Reader’s attention to then, and
thus more easily to remember at least some of them. Note that the list of all reserved
words and symbols will be found in the present text.

Symbol in this book | Representation in ASCII
3 F
() G
3] H
- c=
c ¢
U U
Q [234]
0 [237]
€ [238]
N [239]
< [243]
# <>

The following symbolism has been adopted:

— topological space,

— subspace of a topological space &,

— family of subsets of a topological space &,
— subsets of a topological space &,

— sets,

— points of a topological space &,

— natural numbers,

— arbitrary objects.
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II. ARTICLE AND DIRECTIVES

A file with a Mizar text is termed a Mizar article. The name of the file may consist
of not more than eight signs: letters, figures, underscorings (-), and the sign >, and may
be neither a numeral nor a reserved Mizar word. Moreover such a file must have the
extension .miz.

Here are some examples of names of a file: Wil.miz, ’’_’.miz, x.miz. In view
of the proof clarity the use as the name of a file of the inscription ’’_’ or any other
equally little legible inscription is not recommended. A Mizar article consist of two parts:
environment directives and the sequence of sections, which must be separated from one
another by the word begin. The environment directives must be preceded by the word
environ, which opens every Mizar article.

Mizar article

environ
FEnvironment directives

Section

begin
Text proper

Section

begin
Text proper

The text proper may include, among other things, proofs of theorems, definitions with
conditions of correctness, proofs of schemata. In order to write a correct non-empty text
proper one needs the environment which for the person who writes that article can be
organized by environment directives. They include items of information indispensable
for the correct reading by Mizar of the text proper, and are the basis for proofs. To put
it more rigorously, environment directives refer to a data base and thus indicate which
elements in the existing library are used in a given article.

The environment directives include:

vocabulary « ;

signature [ ;

definitions 7 ;

theorems § ;

schemes ¢ ;
where
a — the name of a vocabulary file (e.g., TOPCON, ANAL),
B — the name of a signature file (e.g., TOPS_1, PRE_TOPC, SUBSET_1),
v — the name of a definition file (e.g., TARSKI, BOOLE),
0 — the name of a theorem file (e.g., CONNSP_1, REAL_1),
¢ — the name of a schema file (e.g., NAT_1).



I1.1. Vocabulary directive

The directive
vocabulary « ;
is termed vocabulary directive, and the remaining ones, data base directives. Every Mizar
article consist of a certain numbers of symbols. Some of then are introduced automat-
ically (hidden symbols), while the remaining ones are introduced by reference to vocab-
ulary directives. Hence vocabularies are needed. A vocabulary consist of a file with the
extension .voc. That file contains the list of symbols with their qualifiers and indicates
the biding strength of the symbols of functors. For instance, the file TOPCON.voc, which
forms the vocabulary, is as follows:

TOPCON.voc

0C1 128

OFr 128

Oskl 128
Ucarrier
Utopology
GTopStruct
Ris_open
Ris_closed
Ris_open_closed
Rare_separated
Ris_continuous
Rare_joined
Ris_a_component_of
Ris_a_cover_of
MTopSpace
MPoint
MSubSpace

Mmap

In its leftmost column it contains qualifiers, and beginning with the next column to the
right until the space it contains symbols. Qualifiers in a sense characterize symbols. For
instance the qualifier 0 indicates that the symbol next to it is a symbol of a functor, while
the qualifier R indicates that the symbol next to its is a symbol of a predicate. Thus the
symbols
Cl, Fr, skl

are symbols of functors, while the symbols

is_open, is_closed, is_open_closed, are_separated, is_continuous,

are_joined, is_a_component_of, is_a_cover_of
are symbols of predicates.

The symbols C1, Fr, skl denote, respectively the operations of: closure, boundary
of a subset of a topological space, and component of a point of a topological space.

The symbols is_open, is_closed, is_open_closed are used to denote predicates
defined for subsets of a topological space and indicating, respectively, that is given set is
open, closed, open-closed. The symbol is_continuous is used to denote the property of
being a continuous mapping of topological spaces. The symbol are_separated denotes
the relationship between subsets of a topological space which says that they belong to
one and the same component. The symbol is_a_component_of denotes two predicates:
one says that a subset of a topological space is the maximal compact set (component) in
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that topological space, and the other says that it is a component in another subset of a
topological space. The symbol is_a_cover_of denotes the property of being a cover of a
topological space.

Other qualifiers occurring in the file TOPCON.voc are:

G — qualifier of the symbol of structure,
U — qualifier of the symbol of selector,
M — qualifier of the symbol of mode.

The symbol TopStruct is used to denote the structure of a topological space, and
the symbols topology and carrier denote, respectively, the topology and the carrier of
a topological space. The symbols of modes, i.e., the inscriptions TopSpace, SubSpace,
Point, map, are used to denote, respectively, topological space, topological subspace,
point of a topological space, and a mapping between topological space.

Qualifiers of functor brackets may also occur:

K — left functor bracket,
L — right functor bracket.

The identifier of schema is not introduced into vocabulary.

Here is the file ANAL.voc which contains the symbols of functor brackets used in
defining the absolute value:

ANAL.voc
K |.
Lo
Osgn

The inscriptions:
< kD>, <o >

are other examples of functor brackets. These are used to denote, respectively, finite
sequences and functions which are pairs of functions. There is a pair of functor brackets
whose symbols are in the file HIDDEN.voc. That file is joined automatically to every
article.

Moreover, the vocabulary file indicates the binding strength or priority. This applies
only to the symbols of functors. The binding strength of a given functor is indicated by
the number next to its symbol.

Remark: The number characterizing the priority of a given functor must be separated
from the symbol of that functor by at least one space.
There can be no space between the qualifier and its corresponding vocabulary symbol.

Self-evidently, the symbol of a functor binds more strongly if its number is greater.
The priority of a given functor may be characterized by any natural number in the
interval <0;255>.

All symbols of functors given in the vocabulary Topcon have the priority 128. Some
symbols of functors have no number characterizing priority, but this is not say that a
given symbol has no priority. That priority is given and amounts to 64. This is the
standard priority.

For instance, the binding force of the symbol of the functor sgn to be found in the
vocabulary Anal presented above is not given.

Remark: The binding force of the symbols of predicates, which always bind more weakly
than do the symbols of functors, is not given.

The concept of binding force of the symbols of functors is linked to the sequence
in which the operations in a given formula are performed. Consider, for instance, two
formulas:



Cl P¢ and Q& N Q.

Since the binding force of the symbol ¢ is greater (it amounts to 150) than that of the
symbol C1 (128), the inscription C1 P is interpreted as the closure of the complement of
the set P, that is, in the same way as the inscription C1 (P¢). It is likewise in the second
case. The priority of the symbol 2 is 128, and that of them symbol N is the standard one,
i.e., 64. Hence the inscription Q& N Q is interpreted in the same was as the inscription
(Q8) N Q. The acknowledge of the priority of at least some symbols may be used in
articles in order to avoid superfluous brackets.

I1.2. Identifiers

Inscription which include: ASCII control signs (i.e., signs which have ordinal num-
bers from 0 to 31), space (sign with the number 32), and the signs with the numbers 127
and 255, cannot be vocabulary symbols.

Mizar articles include inscription termed identifiers. What sort of an inscription on
identifier is? Now identifier is any non-empty sequence of certain signs. Those signs
may be letters, figures, the symbol of underscoring (_), and apostrophe (’), but not
reserved words, not reserved symbols of Mizar nor numerals (see IL.5.). The length of an
inscription which is an identifier should not exceed sixteen signs because otherwise such
an inscription which is an identifier may be a vocabulary symbol, but not conversely.

Identifiers are used to denote:

a) private functors and predicates,

b) variables,

c) labels.

Hence we may speak about identifiers of variables, identifiers of private functors and
predicates (if it is not a private functor or predicate then we speak about a symbol), etc.

By way of example we shall specify the identifiers in the file Z1.1st included in the
annex. They are as follows:

e identifiers of variables:
T, P,

e identifiers of labels:
71, 72.

The identifiers of labels are examples of references. References make it possible to
refer to sentences which have been earlier assumed or substantiated.
local — identifiers of labels

references { number

library — file symbol : {
def number

Examples of local references have been given above.

Library references are exemplified by the inscriptions:
TOPS_1:28, BOOLE:1, TARSKI:4, REAL_1:5, SUBSET_1:14, PRE_TOPC: 34.

A library reference results in the reference to a definite theorem to be found in the
Mizar library. For instance, the library reference TOPS_1:28 results in the references to
the theorem No.28 recorded in the file TOPS_1.abs. On the contrary, local references
apply to sentences in a given article and unlike library references may be freely assigned
to sentences.

Sentences are assigned labels so that one can refer to them in a later part of the
text. As between signature directives (see III.1) the phenomenon of overridding may
hold between identifiers of labels.



DISCRIMINANTS OF IDENTIFIERS OF NAME OF FILES:

> An identifier which is a name of a file consists maximally of eight signs.
> An identifier may be formed of:
letters, figures, the sign of underscoring (_) and apostrophe ().
> In an identifier capital letters and lower-case letters are treated as identical. For
instance, the inscriptions row, Row, and ROW are one and the same name of a file.

The adopted convention is that names of files are always in capital letter.

An inscription which is an identifier has a close connection with those vocabulary

files which have been used in the environment. The point is that the symbols in those
files cannot be identifiers. Should we disregard that errors would be reported as in the
example Z2.1st in the annex. They resulted from the use of the inscription Fr as an
identifier of a variable. Note that Fr is the symbol of a functor included in the vocabulary
Topcon, and that vocabulary is joined to the environment. Hence, in accordance with
what has been said earlier, it was not allowed to use the inscription Fr as an identifier
of a variable.
Remark:  The person who writes has large freedom in constructing identifiers, and this
is why attention is drawn to the fact that the inscriptions which function as identifiers
should be as legible as possible because that contributes to both the clarity of that article
and its aesthetic appearance.

I11.3. Hidden vocabulary

HIDDEN.voc

MAny
MElement
MDOMAIN
MSubset
MSET_DOMAIN
MSUBDOMAIN
MReal
MNat

K[:

L:]

Obool 128
OREAL 255
ONAT 255
0+ 32

0

R<>

Re

R<

R>

R<

R>

The symbols of functors + and - are used to define, respectively, the addition and
the multiplication of terms, whose type is expanded to the type Element of REAL. The
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symbols € and < are used to denote, respectively, the relation of membership and the
relation of order. The correct use of the predicate symbolized by € consist in that the
type of its left argument must be expandable to the type Any, and that of the right
argument, to the type set. The predicate symbolized by < is defined to objects whose
type is expandable to the type Element of REAL. The inscription bool is used as the
symbol of the functor which denotes the family of all subsets of a certain set. The symbols
of the functor brackets to be found in the Hidden vocabulary are adopted to denote of
Cartesian product of sets. The remaining symbols in that vocabulary will be discussed
in the section dedicated to types.

I1.4. Data base directives

The signature directive will be discussed first. The directive
signature 3 ;

joins automatically the files: S.sgn, f.nfr and S.typ. They contain information about
the way in which the symbols introduced in the vocabularies may be used. For instance,
the file f.sgn lists the types of arguments of the objects defined and patterns of defi-
nitions. The file f.nfr contains the descriptions of the formats of the objects defined
(functors, predicates, modes). Formats for schemata are not given. A format offers in-
formation about the number of arguments. One and the same symbol may have several
formats. For instance, the symbol () is used in the article BOOLE in the format of 0-0
arguments to denote the empty set (zero left arguments and zero right arguments — see
table in ITI.1.), while in the article PRE_TOPC in the format of 0-1 arguments, to denote
the least element of the family of open sets of a given topological space (zero left argu-
ments and one right arguments — see table in I1.1.). In both cases the priority is the same
because it pertains to the symbol of a functor. The content S.typ contains the types of
the result of a functor and the type of the expansion of a mode.

For instance, the joining to the environment of the directive

signature BOOL;
results in the symbol N (to be found in the vocabulary Boole — file BOOLE.voc) being
correctly usable for denoting the two-argument operation of intersection, where the left
and right argument are sets. Moreover, the results of the operation N is a set, too.
The context in which the symbol N is interpreted here follows from the definition of
intersection, given in the article Boole (where X, Y are identifiers of sets).
definition
let X,Y;
func X N Y —> set means
x €eitifx € X & x € Y;
end;

Let use analyse the part of the definition X N Y —> set. It follows from X N Y that
the operation N is a two-argument one (the sets X and Y being the arguments). The
symbol set after the symbol —> informs one that the results of the operation N is a set.

The directive

signature BOOL;
makes accessible all definitions (which are not everridden) to be found in the article
Boole. This applies, among other things, to the definition of the operation of intersection
denoted by the symbol N (number of arguments, types of arguments, type of result of
the operation).

But the operation denoted by the symbol N may be also interpreted otherwise. The
article PRE_TOPC includes a redefinition of the symbol N:

definition



let &, P, Q;
redefine
func P N Q@ —> Subset of &;
end;
where P, Q are variable identifiers of subsets of the topological space &.
If the directive
signature PRE_TOPC;

is joined to the environment, then the symbol N will be used to denote the two-argument
operation of intersection where both the left and the right argument is a subset of the
topological space &. Moreover, the result of the operation N is also a subset of the
topological space &.

The application of a signature directive should in that case be included in the envi-
ronment?

The operations denoted by the symbol Q, * |, N, U, \ for subsets of the topological
space & have been defined in the article PRE_TOPC. In the case of the first two symbols we
have to do with definitions, in the case of the remaining ones, with redefinitions. Since
the identifiers of variables which are arguments of the operations denoted by the symbols
indicated above are, in the exercise, reserved for subsets of the topological space &, the
directive

signature PRE_TOPC;
should be joined to the environment. There will be also the information about the mode
TopSpace. The mode with the symbol Subset is to be found in the vocabulary HID-
DEN, automatically joined to every article, and hence cannot occur among environment
directives. Moreover, the information about the use of the symbols to be found there are
automatically used by the processor of PC Mizar, that is without the indication of the
corresponding signature directives

The examples Z4.1st and Z5.1st in the annex illustrate errors due to a lack of the
proper signature directive.

Remark: The order in which signature directives are specified may be importance. Such
is the case in the redefinitions of one and the same symbol. The valid redefinition is
always that of the last signature specified in the environment. If that order is erroneous,
then the objects defined in a given will be everridden.

The example below shows the overridding of the operation of intersection defined in
signature PRE_TOPC; . Places where the error No. 103 is reported are indicated.

environ
vocabulary SUB_0P;
vocabulary BOOLE;
vocabulary TOPCON;
signature PRE_TOPC;
signature BOOLE;
theorems BOOLE;
theorems TOPS_1;
begin
reserve & for TopSpace,P,Q for Subset of &;
PnNQE°=P URQR"°

*x103
proof
PN®Pc=06)\ (PN Q) by TOPS_1:5
*103



(Q6 \ P) U (26 \ Q) by BOOLE:86
PC U (06 \ Q) by TOPS_1:5
.= P° U Q° by TOPS_1:5;
hence thesis;
end;

(Consider the example Z6 in the annex.)

Since the last signature directive is the directive signature BOOLE;, the operation
denoted by the symbol N has been used in the sense defined in the article BOOLE (the
subset of a topological space are sets, too). In accordance with that definition the results
of the operation of intersection is a set.

Hence the intersection P N Q is a set. But the closure operation is defined only for
subsets of a fixed set. That is why the expression (P N Q)¢ is followed by the indication
of an error.

The overridding of the directive signature PRE_TOPC; can be avoided if the order
of the signatures occurring in the example under consideration is changes (as has been
done in the example Z7.1st).

Proofs are sometimes carried out by the method of definitional expansion. In such
a case the directive.

definitions 7 ;
should be joined to the environment.

Proving by definitional expansion will be illustrated by an example. The proof of
the theorem is given below:

For any sets X,Y we have: XNY C Y.
The proof (not in the Mizar notation) is as follows:
Let a be an arbitrary but fixed and such that a € X N'Y.

HaeXNY (assumption of the proof);
2)ae X AaeY (1, definition of the intersection of sets);
3)aeyY (2, the law of the omission of conjunction).

It follows from the arbitrariness of the choice of a and the definitional expansion
that X C Y.

XCY«& Va(ae X = acY) - definitional expansion of inclusion.

When proving in Mizar the above theorem by reference to definitional expansion one
should join to the environment the directive
definitions TARSKI;
because in the article TARSKI there is the definition of inclusion which is as follows:
pred X C Y means x € X implies x € Y;
And here is the redefinition of the quality of sets, to be found in the article BOOLE:
pred X = Y meansX C Y & Y C X;
In example one in the file art.1st the theorem has been proved in two ways. In both
cases use has been made of the definitional expansion of inclusion and the definitional
expansion of the equality of sets. That is why the environment directives include two
definition directives:
definitions TARSKI; and definitions BOOLE;.
The definition directive
definitions v ;

automatically joins the file y.def, which includes the definitienses of the objects defined
(definiens — the expression which occurs in a definition of a functor, a predicate, a mode,
a attribute after the word means).
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The theorem directive:
theorems § ;
allows one to make use of the theorems in file § .miz. The writing of that directive results
in the automatic joining of the file §.the, which includes the contents of the theorems
in a given article.
The directive
schemes ¢ ;
allows one, through the automatic joining of the file .sch, containing contents of the
schemata in the file ¢.miz, to use the schemata in that file.

For instance, the induction schema is to be found in the article NAT_1. Hence, in
order to use it one has to join to the environment the directive schemes NAT_1;, that
is, to insert it between the word environ and the word begin.

If the text requires several vocabularies one has to repeat the directive

vocabulary name—of-file ;
with the corresponding names of vocabulary files. In the case of the remaining directives
one has to proceed analogically.

Remark:  The repetition of a directive with the same name of the file yields an error.
But it is not so if a directive superfluous for a given article is added, as in the example
Z7.1st, where the directive signature BOOLE; is superfluous.

BRIEF DESCRIPTION OF THE ORGANIZATION OF THE MIZAR DATA BASE

In the main mizar directory \MIZAR there are two subdirectories:
\DICT - intended for vocabulary files (files with the extension .voc),
\PREL — intended for library files formed by the program called LIBRARIAN. Those
files are formed automatically and have the extensions :
.sgn, .nfr, .typ, .def, .the, .sch.
They form the Data Base.
The presence of those subdirectories in the disc memory of the computer is necessary
because it is from them that the Mizar processor draws information which make it possible
to write Mizar articles. The subdirectory \ABSTR is often formed additionally.

\ABSTR - intended for library files which are obtained from mizar articles after their
special processing. Files in that subdirectory are termed abstracts and have the
extension .abs. The abstracts contain in their main part contents of theorem
and definitions, and schemata. They do not contain proofs. The theorem in
the file #.abs (where # stands for the name of a given article) are numbered.
Every theorem in the file # .abs is preceded by a headline in the form:

:: # : number—of-theorem
The subdirectory \ABSTR plays only an auxiliary role for the user. When perusing the files
in that subdirectory one can learn what has already been proved in Mizar. Moreover, if
one wants, in the proof of a certain sentence, to refer to a theorem from a file in the Main
Mizar Library, then one can read the name of that file and the number of the theorem
and refer to them in the proper place. But it is not necessary for the subdirectory \ABSTR
to be recorded in the computer memory. The Mizar processor uses only the information
given in the files from the subdirectories \DICT and \PREL.
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I1.5. Words reserved for Mizar. Reserved symbols. Numerals

The words reserved for Mizar are drawn from the English language. They are inscrip-
tions whose meanings are defined by the definition of the Mizar language. For instance,
environ is a word reserved for Mizar. It opens every Mizar article. That word may
occur in article only once and only at the beginning. The use of environ in another
context yields an error. Other reserved words also have their precisely defined meanings.

It words adding here there are also symbols reserved for Mizar, whose meanings,
too, are fixed in advance. They include:
= & s ; : ( ) [ ] { } ->
= <> ##
$1 $2 $3 $4 $5 $5 $6 $7 $8

The numerals include zero (0) and any finite sequence of figures not beginning with
zero. The Mizar processor makes it possible to use numerals in the interval <0;255>.

For instance, the inscriptions 00, 0103 are not numerals.

The list of words reserved for Mizar:

aggregate and antonym
as associativity assume
attr be begin
being by canceled
case cases cluster
coherence compatibility consider
consistency contradiction correctness
def define definition
definitions end environ

ex exactly existence
for from func

given hence hereby
holds if iff

implies irreflexivity is

it let means
mode non not

now of or
otherwise over per

pred prefix proof
provided qua reconsider
redefine reflexivity reserve
scheme schemes selector
set signature st

struct such symmetry
synonym take that

the then theorem
theorems thesis thus
uniqueness vocabulary where
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III. TERMS AND FORMULAS

The skill of constructing sentences in Mizar is a necessary condition if one is to write
correctly a Mizar article. This is why in the present chapter we shall discuss the basic
elements connected with the Mizar sentence. We mean terms and formulas. Let us begin
with terms.

IT1.1. Terms
The set of terms is the least set which satisfies the following conditions:
a) variables and constants are terms;
b) if t1, ..., t,, are terms and F is a symbol of a functor of p arguments, then F(tq,...,t,)
is a term.

But in the Mizar language the concept of term is interpreted more broadly. Terms

in Mizar are inscriptions which are listed below under given categories.

(1). IDENTIFIERS OF VARIABLES ARE TERMS

For instance, they may be such inscriptions as: P, TS, q.
(2). NUMERALS ARE TERMS
For instance: 2,178, 77.
(3). THE EXPRESSION IN THE FORM:
list—of-leftside—arguments symbol-of—functor list—of-rightside arguments
is a term.

The functor symbol must be in the vocabulary. The inscriptions in the vocabulary are
called symbols, and this is why, when speaking about symbols of functors, predicates,
etc., we shall mean symbols of those functors predicates, etc., which are to be found in
a certain vocabulary.

The number of arguments in the list of arguments (both leftside and rightside ones)
may equal zero. Such is the case of the functor . Moreover there may be cases in which
the list of the leftside arguments equals zero, or that of the rightside arguments equals
zero. Examples will be given below.

Consider the following symbols of functors which are used in articles pertaining to
topological spaces: 0, U, N, ¢, C1, Int, Fr
and other symbols not occurring here. The table below shows the number of arguments
of those terms

Functor Term Number of left- | Number of right-
symbol side arguments side arguments

0 0 0 0
0 0® 0 1
U PUAQ 1 1
N PNAQ 1 1
¢ p¢ 1 0
Int Int P 0 1
Cl ClP 0 1
Fr Fr Q 0 1
FinUnion FinUnion(B,f) 0 2
PLANE PLANE(A,B,C) 0 3
A1l A11(x,y,z,H) 0 4
o.(a,b) 1 2
* D* 1 0
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If the list of (both leftside and rightside) arguments consists of at least two arguments,
then such a list of arguments must be placed in brackets ( and ), as has been done in
the corresponding terms in the table above.

(4). EXPRESSION IN THE FORM:
leftside—functor—bracket non—zero—list—of-terms rightside—functor-bracket
are terms. A list—of—terms is a finite sequence of terms separated by commas.

Examples:
) Cartesian product of sets:
[:M1,M2:] , [:M1,M2,M3:] , [:M1,M2,M3,M4:]
. absolute value of numbers a and a - b:
la.|,|.a - b.]
° finite sequences of the length one and two, respectively:
< xkx >, < xk,1x >
. function which is a pair of functions £ and g:
<:f,g:>

These are not all functor brackets, because the author of an article may introduce
in the vocabulary ever new symbols for them.

Remark: Functor brackets must be used in pairs. In every pair brackets of the same
kind should occur.

For instance, if in an expression the inscription [ is used as a leftside functor bracket,
then the inscription 1 must be the rightside functor bracket in that expression.

A pair of functor brackets between which there is no term is not a term.
Moreover there are brackets of two types which may be treated as functor of special
kinds. They are:
L] and  {,}
They can be used to construct terms of the following forms:
[ list—of terms 1, or { list—of-terms }.
Examples:
° ordered pairs, triples, and quadruples
[x,yl, [x,y,z], [x,y,z,v]
. singleton {x}, pair {x,y} and further finite sets up to those of eight elements:
{x1,x2,x3},
{x1,x2,x3,x4},
{x1,x2,x3,x4,x5},
{x1,x2,%3,%4,x5,%x6},
{x1,x2,x3,x4,x5,x6,x7},
{x1,x2,x3,x4,x5,x6,x7,x8}.

(5). AN INSCRIPTION IN THE FORM
{ term : formula }
is a term. Such terms are called Frenkel’s operators. As an example we may quote the
following expression:
{x : x < 8},
where x is an identifier of a variable, reserved for the type Real.
Formulas will be discussed later (see the next section).
The types of the free variables occurring in the term now under consideration must
expand to the type expanding to the type of the form Element of [DOMAIN]|. The
inscription [DOMAIN] denotes any object of the type expanding to the type DOMAIN.
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In the case of a Frenkel operator the types of the variables which occur in it may
be given by writing out their type after the term. In such a case the Frenkel operator
has the form:

{ term where identifiers—of-variables is type : formula }

If in a Frenkel operator there occur variables of more than one type, then the expression
between where and : may be repeated the corresponding number of times separated by
colon. The types given in such a formula refer to that formula only. For instance, if in
the construction reservation-of-variables the identifier x were reserved for the type Real
while in a Frenkel operator its type were changed into Nat, then in the further part of
the article, in the formulas containing the identifier x but such in which its type would
not be indicated, it would have the type assigned to it in the reservation of variables,
that is Real.

As an example illustrating the Frenkel operator we may use Theorem 64 from the
abstract TREES_1:

p € T implies [T,p,T1| = {t1 where t1 is Element of

T: not p is_a_proper_prefix of ti}
U{p~s where s is Element of T1: s=s}

The identifier p has the type Finsequence, while the identifiers T and T1 have the
type Tree.

The symbols { }, [ ] are homonymous, which is to say that their meaning varies
according to the context in which they are used. For instance, the brackets {, } under (4)
above were used to denote sets of n-tuples where n < 8, and under (5) the same brackets
are used to denote a Frenkel operator. The symbols [, 1 are used to denote ordered
pairs (triples, quadruples) as under (4) and as brackets in private predicates, e.g., P[x].

The word set is homonymous, too. On the one hand, it is a type in Mizar (see
I1.4.), on the other, it occurs in the constructions set ... = ... and set of ..., in which
it plays an entirely different role.

(6). AN EXPRESSION IN THE FORM
identifier—of—functor ( list—of-terms )
is a term. Terms of this kinds are to be found, among other things, in definitions of local
functors.
Here are two definitions of local functors, in which the identifiers x, y, z have the
type Element of RATIONAL. The terms under consideration are:
MULT(set,set) and UZUP(set)

> func MULT (set,set) =
{xy: x€$18&y€$28&0<x&0<y}U{{z: z <0}
> func UZUP (set) = {-x: not x € $1}

(7). PARAMETERS OF A LOCAL DEFINITION
that is the symbols:
$1, $2, $3, $4, $5, $6, $7, $8
are terms.
Parameters of a local definition may be used in local definitions only.

(8). it IS A TERM
it may be used only in the definienses of functors, where it stands for the value of
the functor, and in the definienses of modes, where it stands for that element of the mode
which is given as an example.
The definiens of a functor is an expression which in the definition of that functor
follows the word means. It is the same, mutatis mutandis, in the case of the definiens of
a mode.
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The term it occurs, for instance, in the definition of the functor which has the
symbol Int, as given below.

definition
let P, &;
func Int P —> Subset of ® means it = (C1 (P°))°;
end;
(9). AN EXPRESSION IN THE FORM
the symbol-of-selector of term
is a term.

The term in such a form is called selector term.
The type of the term which follows of must expand to a structure in the definition
of which there occurs the symbol of selector used in the expression
the symbol-of-selector of term
In the structures of topological space, introduced in the article PRE_TOPC, there occur
the following symbols of selectors:
carrier
topology
Examples of terms:
the topology of &, the carrier of &

(10). AN EXPRESSION IN THE FORM
the symbol-of-selector
is a term.

Terms of this kind may occur only in patterns of structures, and that only if the
symbol of selector has been introduced earlier just in that pattern. As an example we
may take the term

the carrier
occurring in the pattern of the structure of topological space TopStruct, presented below.
& carrier —> DOMAIN, topology —> Subset Family of the carrier >

(11). AN INSCRIPTION IN THE FORM
symbol-of-structure < list—of-terms >
is a term.

Terms in that form are called aggregates of structures. Since the symbols <, >
have no representation of their own in the standard ASCII the symbols (#, #) have been
introduced and may be used alternately. Instead of <« and > one may use, respectively,
(# and #), but not < and #) or (# and >.

As an example one can give a definite structure (but not a pattern of a structure)
such as that below:

TopStruct < REAL, RealTop >
In the above structure it is REAL which is the carrier. The constant REAL expands to
the type DOMAIN, which is necessary in view of the definition of the structure TopStruct.
RealTop (topology) has the type Subset Family of REAL, which is required by the def-
inition of the structure TopStruct.

(12). AN INSCRIPTION IN THE FORM
term qua type
is a term.
It is a called a qualified term.
For instance, P qua Subset of the carrier of &.
The identifier P in the reservation is reserved for the type Subset of &, but in the term
above its type has been as it were expanded to the type Subset of the carrier of &.
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Remark: The word qua only expands a type, it cannot narrow it down.

(13). A TERM
which is in the brackets ( and ) is also a term.
Here are some examples with terms in brackets:
CL (PUQ,Fr PUQ, P\ Q°
(k + 1), (n + 1).
Other examples will be given, among other things, when formulas are discussed.

II1.2. Types

An identifier of a variable must have a type assigned to it.

In a Mizar article it is not allowed to use identifiers of variables whose types are
unknown. The type of a given identifier may be fixed locally, that is given in the place
where it occurs, or fixed globally by reservation (see below). Some modes are hidden in
the Mizar language. The remaining ones must be identified. In order to construct a type
we must define the appropriate mode. The symbol of a mode must be included in the
vocabulary. Below we present types which use symbols of modes from the vocabulary
HIDDEN (which is automatically joined to every Mizar article). Here they are:

Any, set, Element of X, DOMAIN,
Subset of D, SUBDOMAIN of D,
Real, Nat.

(where X has the type set).

The use of these types does not require from the author of a Mizar article the
inclusion in the environment of any vocabulary or signature because the signature and
the vocabulary required are joined automatically.

Remark: When one writes the types the important point is that their symbols be written
precisely in the form in which they are to be found in the vocabulary. For instance, if
one wants to reserve the identifier X for the type DOMAIN, then the reservation should be
in the form:

reserve K for DOMAIN;
and not, for instance:

reserve K for domain;

Two examples more:

One should write:

Element of REAL and not Element of real,
and likewise
Element of NAT and not Element of nat.

The type Any is the widest type in Mizar, any other is expanded to it. The type set
in its extension is equal to the type Any. The type DOMAIN ranges over non-empty sets,
that is so-called domains; the type SUBDOMAIN of D, over subdomains, that is non-empty
subsets; Real, over real numbers; Nat, over natural numbers.

Now it will be said in general terms what is a type in Mizar.

(1). AN EXPRESSION IN THE FORM:
symbol-of-mode of list—of-terms
is a type.
Examples:
Subset of & , Subset of the carrier of & , Point of & ,
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Subset-Family of & , Relation of X , Relation of X,Y
If the list of terms is a zero list, then only the symbol of mode will be a type. For
instance:
Any, Real, TopSpace, FinSequence, Ordinal, Set-Family,
Relation, Function.

(2). A SYMBOL OF A STRUCTURE, e.g.:
TopStruct, LattStr, IncStruct,
is a type.

(3). A TYPE IN BRACKETS IS A TYPE, TOO.
In the following examples the types in question are in brackets.
reserve P for (Subset of &), P for (Point of &), x for Any;
reserve J for (Subset Family of &), r for Real;
reserve J for (Subset Family of &), P for Subset of &;
let $ be (SubSpace of ), P,Q be (Subset of &), x,y be Any;
The omission of the brackets in the examples given above does not result in an error.
But, for instance, the inscription:
reserve R for Relation of X, x for Any;
is incorrect. The error consists in the fact that the inscription Relation of X is not in
brackets. One might pose the question why the type Relation of X must be in brackets.
Now the mode
Relation of list-of-terms
is defined for the lists which contain zero terms (Relation), for lists which contain one
term Relation of X and for lists which contain two terms Relation of X,Y . Here
are the corresponding definitions:
definition
mode Relation —> set means x € it impliesex y, z st x = [y,z];
end;
(x,7,2 have the type Any)
definition
let X,Y;
mode Relation of X,Y —> Relation means it C [:X,Y:];
end;
(X,Y have the type set)

definition

let X;

mode Relation of X is Relation of X,X;
end;

If the inscription Relation of list-of-terms is not brackets, then the
list—of-terms consists of the maximal number of terms, that is two. Hence the inscription:
reserve R for Relation of X, x for Any;
is interpreted in the same way as the inscription:
reserve (R for Relation of X, x) for Any;
but the latter expression is ill-formed because its syntactic structure is incorrect: the
last for is not preceded by the list of terms.
On the other hand, the modes:
Subset of list-of-terms
SubSpace of list-of-terms
Subset Family of list-of-terms
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are defined only for lists which include one and only one term, which is shown by their
definitions:
definition
let &;
mode Subset of & is set of Point of & ;
end;

definition
let &;
mode SubSpace of & —> TopSpace means
QL) c= Q(B) &
for P being Subset of it holds P € the topology of it iff
ex  being Subset of & st Q € the topology of ® & P = Q N Q(it);
end;

definition
let &;
mode Subset Family of & is Subset Family of the carrier of & ;
end;
Hence in the case of these mode brackets are superfluous.

(4). AN EXPRESSION IN THE FORM:
set of type
is a type.
Types of those kind are often used in definitions of modes, e.g.,:
definition
let &;
mode Subset of & is set of Point of & ;
end;

Types in Mizar have the structure of trees. X expands to the type set, but neither
to DOMAIN nor to SUBDOMAIN of [DOMAIN],
D expands to DOMAIN,

D; expands to DOMAIN,
S expands to SUBDOMAIN of D.

Real is adopted as an abbreviation for the type Element of REAL (Real is DOMAIN),
while Nat is adopted as an abbreviation for the type Element of NAT (NAT is SUBDOMAIN
of Real).

Since the type Element of S expands to the type Element of D, the type Nat
expands to the type Real.

II1.3. Reservation of variables

It has been said earlier that in a Mizar article it is not allowed to use identifiers of
variables for which their type is not given. The type of a given identifier can, for instance,
be given in the place of its occurrence, as in the examples:

- for A being Subset of & holds A C C1 A;
- let x be Any, A be set;
- reconsider x as Real;
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The words being and be may be used alternately, which is to say that is indifferent
from the point of view of Mizar. But in order to be in agreement with the grammar of
English certain conventions pertaining to the use of those words have been adopted. For
instance, in the Mizar construction let ... be is used, while being is used in quantified
formulas.

In order to avoid indicating the type of a given identifier whenever a variable with
such an identifier is introduced it is possible to fix that type globally by means of the
Mizar construction called the reservation of variables. The reservation of variables has
the following form:

reserve list—of-identifiers for type ;
The examples given below show the application of the said construction:
i. If the identifier & is to be a variable ranging over topological spaces, then the identifier
& is to be reserved for the type TopSpace. Such a reservation has the form:
reserve & for TopSpace;

If a such a reservation is not made and the identifier & is used in the indicated
meaning, then the type of that identifier must be given whenever a variable with such
an identifier is introduced.

ii. If we want the identifiers P, Q range over subsets of a topological space &, then the
reservation should be as follows:
reserve P, Q for Subset of &;

If we want to reserve identifiers of variables which have various types, then the

expression:

list—of—identifiers for type
in the reservation of variables should be repeated the corresponding number of times and
the expression in question must be separated from one another by commas.

This will be illustrated by the following reservations:

reserve P,  for Subset of &, x for Any, p for Point of &;

The reservation of the identifiers P, Q, x, p for the corresponding types may also be as
follows:

reserve P, Q for Subset of &;

reserve x for Any;

reserve p for Point of &;
which is to say that for the various quantifiers one may apply separately the construction
reservation of variables. That, however, is not the best solution in view of the unnecessary
expansion of the text.

Other reservations given by way of example:

e reservation of the identifier X for a variable standing for a set:
reserve X for set;
e reservation of the identifier x for a variable standing for a real number:
reserve x for Real;
e reservation of the identifiers Z and Y for variables standing for subsets of the set
X, where the identifier X has been earlier reserved or fixed for the type set:
reserve Z, Y for Subset of X;
e reservation of the identifier x for an element of the set of real numbers:
reserve x for Element of Real;

Other examples of the construction now under consideration will be given in the
chapter dedicated to proofs of theorems.

It must be borne in mind that the reservation of a given identifier for a definite type
is made prior to the first occurrence of that identifier. Should we made the reservation
later, that is after several occurrences of that identifier, where a variable having that
identifier is introduced, the type of that identifier should be given.
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The reservation of variables must be made in the text proper. Often the reservation
is made at the beginning of the text proper, that is immediately after the word begin.
For one and the same identifier the construction reservation of variables may be
applied several times, according to the need of the author of the article. If, for instance,
we first make the reservation:
reserve x for Any;
and in the later part of the Mizar article we change the type of the identifier x into Real
in accordance with the reservation:
reserve x for Real;
then in all occurrence of the identifier x between these reservations where the type of the
identifier x is not given, it will have the type assigned to it in the first reservation, that
is Any, and in all the occurrences of the identifier x after the second reservation, where
its type is not given, the identifier x will have the type Real.
We now proceed to discuss Mizar formulas.
In Mizar there is the following classification of formulas:
e atomic formulas,
e formulas formed of atomic formulas by sentential connectives,
e quantified formulas.

II1.4. Atomic formulas

There are several kinds of atomic formulas.

(1). A PREDICATIVE FORMULA,
that is an expression in the form:
list—of-terms symbol-of-predicate list—of—terms
is an atomic formula.

Here are some symbols of predicates used in articles pertaining to topological space:
is_open, is_closed, is_open_closed, is_dense, is_boundary, is_nowheredense,
C, are_separated.

The number of arguments (both left-side and right-side ones) in the case of each of
those predicates is shown in the following table:

symbol of atomic number of left | number of right

predicate formula side arguments | side arguments.
is_open P is_open 1 0
is_closed Q is_closed 1 0
is_open_closed Q is_open_closed 1 0
is_dense A is_dense 1 0
is_boundary B is_boundary 1 0
is nowheredense | P is_nowheredense 1 0
C PCQ 1 1
are_separated A,B are_separated 2 0
= D,f = H 2 1

The identifier D denotes a family of sets, £ denotes the valuation of variables by
elements of that family, H denotes any formula of the language of the ZF set theory. The
last formula in the table indicates that in the family D the formula H is satisfied by the
valuation f.
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Examples of atomic formulas occurred in the table above. Here are other examples:
CLP\ClQCCL(P\Q
Int P is_open
skl p is_connected
B is_a_component_of &
§ is_a_cover_of &
pP,q are_joined
p € skl p

In particular, because the sign = is the symbol of the predicate, the expression in
the form:
term = term
called an equality formula is an atomic formula.
Examples of equality formulas:
Fr(Fr(Fr P )) = Fr(Fr P)
Cl(Int P) = C1(Int(C1l(Int P)))
PC = Q& \ P
P¢ = (P qua Subset of the carrier of )¢
P\Q=PnNQ°
Cl (C1P)=ClP

Likewise, an expression in the form:
term <> term
where the sign <> is the symbol of predicate, is an atomic formula.
Examples: P N C1L Q <> 0, Int (C1 Q) N Int (C1L P) <> 0.

(2). An expression in the form:
identifier—of—predicate [ list—of-terms ]
is an atomic formula.
Terms of this kind occur only in the case of private predicates.The identifier of such
a predicate is not listed in any vocabulary.

(3). An expression in the form:
term is typ
is an atomic formula.
A formula in such a form is called qualifying formula.
Examples of qualifying formulas:
x is Point of &
X is set
Here is a theorem NAT_1:1 :
x is Nat implies x + 1 is Nat
where the identifier x has the type Real.
The antecedent and the consequent of the above implication are atomic formulas of the
kind under consideration.

II1.5. Formulas formed of atomic formulas by propositional connectives

In Mizar the following symbols are used to denote sentential connectives:
not , & , or , implies , iff , contradiction
which denote respectively:
negation, conjunction, disjunction, implication, equivalence, contradiction.
contradiction is a sentential connective of zero arguments.

22



Remark: contradiction is treated in Mizar as a formula in the same way as thesis is.

Now not has the greatest binding force, followed in that respect by &, next by or,
next by implies and iff in the same degree. But the binding force of implies and iff is
greater than that of quantifiers.

Since in Mizar the binding force of implies and iff is the same their simultaneous
occurrence in a formula requires the use of the brackets ( and ) in order to indicate the
arguments of the connectives implies and iff .

Let @1, &5, 3 be atomic formulas.

The formula
&, implies P, iff &3
is ill-formed in view of the fact that it is not known which arguments the connectives
implies and iff have. Moreover, the brackets ( and ) perform in Mizar a role similar
to that in arithmetic, which is to say that they indicate the order of the performance of
operations.
Examples of formulas formed by sentential connectives:
P is_closed & Q is_closed impliesCl1(P N Q) =CLP N ClQ,
P isopen iff Fr P=C1 P \ P,
p € P¢ iff notp € P |
PNO0&=0&06NP-=0,
(A is_closed & B is_closed) or (A is_open & B is_open)
implies A \ B, B \ A are_separated ,
x € P implies x is Point of &,
A is_connected & A C B U C & B,C are_separated
implies A C Bor A C C .

II1.6. Quantified formulas

Before we proceed to discuss quantified formulas reference will be made to qualified
variables.

In Mizar articles there are often inscriptions which are called list of qualified vari-
ables. Here are some examples of such lists:
X k)
A ’
P ’

)

K,n

Q being Subset of & ,

® being TopSpace, §) being SubSpace of & |

§ being Subset-Family of &, p being Point of &, x, y.

Generally speaking, a list of qualified variables consists of expressions in one of the
three forms specified below:
eee variables—qualified—implicitly
This name denotes a list of identifiers of variables, that is a finite sequence of identifiers
of variables, separated from one another by commas. Examples:

c X, V¥, P A, B

In such cases, as can be seen, the types of the identifiers are not identicated. This means
that they are drawn from the list of identifiers which occurs in the reservation of variables.
eee variables—qualified—explicitly

At first we explain what a

segment—of-qualified—variables

is. It is an inscription in the form
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list—of-identifiers—of-variable being (or be ) qualification
Qualification is the type of the identifiers of variables occurring in a segment of
qualified variables.
Of course, the type indicated in such an expression is the same for all the quantifiers
which occur in it.
Examples of segments of qualified variables:
a being Any
a,b,c,d be Any
m,n be Point of &
P, Q being Subset of &
variables—qualified—explicitly are a finite sequence of segments of qualified variables sep-
arated from one another by commas. In the simplest case it is only one segment.
Examples of variables qualified explicitly:

x1, y1 be Any
(it is a single segment of qualified variables)

x being Real, X being set
(in this case there are two segments of qualified variables)

® being TopSpace, ) being SubSpace of &, p being Point of &
(in this case there are three segments of qualified variables).

eee variables—qualified explicitly , variables—qualified—implicitly
Examples:
P, Q being (Subset of &), x, p

variables qualified variables qualified
explicitly (one segment implicitly
of qualified variables)

P being (Subset of &), p being (Point of &), x, y, z

variables qualified variables
explicitly (two segments qualified
of qualified variables) implicitly

Obviously, the identifiers of those variables for which types are not given in the
examples above must be drawn from the list of quantifiers to be found in the reservation
of variables.

Remark: A change of order (variables qualified implicitly preceding those qualified ex-
plicitly) is impossible because all variables would become variables qualified explicitly.

In order to explain the above warning we shall consider, by way of example, the
following formula:
(¢) for A being (Subset of ), x st x € A holds x is_Point of &
In that formula the variable A is qualified explicitly while the variable x is qualified
implicitly. The type of the identified x must be given in the reservation. In this case it
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should be the type Any. Should we change the order of the occurrence of the variables
A and x in the formula under consideration, which is to say, should we first give the
variable qualified implicitly and next the variable qualified explicitly, we would obtain
the formula:
for x, A being Subset of & st x € A holds x is Point of &
But in that formula the variables x and A have become variables qualified explicitly; in
the process the type of the identifier of x has been changed into Subset of & whereas
it should be Any.
In some case the exchange of variables may be carried out. This will be illustrated
by the example of the formula marked (o) above. In its case the formula
for A being (Subset of ), x st x € A holds x is Point of &
may be replaced by a formula which has the same meaning in Mizar. Here is that formula:
for A being Subset of & for x st x € A holds x is Point of &
Now we can pass to quantified formulas.
A quantified formula (also called a universal sentence) is a formula in which the
quantifier occurs openly and is the main sentence-forming functor.
In Mizar the following symbolism was adopted for quantifiers:

for ... holds ... — for the universal quantifier,
for ... st ... holds — for the purified universal quantifier

(i-e., universal quantifier with a limited scope),
ex ... st ... — for the existential quantifier.

In view of the various forms of the list of qualified variables, a universal sentence,
this is a formula in which a universal quantifier occurs, may the following forms:
(A). for identifiers—of-variables holds formula
Examples of quantified formulas:

for P holds P C C1 P
(For every subset P of a topological space & P C Cl P holds
or else
Every subset of a topological space & is included in its closure).

for P, Q holdsC1 (P U Q) =C1L P UC1LQ
(For every two subsets P, Q of a topological space & C1(P U Q) = Cl1 P U Cl Q holds).

It can be seen that in each case above the types of the identifiers of the variables are
not given openly. When using such formulas in a Mizar article one should bear it in mind
that one should previously reserve the identifiers of those variables for the reservation of
variables.

But one may also abstain from making earlier the reservation of the variables which
occur in a quantified formula. In such a case the types of the identifiers of the variables
must be given when the formula is being written. In such a case the form of a quantified
formula is as follows:

(B). for segment—of-qualified—variables holds formula

A quantified formula has such a form, among other things, if the identifiers of the
variables for which no reservation has been made have one and the same type. Otherwise
the expression standing between for and holds must be repeated the corresponding
number of times and separated by commas.

Let us consider one case more. Now it may be so that the identifiers of the variables
occurring in a quantified formula have being earlier reserved for the corresponding types
but when writing the formula we want to apply the same qualifiers of variables to other
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types. Then such a formula will have the form of the expression shown under (B) above.
Let that be illustrated by an example.

Let the following reservation be given:
reserve A being SubSpace of &
In this formula we want to use the identifier A which denotes a subset of a topological
space &. Hence the new type o the identifier of A must be given in the formula as below:
for A being Subset of & holds A is_closed iff C1 A = A

Examples illustrating the structure of quantified formulas:
1) for P being Subset of & holds P C C1 P
(For every subset P of a topological space & P C Cl P holds),
2) for P, Q being Subset of & holds C1 (P U Q) = C1 P UCl Q
(For any subsets P, Q of a topological space & CI(P U Q) = ClP U Cl Q)
3) for A being (Subset of ), x being Any st x € A holds x is_Point of &
(For any subset A of a topological space Gand for any objects x which is an element of
the subset A there holds: x is a point of the topological space & ).
The theorem given in example 3) may also be recorded thus:
for A being (Subset of &) for x being Any st x € A holds x is_point of &

EXAMPLES:

e for A being (Subset of &), p being Point of & holds p € C1 A iff
for C being Subset of & st C is_closed holds (A C C implies p € C)

e for $§ being (SubSpace of &), P, Q being (Subset of &), P1, Q1
being Subset of $H st P=P1 & Q=Q1&PUQC Q& holds P, Q
are_separated implies P1, Q1 are_separated

e for §) being (SubSpace of &), P being (Subset of &), Q being Subset
of H st P # )& & P = Q holds A is_connected iff B is_connected

Further, a quantified formula may have the form:
(©).
for variables—qualified—explicitly , variables—qualified—implicitly holds formula

There may also be quantified formulas with a purified quantifier. Such formulas are
in the form:
for list-of-qualified—variables st formula holds formula
The structure of the formulas with purified quantifiers (quantifiers with a limited
scope) will be illustrated by examples but before their presentation we shall specify
several modes and predicates which are introduced in articles pertaining to topological
spaces.
They are the modes:
SubSpace of & |
Subset-Family of &
and predicates:
P, Q are_separated,
® is_connected,
P, q are_joined
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The above formats of modes have been adopted for denoting, respectively, a subspace of
a topological space & and the family of the subsets of a topological space. The predicates
presented above have been discussed earlier.

We can now pass to the examples.

(i) forP, Q stP C Q holdsCl1 P C C1 Q
(For any subsets P, Q of a topological space & such that P C Q there holds P C Q)

(ii) P is_boundary iff (for st Q C P & Q is_open holds Q = 0)
(P is a boundary set if and only if for any open set Q included in P there holds
Q=49)

Had the reservation for the identifiers P and Q not been made the above formula
would be as follows:

for P being Subset of & holds P is_boundary iff
(for Q being Subset of st Q C P & Q is_open holds Q = 0)

(iii) for $H being (SubSpace of &), P;, Q; being (Subset of &), P, Q being
Subset of § st P =Py & Q = Q; holds P, Q are_separated implies Py,
Q; are_separated

(For any subspace $) of a topological space & and for subsets P1, Q1 of the topological
space & and subsets P, Q of the subspace £, such that P = Py & Q = Qq there holds: if
P, Q are separated, then Py, Q) are separated, too.)

(iv) for $) being (SubSpace of ®), A being (Subset of &), B being Subset
of H st A # )& & A = B holds A is_connected iff B is_connected

(For any subspace $) of a topological space & and a subset A of the topological space &

and for a subset B of the subspace §) there holds: if A # 0& and A = B, then A is

connected if and only if B is connected.)

A formula which contains the existential quantifier may have one of the three forms
listed below:

o ex wvariables—qualified—implicitly st formula

e ex variables—qualified—ezplicitly st formula

e ex variables—qualified—implicitly , variables—qualified—implicitly st formula
The examples given below contain formulas with the existential quantifier:

x € Int P iffex Q st Q isopen 8 Q C P & x € Q ,

(ex x being Point of & st for y being Point of & holds x, y are_joined)
iff (for x, y being Point of & holds x, y are_joined) .

Other examples of formulas with the existential quantifier will be found later in the
text.

We shall now give four topological theorems recorded in English first and next
recorded in the Mizar notation.

27



1) P is boundary set if and only if it is contained in this own boundary.
2) For any subsets P, Q of a topological space & such that P C Q

there holds C1 P C CI Q.
3) Any subset A of a topological space & is closed if and only if C1 A = A.
4) A point p is in the boundary of a set P if and only if for any open set Q such that p
€ Q there holds: the intersection of P and Q is non-empty and the intersection of the
complement of P and Q is non-empty.

Here are the above theorems recorded in the Mizar notation:
1) P is_boundary iff P C Fr P
2) for P, Q being Subset of & st P C Q holds C1 P C C1 Q
3) for A being Subset of ® holds A is_closed iffC1 A = A
4)p € Fr P iff

(for Q st Q isopen & p € Q holdsP N Q # 0 & P° N Q # B

The examples given so far in most cases pertained to formulas with a single quantifier,
whether universal or existential. But in a formula more than one quantifier may occur,
which can be seen in the examples given below.

for A being (Subset of &), p being Point of & holds p € Cl1 A iff for G
being Subset of & st G is_open holds p € G implies A N G # (&

(A point p of a topological space & is in the closure of a subset A of the topological space
& if and only if for any open subset G of the topological space & which contains the point
p the intersection of G and A is non-empty),

P is open iff (for x holds x € P iffex Q st Q isopen & Q C P & x € Q)
(P is an open set if and only if for any x, x € P if and only if there is an open set Q
such that Q C P and x € Q),

P is_closed implies (P is_boundary iff for Q st Q # 0 & Q is_open ex G

stG CQ&G#D &G isopen & P N G = ()

(If a set P is closed, then P is boundary set if and only if for any Q such that Q # 0 and
Q is open there is a set G such that G C C and G # () and G is open and PN G =),

for J being Subset-Family of & st J # 0 & for A being Subset of & st
A € J holds A is_closed holds meet J is_closed

(The intersection of any J which is a non-empty family of closed subsets of a topological
space & is a closed set),

for J being Subset-Family of & st (for A being Subset of & st
A € J holds A is_connected) & (ex A being Subset of & st A # (&)
& A € J & (for B being Subset of & st B € J & B # A holds not A, B
are_separated)) holds union J is_connected
(Let 3 be any family of connected subsets of a topological space & one of which is non-
-empty and not separated from any other element of that family. Then the union of
elements of that family is a connected set).

meet and union are symbols of functors of one arguments each (the recording of
the last formula shows that the right-side argument is the only one) which denote, re-
spectively, the intersection and the union of the family of the subsets of a topological
space.

The examples given so far have been drawn from the articles PRE_TOPC, TOPS_1 and
CONNSP_1, which self-evidently pertain to problems connected with topological spaces.
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Let us revert once more to general sentences with a purified quantifier. Such a
sentence can be recorded, of course, in a different manner without an change in its
meaning. We mean the elimination of the limited range of the quantifier in a general
sentence and the replacement of the condition by implication.

Let ®;, & be any formulas. A general sentence (a sentence in which a universal
quantifier occurs):

for list—of—qualified—variables st ®; holds &,
is equivalent to the sentence:
for list—-of—qualified—variables holds ®; implies ®;
Now the formula
&, implies @,
is not bracketed because the binding force of implies (like that of iff) is greater than
that of quantifiers.

EXAMPLES:
The formula
for P, Q stP C Q holds C1 P C C1 Q
has for Mizar the same meaning as the formula
for P, Q holds P C Q impliesCl1 P C C1 Q
because both formulas have one and the same semantic correlate (see IIL.7).
Likewise formula:
P is_boundary iff (for Q st Q C P & Q is_open holds Q = )
has for Mizar the same meaning as the formula
P is_boundary iff (for Q holds Q C P & Q is_open implies Q = ().
The theorems in which the universal quantifier occurs openly can be recorded as
non-quantified formulas. For instance, the theorem:
for P being Subset of & holds Int P = P \ Fr P
can be recorded thus:
Int P=P \ Fr P
because both sentences have the same meaning for Mizar (see semantic correlates).
Likewise the sentences:
for &, P holds Int P = (C1 (P°))° ,
for P holds Int P = (C1 (P%))° ,
Int P = (C1 (P9))°
will all be read in the same way by the system (if ® and P have not been fixed earlier).
The formula:
Int P = (C1 (P%))°
will be read by the system as the formula:
for &, P holds Int P = (C1 (P¢))°
The various forms in which formulas are recorded have significance only for the
author of a given article. Some of them may be more legible, but the processor of PC
Mizar transforms the formulas it reads and brings them to a certain fixed for (see IIL.7).
Here are other examples illustrating the different forms of recordings of Mizar for-
mulas:

1)for P, Q st P C Q holdsC1 P C C1L Q
can be recorded thus:
P C Q implies CI P C C1 Q
2) for P, Q st P is_dense & Q is_dense & Q is_open holds P N Q is_dense
(if P, Q have not been fixed earlier)
can be recorded thus:
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P is dense & Q is_dense & Q is_open implies P N Q is_dense
The antecedent of the implication is not bracketed because conjunction has a greater
binding force than implication has.
3) for P st P is_open holds C1(Int(Cl P)) = C1 P
can be recorded thus:
P is_open implies C1(Int(C1 P)) = C1 P

In all the examples recorded in the new version the quantifier is understood.

The formulas given in the above examples, if not recorded with the use of the
quantifier, will be processed by the system into quantified ones (see II1.7). The identifiers
of variables will follow the word for in the formula P C Q implies C1 P C C1 Q the
identifier of P will come first, followed by the identifier of Q (if the space & has not been
fixed earlier, then the identifier of & will additionally processed in to such a quantified
formula in which the word for is first followed by the identifier of P (or the identifiers of
® and P), and next by the identifier of Q as under (1) above. But sometimes it is so that
the required sequence of the identifiers differs from that arranged automatically. In such
a case a given formula should be written in the desired quantified quantified version.

The word holds before the word ex or before the word for may be omitted. Hence
the formula:

for ...... holds ex ......
may be recorded as below, by replacing the expression holds ex by the word ex :
for ...... ex ......

Examples:

The formulas:
1) for A being Subset of & st A # ()& holds ex x being Point

of & st x € A
2) P is_closed implies (P is_boundary iff for Q st Q # 0 & Q is_open

holds ex G st G C Q & G # () & G is_open & P N G = ()

may be recorded, in accordance with what has been said, in the following manner:

1) for A being Subset of & st A # ()& ex x being Point of st x € A

2) P is_closed implies (P is_boundary iff for Q st Q # 0 & Q is_open
exGstG C Q&G #D&Gisopen &P NG =10

Likewise a formula in the form:

may be recorded:
for ...... for ......
where the expression holds for has been replaced by for .

For instance, the formula:

for $) being SubSpace of & holds for A being Subset of §
holds A is Subset of &

may be replaced by the formula:

for §) being SubSpace of & for A being Subset of §
holds A is Subset of &

The examples given so far show that theorems may be recorded in several ways.
The choice of the form of the recording depends on the author of the article. It is
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recommended to use such a recording of the content of a given theorem which would be
the most legible and practical. For instance, the use in a general sentence of a purified
quantifier (trough the use of the word st) sometimes increases its legibility. The same
applies to the case in which we indicate the types of identifiers of variables when writing
a formula. The reservation of variables is made at the beginning of a given article or
later in the text. If the article is long, then when reading a theorem (contained in it) in
which the types of the variables are not indicated we have to look for the reservations in
the text, and that means an unnecessary loss of time.

II1.7. Semantic correlates

The PC Mizar processor transforms the formulas (terms, types) it reads into certain
standard forms. The form of a formula obtained by such a transformation is called
the semantic correlate (semantic form) of that formula. To make the transformation
of formulas (terms, types) possible a certain relation of equivalence has been defined
on formulas. It states that two formulas between which that relation holds will be
transformed in the same way. The classes of abstraction of that relation of equivalence
are called semantic correlates. If two formulas are in one and the same class of abstraction
then this means that they have the same semantic correlate. From among the formulas
which form a given class of abstraction one can choose formula which is the standard
representation of that class of abstraction. Such a formula is formed by the signs of
negation (not), conjunction (&), not contradiction, i.e., VERUM, and base sentences,
i.e., atomic formulas and general sentences.

Moreover conjuction and negation satisfy the conditions:

1. Conjunction is associative, which is to say that for any formulas oy, as, az the
formulas

(a1 & a2) & a3 and ar & (as & a3)
are in the same class abstraction, that is they have one and the same semantic correlate.
2. Negation is an involution, so that for any formula « the formulas

not not « and Q

have one and the same semantic correlate.
3. If a free variable, that is such which is not openly bound by a quantifier, occurs in a
given formula, then the universal quantifier is automatically prefixed to that formula.

For instance, if we write the formula «(x), in which x is a free variable (i.e., not
bound by a quantifier), then that formula will be read by the system as the formula for
x holds a(x). Hence the formulas

a(x) and for x holds a(x)
have one and the same semantic correlate.

The formula contradiction has not VERUM as its semantic form.

The semantic correlates of predicative formulas except for the formulas in the form

term = term
is the same original (initial) form.
The semantic correlates of the predicative formula in the form
term <> term
is the formula
not term = term
The formula in the form
term <> term
is the antonym of the formula in the form
term = term
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Moreover, for the formula x < y (where x, y have the type Element of REAL)
there are two antonyms:

X >y and y < x
which are synonyms, and the synonym: y > x.

The knowledge of semantic correlates can be used in the construction of skeletons
of proofs, because the form of the semantic correlate of a given formula determines the
skeleton of the proof of that formula.

If P, Q, A, B, C, & are not constants but earlier reserved identifiers of variables, then
the formulas

a) PCClLP and for P holdsP C C1 P
b) Int Q is_open and for Q holds Int Q is_open
c) Q&)\A=BUC & B,C are_separated & A is_closed implies A U B
is_closed & A U C is_closed
and
for &, A, B, C holds (&) \ A =B U

C are_separated &
A is_closed implies A U B is_closed &

C
C is_closed

& B,
AU
have the same semantic correlates correspondingly in the examples a), b), and c).

In the formulas a and S have one and the same semantic correlate, then a may be
replaced by 8 and conversely. This is advantageous, because if we want to prove « it is
sometimes more convenient to prove (3.

Here are several pairs of formulas:

a & not contradiction and a

«a implies contradiction and not «

not contradiction implies « and «

for x for y holds a and for x, y holds «

ex x st exy st and ex x, y st

for x st a holds 3 and for x holds a implies
a & (B implies v and a implies (8 implies 7)
not not « and e

aor (3 and not « implies

not ex x st « and for x holds not «

a iff g8 and (o« implies 3) & (8 implies «)

Formulas in each pair have the same meaning for Mizar. They are thus formulas
which have the same semantic correlate.

Remark:
The sentences a & B and B & «
have different semantic forms. The same applies to the sentences

a or (8 and B or a

In the above examples the formulas «, 3, v should, in order to secure the correct con-
struction of sentences and the subsumption of those sentences under the given sentence
schemata, be bracketed whenever necessary. Should, for instance, v be an implication or
equivalence, then the formulas in which it would occur should be written thus:

a & B implies vy and «a implies (§ implies 7) .
The same applies to « and /3.
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IV. PROVING SENTENCES IN MIZAR

IV.1. Justifications

Before proceeding of that theorem in the Mizar notation and then proceed to justify
it.

There are several possibilities of justifying theorems, but at this point we shall be
concerned with only one them, namely straightforward justification is a justification
in which one gives the reference (list of labels indicating the sentences which are the
premisses of the theorem being justified). Straightforward justification can be classed
into:

a) simple justification,
b) justification by schema.
Direct justification has been following form:
(%) sentence—justified by list—of-references ;
The list of references is a finite sequences of references separated from one another by
commas.

References have been discussed earlier. Note only that they are classed into library
references (which to theorems to be found in articles) and local references (which through
labels enable one to use sentences justified earlier and to be found in a given article).

We shall give below several sentences justified directly:

(1) MU® =M by BOOLE:60;
BOOLE:60 is a library reference. It denotes the theorem No.60 to be found in the file
BOOLE. abs.

(2) k+1=1+k by NAT_1:3;
(3) k <0&0 < 1 impliesk < 1 by NAT_1:13;
(see example No.2 in the file art.1st).

Remark:

The justification by by should include labels of sentences which have occurred earlier
(in an earlier part of the text or in an earlier article) and are accessible in the place of
reference (which is to say that they are labels which occurred at an earlier closed level of
reasoning (1) or point to the current level of reasoning (2)). Hence the justifications in
the following example would be incorrect:

EXAMPLE
for M, N being set, x being Any st x € M holdsx € M U N
proof
let M,N be set, x be Any;
assume A: x € M;
hence thesis by BOOLE:8;
end;

for x being Any, M being set holds x € M by A;
* (1)

B: now
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let x be Any, M be set;
x € M implies x = x by B;
* (2)
end;
(see example No. 3 in art.lst).

In the case of some theorems it is more convenient, before one proceeds to prove
them, to prove, earlier (a) auxiliary lemma(s). Then proof of the theorem proper will
offer no problems because it will be a straightforward justifications.

For instance, if one wants to prove a theorem which is an equivalence, then one can
earlier prove the necessary implications. Such a case is presented in example No. 30 in
the annex.

Sometimes it is convenient to justify an auxiliary lemma (or lemmas) in the process
of proving a given sentence. It is also worth mentioning such straightforward justification
in which the reference list is a zero list. In such a case (x) has the form:

justified—sentence ;
That special kind of justification pertains only to those sentences which are tautologies
of the propositional calculus or simple laws of the functional calculus.

That part of the system which verifies justifications is called CHECKER. Tautologies
are self-evident for CHECKER and require no justification.

Straightforward justification with a zero reference will be illustrated by examples.

Int P = P implies not (Int P # P & C1L P = P);
P = Q implies (P is_open iff Q is_open);
for k, 1 holdsk = 1 or k # 1;

(see example No. 36 in the file art.1st).
Justification by schema in the following form:
justified—sentence from symbol-of-schema ( reference-list ) ;
is another straightforward justification.

The number of references in a reference list may be zero, as in any expression in the
form list—... .

If the reference list is a zero list, then justification by schema has the following form:

justified—sentence from symbol-of-schema ;

Example four in the file art.1lst illustrates the proof of a theorem in which the
schema of induction is used.

In the examples given above we had to do with straightforward justification only. But
in most cases a theorem requires a proof, and straightforward justifications — especially
a direct one — find application in the reasoning used in the proof (is a certain step in the
proof).

If the truth of a theorem cannot be justified directly or by reference to a schema,
then a proof must be carried out.

After recording the content of the theorem we write:

proof

end;
where the dots will, of course, be replaced by a certain reasoning.

Every reasoning is a sequence of successive transitions must be justified (straightfor-
ward justifications or by proof). Exceptions in that respect are those recordings which
form the skeleton of the proof (assumption, generalization, exemplification), but these
will be discussed in the next section.
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A justified step in a proof is called a statement. The steps which combine to from
the proof depend on the thesis of the theorem, the way of proving (e.g. direct or indirect
proof) and, obviously, the imagination of the person who writes the article.

Let us try to prove (without restoring to the Mizar notation) the following topological
proof:

For any subset A, B of a topological space & the following holds:
Cl(AnB)CCIANCLIB

Proof .

Let us consider any two subsets A, B of topological space &.

It is know from the properties of sets that AN B C A and A N B C B. By availing
ourselves of the following property of the closure operation:

If M C N then C1 M C CI N where M, N are subsets of a topological space
we may write:

Cl(AnB)CClAandCl(ANB)CCIB
Hence C1 (ANB)CClIANCIB
quod erat demonstrandum.

Let us now try to record that proof in the Mizar notation. The Mizar article which
would carry the proof of the theorem under consideration would have, as is know, to
consist of the following elements:

environ
directives of environment
begin
content of theorem
proof
reasoning
end;
The theorem in question, when recorded in Mizar notation, has the following form:
for A, B being Subset of & holds C1 (AN B) C ClANCLB
In accordance with what has been said in the chapter concerned with formulas the above
recording of the content of the theorem is only one of several possible versions.

We shall now proceed to construct the next proper, that is the text which follows the
word begin. The remaining part of the article will be discussed later. Such a sequence of
writing the proof is of a certain importance, especially for a person who starts learning
Mizar. Now after the writing of the text proper one can see clearly which directives of
the environment must be inserted between the words environ and begin. But, on the
other hand, it must be borne in mind that if the environment is defectively constructed
during a considerable time taken by the process of proving, than that will make the proof
more difficult because in the Mizar procedure, that is the verification of the correctness
of the proof in progress, errors related to the defective construction of the environment
will be reported.

The construction reservation of variables is used only for the identifier of &, which
indicates a certain topological space. The types of the remaining identifiers will be given
whenever necessary.

The next proper then assumes the form:
reserve & for TopSpace;
for A, B being Subset of ® holds C1 (AN B) C Cl ANCLB

proof
reasoning
end;
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At this point the carrying out the reasoning remains.

In the previous proof we considered any two subsets of a topological space &. Now
we shall proceed analogically.

After the word proof we have to write:

let A, B be Subset of &;
This expression can be translated thus:
Let A, B be any subsets of a topological space &.
In the expression let A, B be Subset of &; the types of the variables A, B had to be
specified because they had not been reserved in the reservation of variables.
(The qualification given in a formula has its scope only until the and of that formula.)

We continue to imitate the previous proof and write:

ANBCA&ANBC B;
This is a certain step in the reasoning. It has been said earlier that every step of the
reasoning. It has been said earlier that every step of the reasoning must be justified
because otherwise the CHECKER, will report error No. 4: This reference is not
accepted by Checker.

In the case under consideration direct justification will suffice; this is to say we mean
a justification which does not require indication of the appropriate references.

Note once more that the files in which the contents of the theorems are in the sub-
directory \ABSTR (\ABSTR is a subdirectory of \MIZAR) and have the extension *.abs.
When inspecting the file BOOLE.abs we come across Theorem No.37 (i.e., BOOLE:37),
which states that for any sets X,Y we have:

XNYCX&XNYCY
when reference is made to this theorem the first step of the reasoning is justified. We
obtain the statement:
Zl: ANBCA&ANBC B by BOOLE:37;

The next justified step of the reasoning we obtained by the application of Theorem

No.49, to be found in the file PRE_TOPC.abs. Its content is:

for A, B being Subset of & st A C B holds C1 A C C1 B
This theorem is to be applied to this formula

ANBCA&ANBCHB
That is why it was necessary to provide it with a label, which in our case consists of
the inscription Z1. Note that the identifier of a label must be followed by a colon :. By
referring to a given label we refer to the sentence which bears that label.
The second step in the reasoning will be as follows:

Z2: CL(ANB) CClA&Cl (ANnB) CClB by?Z1, PRETOPC:49;
As can be seen, this sentence has been provided with a label because it will have to be
used as a premiss in the further part of the proof.

As can be seen, the theorem PRE_TOPC:49 has been applied twice, but in the justi-
fication it has been given only once.

Remark: If in one and the same step of the proof a reference is indicated several times,
then it suffices to give it only once after the word by.

After availing ourselves of the theorem BOOLE: 39, which says:
ZCX&ZCYimpliesZCXnNY
(where X, Y, Z are any sets)
we can write down the conclusion:
thus C1 (A N B) C C1 AN ClB by Z2, BOOLE:39;
This is the last step in the reasoning of the proof.
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The word thus precedes the sentence which is the thesis of the proof or its part. In
our case it is the thesis of the proof.
Ultimately, the next proper is as follows:

reserve & for TopSpace;
for A, B being Subset of ® holds C1 (AN B) C Cl1 ANCLlB
proof
let A, B be Subset of &;

Zl: ANBCA&ANBC B by BO0LE:37;
Z2: CL(ANB) CClA&CL (ANB) CCLlB byZz1l, PRETOPC:49;
thus C1 (A N B) C C1L AN Cl B by Z2, BOOLE:39;

end;

It now remains to insert the appropriate directives of the environment between the
word environ and begin. Let us begin with the vocabularies, that is, with the directive
vocabulary ... ;.

The text proper above there the following symbols occur:

Nn,Cl symbols of functors,
C symbol of predicate,
TopSpace, Subset symbols of modes.

The symbol N is to be found in the vocabulary BOOLE. The symbols C1 and TopSpace
are introduced in the vocabulary TOPCON, whereas the symbol of the mode Subset and
of the predicate C are in the vocabulary HIDDEN. The vocabulary directives which must
be included in our article are:

vocabulary BOOLE;

vocabulary TOPCON;

The directive signature «; allows on to use vocabulary symbols in accordance
with the format defined in the article a.miz, format - the number of left-side and right-
side arguments and also the types of the result and the arguments of the functor or an
expansion of a mode.

In our case the symbol N is used as that of the intersection of sets. That inter-
section may be treated as an intersection of subsets of a topological space which yields
also a subset of that space, or else — without any modification in the reasoning — as an
ordinary intersection of sets. Hence its use requires the joining of the directive:

signature SUBSET_1;

(redefinition for subsets)
or the directive

signature PRE_TOPC;

(redefinition for subsets of a topological space)
or the directive
signature BOOLE;
(definition of intersection of sets).

The definition of the predicate of inclusion, for which we use the symbol N | is to
be found in the article TARSKI. If it is to be used in our case one of the directives of
environment must be

signature TARSKI;

In the article PRE_TOPC the definition of the closure of a set, symbolized C1, and
the definition of the mode TopSpace, are introduced, hence it is necessary to join the
directive

signature PRE_TOPC;
Since in the proof we availed ourselves of theorems to be found in the articles BOOLE
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and PRE_TOPC, two more directives must be added to the earlier given directives of envi-
ronment, namely:
theorems BOOLE;
theorems PRE_TOPC;
The Mizar article containing the proof of the theorem under consideration is to be
found in the annex, example 5 in the file art.1st.

Remark:  In Mizar it is allowed to overridden labels. Hence the marking of several
sentences from one and the same level of reasoning is not an error.

If, at a given level of reasoning, in which there are no other levels of reasoning,
several sentences are marked by the same label, then the reference to that label means
reference to the last sentence marked by it.

By a level of reasoning we mean:

(a) the reasoning contained between the correspondingly paired words proof and end;,
(b) the reasoning contained between the correspondingly paired words now and end;,
(c) the reasoning contained between the correspondingly paired schemes and ;.
Reference to labels from an earlier closed level of reasoning is not allowed.

EXAMPLE
Two levels of reasoning will be shown below. The inscriptions a, 8, 7, d denote
certain formulas. At the shown levels of reasoning the label A: occurs only in the indicated
positions.

Level of reasoning

A: «a;

Level of reasoning

As B

v by A;

6 by A;

In the justification of the sentence  the reference to the label means reference to
the last sentence marked by it, that is to the sentence 8. But in the justification of the
sentence ¢ the reference to the label A: means reference to the sentence a. At the place
it is impossible to refer to the second sentence marked by the label A:, that is to the
sentence [, because that sentence is at the previously closed level of reasoning.

In the proofs of theorems are long it is convenient to use the corresponding recording
of the reasoning used in the proof, that is such which shortens that reasoning and makes
it clearer and more legible. That can be achieved by the elimination of the labelling of
sentences through the use in the proof of the words: then, hence, and thesis.

The prefixing of the sentence 8 by the word then indicates that in the justification
of B we avail ourselves of the sentence a which directly precedes 3. In such a case o need
not be marked by a label.

This way of justification is called linking.
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We shall use linking in the proof carried out earlier. Instead of the sentence labelled
Z1: and Z2: we shall have:

ANBCA&ANBC B by BOOLE:37;

thenCl (AN B) CClA&CL (AN B) CClB by PRE.TOPC:49;

It must be emphasized that linking requires that the expression 8 be a statement
justified straightforwardly, and a-sentence. That imposes certain limitation upon the
application of linking. For instance, linking cannot be applied directly after proof not
after a collective assumption, because it is not know which of the partial assumptions
is meant. Not can it be applied after the statement of choice, after the statement of a
change of type, after exemplification. Linking can be applied directly after a sentence, a
statement justified directly a statement of choice, and a diffuse statement.

If the preceding sentence is one of the premisses of the conclusion, then linking may
be indicated by the replacement of thus by hence. The sentence preceding the conclusion
may be unlabelled. Figuratively speaking, the recording;:

A:a;

thus § by A, other—references;
may be replaced by the recording;:

a

hence 3 by other—references;

When the possible linkings are considered the proof of the theorem discussed earlier

will assume the form:
proof
let A, B be Subset of &;
ANBCA&ANBC B by BOOLE:37;
thenCl1 (AN B) CCl A&CL (AN B) CCl B by PRETOPC:49;
hence C1 (A N B) C C1 AN Cl B by BOOLE: 39;
end;
(see example No. 6 from art.1lst)

The conclusion (that is the thesis of the proof or its part), which in this case in the

expression
CL(ANB) CClLACCLB
may be replaced by the word thesis, which means that which is left to be demonstrated.

The word thesis is treated by Mizar as a formula. The formula thesis may be used

solely within the proof, that is between the words proof and end; .

EXAMPLES of the use thesis

e in the termination of the proof:

... hence thesis; end; or ... thus thesis; end;

The example Nos. 7, 10, 28, 29 from the file art.1st illustrate the application of
the formula thesis at the end of the proof.

In the example No. 7 in the first inner proof, that is in the proof of the thesis
PUQT=OT, thesis denotes the formula PUQT=QT, whereas in the second inner proof
thesis denotes the formula PUQT=P.

In the example No.10 the formula thesis occurs twice. In the first case it denotes
the formula W is open & W C P & X € W, whereas in the second case, at the end of
the proof, it denotes the formula x € Int P.

In the example No.28 thesis denotes the sentenced being proved in that examples,
that is the sentence

T is_connected iff for A being Subset of T st A is_open_closed
holds A = (T or A = QT
whereas thesis in the example No0.29 denotes the formula P is_dense.
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e at the beginning of an indirect proof:
proof assume not thesis; ... ; thus contradiction; end;
Such a use of thesis found application in the examples Nos. 19, 22, 23.
In the example No.19 thesis denotes the sentence being proved, that is the formula:
for G st G is_open holds p € G impliesP N G # 0 .
In the example No.22 it denotes the formula P # Q, and in the example No.23, the
formula A # (T.

e in a proof by cases:

proof
A: now assume «; ... ; hence thesis; end;
now assume not «; ... ; hence thesis; end;
hence thesis by A;
end;

IV.2. Skeletons of proofs

Every proof, that is the reasoning contained between proof and end consists of
elements which from its skeleton. The skeleton of a proof consist of:

assumption,
generalization,
conclusion,
exemplification.

It is to be noted that the skeleton of a proof is not determined unambiguously. Its
structure depends on the form of the thesis to be proved and on the technique of proving
(for instance, the direct or the indirect proof). The skeleton of the proof of a given thesis
is based on the structure of the semantic correlate of that thesis. That part of the system
which verifies the correctness of the structure of the semantic correlate of that thesis.
That part of the system which verifies the correctness of the structure of the skeleton is
called REASONER.

When preceding to prove a sentence it is advisable to write at first the correct
skeleton of the proof of that sentence (that is to say, disregarding the justifications of
sentence). If the skeleton of the proof is written correctly, then only the errors marked
by number 4 will be reported (by CHECKER).

IV.2.1. DIRECT PROOFS

We shall now show the likely skeletons of proofs when the thesis is a conjunction,
disjunction, implication, equivalence, a general sentence, and an existential sentence.

1. CONJUNCTION, that is an expression in the form «a; & as,
where a; and as are any formulas, is a thesis.
If this sentence is to be proved directly, then the skeleton of the proof may consist
of the expression listed below and contained between the words proof and end :
proof
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The dots indicate that they are to be replaced by the remaining steps of the proof.

Self-evidently, the sentences a; and as must be justified by a straightforward justi-
fication or by proof.

Every expression which is a component of the skeleton of the proof of a given sentence
modifies the thesis of the proof. In the example given above until the occurrence of the
expression thus a; the formula

aq & (5]
was the thesis of the proof. But the expression thus «; modified the thesis of the proof,
which after that expression became the formula as.

The sequence of the justification of a; and ay is essential;
it must be such as presented above. If we change the order into:

thus a-;
thus a5 ;
then we obtain the skeleton of a proof of the sentence s & a;;. But the semantic correlates
of the sentence
ay & oo and as & o
are different. Hence for Mizar these are two different sentences.

The example Z8.1st shows the form of the file when only the skeleton of the proof
of the sentence being justified is written down.

If in the proof in that example we change the order of the expressions which for the
skeleton of the proof, then additionally the error marked by No.51 — Invalid conclusion
— will be reported. Such a situation is illustrated by the example Z9.1st.

The full proof is shown in the example No. 7 from the file art.1st.

In the proof of the thesis in that example there are two inner proofs. In each of
them the final conclusion of each proof is marked by the word thesis. In the first inner
proof it denotes the formula PUQT = QT, and in the second, the formula PNQT = T.

If the thesis is a conjunction of more than two constituents, then the truth of each
constituent is to be justified.

For instance, for the thesis

(5] & a9 & a3
the skeleton of the proof might be as follows:

proof
thus a; ;
thus ay;
thus as;
ond;
Remark:

The skeleton of the proof for the thesis a1 & as & as is also the skeleton of the
proof for the thesis ay & (s & ag) and for the thesis (ay & «as) & ag), which is to
say that all the three formulas have one and the same semantic correlate.

2. IMPLICATION is a thesis.
There are two methods of proving implications, the direct and the indirect.
If the implication
ay implies as
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is to be proved directly, then one has to assume the antecedent of the implication and
prove the consequent. Hence the skeleton of the proof of the above sentence will be as
follows:

proof

thus as; (conclusion)
end;
Since the assumption in part of the skeleton of the proof it modifies the thesis.
Before the assumption the thesis was the formula
a1 implies as
but by assuming the antecedent of the implication we modify the thesis after the as-
sumption the thesis become the formula as.

EXAMPLE
The skeleton of the proof of the sentence
Q% =AUB & A isclosed & B is_closed & A N B = (&
implies A, B are_separated
may be such:
proof

thus A, B are_separated;
end;
(see annex — file Z10.1st)

Remark:

The steps which constitute the skeleton of the proof (except for the conclusion) do
not require justification. The remaining steps of the proof other that tautologies must be
justified. This is explained by the example Z10.1st from the annex, in which the error
connected with the justification of the assumption is not reported.

The expression

assume (0 = A U B & A is_closed & B is_closed & A N B = (&;
is a single assumption, which is one of the forms of the assumption.
A single assumption may take on one of the two forms presented below:

assume sentence ;
Such an assumption is used when we refer to it by linking. But sometimes it is not
possible to refer to the sentence in the assumption by linking. In such a case that
sentence must be marked by a label and the identifier of that label is to be written in
the place of reference. The assumption will take on the form

assume identifier—of-label : sentence ;

If the sentence which is to be taken as the assumption is in the form of a conjunction,
then the assumption may be recorded in the form of a collective assumption by replacing
the sign & by the word and and by labelling every constituent of the conjunction. The
single assumption:

assume QO = A U B & A is_closed & B is_closed & A N B = (&;
may accordingly be written in the form of a collective assumption thus:
assume that M1: Q& = A U B and M2: A is_closed and
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M3: B is_closed and M4: A N B = (&;
A collective assumption takes on the form:
assume that sequence—of-labelled—sentences ;
A sequence of labelled sentences is a single labelled sentence or several labelled sentences
linked together by the connective and.
The splitting of a single assumption into a collective one makes it possible to refer
separately to every partial assumption.
The assumption from the example given above may also have the following form:
assume x: Q& = A U B & A is_closed & B is_closed;
assume xx: A N B = (&;
Since the semantic correlates of the sentences in the form:
alk B &y and (a & B) & ~ and a& (B &)
are the same hence the following assumption is correct, too:
assume y: (26 = A U B & A is_closed) & B is_closed;
assume yy: A N B = (&;
the same applies to the following one:
assume z: O® = A U B & (A is_closed & B is_closed);
assume zz: A N B = (&;
The last two forms of the assumption are least legible, and this is why it is better to use
recordings in which superfluous brackets are avoided. But the last two possible forms
have been given above in order to show the various recordings.
The formulas in the form
(o) ®, & &> implies P3 and &, implies (&> implies $3)
have one and the same semantic correlate.
®y, &y, @3 are any formulas. If they are implication or equivalences, then in the
formulas under (e) brackets should occur in the appropriate places. The same applies to
the formulas which will be discussed below.
The semantic correlate of the formula
P, & P, implies @3
has the following form:
not (([®;] & [®5]) & [not ®3])
(where inscription [®;] denotes the semantic correlates of the formula ®;; the same
applies, by analogy, to the remaining cases).
It will now be shown how the semantic correlate of the formula ®; implies (&,
implies ®3) is formed. That formula may equivalently be recorded thus:
not (®; & not (P, implies P3))
That formula may be recorded equivalently by making use of the semantic form of im-
plication:
not (®; & not not ([®2] & [not ®3]))
Next, we avail ourselves of the fact that negation is an involution:
not (®; & ([®2] & [not P3]))
Since conjunction is associative the semantic correlate of the above formula may be
recorded thus:
not (([®;] & [®5]) & [not ®3])
The form thus obtained is also a semantic form of the formula:
(P, & ®5) implies @3
The sentence being proved has its antecedent in the form of the following formula:
a1 & as & ag & ay

where
o stands for O = AUB
Qo stands for A is_closed
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Qs stands for B is_closed
o stands for ANB-=06
The consequent of the implication, that is the formula
A, B are_separated
will be denoted by ~.
The system, when reading the formula, will add brackets in the appropriate places
and transform it into the formula:
(a1 & as) & a3) & au
Now let the formula ((a; & as) & as) be denoted by 3. On substituting £ in the
preceding formula we obtain
B & ay
It follows from earlier analyses that the semantic form of the formulas:
B & a4 implies vy and £ implies (a4 implies )
is the same.
Hence the skeleton of the proof of the thesis
B & a4 implies vy
is the same as the skeleton of the proof of the thesis
B implies (a4 implies )
Since the sentence
Q% = AUB & A isclosed & B is_closed & A N B = (&
implies A, B are _separated
is processed by the system in the same way as the sentence
QB = A UB& A isclosed & B is_closed
implies (A N B = )& implies A, B are_separated)
the skeleton of the proof of the thesis
Q% = A UB& A isclosed & B is_closed & A N B = (&
implies A, B are_separated
may have the form:
proof
assume q: 6 = A U B & A is_closed & B is_closed;
(now the thesis is: ANB = ()& implies A, B are_separated)
assume p: A N B = (&;
(now the thesis is: A, B are_separated)

end;
The proof of the thesis discussed in this example is presented by the example No.9
in the file art.1lst.
Remark: The skeleton of the proof of the sentence a & [ implies v may be as below:

proof
;s;ume a;
;s;ume B
thus ;
ond;
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On the contrary, it cannot be the skeleton of the proof of the sentence
B & « implies 7
because in that case a different order of assumptions is required.

3. When proving the FQUIVALENCE
a iff g
one has to prove two implications:
a implies 3 and B implies a
Since the sentences
a iff g and (a implies 3) & (S implies a)
have one and the same semantic correlate the skeleton of the proof for equivalence is
subsumed under the skeleton of the proof of a thesis which is a conjunction.
Here is the skeleton of the proof of equivalence:
a iff g
proof
thus a implies §;
(now the thesis is: a implies (3)

end;
Since for Mizar the commutativity of conjunction is not self-evident the order in
which the implications are indicated must be as above.
The example No.10 in the file art.1st shows a proof of equivalence. The skeleton
of that proof is in the same form as above.
The skeleton of the proof of the equivalence o iff  may be such as below:
proof
thus a implies §;
(now the thesis is: 3 implies «)
assume [3;
(now the thesis is: «)

end;

In the example No.11 in the annex there is the proof of the thesis from the example
No.10. That proof is carried out in a different way than in the example No.10, which is
to say that the skeleton of the proof is different. It is in the form as above.

A justification of an equivalence is also to be found in the example No0.30 in the
file art.1st, where the equivalence is justified straightforwardly (by by). The list of
references consists of labels of two corresponding implications proved earlier.

4. When proving a THESIS which is a DISJUNCTION it is worth while
bearing in mind one more pair of sentences which are processed by the system in the
same way. We mean the sentence

aor (3 and not « implies

45



These sentences have the proof of a disjunction it is convenient to assume the negation
of the first constituent of the disjunction () and to prove the second constituent.

Should we do it conversely by assuming the negation of the second constituent (5)
and by proving the first (a)), we would prove the thesis

B or «a
But the sentences
aor (3 and B or «

have different semantic correlates.

If the thesis is a disjunction of three constituents, then in its proof one has to
assume the negation of the first two constituents and to prove the third. This is done in
the example below.

EXAMPLE
k<nork=norn<ZXk
proof
assume A: not k < n & k <> n;

(The negation of the first two constituents of the disjunction is assumed and it is now
the formula n < k which is the thesis)
then not k¥ < n by NAT_1:30;
then n < k by NAT_1:14;
hence n < k by REAL_1:57, A;
end;
See the example No.12 in the file art.1st.

5. The thesis is in the form of a GENERAL SENTENCE.

In such a case the construction of the skeleton of the proof must begin with a
generalization. Generalization is used, for instance, in the proofs of general sentences
and in the proofs of sentences which can be presented as general ones. Other occurrences
of generalization are:

— diffuse statement,

— definition.

General speaking, generalization is intended to fix certain objects. It accordingly
introduces constants at the level of proof.

Generalization is in the form:

let variables—qualified—implicitly ;

In view of the diversified forms of the list of qualified variables generalization may
take on the form of one of the expressions presented below:

(a) let identifiers—of-variables ;

Examples: let x;, let A, B;

In the generalization of this kind the types of variables which occur in it are not
indicated, which can be seen in the examples above. This means that the identifiers of
those variables have the respective types given in the reservation of variables.

(b) let variables—qualified—explicitly ;

Generalization in this form differs from the preceding one in that the types of the
variables occurring in it are indicated.

Examples:
let x, y be Any;
let P, Q be (Subset of &), p be Point of &;
let a, b be Subset of the carrier of Y;
let a be Subset--Family of the carrier of Y;
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(where Y is a certain topological structure).

Instead of be one may alternately use being, but let the convention be that be is
used in the construction let ... .

(c) let variables—qualified—explicitly , variables—qualified—implicitly

Generalization in this form is, generally speaking, a combination of the two preceding
ones. Examples:

let A be (Subset of &), x;
let P1, P2 be (Subset of &), p, q be (Point of &), x,y,z ;
It is known that the sentence in the form:
(o) for lists—of—qualified—variables holds ®; implies ®5
is processed by the system in the same way as the sentence:
(o0) for lists—of—qualified—variables st ®; holds ®;
If the thesis of sentence being proved has the same form as under () or (ee), then
the generalization may be recorded as follows:
let lists—of—qualified—variables such that conditions ;
The condition in such a generalization must be recorded as one labelled sentence or
several labelled sentences linked together by the word and . For the formulas marked
(o) and (ee) the conditions may be recorded, for instant, thus:
Wi: &y or Wi: &; and W2: not &5

The use of generalization in the proof will be visible in the discussion of the skeleton
of the proof of a general sentence, to be discussed now. For the time being let it be said
only that generalization is a cut down in the thesis of the universal quantifier. The proof
of a general sentence will be discussed by reference to examples.

In each of the examples to be presented below the corresponding reservation of
variables and the content of the sentence which requires a proof will be direct, which is
important for the construction of the skeleton of the proof. In the case of indirect proofs
skeletons look differently, but that case will be discussed later.

Here are the examples announced:

EXAMPLE 1
reserve & for TopSpace, x for Any, P for Subset of &;
for x holds x € Fr P impliesx € (C1 (P°) N P) U (CLP \ P)
proof
(Since at this point the thesis is a general statement the construction of the skeleton of
the proof begins with a generalization)
let x;
(the type of the identifier of x is given in the reservation of variables hence it need not
be given again. The generalization results in the cutting down of the universal quantifier
in the initial thesis, whereby the thesis has become modified. Now the thesis has the form
of an implication. When proving an implication directly we assume its antecedent and
prove its consequent. Moreover the generalization has introduced the constant x at the
level of the proof).
assume x € Fr P;
(Now the formula x € (C1L (P°) N P) U (C1 P \ P) is the thesis.)
thus x € (C1 (P°) N P) U (C1 P\ P); (final conclusion)
end;
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In the generalization, and hence in the proof as a whole, an identifier other than x
could have been used because generalization is to apply to the types of the identifiers of
the variables occurring in the quantifier formula after the word for. The point is that
the types of identifiers in the generalization should agree with the types of the identifiers
following for in the quantified formula.

For instance, if we have a quantified formula in the form:

for x being T holds ®(x)
(where T is a type)
then the generalization may be as follows:

let y be T;

If in the reservation the identifier y has been reserved for a type other than T or if it has
not been at all taken into consideration in that construction, then in the generalization
the appropriate type must be indicated. In both cases the type of the variable introduced
by a generalization is valid until the end of a given level of reasoning, that is that level
at which a given variable was introduced. But if the identifier y has been reserved for
the type T, then the generalization may be as follows: let y;.

Remark:

The variable introduced by a generalization may be overridden by another general-
ization, a statement of choice, a statement of a change of type, an exemplification, an
ezistential assumption and local definition of variable.

The expression assume x € Fr P; is a single assumption which is one of the forms
of assumption.
The sentence being proved has for Mizar the same meaning as the sentence:
for x st x € Fr P holdsx € (C1 (P®) N P) U (C1 P \ P)
Hence in accordance with the information about the structure of generalization in the
case of a thesis which is a formula with a purified quantifier the skeleton of the proof
may be abbreviated as follows:

let x;
} let x such that A: x € Fr P;
assume x € Fr P;

The proof of the sentence discussed in the first example is shown in the annex, file
art.lst, under No.13.
Now comes another example illustrating the construction of the skeleton of a proof.

EXAMPLE 2
reserve & for TopSpace, P for Subset of &;
PCCIP
The definitional expansion of this sentence has the following form:
for x being Any holds x € P impliesx € C1 P
The skeleton of the proof of the sentence P C C1 P may also be the skeleton of the proof
of a sentence which is its definitional expansion. This is guaranteed by the joining to the
environment of the directive of definitional definitions TARSKI ;.
Here is the skeleton of the proof of the sentence P C CI P:
proof

(Since at this point the sentence which may be expanded into a general sentence is the
thesis generalization may be the first element in the skeleton of the proof.)
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let x be Any;
(Now it is the implication which is the thesis, and hence the skeleton of the proof may
still consist of the assumption of the antecedent.)

assume x € P;
(Now it is the formula x € C1 P)

end;
The full proof is to be found in the example No.14 in the annex.

EXAMPLE 3
reserve & for TopSpace, P, Q for Subset of &;
P is_dense implies for Q holds Q # () & Q is_open impliesP N Q # 0
proof
(Now it is the implication which is the thesis hence the assumption of the antecedent will
be the first element of the skeleton of the proof.)
assume P is_dense;
(It is a general sentence which is the thesis at this point, and this means that a general-
ization will be the next element.)
let Q;
(Now it is the implication which is the thesis, hence we assume its antecedent.)
assume Q # 0 & Q is_open;
(it is the formula P N Q # O which is the thesis now.)

end;
The single assumption
assume Q # ) & Q is_open;
may be recorded equivalently as a collective assumption:
assume that M1: Q # () and M2: Q is_open;
or as two single assumptions:
assume a: Q # 0;
assume b: Q is_open;
The skeleton of the proof of the sentence under consideration may also be as follows:
proof
(Now it is the implication which is the thesis hence the assumption of its antecedent will
be the first element in the skeleton of the proof.)
assume P is_dense;
(At this point a general sentence is the thesis, and this means that a generalization will
be the next element.)
let Q such that Z1: Q # () and Z2: Q is_open;
(The formula P N Q # 0; is the thesis.)
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end;
(See annex, - example No.15.)

EXAMPLE 4
reserve & for TopSpace;
for §) being SubSpace of & for A being Subset of §
holds A is Subset of &
Skeleton of the proof:
proof
(The general sentence being proved is now the thesis.)
let $ be SubSpace of &;
(The general sentence
for A being Subset of §) holds A is Subset of &
is now the thesis.)
let A be Subset of §;
(The formula A is Subset of & is the thesis)

end;
The generalization in the proof above can be recorded more briefly, namely:
let $ being (SubSpace of &), A being Subset of 9;
This is due to the fact that the sentences
for x for y holds a and for x, y holds «
have one and the same semantic correlate.
The proof of the thesis in this example is shown in the example No.16 in the annex.

6. The thesis is an EXISTENTIAL SENTENCE,
that is a sentence in the form:
ex list—-of—qualified—variables st formula
Let the formula
ex x being T st ®(x)
be the thesis.

The proof of this thesis consist in indicating an object of the type T which satisfies
the condition ®(x).

To do so we shall avail ourselves of the construction take ... , called ezemplification.
That construction, except for generalization, assumption, and conclusion, modifies the
thesis of the proof. While generalization results in the cutting down of the universal
quantifier in the thesis, exemplification cuts down the existential quantifier in the thesis.
Exemplification with equalization introduces a constant at the level of the proof, that
constant being accessible from the moment of being introduced to the end of that level
of reasoning at which it has been introduced, unless it is overridden by another exem-
plification, a generalization, a statement of choice, a statement of a change of type, an
existential assumption, or a local definition of a variable.

Consider, for instance, the theorem
(o) x € Int P iffex Q st  isopen & Q C P & x €
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The proof of this theorem consist of justifications of two implications. We shall write the
skeleton of the proof of the first of them.
x € Int P impliesex Q st Q isopen & Q C P & x €
proof
(An implication is the thesis hence we assume its antecedent.)
assume x € Int P;
(Now it is an existential sentence which is the thesis. Note that sentence is satisfied for
Q equal Int P.)
take Q = Int P;
(At this point the formula Q is_open & Q C P & x € Q is the thesis. By the construc-
tion take ... we have pointed to the object sought. We have to verify whether it satisfied
the conditions stated after the word st, that is the thesis now under consideration. Of
course, the identifier Q in the exemplification, and hence in the further proof, may be
replaced by any other identifier.)

end;

The full proof is shown in the example No.10.

For the thesis proved above there may also be other variations of the construction
take ... ;

The expression
take Q = Int P;
may be replaced by take Int P;. In such a case the proof will be as shown in the annex
— example No.11.

The proof of the other implication which is a part of the thesis marked by the (e) is
shown in the example No.10 and in the example No.11. In either example the proof is
carried out in a different way.

Here are two skeletons, given by way of example, of the proof of the sentence

ex a st a(x)

(i)  proof
take y = 7;
thus aly);
en&.;....
(i)  proof
take 7;
thus a(r);
en&.;....
(NO’IU)T is the corresponding term, and y, any identifier. Any identifier may be substituted
fory.

There are sentences in the proofs in which the exemplification consists of several
equalizations of terms, which in such a case must be separated be commas from one
another.
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Let the sentence
ex x ex y st a(x,y)
be the thesis. The skeleton of the proof might be as follows:
proof

end;
We applied here exemplification twice but it could have been done only once. Then the
skeleton of the proof would be:

proof

end;
The expression take x,y; is also an exemplification in the proof of the thesis
ex x,y st a(x,y)
But the sentences
ex x ex y st a(x,y) and ex x,y st a(x,y)
are ready by the system in the same way.

Remark:

The adding in the proof of a statement which does not contribute anything to the
proof and such which has some sntactic correlate as not contradiction, i.e. VERUM, is
not an error. For instance, if in the proof of the thesis from the example No.7 in the
annexr we write an additional conclusion, then the proof will take on the form such as in
the example No.8. Superfluous thus thesis would be added, but that would not cause an
error. In that case thesis is the formula not contradiction (VERUM). In the processing
of the formulas in that proof into semantic correlates not contradiction as VERUM is
disregarded. Likewise the addition of assume not contradiction is not an error for
the same reason as above.

IV.2.2. INDIRECT PROOFS

So far direct proof have been discussed. But indirect proofs can also be carried out
in Mizar. What the skeleton of the proof is like in such cases?

If we are to prove a sentence « indirectly, then we may assume the negation of that
sentence and to carry out the proof until the point when we arrive at contradiction. The
skeleton of the proof for a might be as follows:

proof

thus contradiction;
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end;
(In this case thesis means the formula contradiction.)

The formula not a may, if that is convenient, be replaced by the already negated
sentence . For Mizar that is indifferent.

The word contradiction denotes the logical constant falsehood. Self-evidently, not
contradiction, or VERUM, denotes the logical constant truth. The word contradiction
is treated by Mizar as a formula. It may occur not only at the end of an indirect proof.
Its other occurrences are:

— in Fraenkel’s terms;
e.g., {k + 1: not contradiction}
Indirect proof is frequently used when it is an implication which is the thesis:
« implies g

In an indirect proof of this implication one has to assume the antecedent of the implication
and the negation of its consequent. The assumption may be either single or collective as
below:

assume «o;

assume not 3;
or

assume «a & not 3;
or

assume that S1: « and S2: not 5;
The proof is carried on until the point when we arrive at a contradiction, which is
manifested by the properly justified statement thus contradiction.

EXAMPLE 1
We shall write the skeleton of the proof of the sentence
P is_open & P is nowheredense implies P = )
proof
(Now the implication being proved is the thesis. When proving an implication indirectly
we assume its antecedent and the negation of its consequent. This assumption will be
recorded in the form of a collective assumption.)
assume that Z1: P is open and Z2: P is nowheredense and Z3: P # (J;
(The formula P # 0 is the assumption of the indirect proof. Further steps of the proof
must yields a contradiction.)

end;
The example No.17 in the annex illustrates an indirect proof of a thesis which is an
implication.
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EXAMPLE 2
We shall write the skeleton of an indirect proof of the sentence:
(for G st G is_open holds p € G impliesP N G # @) impliesp € C1L P
proof

assume A0: for G st G is_open holds p € G impliesP N G # 0;
(Now it is the formula p € Cl P which is the thesis. Since the implication in question
is being proved indirectly we now have to assume the negation of its consequent.)

end;

The full proof is shown in the example No.18.

The expression not p € C1 P may be replaced by the equivalent expression not
thesis, where the formula thesis denotes the formula p € C1 P. Then the skeleton of
the indirect proof will be as follows:

proof

assume AO: for G st G is_open holds p € G impliesP N G # 0;

end;
Here is one more skeleton of the proof of the thesis from the example No.2.
proof

assume AO: mnot thesis;
(The formula thesis denotes here the sentence being proved. Further steps of the proof
must be yield a contradiction.)

end;
For such a form of recording the checking by the system of the correctness of the
proof takes more time than in the case of the previous recordings.
The example No.19 shows the proof of the thesis from the example No.18, but the
skeleton of the proof of that thesis has the same form as that presented above.

EXAMPLE 3
We shall write the skeleton of the proof of the sentence:
A is_a_component of & & B is_a_component_of &
implies A = B or A,B are _separated
proof

(The implication being proved is the thesis. We shall prove it directly and hence we
assume its antecedent and prove its consequent.)
assume Z1: A is_a_component of & & B is_a component_of &;
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(Now it is the disjunction A=B or A,B are_separated which is the thesis. We assume
the negation of the first constituent of that disjunction and prove the truth of the second.)
assume Z2: A # B;
(Now it is the sentence A,B are_separated which is the thesis. That sentence is to be
proved indirectly and hence we assume its negation.)
assume Z3: not A,B are_separated;
(Further steps of the proof must yield a contradiction.)

end;

The proof of this thesis is to be found in the example No.20 in the annex. Other
indirect proofs are shown in the examples Nos.21, 22, 23, 24.

In the proof of the successive Mizar sentence the construction consider ... will be
used. The role of that construction in the proof consists in the introduction of constants
to the level of the proof.

The statement of choice, as the construction consider ... is called, may take on the
form:

(1) consider list—of—qualified—variables ;
for instance:
consider x, y;
consider A being Subset of &, a being Any;
consider V being set, P, Q;
(2) consider list—of—qualified—variables such that conditions justification ;

The conditions form a single labelled sentence or several labelled sentences linked
together by the word and. The justification may be by by or by from that is by schema.
The labelling of the sentence(s) occurring in the conditions is due to the fact that after
the statement of choice linking is not allowed.

It may be so that the condition in the statement of choice do not require justification.
Then the statement of choice will have the form:

(3) consider list—of—qualified—variables such that conditions ;

The statement of choice is in such a form when:

e in the justification of the statement of choice we refer solely to the immediately
preceding sentence by linking,

e the conditions are accepted by CHECKER without justification, which is to say
that we have to do with tautologies of the propositional calculus or with simple laws of
the functional calculus.

The example below illustrates the application of the statement of choice.

EXAMPLE 4
Here is the proof of the sentence
P is_boundary iff (for Q st Q C P & Q is_open holds Q = )
proof
thus P is_boundary implies (for Q st Q C P & Q is_open holds Q = 0)
proof

(Now the implication being proved is the thesis. We assume its antecedent.)
assume P is_boundary;

(Now the general sentence for Q st Q C P & Q is_open holds Q = () is the thesis.)
then P: P¢ is_dense by TOPS_1:83;
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let Q;
(Now the implication @ C P & Q is_open implies Q=0, which is to be proved indirectly,
is the thesis.)

assume that P1: Q C P and P2: Q is_open and P3: Q # 0;

(The further steps of the proof must yield a contradiction.)

P° N Q # () by TOPS_1:80,P3,P2,P;

then Q N P° # () by BOOLE:66;

hence contradiction by P1,T0OPS_1:20;

end;

(Now the following implication is the thesis:
for Q st Q C P & Q is_open holds Q = ) implies P is_boundary)

thus (for Q st Q C P & Q is_open holds Q = ()) implies P is_boundary
proof
(Now the above implication is the thesis.)
assume K: for Q st Q C P & Q is_open holds Q = 0;
(Now the formula P is_boundary, to be proved indirectly, is the thesis.)
assume not P is_boundary;
(The assumption of the indirect proof. Further steps of the proof must yield a contradic-
tion.)
then not P¢ is_dense by TOPS_1:83;
then consider C being Subset of & such that Q: C # 0
and Q1: C is_open and Q2: P° N C = () by TOPS_1:80;
C N P° = ) by Q2,B00LE:66;
then C C P by TOPS_1:20;
hence contradiction by K,Q,Q1;
end;
end;
(See annex - the example No.21.)
We shall analyse two statements which occur immediately after the assumption of
the indirect proof. The first statement is not P¢ is_dense;.
The theorem TOPS_1:80 formulates the property of a dense set:
P is_dense iff (for Q st Q # 0 & Q is_open holds P N Q # 0)
But the statement not P¢ is_dense says that the complement of the set P is not dense.
Then by availing ourselves additionally of the thesis TOPS_1:80 we can infer that:
(1) exQstQ # 0 & Q isopen & P° N Q = 0;
Since there is an object which satisfiers the above conditions, in further analysis we may
be arbitrary, but its type must agree with the type of the identifier of Q which occurs in
(1), which is to say that it must be the type Subset of &. Hence we may write:
consider C being Subset of & such that Q: C # ()
and Q1: C is_open and Q2: P° N C = ;
After the statement of choice the type of the identifier of C has been fixed as Subset of
&. If that identifier in the reservation of variables had been reserved for another type
then the statement of choice has overridden that type. The constant introduced by the
statement of choice in accessible from the moment of its introduction to the end of the
given level of reasoning, that is that level of reasoning at which the given constant has
been introduced.

Remark: The constant introduced by the statement of choice may be overridden by a
generalization, another statement of choice, a statement of a change of type, an exem-

plification, an existential assumption, and a local definition of variable.
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Examples of the application of the statement of choice:
(1) exxstx € XNY;
then consider x such that Z: x € X N Y;
(2) X meets Y;
then consider x such that a: x € X and b: x € Y by BOOLE:15;
Here is the theorem BOOLE: 15:
X meets Yiffexxstx € X & X € Y;
3) x#0b
then consider x such that c: x € X by BOOLE:1;
Here is the theorem BOOLE:1:
X =0 iff not ex x st x € X;

The application of the statement of choice in proofs is illustrated by the examples
Nos.11, 15, 21, 22, 23, 25 in the annex. Moreover, the example No.35 shows the applica-
tion of that construction outside a proof, that is outside the reasoning contained between
proof and end;.

IV.2.3. ON A NEW MIZAR CONSTRUCTION

Let the thesis be an implication whose antecedent is an existential sentence. It may

be accordingly be a sentence in the form:
(ex x being T st a(x)) implies 3
The proof of that thesis may be take on the following form:
proof
assume A: ex x being T st a(x);
consider y being T such that Z:a(y) by A;
(or then consider y being T such that Z:a(y);)
...... (proof of 3)
end;

The identifier in the statement of choice may be selected arbitrarily but so that its
type should agree with the type of the identifier of x in the assumption, that is with the
type of T.

The assumption and the statement of choice may in that case be replaced by an
existential assumption:

given x being T such that Z: a(x);

If the thesis is an implication with the antecedent which is an existential statement,

then the assumption of the existence of certain objects (by the construction assume
. ) and the statement of choice justified by that assumption may be replaced by an
existential assumption.

The existential assumption may be in the form:

(a) given list-of-qualified—variables ;
(b)  given list-of-qualified—variables such that conditions ;

The conditions may form a single labelled sentence or several labelled sentences
linked together by the word and.

The range of a constant introduced by an existential assumption is the same as the
range of a constant introduced by the statement of choice.

Remark:
Linking is not allowed after an existential assumption.

The application of the existential assumption will be illustrated by examples.
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EXAMPLE 1
reserve & for TopSpace, P,Q for (Subset of &), x for Any;
(ex Q st Q isopen & Q C P & x € Q) implies x € Int P
proof
assume ex Q st Q isopen & Q C P & x € Q;
then consider Q such that Z1: Q is_open and
Z2: Q C P and Z3: x € Q;
(The antecedent of the implication being proved has been assumed and the appropriate
statement of choice has been made. Now the formula x € Int P is the thesis. The
remaining steps of the proof are shown below.)
P¢ C Q¢ by TOPS_1:15,Z2;
then Z4:C1(P°) C C1(Q°) by TOPS_1:25;
Q° is_closed by Z1,TOPS_1:30;
then C1(Q°) = Q° by PRE_TOPC:52;
then C1(Q°) C Q° by Z4;
then Q¢¢ C (C1(P°))¢ by TOPS_1:15;
then Q C (C1(P%))°¢ by TOPS_1:10;
then Q C Int P by TOPS_1:42;
hence thesis by Z3,B00LE:5;
end;
(See file - example No.11.)
The first two steps of the proof may be replaces by the following existential assump-
tion:
given Q such that Z1: Q isopen and Z2: Q C P and Z3: x € Q;
The proof then assumes the form as in the example No.10 in the file art.1st. Other
cases of existential assumptions are given in the examples Nos.25, 26, 27, 28 from the file
art.lst.

Remark: The conditions given in the existential assumption cannot be recorded in the
form of an assumption, that is by the word assume. Hence the following recording is
incorrect:

given Q; assume that Z1: Q isopen and Z2: Q C P and Z3: x € Q;

The exercise in the annex — Z13.1st — shows the consequences of such an incorrect
assumption.
Likewise, the statement of choice:
consider Q such that Z1: Q isopen and Z2: Q C P and Z3: x € Q;
cannot be recorded thus:
consider Q; assume that Z1: Q is_open and Z2: Q C P and Z3: x € Q;
(See annex - Z12.1st.)

IV.3. Other Mizar constructions

IV.3.1. ITERATIVE EQUALITY

We shall now discuss the Mizar construction called iterative equality. It finds appli-
cation in proofs of sentences which are equality formulas. Those formulas must satisfy
certain conditions, namely they cannot contain free variables. The variables occurring in
such formulas must be fixed. They are fixed by generalization, exemplification, statement,
of choice, statement of a change of type, or local definition of variable.
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While iterative equality does not introduce any new idea of the proofs.

Let us examine the proof of the theorem (P°)¢ = P, which will later be used to
illustrate iterative equality.

(P9¢ =P
proof
(P9 = Q& \ (P°) by TOPS_1:5;
then (P9)¢ = Q& \ (26 \ P) by TOPS_1:5;
then (P°)¢ = Q& N P by BOOLE:82;
hence (P¢)¢ = P by TOPS_1:3;
end;
Note the following facts which are characteristic for the thesis and its proof:
1. The sentence proved is an equality formula.
2. The formula occuring in every step of the proof is an equality. Moreover the term on
the left side of the equality is the same in each step ((P¢)€).
3. Every step of the reasoning, beginning with the second one, refers to the preceding
one (by linking).

These facts suffice for the proof of the thesis (P€)¢ = P to be carried out by an

iterative equality, which in the case under consideration has the form:
(P9 = Q& \ (P°) by TOPS_1:5
06\ (26 \ P) by TOPS_1:5
Q® N P by BOOLE:82
.= P by TOPS_1:3;
What does a recording mean? For instance, the inference
.= Q6 \ (2® \ P) by TOPS_1:5
is another recording if the expression
then (P9)°¢ = Q6 \ (2® \ P) by TOPS_1:5
where then denotes reference to the preceding sentence, that is the sentence
(P = Q& \ (P9)

It must be borne in mind that before the symbol .= after the justification of the
preceding step of the reasoning, we do not put the semicolon ; . The semicolon is required
at the end of the iterative equality, that is after the last expression in the form

.= term  justification
The iterative equality given above is not the complete proof of the thesis (P¢)¢ = P
because it lacks the conclusion terminating the proof. It suffices to add:
hence (P¢)° = P
The word hence means that the sentence (P)¢ = P has been justified by reference to
the entire reasoning in the form of an iterative equality. Of course, the conclusion may
be recorded by means of thus, but then, in order to refer to iterative equality, we have
to prefix the equality formula which opens that equality by a label. We might also write
thus before the iterative equality. Moreover, the conclusion (P€)¢ = P might be replaced
by the formula thesis. The proof of the thesis (P¢)¢ = P may accordingly have the form:
proof
(After the writing of the word proof the variables ® and P have been fized. Since the
sentence being proved is read by the system as a quantified formula in the form: for &,
P holds (P°)° = P, after the writing of the word proof the system automatically carries
out the generalization let &, P; and thus fizes the variables & and P. The variable & is
fized because P has the type Subset of &.)
(P9 = Q& \ (P°) by TOPS_1:5
06\ (26 \ P) by TOPS_1:5
Q® N P by BOOLE:82
P by TOPS_1:3;

59



hence thesis;
end;
(See example No.33 in the file art.1st.)
Here is another version of the proof of the thesis under consideration:
proof
A: (P9 = Q& \ (P°) by TOPS_1:5;
.= Q6 \ (2% \ P) by TOPS_1:5
Q® N P by BOOLE:82
.= P by TOPS_1:3;
thus thesis by A;
end;
The above proof can be slightly abbreviated if the last two statements:
.= P by TOPS_1:3;
thus thesis by A;
are replaced by a single statement in the following form:
hence (P°)° = P by TOPS_1:3;
or by the statement
hence thesis by TOPS_1:3;
The proof then takes on the form as in the example No0.34 in the file art.1st.

The various steps of the reasoning in our iterative equality had a straightforward
justification (by by). In an iterative equality there may also be justifications by schema,
but not by proof. In the simplest case, when a given step of the reasoning is self-evident
to CHECKER, the justification of that step may be empty.

The sentence (P€)¢ = P can be proved by iterative equality by fixing the variables &
and P through the statement of choice. In such a case the words proof and end should
not be written. We then may have:

consider &, P;

(P9)° = Q6 \ (P°) by TOPS_1:5
06 \ (Q& \ P) by TOPS_1:5
Q® N P by BOOLE:82
P by TOPS_1:3;

The variables ® and P fixed in this way make it possible to use the sentence proved
only for such variables as fixed here, that is for P and & (see example No.35). Such
a way of proving is thus not practical. If the variables are not fixed, then errors will
be reported as in the example Z11.1st in the annex. The error No.62 states that free
variables are not allowed in the iterative equality, and the error No.140, that there is an
unknown variable.

Iterative equality can be illustrating as below.

If t1, ta, ... ,tn, tpy1 are corresponding terms then the reasoning

t1 =t & to = t3 & ... & t,, = tyy1 straightforward-justification hence t; = ty,41;
may be equivalently replaced by another reasoning, namely the iterative equality in the
form:

t1 = to straightforward-justification

.= t3 straightforward-justification

= t, straightforward-justification
tnt1 straightforward-justification ;

60



EXAMPLE
The theorem
Int(Int P) = Int P
can be proved as below
proof
Int P = (C1 (P°))° by TOPS_1:42;
then Int(Int P) = (C1 (((CL (P)))))° &
(C1 (C(C1 (P9)))))¢ = (CL (CL (P)))° &
(C1 (C1 (P%)))° = (C1 (P%))¢ by TOPS_1:10,TOPS_1:42,TOPS_1:26;
hence Int(Int P) = Int P by TOPS_1:42;
end;
(See example No.31 in the file art.1st.)
or by reference to iterative equality:
proof
Int P = (C1 (P°))° by TOPS_1:42;
then Int(Int P) = (C1 (((C1 (P))°)°))¢ by TOPS_1:42
.= (C1 (C1 (P°)))° by TOPS_1:10
.= (C1 (P°))° by TOPS_1:26;
hence thesis by TOPS_1:42;
end;
The next example in the file art.1st includes a proof of the sentence Fr P = Fr
(P°) with the use of iterative equality.

1V.3.2. DIFFUSE STATEMENT

Tt is sometimes so that in the proof of a certain thesis it is convenient to justify (an)
auxiliary sentence(s). If that sentence cannot be justified straightforwardly (by by) or by
schema (by from), then we have to carry out a proof (i.e., a certain reasoning beginning
after the word proof and concluded by the word end). Then we will get nested proofs.
Hence the proof may have lesser clarity. But there is a certain Mizar construction which
is applicable in the situation described above. We mean the construction in the form:

now reasoning end;
The various steps in the reasoning are formed on the same principle as the steps of
the proof. The application of this new construction in proofs will be illustrated by an
example. Let us consider the thesis
¥ is_closed implies meet § is_closed

It is a thesis in the form « implies [, where
« is the formula § is_closed,
B8 is the formula meet § is_closed .

Moreover, let
¥ will be the formula T#0D.
This thesis be proved neither by by nor by schema. Hence a proof must be carried
out. Since the formula in the form
(v implies 8) & (not v implies 5) implies
is a tautology it is convenient to prove in the proof two auxiliary sentences in the form
~v implies and not v implies
In the proof these sentences are labelled T and K1, respectively.
Here is the proof of the sentence:
() T is_closed implies meet § is_closed
proof
assume § is_closed;
then A: COMPLEMENT(J) is_open by TOPS_2:16;
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T: § #0 implies meet § is_closed
proof
assume § # 0;
then union COMPLEMENT(J) is_open by TOPS_2:26;
hence meet § is_closed by TOPS_1:29,A;

end;
% = 0 implies meet § is_closed
proof
assume § = 0;
then meet § = () by SETFAM_1:2;
then meet § = 0(®&) by PRE_TOPC:11;
hence meet § is_closed by TOPS_1:22;
end;

hence thesis by T;
end;
In this proof the formula
meet § is_closed
is denoted by the word thesis.
(See example No.37 in file art.1st.)

Remark:
The formulas in the form:
B and (v implies 3) & (not v implies ()
do not have one and the same semantic correlate. Hence the skeleton of the proof of a
sentence in the form
B

cannot be subsumed under the skeleton of the proof for a conjunction as in the case of
the sentence
(v implies ) & (not v implies 3).

We shall now prove the same thesis in a similar way (the proof will also consist in
justifying the sentences vy implies § and not 7 implies §) but the recording of the
reasoning will be different.

Here is the thesis:
§ is_closed implies meet § is_closed
proof
assume § is_closed;
then A: COMPLEMENT(F) is_open by TOPS_2:16;
We shall prove v implies (8 but that sentence will not be written openly. We shall carry
out the reasoning resulting in its justification. In Mizar such a construction begins with
the word now and ends in the expression end; .
Ti: now
(The word now is followed neither by the semicolon nor by the word proof. Since the
sentence being proved is an implication its antecedent is assumed.)
assume § # 0;
(Below there are further steps of the reasoning leading to the justification of the thesis,
which at this point is the formula 3)
then union COMPLEMENT(J) is_open by TOPS_2:26;
hence meet § is_closed by TOPS_1:29,4;
end;
The above reasoning has proved the sentence v implies .
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In order to be able to refer to it one may, as has been done, place a label before
now. After the reasoning now ... end; linking is allowed.
The further proof of the thesis may be as follows:
now
assume § = (;
then meet § = () by SETFAM_1:2;
then meet § = (&) by PRE_TOPC:11;
hence meet § is_closed by TOPS_1:22;
end;
hence meet § is_closed by T1;
end;
(In the justification of the conclusion there occurred the label T1 of the previously proved
sentence v implies 3.)
The above proof is shown in the example No. 38 in the annex.
Since before the word now we do not write the thesis to be proved by that con-
struction the construction in the form
now reasoning end;
has been called diffuse statement.

Remark:
1. The thesis proved by diffuse statement is read by analysing the skeleton of that reason-
ing. The principles of skeletoning in the construction now ... are the same as in proofs.
The words now and end in a sense replace the words proof and end, respectively.
2. The formula thesis in diffuse statement denotes the thesis of the immediate external
proof. The use of the formula thesis is allowed throughout diffuse statement on the
condition that such reasoning is contained in a certain proof (thesis may be used only
within a proof).
3. If we prefir now by a label, then the reference to that label means reference to the
thesis proved in diffuse reasoning opening with the word now preceded by a given label.
4. Linking is allowed after diffuse statement.
5. It is not allowed to write then, thus, hence before now.
6. Every reasoning which begins with now must end in end.

EXAMPLE
The sentence in the form
a or [ implies v
is to be proved. We shall show what the proof of that sentence with the application of a
diffuse statement might be. Since the formula
(a implies v) & (8 implies 7) implies (a or § implies )
is a tautology it is worth while making use of the auxiliary sentences
« implies v and B implies vy
in the proof. Thus the proof may be as follows:
proof
assume P: a or [;
(Now ~y is the thesis.)
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end;
now
;s-;ume B
thus 7;
ond;

end;
Conclusion in the various reasonings may be replaced by thesis. In diffuse statements
thesis would mean v as does thesis at the end of the proof.

EXAMPLE
When proving a sentence in the form
o iff g
it is sometimes convenient to avail oneself of the fact that the formula
(not o« implies not #) implies ((not # implies not ) implies (« iff 3))
is a tautology. In diffuse statement one can prove two auxiliary sentences in the form
not a implies not (§
not 8 implies not «
As an example we may use the proof of the theorem CONNSP_1:11 which is:
& is_connected iff for A, B being Subset of & st & = A UB & A # 06 &
B#0 & & A isclosed & B is_closed holds A N B # (&

In such a case
«a is the formula & is_connected
B is the formula for A, B being Subset t of & st Q® = A U B
& A # 0B & B # P& & A is_closed & B is_closed
holds A N B # (&
not « s the formula not & is_connected
not 3 s the formula ex A, B being Subset of & st
NG =AUB&A DB &B # 06 &
A is_closed & B is_closed & A N B = (&

In the first diffuse statement we shall prove the sentence
not 3 implies not «
and the second, the sentence
not « implies not (3
Here is the form of such a proof:
proof
T: now given A, B being Subset of & such that
Zi: Q& = A U B and
Z2: A # 06 & B # )& and
Z3: A is_closed & B is_closed & A N B = (&;

thus not & is_connected by ... ;
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end;
now assume not ® is_connected;

thus ex A, B being Subset of & st 26 = A UB & A # 06 &
B # (& & A is closed & B isclosed & A N B = & by ... ;
end;
hence thesis by T;
end;

The complete proof is given in the example No. 25 in the file art.1st.
Other examples of diffuse statements are to be found under Nos. 26, 27, 28, 29 in the
file art.1lst.

IV.3.3. STATEMENT OF A CHANGE OF TYPE

A change of the type of the object under consideration is sometimes necessary in
proofs. This is due, amount other things, to the fact that certain theorems are proved
only for objects of a definite type. For instance in articles pertaining to the topological
space there are theorems, for instance, on points of that space.

We shall write the proof of the sentence

PCCLP
It will be a proof by definitional expansion.
reserve & for TopSpace, x for Any, P, Q, B for Subset of &;
PCCLP
proof
let x; assume x: x € P;
(Now the formula x € CLl P is the thesis.)

Should we prove the sentence

(e) for B being Subset of & st B is_closed holds

A C B impliesp € B
we could obtain p € C1 P from the theorem PRE_TOPC:45. But if that theorem is to be
applied the indicator of x, which has the type Any, must be treated as a point of the
topological space &, that is as an object whose type is Point of &.

To do so we shall avail ourselves of the Mizar construction in the form:

reconsider list—of-changes—of-type as type of justification ;
By using this construction in the proof under consideration we may write:
reconsider t = x as Point of & by TOPS_1:1,x;
which means:
let us consider x as a point of the topological space &
(where t is any identifier).

Remark: In the equalization t = x the identifier of the object whose type is being changed
must be on the right side of the equality. On the left side there may be any identifier,
which need not be drawn from the list in the reservation of variables.

The statemant of a change of type — as the construction reconsider ... is called

— results in the fact that in the further part of the present level of reasoning (the level

at which the constant has been introduced) the type of the identifier of x, if not given

explicitly, will be Point of & even though in the reservation the identifier of x was

reserved for the type Any. Of course, the change of type must be properly justified. In
our case we have to refer to the theorem TOPS_1:1, which is:
x € P implies x is Point of &
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and to the assumption, that is the formula x € P.

The next step in the present proof consists in the justification of the sentence marked
(o). Then we have only to write the conclusion of the main proof. Here is the completion
of the main proof:

for B being Subset of & st B is_closed holds P C B impliest € B
proof
let Q; assume Q is_closed; assume P C Q;
hence t € Q by x,BO0LE:11;
end;
hence x € C1 P by PRE_TOPC:45;
end;
(See example No. 14 in the file art.1st.)

The statement of a change of type in the proof under consideration may be recorded
otherwise than in the form of equalization.

If we want to change the type of the identifier of x, then that fact may be recorded
thus:

reconsider x as Point of & by TOPS_1:1, x;
We have accordingly to change, in the previous version of the proof, the identifier of t in
all its occurrences into the identifier of x. The proof then takes on the form:

PCClLP

proof
let x; assume x: x € P;
reconsider x as Point of & by TOPS_1:1, x;
for B being Subset of & st B is_closed holds P C B implies x € B
proof
let Q; assume Q is_closed; assume P C Q;
hence x € Q by x,BO0LE:11;
end;
hence thesis by PRE_TOPC:45;
end;

In the last statement thesis could not have been replaced by x € C1 P because that
sentences says nothing about x from the generalization, but refers to x from reconsider
(reconsider has overridden the generalization).

Example No. 13 also contains a statement of a change of type.

The constant introduced by a statement of a change of type may be overridden by
generalization, statement of choice, another statement of a change of type, exemplifica-
tion, existential assumption, and local definition of variable.

The list of changes of type may have the form of several equalizations (or terms),
which in such a case must be separated by commas from one another.
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