
INTRODUCTIONThe present text inludes the desription of the basi onstrutions in the systemPC Mizar, but the desription is not omplete. The text onsists of four hapters andthe annex ontaining a number of examples.Chapter I disusses terminologial issues and the symbolism used. Chapter II de-sribes the fundamental onstrutions in Mizar, namely artile and diretives. Identi�ers,reserved words and symbols, and numerals are disussed, too. Chapter III is onernedwith formulas, and Chapter IV, with proofs of theorems.The text is mainly onerned with the syntatis of Mizar. Elements of seman-tis, indispensable for the explanation of ertain rules of proofs, are disussed in III.7"Semanti orrelates".The text inludes a number of examples (mainly from general topology), to be foundboth in the annex and in the main text. This should failitate one both to learn Mizarand independently to write artiles in that language.The author is indebted to Dr A.Trybule and to G.Banerek for valuable suggestionsand omments, very helpful in writing of the present text.PC Mizar system is implemented by A.Trybule and Cz. Byli�nski. Andrzej Trybuleis the author of the Mizar language.
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I. CONVENTIONSEvery Mizar artile is a sequene onsisting of ASCII symbols (ASCII: a �xed odeof signs arranged in a ertain order) other than ontrol signs, the sign No. 127 and No.255. Fragments of Mizar artiles presented in this text will, however, inlude signs notrepresented in the ASCII ode (suh as F, G, H). Those signs are used in order to inreasethe legibility of the text.The table below lists the symbols not allowed in a Mizar artile, whih will be usedin the present paper, and their analogous in the standard ASCII.Moreover the text inludes insriptions of the form:list{...whih will be termed lists, as well as other insriptions onsisting of words linked by thehyphen "{", e.g., segment{of{quali�ed{variables,symbol{of{funtor.Hyphenation is intended to indiate that the words thus liked together form a ertainwhole.Further, ertain words will be written in bold type. They will be words reserved forMizar, that is suh whose meanings are rigorously determined by de�nition in the Mizarlanguage. That typographial distintion is to draw the Reader's attention to then, andthus more easily to remember at least some of them. Note that the list of all reservedwords and symbols will be found in the present text.Symbol in this book Representation in ASCIIF FG GH H� = `[ U
 [234℄; [237℄2 [238℄\ [239℄� [243℄6= <>The following symbolism has been adopted:G { topologial spae,H { subspae of a topologial spae G,F { family of subsets of a topologial spae G,A, B, G, P, Q { subsets of a topologial spae G,X, Y, M, N { sets,p, q { points of a topologial spae G,k, l, n { natural numbers,x { arbitrary objets. 2



II. ARTICLE AND DIRECTIVESA �le with a Mizar text is termed a Mizar artile. The name of the �le may onsistof not more than eight signs: letters, �gures, undersorings ( ), and the sign ', and maybe neither a numeral nor a reserved Mizar word. Moreover suh a �le must have theextension .miz.Here are some examples of names of a �le: W1.miz, '' '.miz, x.miz. In viewof the proof larity the use as the name of a �le of the insription '' ' or any otherequally little legible insription is not reommended. A Mizar artile onsist of two parts:environment diretives and the sequene of setions, whih must be separated from oneanother by the word begin. The environment diretives must be preeded by the wordenviron, whih opens every Mizar artile.Mizar artileenvironEnvironment diretivesSetionbeginText properSetionbeginText proper...The text proper may inlude, among other things, proofs of theorems, de�nitions withonditions of orretness, proofs of shemata. In order to write a orret non-empty textproper one needs the environment whih for the person who writes that artile an beorganized by environment diretives. They inlude items of information indispensablefor the orret reading by Mizar of the text proper, and are the basis for proofs. To putit more rigorously, environment diretives refer to a data base and thus indiate whihelements in the existing library are used in a given artile.The environment diretives inlude:voabulary � ;signature � ;de�nitions  ;theorems Æ ;shemes " ;where� { the name of a voabulary �le (e.g., TOPCON, ANAL),� { the name of a signature �le (e.g., TOPS 1, PRE TOPC, SUBSET 1), { the name of a de�nition �le (e.g., TARSKI, BOOLE),Æ { the name of a theorem �le (e.g., CONNSP 1, REAL 1)," { the name of a shema �le (e.g., NAT 1).3



II.1. Voabulary diretiveThe diretive voabulary � ;is termed voabulary diretive, and the remaining ones, data base diretives. Every Mizarartile onsist of a ertain numbers of symbols. Some of then are introdued automat-ially (hidden symbols), while the remaining ones are introdued by referene to voab-ulary diretives. Hene voabularies are needed. A voabulary onsist of a �le with theextension .vo. That �le ontains the list of symbols with their quali�ers and indiatesthe biding strength of the symbols of funtors. For instane, the �le TOPCON.vo, whihforms the voabulary, is as follows: TOPCON.voOCl 128OFr 128Oskl 128UarrierUtopologyGTopStrutRis openRis losedRis open losedRare separatedRis ontinuousRare joinedRis a omponent ofRis a over ofMTopSpaeMPointMSubSpaeMmapIn its leftmost olumn it ontains quali�ers, and beginning with the next olumn to theright until the spae it ontains symbols. Quali�ers in a sense haraterize symbols. Forinstane the quali�er O indiates that the symbol next to it is a symbol of a funtor, whilethe quali�er R indiates that the symbol next to its is a symbol of a prediate. Thus thesymbols Cl, Fr, sklare symbols of funtors, while the symbolsis open, is losed, is open losed, are separated, is ontinuous,are joined, is a omponent of, is a over ofare symbols of prediates.The symbols Cl, Fr, skl denote, respetively the operations of: losure, boundaryof a subset of a topologial spae, and omponent of a point of a topologial spae.The symbols is open, is losed, is open losed are used to denote prediatesde�ned for subsets of a topologial spae and indiating, respetively, that is given set isopen, losed, open-losed. The symbol is ontinuous is used to denote the property ofbeing a ontinuous mapping of topologial spaes. The symbol are separated denotesthe relationship between subsets of a topologial spae whih says that they belong toone and the same omponent. The symbol is a omponent of denotes two prediates:one says that a subset of a topologial spae is the maximal ompat set (omponent) in4



that topologial spae, and the other says that it is a omponent in another subset of atopologial spae. The symbol is a over of denotes the property of being a over of atopologial spae.Other quali�ers ourring in the �le TOPCON.vo are:G { quali�er of the symbol of struture,U { quali�er of the symbol of seletor,M { quali�er of the symbol of mode.The symbol TopStrut is used to denote the struture of a topologial spae, andthe symbols topology and arrier denote, respetively, the topology and the arrier ofa topologial spae. The symbols of modes, i.e., the insriptions TopSpae, SubSpae,Point, map, are used to denote, respetively, topologial spae, topologial subspae,point of a topologial spae, and a mapping between topologial spae.Quali�ers of funtor brakets may also our:K { left funtor braket,L { right funtor braket.The identi�er of shema is not introdued into voabulary.Here is the �le ANAL.vo whih ontains the symbols of funtor brakets used inde�ning the absolute value: ANAL.voK j.L .jOsgnThe insriptions: < �, � > , <:, :>are other examples of funtor brakets. These are used to denote, respetively, �nitesequenes and funtions whih are pairs of funtions. There is a pair of funtor braketswhose symbols are in the �le HIDDEN.vo. That �le is joined automatially to everyartile.Moreover, the voabulary �le indiates the binding strength or priority. This appliesonly to the symbols of funtors. The binding strength of a given funtor is indiated bythe number next to its symbol.Remark: The number haraterizing the priority of a given funtor must be separatedfrom the symbol of that funtor by at least one spae.There an be no spae between the quali�er and its orresponding voabulary symbol.Self-evidently, the symbol of a funtor binds more strongly if its number is greater.The priority of a given funtor may be haraterized by any natural number in theinterval <0;255>.All symbols of funtors given in the voabulary Topon have the priority 128. Somesymbols of funtors have no number haraterizing priority, but this is not say that agiven symbol has no priority. That priority is given and amounts to 64. This is thestandard priority.For instane, the binding fore of the symbol of the funtor sgn to be found in thevoabulary Anal presented above is not given.Remark: The binding fore of the symbols of prediates, whih always bind more weaklythan do the symbols of funtors, is not given.The onept of binding fore of the symbols of funtors is linked to the sequenein whih the operations in a given formula are performed. Consider, for instane, twoformulas: 5



Cl P and 
G \ Q.Sine the binding fore of the symbol  is greater (it amounts to 150) than that of thesymbol Cl (128), the insription Cl P is interpreted as the losure of the omplement ofthe set P, that is, in the same way as the insription Cl (P). It is likewise in the seondase. The priority of the symbol 
 is 128, and that of them symbol \ is the standard one,i.e., 64. Hene the insription 
G \ Q is interpreted in the same was as the insription(
G) \ Q. The aknowledge of the priority of at least some symbols may be used inartiles in order to avoid superuous brakets.II.2. Identi�ersInsription whih inlude: ASCII ontrol signs (i.e., signs whih have ordinal num-bers from 0 to 31), spae (sign with the number 32), and the signs with the numbers 127and 255, annot be voabulary symbols.Mizar artiles inlude insription termed identi�ers. What sort of an insription onidenti�er is? Now identi�er is any non-empty sequene of ertain signs. Those signsmay be letters, �gures, the symbol of undersoring ( ), and apostrophe ('), but notreserved words, not reserved symbols of Mizar nor numerals (see II.5.). The length of aninsription whih is an identi�er should not exeed sixteen signs beause otherwise suhan insription whih is an identi�er may be a voabulary symbol, but not onversely.Identi�ers are used to denote:a) private funtors and prediates,b) variables,) labels.Hene we may speak about identi�ers of variables, identi�ers of private funtors andprediates (if it is not a private funtor or prediate then we speak about a symbol), et.By way of example we shall speify the identi�ers in the �le Z1.lst inluded in theannex. They are as follows:� identi�ers of variables:T, P,� identi�ers of labels:Z1, Z2.The identi�ers of labels are examples of referenes. Referenes make it possible torefer to sentenes whih have been earlier assumed or substantiated.loal { identi�ers of labelsreferenes ( numberlibrary { �le symbol : ( def numberExamples of loal referenes have been given above.Library referenes are exempli�ed by the insriptions:TOPS 1:28, BOOLE:1, TARSKI:4, REAL 1:5, SUBSET 1:14, PRE TOPC:34.A library referene results in the referene to a de�nite theorem to be found in theMizar library. For instane, the library referene TOPS 1:28 results in the referenes tothe theorem No.28 reorded in the �le TOPS 1.abs. On the ontrary, loal referenesapply to sentenes in a given artile and unlike library referenes may be freely assignedto sentenes.Sentenes are assigned labels so that one an refer to them in a later part of thetext. As between signature diretives (see III.1) the phenomenon of overridding mayhold between identi�ers of labels. 6



DISCRIMINANTS OF IDENTIFIERS OF NAME OF FILES:. An identi�er whih is a name of a �le onsists maximally of eight signs.. An identi�er may be formed of:letters, �gures, the sign of undersoring ( ) and apostrophe (').. In an identi�er apital letters and lower-ase letters are treated as idential. Forinstane, the insriptions row, Row, and ROW are one and the same name of a �le.The adopted onvention is that names of �les are always in apital letter.An insription whih is an identi�er has a lose onnetion with those voabulary�les whih have been used in the environment. The point is that the symbols in those�les annot be identi�ers. Should we disregard that errors would be reported as in theexample Z2.lst in the annex. They resulted from the use of the insription Fr as anidenti�er of a variable. Note that Fr is the symbol of a funtor inluded in the voabularyTopon, and that voabulary is joined to the environment. Hene, in aordane withwhat has been said earlier, it was not allowed to use the insription Fr as an identi�erof a variable.Remark: The person who writes has large freedom in onstruting identi�ers, and thisis why attention is drawn to the fat that the insriptions whih funtion as identi�ersshould be as legible as possible beause that ontributes to both the larity of that artileand its aestheti appearane.II.3. Hidden voabularyHIDDEN.voMAnyMElementMDOMAINMSubsetMSET DOMAINMSUBDOMAINMRealMNatK[:L:℄Obool 128OREAL 255ONAT 255O+ 32O�R<>R2R�R�R<R>The symbols of funtors + and � are used to de�ne, respetively, the addition andthe multipliation of terms, whose type is expanded to the type Element of REAL. The7



symbols 2 and � are used to denote, respetively, the relation of membership and therelation of order. The orret use of the prediate symbolized by 2 onsist in that thetype of its left argument must be expandable to the type Any, and that of the rightargument, to the type set. The prediate symbolized by � is de�ned to objets whosetype is expandable to the type Element of REAL. The insription bool is used as thesymbol of the funtor whih denotes the family of all subsets of a ertain set. The symbolsof the funtor brakets to be found in the Hidden voabulary are adopted to denote ofCartesian produt of sets. The remaining symbols in that voabulary will be disussedin the setion dediated to types.II.4. Data base diretivesThe signature diretive will be disussed �rst. The diretivesignature � ;joins automatially the �les: �.sgn, �.nfr and �.typ. They ontain information aboutthe way in whih the symbols introdued in the voabularies may be used. For instane,the �le �.sgn lists the types of arguments of the objets de�ned and patterns of de�-nitions. The �le �.nfr ontains the desriptions of the formats of the objets de�ned(funtors, prediates, modes). Formats for shemata are not given. A format o�ers in-formation about the number of arguments. One and the same symbol may have severalformats. For instane, the symbol ; is used in the artile BOOLE in the format of 0{0arguments to denote the empty set (zero left arguments and zero right arguments { seetable in III.1.), while in the artile PRE TOPC in the format of 0{1 arguments, to denotethe least element of the family of open sets of a given topologial spae (zero left argu-ments and one right arguments { see table in II.1.). In both ases the priority is the samebeause it pertains to the symbol of a funtor. The ontent �.typ ontains the types ofthe result of a funtor and the type of the expansion of a mode.For instane, the joining to the environment of the diretivesignature BOOL;results in the symbol \ (to be found in the voabulary Boole { �le BOOLE.vo) beingorretly usable for denoting the two-argument operation of intersetion, where the leftand right argument are sets. Moreover, the results of the operation \ is a set, too.The ontext in whih the symbol \ is interpreted here follows from the de�nition ofintersetion, given in the artile Boole (where X, Y are identi�ers of sets).de�nitionlet X,Y;fun X \ Y {> set meansx 2 it i� x 2 X & x 2 Y;end;Let use analyse the part of the de�nition X \ Y {> set. It follows from X \ Y thatthe operation \ is a two-argument one (the sets X and Y being the arguments). Thesymbol set after the symbol {> informs one that the results of the operation \ is a set.The diretive signature BOOL;makes aessible all de�nitions (whih are not everridden) to be found in the artileBoole. This applies, among other things, to the de�nition of the operation of intersetiondenoted by the symbol \ (number of arguments, types of arguments, type of result ofthe operation).But the operation denoted by the symbol \ may be also interpreted otherwise. Theartile PRE TOPC inludes a rede�nition of the symbol \:de�nition8



let G, P, Q;rede�nefun P \ Q {> Subset of G;end;where P, Q are variable identi�ers of subsets of the topologial spae G.If the diretive signature PRE TOPC;is joined to the environment, then the symbol \ will be used to denote the two-argumentoperation of intersetion where both the left and the right argument is a subset of thetopologial spae G. Moreover, the result of the operation \ is also a subset of thetopologial spae G.The appliation of a signature diretive should in that ase be inluded in the envi-ronment?The operations denoted by the symbol 
, ' , \, [, n for subsets of the topologialspae G have been de�ned in the artile PRE TOPC. In the ase of the �rst two symbols wehave to do with de�nitions, in the ase of the remaining ones, with rede�nitions. Sinethe identi�ers of variables whih are arguments of the operations denoted by the symbolsindiated above are, in the exerise, reserved for subsets of the topologial spae G, thediretive signature PRE TOPC;should be joined to the environment. There will be also the information about the modeTopSpae. The mode with the symbol Subset is to be found in the voabulary HID-DEN, automatially joined to every artile, and hene annot our among environmentdiretives. Moreover, the information about the use of the symbols to be found there areautomatially used by the proessor of PC Mizar, that is without the indiation of theorresponding signature diretivesThe examples Z4.lst and Z5.lst in the annex illustrate errors due to a lak of theproper signature diretive.Remark: The order in whih signature diretives are spei�ed may be importane. Suhis the ase in the rede�nitions of one and the same symbol. The valid rede�nition isalways that of the last signature spei�ed in the environment. If that order is erroneous,then the objets de�ned in a given will be everridden.The example below shows the overridding of the operation of intersetion de�ned insignature PRE TOPC; . Plaes where the error No. 103 is reported are indiated.environvoabulary SUB OP;voabulary BOOLE;voabulary TOPCON;signature PRE TOPC;signature BOOLE;theorems BOOLE;theorems TOPS 1;beginreserve G for TopSpae,P,Q for Subset of G;(P \ Q) = P [ Q*103proof(P \ Q) = 
G n (P \ Q) by TOPS 1:5*103 9



.= (
G n P) [ (
G n Q) by BOOLE:86.= P [ (
G n Q) by TOPS 1:5.= P [ Q by TOPS 1:5;hene thesis;end;(Consider the example Z6 in the annex.)Sine the last signature diretive is the diretive signature BOOLE;, the operationdenoted by the symbol \ has been used in the sense de�ned in the artile BOOLE (thesubset of a topologial spae are sets, too). In aordane with that de�nition the resultsof the operation of intersetion is a set.Hene the intersetion P \ Q is a set. But the losure operation is de�ned only forsubsets of a �xed set. That is why the expression (P \ Q) is followed by the indiationof an error.The overridding of the diretive signature PRE TOPC; an be avoided if the orderof the signatures ourring in the example under onsideration is hanges (as has beendone in the example Z7.lst).Proofs are sometimes arried out by the method of de�nitional expansion. In suha ase the diretive. de�nitions  ;should be joined to the environment.Proving by de�nitional expansion will be illustrated by an example. The proof ofthe theorem is given below:For any sets X,Y we have: X \ Y � Y.The proof (not in the Mizar notation) is as follows:Let a be an arbitrary but �xed and suh that a 2 X \ Y.1) a 2 X \ Y (assumption of the proof);2) a 2 X ^ a 2 Y (1, de�nition of the intersetion of sets);3) a 2 Y (2, the law of the omission of onjuntion).It follows from the arbitrariness of the hoie of a and the de�nitional expansionthat X � Y.X � Y , 8a (a 2 X ) a 2 Y) { de�nitional expansion of inlusion.When proving in Mizar the above theorem by referene to de�nitional expansion oneshould join to the environment the diretivede�nitions TARSKI;beause in the artile TARSKI there is the de�nition of inlusion whih is as follows:pred X � Y means x 2 X implies x 2 Y;And here is the rede�nition of the quality of sets, to be found in the artile BOOLE:pred X = Y means X � Y & Y � X;In example one in the �le art.lst the theorem has been proved in two ways. In bothases use has been made of the de�nitional expansion of inlusion and the de�nitionalexpansion of the equality of sets. That is why the environment diretives inlude twode�nition diretives:de�nitions TARSKI; and de�nitions BOOLE;.The de�nition diretive de�nitions  ;automatially joins the �le .def, whih inludes the de�nitienses of the objets de�ned(de�niens { the expression whih ours in a de�nition of a funtor, a prediate, a mode,a attribute after the word means). 10



The theorem diretive: theorems Æ ;allows one to make use of the theorems in �le Æ.miz. The writing of that diretive resultsin the automati joining of the �le Æ.the, whih inludes the ontents of the theoremsin a given artile.The diretive shemes " ;allows one, through the automati joining of the �le ".sh, ontaining ontents of theshemata in the �le ".miz, to use the shemata in that �le.For instane, the indution shema is to be found in the artile NAT 1. Hene, inorder to use it one has to join to the environment the diretive shemes NAT 1;, thatis, to insert it between the word environ and the word begin.If the text requires several voabularies one has to repeat the diretivevoabulary name{of{�le ;with the orresponding names of voabulary �les. In the ase of the remaining diretivesone has to proeed analogially.Remark: The repetition of a diretive with the same name of the �le yields an error.But it is not so if a diretive superuous for a given artile is added, as in the exampleZ7.lst, where the diretive signature BOOLE; is superuous.BRIEF DESCRIPTION OF THE ORGANIZATION OF THE MIZAR DATA BASEIn the main mizar diretory nMIZAR there are two subdiretories:nDICT { intended for voabulary �les (�les with the extension .vo),nPREL { intended for library �les formed by the program alled LIBRARIAN. Those�les are formed automatially and have the extensions :.sgn, .nfr, .typ, .def, .the, .sh.They form the Data Base.The presene of those subdiretories in the dis memory of the omputer is neessarybeause it is from them that the Mizar proessor draws information whih make it possibleto write Mizar artiles. The subdiretory nABSTR is often formed additionally.nABSTR { intended for library �les whih are obtained from mizar artiles after theirspeial proessing. Files in that subdiretory are termed abstrats and have theextension .abs. The abstrats ontain in their main part ontents of theoremand de�nitions, and shemata. They do not ontain proofs. The theorem inthe �le #.abs (where # stands for the name of a given artile) are numbered.Every theorem in the �le #.abs is preeded by a headline in the form::: # : number{of{theoremThe subdiretory nABSTR plays only an auxiliary role for the user. When perusing the �lesin that subdiretory one an learn what has already been proved in Mizar. Moreover, ifone wants, in the proof of a ertain sentene, to refer to a theorem from a �le in the MainMizar Library, then one an read the name of that �le and the number of the theoremand refer to them in the proper plae. But it is not neessary for the subdiretory nABSTRto be reorded in the omputer memory. The Mizar proessor uses only the informationgiven in the �les from the subdiretories nDICT and nPREL.
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II.5. Words reserved for Mizar. Reserved symbols. NumeralsThe words reserved for Mizar are drawn from the English language. They are insrip-tions whose meanings are de�ned by the de�nition of the Mizar language. For instane,environ is a word reserved for Mizar. It opens every Mizar artile. That word mayour in artile only one and only at the beginning. The use of environ in anotherontext yields an error. Other reserved words also have their preisely de�ned meanings.It words adding here there are also symbols reserved for Mizar, whose meanings,too, are �xed in advane. They inlude:= & , ; : ( ) [ ℄ f g ->.= <> (# #)$1 $2 $3 $4 $5 $5 $6 $7 $8The numerals inlude zero (0) and any �nite sequene of �gures not beginning withzero. The Mizar proessor makes it possible to use numerals in the interval <0;255>.For instane, the insriptions 00, 0103 are not numerals.The list of words reserved for Mizar:aggregate and antonymas assoiativity assumeattr be beginbeing by aneledase ases lusteroherene ompatibility onsideronsisteny ontradition orretnessdef de�ne de�nitionde�nitions end environex exatly existenefor from fungiven hene herebyholds if i�implies irreexivity isit let meansmode non notnow of orotherwise over perpred pre�x proofprovided qua reonsiderrede�ne reexivity reservesheme shemes seletorset signature ststrut suh symmetrysynonym take thatthe then theoremtheorems thesis thusuniqueness voabulary where
12



III. TERMS AND FORMULASThe skill of onstruting sentenes in Mizar is a neessary ondition if one is to writeorretly a Mizar artile. This is why in the present hapter we shall disuss the basielements onneted with the Mizar sentene. We mean terms and formulas. Let us beginwith terms. III.1. TermsThe set of terms is the least set whih satis�es the following onditions:a) variables and onstants are terms;b) if t1, ..., tp are terms and F is a symbol of a funtor of p arguments, then F(t1,...,tp)is a term.But in the Mizar language the onept of term is interpreted more broadly. Termsin Mizar are insriptions whih are listed below under given ategories.(1). IDENTIFIERS OF VARIABLES ARE TERMSFor instane, they may be suh insriptions as: P, TS, q.(2). NUMERALS ARE TERMSFor instane: 2, 178, 77.(3). THE EXPRESSION IN THE FORM:list{of{leftside{arguments symbol{of{funtor list{of{rightside argumentsis a term.The funtor symbol must be in the voabulary. The insriptions in the voabulary arealled symbols, and this is why, when speaking about symbols of funtors, prediates,et., we shall mean symbols of those funtors prediates, et., whih are to be found ina ertain voabulary.The number of arguments in the list of arguments (both leftside and rightside ones)may equal zero. Suh is the ase of the funtor ;. Moreover there may be ases in whihthe list of the leftside arguments equals zero, or that of the rightside arguments equalszero. Examples will be given below.Consider the following symbols of funtors whih are used in artiles pertaining totopologial spaes: ;, [, \, `, Cl, Int, Frand other symbols not ourring here. The table below shows the number of argumentsof those termsFuntor Term Number of left- Number of right-symbol side arguments side arguments; ; 0 0; ;G 0 1[ P [ Q 1 1\ P \ Q 1 1 P 1 0Int Int P 0 1Cl Cl P 0 1Fr Fr Q 0 1FinUnion FinUnion(B,f) 0 2PLANE PLANE(A,B,C) 0 3All All(x,y,z,H) 0 4. o.(a,b) 1 2* D* 1 013



If the list of (both leftside and rightside) arguments onsists of at least two arguments,then suh a list of arguments must be plaed in brakets ( and ), as has been done inthe orresponding terms in the table above.(4). EXPRESSION IN THE FORM:leftside{funtor{braket non{zero{list{of{terms rightside{funtor{braketare terms. A list{of{terms is a �nite sequene of terms separated by ommas.Examples:� Cartesian produt of sets:[:M1,M2:℄ , [:M1,M2,M3:℄ , [:M1,M2,M3,M4:℄� absolute value of numbers a and a - b:j.a.j, j.a - b.j� �nite sequenes of the length one and two, respetively:< �k� > , < �k,l� >� funtion whih is a pair of funtions f and g:<:f,g:>These are not all funtor brakets, beause the author of an artile may introduein the voabulary ever new symbols for them.Remark: Funtor brakets must be used in pairs. In every pair brakets of the samekind should our.For instane, if in an expression the insription [ is used as a leftside funtor braket,then the insription ℄ must be the rightside funtor braket in that expression.A pair of funtor brakets between whih there is no term is not a term.Moreover there are brakets of two types whih may be treated as funtor of speialkinds. They are: [, ℄ and f, gThey an be used to onstrut terms of the following forms:[ list{of terms ℄, or f list{of{terms g.Examples:� ordered pairs, triples, and quadruples[x,y℄, [x,y,z℄, [x,y,z,v℄� singleton fxg, pair fx,yg and further �nite sets up to those of eight elements:fx1,x2,x3g,fx1,x2,x3,x4g,fx1,x2,x3,x4,x5g,fx1,x2,x3,x4,x5,x6g,fx1,x2,x3,x4,x5,x6,x7g,fx1,x2,x3,x4,x5,x6,x7,x8g.(5). AN INSCRIPTION IN THE FORMf term : formula gis a term. Suh terms are alled Fr�nkel's operators. As an example we may quote thefollowing expression:fx : x � 8g,where x is an identi�er of a variable, reserved for the type Real.Formulas will be disussed later (see the next setion).The types of the free variables ourring in the term now under onsideration mustexpand to the type expanding to the type of the form Element of dDOMAINe. Theinsription dDOMAINe denotes any objet of the type expanding to the type DOMAIN.14



In the ase of a Fr�nkel operator the types of the variables whih our in it maybe given by writing out their type after the term. In suh a ase the Fr�nkel operatorhas the form:f term where identi�ers{of{variables is type : formula gIf in a Fr�nkel operator there our variables of more than one type, then the expressionbetween where and : may be repeated the orresponding number of times separated byolon. The types given in suh a formula refer to that formula only. For instane, if inthe onstrution reservation-of-variables the identi�er x were reserved for the type Realwhile in a Fr�nkel operator its type were hanged into Nat, then in the further part ofthe artile, in the formulas ontaining the identi�er x but suh in whih its type wouldnot be indiated, it would have the type assigned to it in the reservation of variables,that is Real.As an example illustrating the Fr�nkel operator we may use Theorem 64 from theabstrat TREES 1:p 2 T implies dT,p,T1 = ft1 where t1 is Element ofT: not p is a proper prefix of t1g[fp^s where s is Element of T1: s=sgThe identi�er p has the type Finsequene, while the identi�ers T and T1 have thetype Tree.The symbols f g, [ ℄ are homonymous, whih is to say that their meaning variesaording to the ontext in whih they are used. For instane, the brakets f, g under (4)above were used to denote sets of n-tuples where n � 8, and under (5) the same braketsare used to denote a Fr�nkel operator. The symbols [, ℄ are used to denote orderedpairs (triples, quadruples) as under (4) and as brakets in private prediates, e.g., P[x℄.The word set is homonymous, too. On the one hand, it is a type in Mizar (seeII.4.), on the other, it ours in the onstrutions set ... = ... and set of ..., in whihit plays an entirely di�erent role.(6). AN EXPRESSION IN THE FORMidenti�er{of{funtor ( list{of{terms )is a term. Terms of this kinds are to be found, among other things, in de�nitions of loalfuntors.Here are two de�nitions of loal funtors, in whih the identi�ers x, y, z have thetype Element of RATIONAL. The terms under onsideration are:MULT(set,set) and UZUP(set). fun MULT (set,set) =fx�y: x 2 $1 & y 2 $2 & 0 � x & 0 � yg [ fz: z <0g. fun UZUP (set) = f-x: not x 2 $1g(7). PARAMETERS OF A LOCAL DEFINITIONthat is the symbols:$1, $2, $3, $4, $5, $6, $7, $8are terms.Parameters of a loal de�nition may be used in loal de�nitions only.(8). it IS A TERMit may be used only in the de�nienses of funtors, where it stands for the value ofthe funtor, and in the de�nienses of modes, where it stands for that element of the modewhih is given as an example.The de�niens of a funtor is an expression whih in the de�nition of that funtorfollows the word means. It is the same, mutatis mutandis, in the ase of the de�niens ofa mode. 15



The term it ours, for instane, in the de�nition of the funtor whih has thesymbol Int, as given below.de�nitionlet P, G;fun Int P {> Subset of G means it = (Cl (P));end; (9). AN EXPRESSION IN THE FORMthe symbol{of{seletor of termis a term.The term in suh a form is alled seletor term.The type of the term whih follows of must expand to a struture in the de�nitionof whih there ours the symbol of seletor used in the expressionthe symbol{of{seletor of termIn the strutures of topologial spae, introdued in the artile PRE TOPC, there ourthe following symbols of seletors: arriertopologyExamples of terms: the topology of G, the arrier of G(10). AN EXPRESSION IN THE FORMthe symbol{of{seletoris a term.Terms of this kind may our only in patterns of strutures, and that only if thesymbol of seletor has been introdued earlier just in that pattern. As an example wemay take the term the arrierourring in the pattern of the struture of topologial spae TopStrut, presented below.� arrier {> DOMAIN, topology {> Subset Family of the arrier �(11). AN INSCRIPTION IN THE FORMsymbol{of{struture � list{of{terms �is a term.Terms in that form are alled aggregates of strutures. Sine the symbols �, �have no representation of their own in the standard ASCII the symbols (#, #) have beenintrodued and may be used alternately. Instead of � and � one may use, respetively,(# and #), but not � and #) or (# and �.As an example one an give a de�nite struture (but not a pattern of a struture)suh as that below:TopStrut � REAL, RealTop �In the above struture it is REAL whih is the arrier. The onstant REAL expands tothe type DOMAIN, whih is neessary in view of the de�nition of the struture TopStrut.RealTop (topology) has the type Subset Family of REAL, whih is required by the def-inition of the struture TopStrut.(12). AN INSCRIPTION IN THE FORMterm qua typeis a term.It is a alled a quali�ed term.For instane, P qua Subset of the arrier of G.The identi�er P in the reservation is reserved for the type Subset of G, but in the termabove its type has been as it were expanded to the type Subset of the arrier of G.16



Remark: The word qua only expands a type, it annot narrow it down.(13). A TERMwhih is in the brakets ( and ) is also a term.Here are some examples with terms in brakets:Cl (P [ Q), Fr (P [ Q), (P n Q),(k + l), (n + l).Other examples will be given, among other things, when formulas are disussed.III.2. TypesAn identi�er of a variable must have a type assigned to it.In a Mizar artile it is not allowed to use identi�ers of variables whose types areunknown. The type of a given identi�er may be �xed loally, that is given in the plaewhere it ours, or �xed globally by reservation (see below). Some modes are hidden inthe Mizar language. The remaining ones must be identi�ed. In order to onstrut a typewe must de�ne the appropriate mode. The symbol of a mode must be inluded in thevoabulary. Below we present types whih use symbols of modes from the voabularyHIDDEN (whih is automatially joined to every Mizar artile). Here they are:Any, set, Element of X, DOMAIN,Subset of D, SUBDOMAIN of D,Real, Nat.(where X has the type set).The use of these types does not require from the author of a Mizar artile theinlusion in the environment of any voabulary or signature beause the signature andthe voabulary required are joined automatially.Remark: When one writes the types the important point is that their symbols be writtenpreisely in the form in whih they are to be found in the voabulary. For instane, ifone wants to reserve the identi�er K for the type DOMAIN, then the reservation should bein the form: reserve K for DOMAIN;and not, for instane: reserve K for domain;Two examples more:One should write:Element of REAL and not Element of real,and likewiseElement of NAT and not Element of nat.The type Any is the widest type in Mizar, any other is expanded to it. The type setin its extension is equal to the type Any. The type DOMAIN ranges over non-empty sets,that is so-alled domains; the type SUBDOMAIN of D, over subdomains, that is non-emptysubsets; Real, over real numbers; Nat, over natural numbers.Now it will be said in general terms what is a type in Mizar.(1). AN EXPRESSION IN THE FORM:symbol{of{mode of list{of{termsis a type.Examples:Subset of G , Subset of the arrier of G , Point of G ,17



Subset-Family of G , Relation of X , Relation of X,YIf the list of terms is a zero list, then only the symbol of mode will be a type. Forinstane:Any, Real, TopSpae, FinSequene, Ordinal, Set-Family,Relation, Funtion.(2). A SYMBOL OF A STRUCTURE, e.g.:TopStrut, LattStr, InStrut,is a type. (3). A TYPE IN BRACKETS IS A TYPE, TOO.In the following examples the types in question are in brakets.reserve P for (Subset of G), P for (Point of G), x for Any;reserve J for (Subset Family of G), r for Real;reserve J for (Subset Family of G), P for Subset of G;let H be (SubSpae of G), P,Q be (Subset of G), x,y be Any;The omission of the brakets in the examples given above does not result in an error.But, for instane, the insription:reserve R for Relation of X, x for Any;is inorret. The error onsists in the fat that the insription Relation of X is not inbrakets. One might pose the question why the type Relation of X must be in brakets.Now the mode Relation of list-of-termsis de�ned for the lists whih ontain zero terms (Relation), for lists whih ontain oneterm Relation of X and for lists whih ontain two terms Relation of X,Y . Hereare the orresponding de�nitions:de�nitionmode Relation {> set means x 2 it implies ex y, z st x = [y,z℄;end;(x,y,z have the type Any)de�nitionlet X,Y;mode Relation of X,Y {> Relation means it � [:X,Y:℄;end;(X,Y have the type set)de�nitionlet X;mode Relation of X is Relation of X,X;end;If the insription Relation of list-of-terms is not brakets, then thelist{of{terms onsists of the maximal number of terms, that is two. Hene the insription:reserve R for Relation of X, x for Any;is interpreted in the same way as the insription:reserve (R for Relation of X, x) for Any;but the latter expression is ill{formed beause its syntati struture is inorret: thelast for is not preeded by the list of terms.On the other hand, the modes:Subset of list-of-termsSubSpae of list-of-termsSubset Family of list-of-terms18



are de�ned only for lists whih inlude one and only one term, whih is shown by theirde�nitions:de�nitionlet G;mode Subset of G is set of Point of G ;end;de�nitionlet G;mode SubSpae of G {> TopSpae means
(it) = 
(G) &for P being Subset of it holds P 2 the topology of it i�ex Q being Subset of G st Q 2 the topology of G & P = Q \ 
(it);end;de�nitionlet G;mode Subset Family of G is Subset Family of the arrier of G ;end;Hene in the ase of these mode brakets are superuous.(4). AN EXPRESSION IN THE FORM:set of typeis a type.Types of those kind are often used in de�nitions of modes, e.g.,:de�nitionlet G;mode Subset of G is set of Point of G ;end;Types in Mizar have the struture of trees. X expands to the type set, but neitherto DOMAIN nor to SUBDOMAIN of dDOMAINe,D expands to DOMAIN,D1 expands to DOMAIN,S expands to SUBDOMAIN of D.Real is adopted as an abbreviation for the type Element of REAL (Real is DOMAIN),while Nat is adopted as an abbreviation for the type Element of NAT (NAT is SUBDOMAINof Real).Sine the type Element of S expands to the type Element of D, the type Natexpands to the type Real.III.3. Reservation of variablesIt has been said earlier that in a Mizar artile it is not allowed to use identi�ers ofvariables for whih their type is not given. The type of a given identi�er an, for instane,be given in the plae of its ourrene, as in the examples:- for A being Subset of G holds A � Cl A;- let x be Any, A be set;- reonsider x as Real; 19



The words being and be may be used alternately, whih is to say that is indi�erentfrom the point of view of Mizar. But in order to be in agreement with the grammar ofEnglish ertain onventions pertaining to the use of those words have been adopted. Forinstane, in the Mizar onstrution let ... be is used, while being is used in quanti�edformulas.In order to avoid indiating the type of a given identi�er whenever a variable withsuh an identi�er is introdued it is possible to �x that type globally by means of theMizar onstrution alled the reservation of variables. The reservation of variables hasthe following form: reserve list{of{identi�ers for type ;The examples given below show the appliation of the said onstrution:i. If the identi�er G is to be a variable ranging over topologial spaes, then the identi�erG is to be reserved for the type TopSpae. Suh a reservation has the form:reserve G for TopSpae;If a suh a reservation is not made and the identi�er G is used in the indiatedmeaning, then the type of that identi�er must be given whenever a variable with suhan identi�er is introdued.ii. If we want the identi�ers P, Q range over subsets of a topologial spae G, then thereservation should be as follows:reserve P, Q for Subset of G;If we want to reserve identi�ers of variables whih have various types, then theexpression: list{of{identi�ers for typein the reservation of variables should be repeated the orresponding number of times andthe expression in question must be separated from one another by ommas.This will be illustrated by the following reservations:reserve P, Q for Subset of G, x for Any, p for Point of G;The reservation of the identi�ers P, Q, x, p for the orresponding types may also be asfollows:reserve P, Q for Subset of G;reserve x for Any;reserve p for Point of G;whih is to say that for the various quanti�ers one may apply separately the onstrutionreservation of variables. That, however, is not the best solution in view of the unneessaryexpansion of the text.Other reservations given by way of example:� reservation of the identi�er X for a variable standing for a set:reserve X for set;� reservation of the identi�er x for a variable standing for a real number:reserve x for Real;� reservation of the identi�ers Z and Y for variables standing for subsets of the setX, where the identi�er X has been earlier reserved or �xed for the type set:reserve Z, Y for Subset of X;� reservation of the identi�er x for an element of the set of real numbers:reserve x for Element of Real;Other examples of the onstrution now under onsideration will be given in thehapter dediated to proofs of theorems.It must be borne in mind that the reservation of a given identi�er for a de�nite typeis made prior to the �rst ourrene of that identi�er. Should we made the reservationlater, that is after several ourrenes of that identi�er, where a variable having thatidenti�er is introdued, the type of that identi�er should be given.20



The reservation of variables must be made in the text proper. Often the reservationis made at the beginning of the text proper, that is immediately after the word begin.For one and the same identi�er the onstrution reservation of variables may beapplied several times, aording to the need of the author of the artile. If, for instane,we �rst make the reservation: reserve x for Any;and in the later part of the Mizar artile we hange the type of the identi�er x into Realin aordane with the reservation:reserve x for Real;then in all ourrene of the identi�er x between these reservations where the type of theidenti�er x is not given, it will have the type assigned to it in the �rst reservation, thatis Any, and in all the ourrenes of the identi�er x after the seond reservation, whereits type is not given, the identi�er x will have the type Real.We now proeed to disuss Mizar formulas.In Mizar there is the following lassi�ation of formulas:� atomi formulas,� formulas formed of atomi formulas by sentential onnetives,� quanti�ed formulas. III.4. Atomi formulasThere are several kinds of atomi formulas.(1). A PREDICATIVE FORMULA,that is an expression in the form:list{of{terms symbol{of{prediate list{of{termsis an atomi formula.Here are some symbols of prediates used in artiles pertaining to topologial spae:is open, is losed, is open losed, is dense, is boundary, is nowheredense,�, are separated.The number of arguments (both left-side and right-side ones) in the ase of eah ofthose prediates is shown in the following table:symbol of atomi number of left number of rightprediate formula side arguments side arguments.is open P is open 1 0is losed Q is losed 1 0is open losed Q is open losed 1 0is dense A is dense 1 0is boundary B is boundary 1 0is nowheredense P is nowheredense 1 0� P � Q 1 1are separated A,B are separated 2 0j= D,f j= H 2 1The identi�er D denotes a family of sets, f denotes the valuation of variables byelements of that family, H denotes any formula of the language of the ZF set theory. Thelast formula in the table indiates that in the family D the formula H is satis�ed by thevaluation f. 21



Examples of atomi formulas ourred in the table above. Here are other examples:Cl P n Cl Q � Cl (P n Q)Int P is openskl p is onnetedB is a omponent of GF is a over of Gp,q are joinedp 2 skl pIn partiular, beause the sign = is the symbol of the prediate, the expression inthe form: term = termalled an equality formula is an atomi formula.Examples of equality formulas:Fr(Fr(Fr P )) = Fr(Fr P)Cl(Int P) = Cl(Int(Cl(Int P)))P = 
G n PP = (P qua Subset of the arrier of G)P n Q = P \ QCl (Cl P) = Cl PLikewise, an expression in the form:term <> termwhere the sign <> is the symbol of prediate, is an atomi formula.Examples: P \ Cl Q <> ;, Int (Cl Q) \ Int (Cl P) <> ;.(2). An expression in the form:identi�er{of{prediate [ list{of{terms ℄is an atomi formula.Terms of this kind our only in the ase of private prediates.The identi�er of suha prediate is not listed in any voabulary.(3). An expression in the form:term is typis an atomi formula.A formula in suh a form is alled qualifying formula.Examples of qualifying formulas:x is Point of Gx is setHere is a theorem NAT 1:1 :x is Nat implies x + 1 is Natwhere the identi�er x has the type Real.The anteedent and the onsequent of the above impliation are atomi formulas of thekind under onsideration.III.5. Formulas formed of atomi formulas by propositional onnetivesIn Mizar the following symbols are used to denote sentential onnetives:not , & , or , implies , i� , ontraditionwhih denote respetively:negation, onjuntion, disjuntion, impliation, equivalene, ontradition.ontradition is a sentential onnetive of zero arguments.22



Remark: ontradition is treated in Mizar as a formula in the same way as thesis is.Now not has the greatest binding fore, followed in that respet by &, next by or,next by implies and i� in the same degree. But the binding fore of implies and i� isgreater than that of quanti�ers.Sine in Mizar the binding fore of implies and i� is the same their simultaneousourrene in a formula requires the use of the brakets ( and ) in order to indiate thearguments of the onnetives implies and i� .Let �1, �2, �3 be atomi formulas.The formula �1 implies �2 i� �3is ill-formed in view of the fat that it is not known whih arguments the onnetivesimplies and i� have. Moreover, the brakets ( and ) perform in Mizar a role similarto that in arithmeti, whih is to say that they indiate the order of the performane ofoperations.Examples of formulas formed by sentential onnetives:P is losed & Q is losed implies Cl(P \ Q) = Cl P \ Cl Q ,P is open i� Fr P = Cl P n P ,p 2 P i� not p 2 P ,P \ ;G = ; & ;G \ P = ;,(A is losed & B is losed) or (A is open & B is open)implies A n B, B n A are separated ,x 2 P implies x is Point of G,A is onneted & A � B [ C & B,C are separatedimplies A � B or A � C .III.6. Quanti�ed formulasBefore we proeed to disuss quanti�ed formulas referene will be made to quali�edvariables.In Mizar artiles there are often insriptions whih are alled list of quali�ed vari-ables. Here are some examples of suh lists:x ,A,K,n ,P,Q being Subset of G ,G being TopSpae, H being SubSpae of G ,F being Subset-Family of G, p being Point of G, x, y .Generally speaking, a list of quali�ed variables onsists of expressions in one of thethree forms spei�ed below:��� variables{quali�ed{impliitlyThis name denotes a list of identi�ers of variables, that is a �nite sequene of identi�ersof variables, separated from one another by ommas. Examples: x, y, p A, BIn suh ases, as an be seen, the types of the identi�ers are not identiated. This meansthat they are drawn from the list of identi�ers whih ours in the reservation of variables.��� variables{quali�ed{expliitlyAt �rst we explain what asegment{of{quali�ed{variablesis. It is an insription in the form 23



list{of{identi�ers{of{variable being (or be ) quali�ationQuali�ation is the type of the identi�ers of variables ourring in a segment ofquali�ed variables.Of ourse, the type indiated in suh an expression is the same for all the quanti�erswhih our in it.Examples of segments of quali�ed variables:a being Anya,b,,d be Anym,n be Point of GP, Q being Subset of Gvariables{quali�ed{expliitly are a �nite sequene of segments of quali�ed variables sep-arated from one another by ommas. In the simplest ase it is only one segment.Examples of variables quali�ed expliitly:x1, y1 be Any(it is a single segment of quali�ed variables)x being Real, X being set(in this ase there are two segments of quali�ed variables)G being TopSpae, H being SubSpae of G, p being Point of G(in this ase there are three segments of quali�ed variables).��� variables{quali�ed expliitly , variables{quali�ed{impliitlyExamples: P, Q being (Subset of G), x, p||||||||||||| ||{j jvariables quali�ed variables quali�edexpliitly (one segment impliitlyof quali�ed variables)P being (Subset of G), p being (Point of G), x, y, z||||||||||||||||||||||| |||{j jvariables quali�ed variablesexpliitly (two segments quali�edof quali�ed variables) impliitlyObviously, the identi�ers of those variables for whih types are not given in theexamples above must be drawn from the list of quanti�ers to be found in the reservationof variables.Remark: A hange of order (variables quali�ed impliitly preeding those quali�ed ex-pliitly) is impossible beause all variables would beome variables quali�ed expliitly.In order to explain the above warning we shall onsider, by way of example, thefollowing formula:(�) for A being (Subset of G), x st x 2 A holds x is Point of GIn that formula the variable A is quali�ed expliitly while the variable x is quali�edimpliitly. The type of the identi�ed x must be given in the reservation. In this ase it24



should be the type Any. Should we hange the order of the ourrene of the variablesA and x in the formula under onsideration, whih is to say, should we �rst give thevariable quali�ed impliitly and next the variable quali�ed expliitly, we would obtainthe formula:for x, A being Subset of G st x 2 A holds x is Point of GBut in that formula the variables x and A have beome variables quali�ed expliitly; inthe proess the type of the identi�er of x has been hanged into Subset of G whereasit should be Any.In some ase the exhange of variables may be arried out. This will be illustratedby the example of the formula marked (�) above. In its ase the formulafor A being (Subset of G), x st x 2 A holds x is Point of Gmay be replaed by a formula whih has the same meaning in Mizar. Here is that formula:for A being Subset of G for x st x 2 A holds x is Point of GNow we an pass to quanti�ed formulas.A quanti�ed formula (also alled a universal sentene) is a formula in whih thequanti�er ours openly and is the main sentene-forming funtor.In Mizar the following symbolism was adopted for quanti�ers:for ... holds ... { for the universal quanti�er,for ... st ... holds { for the puri�ed universal quanti�er(i.e., universal quanti�er with a limited sope),ex ... st ... { for the existential quanti�er.In view of the various forms of the list of quali�ed variables, a universal sentene,this is a formula in whih a universal quanti�er ours, may the following forms:(A). for identi�ers{of{variables holds formulaExamples of quanti�ed formulas:for P holds P � Cl P(For every subset P of a topologial spae G P � Cl P holdsor elseEvery subset of a topologial spae G is inluded in its losure).for P, Q holds Cl (P [ Q) = Cl P [ Cl Q(For every two subsets P, Q of a topologial spae G Cl(P [ Q) = Cl P [ Cl Q holds).It an be seen that in eah ase above the types of the identi�ers of the variables arenot given openly. When using suh formulas in a Mizar artile one should bear it in mindthat one should previously reserve the identi�ers of those variables for the reservation ofvariables.But one may also abstain from making earlier the reservation of the variables whihour in a quanti�ed formula. In suh a ase the types of the identi�ers of the variablesmust be given when the formula is being written. In suh a ase the form of a quanti�edformula is as follows:(B). for segment{of{quali�ed{variables holds formulaA quanti�ed formula has suh a form, among other things, if the identi�ers of thevariables for whih no reservation has been made have one and the same type. Otherwisethe expression standing between for and holds must be repeated the orrespondingnumber of times and separated by ommas.Let us onsider one ase more. Now it may be so that the identi�ers of the variablesourring in a quanti�ed formula have being earlier reserved for the orresponding typesbut when writing the formula we want to apply the same quali�ers of variables to other25



types. Then suh a formula will have the form of the expression shown under (B) above.Let that be illustrated by an example.Let the following reservation be given:reserve A being SubSpae of GIn this formula we want to use the identi�er A whih denotes a subset of a topologialspae G. Hene the new type o the identi�er of A must be given in the formula as below:for A being Subset of G holds A is losed i� Cl A = AExamples illustrating the struture of quanti�ed formulas:1) for P being Subset of G holds P � Cl P(For every subset P of a topologial spae G P � Cl P holds),2) for P, Q being Subset of G holds Cl (P [ Q) = Cl P [ Cl Q(For any subsets P, Q of a topologial spae G Cl(P [ Q) = Cl P [ Cl Q)3) for A being (Subset of G), x being Any st x 2 A holds x is Point of G(For any subset A of a topologial spae Gand for any objets x whih is an element ofthe subset A there holds: x is a point of the topologial spae G).The theorem given in example 3) may also be reorded thus:for A being (Subset of G) for x being Any st x 2 A holds x is point of GEXAMPLES:� for A being (Subset of G), p being Point of G holds p 2 Cl A i�for C being Subset of G st C is losed holds (A � C implies p 2 C)� for H being (SubSpae of G), P, Q being (Subset of G), P1, Q1being Subset of H st P = P1 & Q = Q1 & P [ Q � 
G holds P, Qare separated implies P1, Q1 are separated� for H being (SubSpae of G), P being (Subset of G), Q being Subsetof H st P 6= ;G & P = Q holds A is onneted i� B is onnetedFurther, a quanti�ed formula may have the form:(C).for variables{quali�ed{expliitly , variables{quali�ed{impliitly holds formulaThere may also be quanti�ed formulas with a puri�ed quanti�er. Suh formulas arein the form: for list{of{quali�ed{variables st formula holds formulaThe struture of the formulas with puri�ed quanti�ers (quanti�ers with a limitedsope) will be illustrated by examples but before their presentation we shall speifyseveral modes and prediates whih are introdued in artiles pertaining to topologialspaes.They are the modes: SubSpae of G ,Subset-Family of Gand prediates: P, Q are separated ,G is onneted ,p, q are joined26



The above formats of modes have been adopted for denoting, respetively, a subspae ofa topologial spae G and the family of the subsets of a topologial spae. The prediatespresented above have been disussed earlier.We an now pass to the examples.(i) for P, Q st P � Q holds Cl P � Cl Q(For any subsets P, Q of a topologial spae G suh that P � Q there holds P � Q)(ii) P is boundary i� (for Q st Q � P & Q is open holds Q = ;)(P is a boundary set if and only if for any open set Q inluded in P there holdsQ = ;)Had the reservation for the identi�ers P and Q not been made the above formulawould be as follows:for P being Subset of G holds P is boundary i�(for Q being Subset of Gst Q � P & Q is open holds Q = ;)(iii) for H being (SubSpae of G), P1, Q1 being (Subset of G), P, Q beingSubset of H st P = P1 & Q = Q1 holds P, Q are separated implies P1,Q1 are separated(For any subspae H of a topologial spae G and for subsets P1, Q1 of the topologialspae G and subsets P, Q of the subspae H, suh that P = P1 & Q = Q1 there holds: ifP, Q are separated, then P1, Q1 are separated, too.)(iv) for H being (SubSpae of G), A being (Subset of G), B being Subsetof H st A 6= ;G & A = B holds A is onneted i� B is onneted(For any subspae H of a topologial spae G and a subset A of the topologial spae Gand for a subset B of the subspae H there holds: if A 6= ;G and A = B, then A isonneted if and only if B is onneted.)A formula whih ontains the existential quanti�er may have one of the three formslisted below:� ex variables{quali�ed{impliitly st formula� ex variables{quali�ed{expliitly st formula� ex variables{quali�ed{impliitly , variables{quali�ed{impliitly st formulaThe examples given below ontain formulas with the existential quanti�er:x 2 Int P i� ex Q st Q is open & Q � P & x 2 Q ,(ex x being Point of G st for y being Point of G holds x, y are joined)i� (for x, y being Point of G holds x, y are joined) .Other examples of formulas with the existential quanti�er will be found later in thetext.We shall now give four topologial theorems reorded in English �rst and nextreorded in the Mizar notation. 27



1) P is boundary set if and only if it is ontained in this own boundary.2) For any subsets P, Q of a topologial spae G suh that P � Qthere holds Cl P � Cl Q.3) Any subset A of a topologial spae G is losed if and only if Cl A = A.4) A point p is in the boundary of a set P if and only if for any open set Q suh that p2 Q there holds: the intersetion of P and Q is non-empty and the intersetion of theomplement of P and Q is non-empty.Here are the above theorems reorded in the Mizar notation:1) P is boundary i� P � Fr P2) for P, Q being Subset of G st P � Q holds Cl P � Cl Q3) for A being Subset of G holds A is losed i� Cl A = A4) p 2 Fr P i�(for Q st Q is open & p 2 Q holds P \ Q 6= ; & P \ Q 6= ;)The examples given so far in most ases pertained to formulas with a single quanti�er,whether universal or existential. But in a formula more than one quanti�er may our,whih an be seen in the examples given below.for A being (Subset of G), p being Point of G holds p 2 Cl A i� for Gbeing Subset of G st G is open holds p 2 G implies A \ G 6= ;G(A point p of a topologial spae G is in the losure of a subset A of the topologial spaeG if and only if for any open subset G of the topologial spae G whih ontains the pointp the intersetion of G and A is non-empty),P is open i� (for x holds x 2 P i� ex Q st Q is open & Q � P & x 2 Q)(P is an open set if and only if for any x, x 2 P if and only if there is an open set Qsuh that Q � P and x 2 Q),P is losed implies (P is boundary i� for Q st Q 6= ; & Q is open ex Gst G � Q & G 6= ; & G is open & P \ G = ;)(If a set P is losed, then P is boundary set if and only if for any Q suh that Q 6= ; andQ is open there is a set G suh that G � C and G 6= ; and G is open and P \ G = ;),for J being Subset-Family of G st J 6= ; & for A being Subset of G stA 2 J holds A is losed holds meet J is losed(The intersetion of any J whih is a non-empty family of losed subsets of a topologialspae G is a losed set),for J being Subset-Family of G st (for A being Subset of G stA 2 J holds A is onneted) & (ex A being Subset of G st A 6= ;(G)& A 2 J & (for B being Subset of G st B 2 J & B 6= A holds not A, Bare separated)) holds union J is onneted(Let J be any family of onneted subsets of a topologial spae G one of whih is non--empty and not separated from any other element of that family. Then the union ofelements of that family is a onneted set).meet and union are symbols of funtors of one arguments eah (the reording ofthe last formula shows that the right-side argument is the only one) whih denote, re-spetively, the intersetion and the union of the family of the subsets of a topologialspae.The examples given so far have been drawn from the artiles PRE TOPC, TOPS 1 andCONNSP 1, whih self{evidently pertain to problems onneted with topologial spaes.28



Let us revert one more to general sentenes with a puri�ed quanti�er. Suh asentene an be reorded, of ourse, in a di�erent manner without an hange in itsmeaning. We mean the elimination of the limited range of the quanti�er in a generalsentene and the replaement of the ondition by impliation.Let �1, �2 be any formulas. A general sentene (a sentene in whih a universalquanti�er ours): for list{of{quali�ed{variables st �1 holds �2is equivalent to the sentene:for list{of{quali�ed{variables holds �1 implies �2Now the formula �1 implies �2is not braketed beause the binding fore of implies (like that of i�) is greater thanthat of quanti�ers. EXAMPLES:The formula for P, Q st P � Q holds Cl P � Cl Qhas for Mizar the same meaning as the formulafor P, Q holds P � Q implies Cl P � Cl Qbeause both formulas have one and the same semanti orrelate (see III.7).Likewise formula:P is boundary i� (for Q st Q � P & Q is open holds Q = ;)has for Mizar the same meaning as the formulaP is boundary i� (for Q holds Q � P & Q is open implies Q = ;).The theorems in whih the universal quanti�er ours openly an be reorded asnon-quanti�ed formulas. For instane, the theorem:for P being Subset of G holds Int P = P n Fr Pan be reorded thus: Int P = P n Fr Pbeause both sentenes have the same meaning for Mizar (see semanti orrelates).Likewise the sentenes:for G, P holds Int P = (Cl (P)) ,for P holds Int P = (Cl (P)) ,Int P = (Cl (P))will all be read in the same way by the system (if G and P have not been �xed earlier).The formula: Int P = (Cl (P))will be read by the system as the formula:for G, P holds Int P = (Cl (P))The various forms in whih formulas are reorded have signi�ane only for theauthor of a given artile. Some of them may be more legible, but the proessor of PCMizar transforms the formulas it reads and brings them to a ertain �xed for (see III.7).Here are other examples illustrating the di�erent forms of reordings of Mizar for-mulas:1) for P, Q st P � Q holds Cl P � Cl Qan be reorded thus:P � Q implies Cl P � Cl Q2) for P, Q st P is dense & Q is dense & Q is open holds P \ Q is dense(if P, Q have not been �xed earlier)an be reorded thus: 29



P is dense & Q is dense & Q is open implies P \ Q is denseThe anteedent of the impliation is not braketed beause onjuntion has a greaterbinding fore than impliation has.3) for P st P is open holds Cl(Int(Cl P)) = Cl Pan be reorded thus:P is open implies Cl(Int(Cl P)) = Cl PIn all the examples reorded in the new version the quanti�er is understood.The formulas given in the above examples, if not reorded with the use of thequanti�er, will be proessed by the system into quanti�ed ones (see III.7). The identi�ersof variables will follow the word for in the formula P � Q implies Cl P � Cl Q theidenti�er of P will ome �rst, followed by the identi�er of Q (if the spae G has not been�xed earlier, then the identi�er of G will additionally proessed in to suh a quanti�edformula in whih the word for is �rst followed by the identi�er of P (or the identi�ers ofG and P), and next by the identi�er of Q as under (1) above. But sometimes it is so thatthe required sequene of the identi�ers di�ers from that arranged automatially. In suha ase a given formula should be written in the desired quanti�ed quanti�ed version.The word holds before the word ex or before the word for may be omitted. Henethe formula: for ...... holds ex ......may be reorded as below, by replaing the expression holds ex by the word ex :for ...... ex ......Examples:The formulas:1) for A being Subset of G st A 6= ;G holds ex x being Pointof G st x 2 A2) P is losed implies (P is boundary i� for Q st Q 6= ; & Q is openholds ex G st G � Q & G 6= ; & G is open & P \ G = ;)may be reorded, in aordane with what has been said, in the following manner:1) for A being Subset of G st A 6= ;G ex x being Point of G st x 2 A2) P is losed implies (P is boundary i� for Q st Q 6= ; & Q is openex G st G � Q & G 6= ; & G is open & P \ G = ;)Likewise a formula in the form:for ...... holds for ......may be reorded: for ...... for ......where the expression holds for has been replaed by for .For instane, the formula:for H being SubSpae of G holds for A being Subset of Hholds A is Subset of Gmay be replaed by the formula:for H being SubSpae of G for A being Subset of Hholds A is Subset of GThe examples given so far show that theorems may be reorded in several ways.The hoie of the form of the reording depends on the author of the artile. It is30



reommended to use suh a reording of the ontent of a given theorem whih would bethe most legible and pratial. For instane, the use in a general sentene of a puri�edquanti�er (trough the use of the word st) sometimes inreases its legibility. The sameapplies to the ase in whih we indiate the types of identi�ers of variables when writinga formula. The reservation of variables is made at the beginning of a given artile orlater in the text. If the artile is long, then when reading a theorem (ontained in it) inwhih the types of the variables are not indiated we have to look for the reservations inthe text, and that means an unneessary loss of time.III.7. Semanti orrelatesThe PC Mizar proessor transforms the formulas (terms, types) it reads into ertainstandard forms. The form of a formula obtained by suh a transformation is alledthe semanti orrelate (semanti form) of that formula. To make the transformationof formulas (terms, types) possible a ertain relation of equivalene has been de�nedon formulas. It states that two formulas between whih that relation holds will betransformed in the same way. The lasses of abstration of that relation of equivaleneare alled semanti orrelates. If two formulas are in one and the same lass of abstrationthen this means that they have the same semanti orrelate. From among the formulaswhih form a given lass of abstration one an hoose formula whih is the standardrepresentation of that lass of abstration. Suh a formula is formed by the signs ofnegation (not), onjuntion (&), not ontradition, i.e., VERUM, and base sentenes,i.e., atomi formulas and general sentenes.Moreover onjution and negation satisfy the onditions:1. Conjuntion is assoiative, whih is to say that for any formulas �1, �2, �3 theformulas (�1 & �2) & �3 and �1 & (�2 & �3)are in the same lass abstration, that is they have one and the same semanti orrelate.2. Negation is an involution, so that for any formula � the formulasnot not � and �have one and the same semanti orrelate.3. If a free variable, that is suh whih is not openly bound by a quanti�er, ours in agiven formula, then the universal quanti�er is automatially pre�xed to that formula.For instane, if we write the formula �(x), in whih x is a free variable (i.e., notbound by a quanti�er), then that formula will be read by the system as the formula forx holds �(x). Hene the formulas�(x) and for x holds �(x)have one and the same semanti orrelate.The formula ontradition has not VERUM as its semanti form.The semanti orrelates of prediative formulas exept for the formulas in the formterm = termis the same original (initial) form.The semanti orrelates of the prediative formula in the formterm <> termis the formula not term = termThe formula in the form term <> termis the antonym of the formula in the formterm = term31



Moreover, for the formula x � y (where x, y have the type Element of REAL)there are two antonyms: x > y and y < xwhih are synonyms, and the synonym: y � x.The knowledge of semanti orrelates an be used in the onstrution of skeletonsof proofs, beause the form of the semanti orrelate of a given formula determines theskeleton of the proof of that formula.If P, Q, A, B, C, G are not onstants but earlier reserved identi�ers of variables, thenthe formulasa) P � Cl P and for P holds P � Cl Pb) Int Q is open and for Q holds Int Q is open) 
(G) n A = B [ C & B,C are separated & A is losed implies A [ Bis losed & A [ C is losedand for G, A, B, C holds 
(G) n A = B [ C & B,C are separated &A is losed implies A [ B is losed & A [ C is losedhave the same semanti orrelates orrespondingly in the examples a), b), and ).In the formulas � and � have one and the same semanti orrelate, then � may bereplaed by � and onversely. This is advantageous, beause if we want to prove � it issometimes more onvenient to prove �.Here are several pairs of formulas:� & not ontradition and �� implies ontradition and not �not ontradition implies � and �for x for y holds � and for x, y holds �ex x st ex y st � and ex x, y st �for x st � holds � and for x holds � implies �� & � implies  and � implies (� implies )not not � and �� or � and not � implies �not ex x st � and for x holds not �� i� � and (� implies �) & (� implies �)Formulas in eah pair have the same meaning for Mizar. They are thus formulaswhih have the same semanti orrelate.Remark:The sentenes � & � and � & �have di�erent semanti forms. The same applies to the sentenes� or � and � or � .In the above examples the formulas �, �,  should, in order to seure the orret on-strution of sentenes and the subsumption of those sentenes under the given senteneshemata, be braketed whenever neessary. Should, for instane,  be an impliation orequivalene, then the formulas in whih it would our should be written thus:� & � implies  and � implies (� implies ) .The same applies to � and �. 32



IV. PROVING SENTENCES IN MIZARIV.1. Justi�ationsBefore proeeding of that theorem in the Mizar notation and then proeed to justifyit. There are several possibilities of justifying theorems, but at this point we shall beonerned with only one them, namely straightforward justi�ation is a justi�ationin whih one gives the referene (list of labels indiating the sentenes whih are thepremisses of the theorem being justi�ed). Straightforward justi�ation an be lassedinto:a) simple justi�ation,b) justi�ation by shema.Diret justi�ation has been following form:(�) sentene{justi�ed by list{of{referenes ;The list of referenes is a �nite sequenes of referenes separated from one another byommas.Referenes have been disussed earlier. Note only that they are lassed into libraryreferenes (whih to theorems to be found in artiles) and loal referenes (whih throughlabels enable one to use sentenes justi�ed earlier and to be found in a given artile).We shall give below several sentenes justi�ed diretly:(1) M [ ; = M by BOOLE:60;BOOLE:60 is a library referene. It denotes the theorem No.60 to be found in the �leBOOLE.abs.(2) k + l = l + k by NAT 1:3;(3) k � 0 & 0 � 1 implies k � 1 by NAT 1:13;(see example No.2 in the �le art.lst).Remark:The justi�ation by by should inlude labels of sentenes whih have ourred earlier(in an earlier part of the text or in an earlier artile) and are aessible in the plae ofreferene (whih is to say that they are labels whih ourred at an earlier losed level ofreasoning (1) or point to the urrent level of reasoning (2)). Hene the justi�ations inthe following example would be inorret:EXAMPLEfor M, N being set, x being Any st x 2 M holds x 2 M [ Nproof let M,N be set, x be Any;assume A: x 2 M;hene thesis by BOOLE:8;end;for x being Any, M being set holds x 2 M by A;* (1)B: now 33



let x be Any, M be set;x 2 M implies x = x by B;* (2)end;(see example No. 3 in art.lst).In the ase of some theorems it is more onvenient, before one proeeds to provethem, to prove, earlier (a) auxiliary lemma(s). Then proof of the theorem proper willo�er no problems beause it will be a straightforward justi�ations.For instane, if one wants to prove a theorem whih is an equivalene, then one anearlier prove the neessary impliations. Suh a ase is presented in example No. 30 inthe annex.Sometimes it is onvenient to justify an auxiliary lemma (or lemmas) in the proessof proving a given sentene. It is also worth mentioning suh straightforward justi�ationin whih the referene list is a zero list. In suh a ase (�) has the form:justi�ed{sentene ;That speial kind of justi�ation pertains only to those sentenes whih are tautologiesof the propositional alulus or simple laws of the funtional alulus.That part of the system whih veri�es justi�ations is alled CHECKER. Tautologiesare self-evident for CHECKER and require no justi�ation.Straightforward justi�ation with a zero referene will be illustrated by examples.Int P = P implies not (Int P 6= P & Cl P = P);P = Q implies (P is open i� Q is open);for k, l holds k = l or k 6= l;(see example No. 36 in the �le art.lst).Justi�ation by shema in the following form:justi�ed{sentene from symbol{of{shema ( referene{list ) ;is another straightforward justi�ation.The number of referenes in a referene list may be zero, as in any expression in theform list{... .If the referene list is a zero list, then justi�ation by shema has the following form:justi�ed{sentene from symbol{of{shema ;Example four in the �le art.lst illustrates the proof of a theorem in whih theshema of indution is used.In the examples given above we had to do with straightforward justi�ation only. Butin most ases a theorem requires a proof, and straightforward justi�ations { espeiallya diret one { �nd appliation in the reasoning used in the proof (is a ertain step in theproof).If the truth of a theorem annot be justi�ed diretly or by referene to a shema,then a proof must be arried out.After reording the ontent of the theorem we write:proof ...end;where the dots will, of ourse, be replaed by a ertain reasoning.Every reasoning is a sequene of suessive transitions must be justi�ed (straightfor-ward justi�ations or by proof). Exeptions in that respet are those reordings whihform the skeleton of the proof (assumption, generalization, exempli�ation), but thesewill be disussed in the next setion. 34



A justi�ed step in a proof is alled a statement. The steps whih ombine to fromthe proof depend on the thesis of the theorem, the way of proving (e.g. diret or indiretproof) and, obviously, the imagination of the person who writes the artile.Let us try to prove (without restoring to the Mizar notation) the following topologialproof:For any subset A, B of a topologial spae G the following holds:Cl (A \ B) � Cl A \ Cl BProof .Let us onsider any two subsets A, B of topologial spae G.It is know from the properties of sets that A \ B � A and A \ B � B. By availingourselves of the following property of the losure operation:If M � N then Cl M � Cl N where M, N are subsets of a topologial spaewe may write:Cl (A \ B) � Cl A and Cl (A \ B) � Cl BHene Cl (A \ B) � Cl A \ Cl Bquod erat demonstrandum.Let us now try to reord that proof in the Mizar notation. The Mizar artile whihwould arry the proof of the theorem under onsideration would have, as is know, toonsist of the following elements:environdiretives of environmentbeginontent of theoremproof reasoningend;The theorem in question, when reorded in Mizar notation, has the following form:for A, B being Subset of G holds Cl (A \ B) � Cl A \ Cl BIn aordane with what has been said in the hapter onerned with formulas the abovereording of the ontent of the theorem is only one of several possible versions.We shall now proeed to onstrut the next proper, that is the text whih follows theword begin. The remaining part of the artile will be disussed later. Suh a sequene ofwriting the proof is of a ertain importane, espeially for a person who starts learningMizar. Now after the writing of the text proper one an see learly whih diretives ofthe environment must be inserted between the words environ and begin. But, on theother hand, it must be borne in mind that if the environment is defetively onstrutedduring a onsiderable time taken by the proess of proving, than that will make the proofmore diÆult beause in the Mizar proedure, that is the veri�ation of the orretnessof the proof in progress, errors related to the defetive onstrution of the environmentwill be reported.The onstrution reservation of variables is used only for the identi�er of G, whihindiates a ertain topologial spae. The types of the remaining identi�ers will be givenwhenever neessary.The next proper then assumes the form:reserve G for TopSpae;for A, B being Subset of G holds Cl (A \ B) � Cl A \ Cl Bproof reasoningend; 35



At this point the arrying out the reasoning remains.In the previous proof we onsidered any two subsets of a topologial spae G. Nowwe shall proeed analogially.After the word proof we have to write:let A, B be Subset of G;This expression an be translated thus:Let A, B be any subsets of a topologial spae G.In the expression let A, B be Subset of G; the types of the variables A, B had to bespei�ed beause they had not been reserved in the reservation of variables.(The quali�ation given in a formula has its sope only until the and of that formula.)We ontinue to imitate the previous proof and write:A \ B � A & A \ B � B;This is a ertain step in the reasoning. It has been said earlier that every step of thereasoning. It has been said earlier that every step of the reasoning must be justi�edbeause otherwise the CHECKER will report error No. 4: This referene is notaepted by Cheker.In the ase under onsideration diret justi�ation will suÆe; this is to say we meana justi�ation whih does not require indiation of the appropriate referenes.Note one more that the �les in whih the ontents of the theorems are in the sub-diretory nABSTR (nABSTR is a subdiretory of nMIZAR) and have the extension *.abs.When inspeting the �le BOOLE.abs we ome aross Theorem No.37 (i.e., BOOLE:37),whih states that for any sets X,Y we have:X \ Y � X & X \ Y � Ywhen referene is made to this theorem the �rst step of the reasoning is justi�ed. Weobtain the statement:Z1: A \ B � A & A \ B � B by BOOLE:37;The next justi�ed step of the reasoning we obtained by the appliation of TheoremNo.49, to be found in the �le PRE TOPC.abs. Its ontent is:for A, B being Subset of G st A � B holds Cl A � Cl BThis theorem is to be applied to this formulaA \ B � A & A \ B � BThat is why it was neessary to provide it with a label, whih in our ase onsists ofthe insription Z1. Note that the identi�er of a label must be followed by a olon :. Byreferring to a given label we refer to the sentene whih bears that label.The seond step in the reasoning will be as follows:Z2: Cl (A \ B) � Cl A & Cl (A \ B) � Cl B by Z1, PRE TOPC:49;As an be seen, this sentene has been provided with a label beause it will have to beused as a premiss in the further part of the proof.As an be seen, the theorem PRE TOPC:49 has been applied twie, but in the justi-�ation it has been given only one.Remark: If in one and the same step of the proof a referene is indiated several times,then it suÆes to give it only one after the word by.After availing ourselves of the theorem BOOLE:39, whih says:Z � X & Z � Y implies Z � X \ Y(where X, Y, Z are any sets)we an write down the onlusion:thus Cl (A \ B) � Cl A \ Cl B by Z2, BOOLE:39;This is the last step in the reasoning of the proof.36



The word thus preedes the sentene whih is the thesis of the proof or its part. Inour ase it is the thesis of the proof.Ultimately, the next proper is as follows:reserve G for TopSpae;for A, B being Subset of G holds Cl (A \ B) � Cl A \ Cl Bprooflet A, B be Subset of G;Z1: A \ B � A & A \ B � B by BOOLE:37;Z2: Cl (A \ B) � Cl A & Cl (A \ B) � Cl B by Z1, PRE TOPC:49;thus Cl (A \ B) � Cl A \ Cl B by Z2, BOOLE:39;end;It now remains to insert the appropriate diretives of the environment between theword environ and begin. Let us begin with the voabularies, that is, with the diretivevoabulary ... ;.The text proper above there the following symbols our:\ , Cl symbols of funtors,� symbol of prediate,TopSpae, Subset symbols of modes.The symbol \ is to be found in the voabulary BOOLE. The symbols Cl and TopSpaeare introdued in the voabulary TOPCON, whereas the symbol of the mode Subset andof the prediate � are in the voabulary HIDDEN. The voabulary diretives whih mustbe inluded in our artile are:voabulary BOOLE;voabulary TOPCON;The diretive signature �; allows on to use voabulary symbols in aordanewith the format de�ned in the artile �.miz, format - the number of left-side and right-side arguments and also the types of the result and the arguments of the funtor or anexpansion of a mode.In our ase the symbol \ is used as that of the intersetion of sets. That inter-setion may be treated as an intersetion of subsets of a topologial spae whih yieldsalso a subset of that spae, or else { without any modi�ation in the reasoning { as anordinary intersetion of sets. Hene its use requires the joining of the diretive:signature SUBSET 1;(rede�nition for subsets)or the diretive signature PRE TOPC;(rede�nition for subsets of a topologial spae)or the diretive signature BOOLE;(de�nition of intersetion of sets).The de�nition of the prediate of inlusion, for whih we use the symbol \ , is tobe found in the artile TARSKI. If it is to be used in our ase one of the diretives ofenvironment must be signature TARSKI;In the artile PRE TOPC the de�nition of the losure of a set, symbolized Cl, andthe de�nition of the mode TopSpae, are introdued, hene it is neessary to join thediretive signature PRE TOPC;Sine in the proof we availed ourselves of theorems to be found in the artiles BOOLE37



and PRE TOPC, two more diretives must be added to the earlier given diretives of envi-ronment, namely:theorems BOOLE;theorems PRE TOPC;The Mizar artile ontaining the proof of the theorem under onsideration is to befound in the annex, example 5 in the �le art.lst.Remark: In Mizar it is allowed to overridden labels. Hene the marking of severalsentenes from one and the same level of reasoning is not an error.If, at a given level of reasoning, in whih there are no other levels of reasoning,several sentenes are marked by the same label, then the referene to that label meansreferene to the last sentene marked by it.By a level of reasoning we mean:(a) the reasoning ontained between the orrespondingly paired words proof and end;,(b) the reasoning ontained between the orrespondingly paired words now and end;,() the reasoning ontained between the orrespondingly paired shemes and ;.Referene to labels from an earlier losed level of reasoning is not allowed.EXAMPLETwo levels of reasoning will be shown below. The insriptions �, �, , Æ denoteertain formulas. At the shown levels of reasoning the label A: ours only in the indiatedpositions. Level of reasoning. . . .A: �;. . . .Level of reasoning. . . .A: �;. . . . by A;. . . .. . . .Æ by A;. . . .In the justi�ation of the sentene  the referene to the label means referene tothe last sentene marked by it, that is to the sentene �. But in the justi�ation of thesentene Æ the referene to the label A: means referene to the sentene �. At the plaeit is impossible to refer to the seond sentene marked by the label A:, that is to thesentene �, beause that sentene is at the previously losed level of reasoning.In the proofs of theorems are long it is onvenient to use the orresponding reordingof the reasoning used in the proof, that is suh whih shortens that reasoning and makesit learer and more legible. That an be ahieved by the elimination of the labelling ofsentenes through the use in the proof of the words: then, hene, and thesis.The pre�xing of the sentene � by the word then indiates that in the justi�ationof � we avail ourselves of the sentene � whih diretly preedes �. In suh a ase � neednot be marked by a label.This way of justi�ation is alled linking.38



We shall use linking in the proof arried out earlier. Instead of the sentene labelledZ1: and Z2: we shall have:A \ B � A & A \ B � B by BOOLE:37;then Cl (A \ B) � Cl A & Cl (A \ B) � Cl B by PRE TOPC:49;It must be emphasized that linking requires that the expression � be a statementjusti�ed straightforwardly, and �-sentene. That imposes ertain limitation upon theappliation of linking. For instane, linking annot be applied diretly after proof notafter a olletive assumption, beause it is not know whih of the partial assumptionsis meant. Not an it be applied after the statement of hoie, after the statement of ahange of type, after exempli�ation. Linking an be applied diretly after a sentene, astatement justi�ed diretly a statement of hoie, and a di�use statement.If the preeding sentene is one of the premisses of the onlusion, then linking maybe indiated by the replaement of thus by hene. The sentene preeding the onlusionmay be unlabelled. Figuratively speaking, the reording:A:�;thus � by A, other{referenes;may be replaed by the reording:�;hene � by other{referenes;When the possible linkings are onsidered the proof of the theorem disussed earlierwill assume the form:proof let A, B be Subset of G;A \ B � A & A \ B � B by BOOLE:37;then Cl (A \ B) � Cl A & Cl (A \ B) � Cl B by PRE TOPC:49;hene Cl (A \ B) � Cl A \ Cl B by BOOLE:39;end;(see example No. 6 from art.lst)The onlusion (that is the thesis of the proof or its part), whih in this ase in theexpression Cl (A \ B) � Cl A � Cl Bmay be replaed by the word thesis, whih means that whih is left to be demonstrated.The word thesis is treated by Mizar as a formula. The formula thesis may be usedsolely within the proof, that is between the words proof and end; .EXAMPLES of the use thesis� in the termination of the proof:... hene thesis; end; or ... thus thesis; end;The example Nos. 7, 10, 28, 29 from the �le art.lst illustrate the appliation ofthe formula thesis at the end of the proof.In the example No. 7 in the �rst inner proof, that is in the proof of the thesisP[
T=
T, thesis denotes the formula P[
T=
T, whereas in the seond inner proofthesis denotes the formula P[
T=P.In the example No.10 the formula thesis ours twie. In the �rst ase it denotesthe formula W is open & W � P & � 2 W, whereas in the seond ase, at the end ofthe proof, it denotes the formula x 2 Int P.In the example No.28 thesis denotes the sentened being proved in that examples,that is the senteneT is onneted i� for A being Subset of T st A is open losedholds A = ;T or A = 
Twhereas thesis in the example No.29 denotes the formula P is dense.39



� at the beginning of an indiret proof:proof assume not thesis; ... ; thus ontradition; end;Suh a use of thesis found appliation in the examples Nos. 19, 22, 23.In the example No.19 thesis denotes the sentene being proved, that is the formula:for G st G is open holds p 2 G implies P \ G 6= ; .In the example No.22 it denotes the formula P 6= Q, and in the example No.23, theformula A 6= ;T.� in a proof by ases:proof A: now assume �; ... ; hene thesis; end;now assume not �; ... ; hene thesis; end;hene thesis by A;end; IV.2. Skeletons of proofsEvery proof, that is the reasoning ontained between proof and end onsists ofelements whih from its skeleton. The skeleton of a proof onsist of:assumption,generalization,onlusion,exempli�ation.It is to be noted that the skeleton of a proof is not determined unambiguously. Itsstruture depends on the form of the thesis to be proved and on the tehnique of proving(for instane, the diret or the indiret proof). The skeleton of the proof of a given thesisis based on the struture of the semanti orrelate of that thesis. That part of the systemwhih veri�es the orretness of the struture of the semanti orrelate of that thesis.That part of the system whih veri�es the orretness of the struture of the skeleton isalled REASONER.When preeding to prove a sentene it is advisable to write at �rst the orretskeleton of the proof of that sentene (that is to say, disregarding the justi�ations ofsentene). If the skeleton of the proof is written orretly, then only the errors markedby number 4 will be reported (by CHECKER).IV.2.1. DIRECT PROOFSWe shall now show the likely skeletons of proofs when the thesis is a onjuntion,disjuntion, impliation, equivalene, a general sentene, and an existential sentene.1. CONJUNCTION, that is an expression in the form �1 & �2,where �1 and �2 are any formulas, is a thesis.If this sentene is to be proved diretly, then the skeleton of the proof may onsistof the expression listed below and ontained between the words proof and end :proof ........thus �1;........thus �2;........end; 40



The dots indiate that they are to be replaed by the remaining steps of the proof.Self-evidently, the sentenes �1 and �2 must be justi�ed by a straightforward justi-�ation or by proof.Every expression whih is a omponent of the skeleton of the proof of a given sentenemodi�es the thesis of the proof. In the example given above until the ourrene of theexpression thus �1 the formula �1 & �2was the thesis of the proof. But the expression thus �1 modi�ed the thesis of the proof,whih after that expression beame the formula �2.The sequene of the justi�ation of �1 and �2 is essential;it must be suh as presented above. If we hange the order into:thus �2;thus �1;then we obtain the skeleton of a proof of the sentene �2 & �1. But the semanti orrelatesof the sentene �1 & �2 and �2 & �1are di�erent. Hene for Mizar these are two di�erent sentenes.The example Z8.lst shows the form of the �le when only the skeleton of the proofof the sentene being justi�ed is written down.If in the proof in that example we hange the order of the expressions whih for theskeleton of the proof, then additionally the error marked by No.51 { Invalid onlusion{ will be reported. Suh a situation is illustrated by the example Z9.lst.The full proof is shown in the example No. 7 from the �le art.lst.In the proof of the thesis in that example there are two inner proofs. In eah ofthem the �nal onlusion of eah proof is marked by the word thesis. In the �rst innerproof it denotes the formula P[
T = 
T, and in the seond, the formula P\
T = T.If the thesis is a onjuntion of more than two onstituents, then the truth of eahonstituent is to be justi�ed.For instane, for the thesis �1 & �2 & �3the skeleton of the proof might be as follows:proof ........thus �1;........thus �2;........thus �3;........end;Remark:The skeleton of the proof for the thesis �1 & �2 & �3 is also the skeleton of theproof for the thesis �1 & (�2 & �3) and for the thesis (�1 & �2) & �3), whih is tosay that all the three formulas have one and the same semanti orrelate.2. IMPLICATION is a thesis.There are two methods of proving impliations, the diret and the indiret.If the impliation �1 implies �241



is to be proved diretly, then one has to assume the anteedent of the impliation andprove the onsequent. Hene the skeleton of the proof of the above sentene will be asfollows:proof ........assume �1;........thus �2; (onlusion)end;Sine the assumption in part of the skeleton of the proof it modi�es the thesis.Before the assumption the thesis was the formula�1 implies �2but by assuming the anteedent of the impliation we modify the thesis after the as-sumption the thesis beome the formula �2.EXAMPLEThe skeleton of the proof of the sentene
G = A [ B & A is losed & B is losed & A \ B = ;Gimplies A, B are separatedmay be suh:proof ......assume 
G = A [ B & A is losed & B is losed & A \ B = ;G;......thus A, B are separated;end;(see annex { �le Z10.lst)Remark:The steps whih onstitute the skeleton of the proof (exept for the onlusion) donot require justi�ation. The remaining steps of the proof other that tautologies must bejusti�ed. This is explained by the example Z10.lst from the annex, in whih the erroronneted with the justi�ation of the assumption is not reported.The expressionassume 
G = A [ B & A is losed & B is losed & A \ B = ;G;is a single assumption, whih is one of the forms of the assumption.A single assumption may take on one of the two forms presented below:assume sentene ;Suh an assumption is used when we refer to it by linking. But sometimes it is notpossible to refer to the sentene in the assumption by linking. In suh a ase thatsentene must be marked by a label and the identi�er of that label is to be written inthe plae of referene. The assumption will take on the formassume identi�er{of{label : sentene ;If the sentene whih is to be taken as the assumption is in the form of a onjuntion,then the assumption may be reorded in the form of a olletive assumption by replaingthe sign & by the word and and by labelling every onstituent of the onjuntion. Thesingle assumption:assume 
G = A [ B & A is losed & B is losed & A \ B = ;G;may aordingly be written in the form of a olletive assumption thus:assume that M1: 
G = A [ B and M2: A is losed and42



M3: B is losed and M4: A \ B = ;G;A olletive assumption takes on the form:assume that sequene{of{labelled{sentenes ;A sequene of labelled sentenes is a single labelled sentene or several labelled senteneslinked together by the onnetive and.The splitting of a single assumption into a olletive one makes it possible to referseparately to every partial assumption.The assumption from the example given above may also have the following form:assume x: 
G = A [ B & A is losed & B is losed;assume xx: A \ B = ;G;Sine the semanti orrelates of the sentenes in the form:� & � &  and (� & �) &  and � & (� & )are the same hene the following assumption is orret, too:assume y: (
G = A [ B & A is losed) & B is losed;assume yy: A \ B = ;G;the same applies to the following one:assume z: 
G = A [ B & (A is losed & B is losed);assume zz: A \ B = ;G;The last two forms of the assumption are least legible, and this is why it is better to usereordings in whih superuous brakets are avoided. But the last two possible formshave been given above in order to show the various reordings.The formulas in the form(�) �1 & �2 implies �3 and �1 implies (�2 implies �3)have one and the same semanti orrelate.�1, �2, �3 are any formulas. If they are impliation or equivalenes, then in theformulas under (�) brakets should our in the appropriate plaes. The same applies tothe formulas whih will be disussed below.The semanti orrelate of the formula�1 & �2 implies �3has the following form: not ((d�1e & d�2e) & dnot �3e)(where insription d�1e denotes the semanti orrelates of the formula �1; the sameapplies, by analogy, to the remaining ases).It will now be shown how the semanti orrelate of the formula �1 implies (�2implies �3) is formed. That formula may equivalently be reorded thus:not (�1 & not (�2 implies �3))That formula may be reorded equivalently by making use of the semanti form of im-pliation: not (�1 & not not (d�2e & dnot �3e))Next we avail ourselves of the fat that negation is an involution:not (�1 & (d�2e & dnot �3e))Sine onjuntion is assoiative the semanti orrelate of the above formula may bereorded thus: not ((d�1e & d�2e) & dnot �3e)The form thus obtained is also a semanti form of the formula:(�1 & �2) implies �3The sentene being proved has its anteedent in the form of the following formula:�1 & �2 & �3 & �4where�1 stands for 
G = A [ B�2 stands for A is losed 43



�3 stands for B is losed�4 stands for A \ B = ;GThe onsequent of the impliation, that is the formulaA, B are separatedwill be denoted by .The system, when reading the formula, will add brakets in the appropriate plaesand transform it into the formula:((�1 & �2) & �3) & �4Now let the formula ((�1 & �2) & �3) be denoted by �. On substituting � in thepreeding formula we obtain � & �4It follows from earlier analyses that the semanti form of the formulas:� & �4 implies  and � implies (�4 implies )is the same.Hene the skeleton of the proof of the thesis� & �4 implies is the same as the skeleton of the proof of the thesis� implies (�4 implies )Sine the sentene
G = A [ B & A is losed & B is losed & A \ B = ;Gimplies A, B are separatedis proessed by the system in the same way as the sentene
G = A [ B & A is losed & B is losedimplies (A \ B = ;G implies A, B are separated)the skeleton of the proof of the thesis
G = A [ B & A is losed & B is losed & A \ B = ;Gimplies A, B are separatedmay have the form:proof ......assume q: 
G = A [ B & A is losed & B is losed;(now the thesis is: A\B = ;G implies A, B are separated)......assume p: A \ B = ;G;(now the thesis is: A, B are separated)......thus A, B are separated;......end;The proof of the thesis disussed in this example is presented by the example No.9in the �le art.lst.Remark: The skeleton of the proof of the sentene � & � implies  may be as below:proof .....assume �;.....assume �;.....thus ;.....end; 44



On the ontrary, it annot be the skeleton of the proof of the sentene� & � implies beause in that ase a di�erent order of assumptions is required.3. When proving the EQUIVALENCE� i� �one has to prove two impliations:� implies � and � implies �Sine the sentenes� i� � and (� implies �) & (� implies �)have one and the same semanti orrelate the skeleton of the proof for equivalene issubsumed under the skeleton of the proof of a thesis whih is a onjuntion.Here is the skeleton of the proof of equivalene:� i� �proof ......thus � implies �;(now the thesis is: � implies �)......thus � implies �;......end;Sine for Mizar the ommutativity of onjuntion is not self-evident the order inwhih the impliations are indiated must be as above.The example No.10 in the �le art.lst shows a proof of equivalene. The skeletonof that proof is in the same form as above.The skeleton of the proof of the equivalene � i� � may be suh as below:proof ......thus � implies �;(now the thesis is: � implies �)......assume �;(now the thesis is: �)......thus �;......end;In the example No.11 in the annex there is the proof of the thesis from the exampleNo.10. That proof is arried out in a di�erent way than in the example No.10, whih isto say that the skeleton of the proof is di�erent. It is in the form as above.A justi�ation of an equivalene is also to be found in the example No.30 in the�le art.lst, where the equivalene is justi�ed straightforwardly (by by). The list ofreferenes onsists of labels of two orresponding impliations proved earlier.4. When proving a THESIS whih is a DISJUNCTION it is worth whilebearing in mind one more pair of sentenes whih are proessed by the system in thesame way. We mean the sentene� or � and not � implies �45



These sentenes have the proof of a disjuntion it is onvenient to assume the negationof the �rst onstituent of the disjuntion (�) and to prove the seond onstituent.Should we do it onversely by assuming the negation of the seond onstituent (�)and by proving the �rst (�), we would prove the thesis� or �But the sentenes � or � and � or �have di�erent semanti orrelates.If the thesis is a disjuntion of three onstituents, then in its proof one has toassume the negation of the �rst two onstituents and to prove the third. This is done inthe example below. EXAMPLEk < n or k = n or n < kproof assume A: not k < n & k <> n;(The negation of the �rst two onstituents of the disjuntion is assumed and it is nowthe formula n < k whih is the thesis)then not k � n by NAT 1:30;then n � k by NAT 1:14;hene n < k by REAL 1:57, A;end;See the example No.12 in the �le art.lst.5. The thesis is in the form of a GENERAL SENTENCE.In suh a ase the onstrution of the skeleton of the proof must begin with ageneralization. Generalization is used, for instane, in the proofs of general sentenesand in the proofs of sentenes whih an be presented as general ones. Other ourrenesof generalization are:{ di�use statement,{ de�nition.General speaking, generalization is intended to �x ertain objets. It aordinglyintrodues onstants at the level of proof.Generalization is in the form:let variables{quali�ed{impliitly ;In view of the diversi�ed forms of the list of quali�ed variables generalization maytake on the form of one of the expressions presented below:(a) let identi�ers{of{variables ;Examples: let x;, let A, B;In the generalization of this kind the types of variables whih our in it are notindiated, whih an be seen in the examples above. This means that the identi�ers ofthose variables have the respetive types given in the reservation of variables.(b) let variables{quali�ed{expliitly ;Generalization in this form di�ers from the preeding one in that the types of thevariables ourring in it are indiated.Examples: let x, y be Any;let P, Q be (Subset of G), p be Point of G;let a, b be Subset of the arrier of Y;let a be Subset--Family of the arrier of Y;46



(where Y is a ertain topologial struture).Instead of be one may alternately use being, but let the onvention be that be isused in the onstrution let ... .() let variables{quali�ed{expliitly , variables{quali�ed{impliitly ;Generalization in this form is, generally speaking, a ombination of the two preedingones. Examples:let A be (Subset of G), x;let P1, P2 be (Subset of G), p, q be (Point of G), x,y,z ;It is known that the sentene in the form:(�) for lists{of{quali�ed{variables holds �1 implies �2is proessed by the system in the same way as the sentene:(��) for lists{of{quali�ed{variables st �1 holds �2If the thesis of sentene being proved has the same form as under (�) or (��), thenthe generalization may be reorded as follows:let lists{of{quali�ed{variables suh that onditions ;The ondition in suh a generalization must be reorded as one labelled sentene orseveral labelled sentenes linked together by the word and . For the formulas marked(�) and (��) the onditions may be reorded, for instant, thus:W1: �1; or W1: �1 and W2: not �2;The use of generalization in the proof will be visible in the disussion of the skeletonof the proof of a general sentene, to be disussed now. For the time being let it be saidonly that generalization is a ut down in the thesis of the universal quanti�er. The proofof a general sentene will be disussed by referene to examples.In eah of the examples to be presented below the orresponding reservation ofvariables and the ontent of the sentene whih requires a proof will be diret, whih isimportant for the onstrution of the skeleton of the proof. In the ase of indiret proofsskeletons look di�erently, but that ase will be disussed later.Here are the examples announed:EXAMPLE 1reserve G for TopSpae, x for Any, P for Subset of G;for x holds x 2 Fr P implies x 2 (Cl (P) \ P) [ (Cl P n P)proof ......(Sine at this point the thesis is a general statement the onstrution of the skeleton ofthe proof begins with a generalization)let x;(the type of the identi�er of x is given in the reservation of variables hene it need notbe given again. The generalization results in the utting down of the universal quanti�erin the initial thesis, whereby the thesis has beome modi�ed. Now the thesis has the formof an impliation. When proving an impliation diretly we assume its anteedent andprove its onsequent. Moreover the generalization has introdued the onstant x at thelevel of the proof). ......assume x 2 Fr P;(Now the formula x 2 (Cl (P) \ P) [ (Cl P n P) is the thesis.)......thus x 2 (Cl (P) \ P) [ (Cl P n P); (�nal onlusion)end; 47



In the generalization, and hene in the proof as a whole, an identi�er other than xould have been used beause generalization is to apply to the types of the identi�ers ofthe variables ourring in the quanti�er formula after the word for. The point is thatthe types of identi�ers in the generalization should agree with the types of the identi�ersfollowing for in the quanti�ed formula.For instane, if we have a quanti�ed formula in the form:for x being T holds �(x)(where T is a type)then the generalization may be as follows:let y be T;If in the reservation the identi�er y has been reserved for a type other than T or if it hasnot been at all taken into onsideration in that onstrution, then in the generalizationthe appropriate type must be indiated. In both ases the type of the variable introduedby a generalization is valid until the end of a given level of reasoning, that is that levelat whih a given variable was introdued. But if the identi�er y has been reserved forthe type T, then the generalization may be as follows: let y;.Remark:The variable introdued by a generalization may be overridden by another general-ization, a statement of hoie, a statement of a hange of type, an exempli�ation, anexistential assumption and loal de�nition of variable.The expression assume x 2 Fr P; is a single assumption whih is one of the formsof assumption.The sentene being proved has for Mizar the same meaning as the sentene:for x st x 2 Fr P holds x 2 (Cl (P) \ P) [ (Cl P n P)Hene in aordane with the information about the struture of generalization in thease of a thesis whih is a formula with a puri�ed quanti�er the skeleton of the proofmay be abbreviated as follows:let x; ) let x suh that A: x 2 Fr P;assume x 2 Fr P;The proof of the sentene disussed in the �rst example is shown in the annex, �leart.lst, under No.13.Now omes another example illustrating the onstrution of the skeleton of a proof.EXAMPLE 2reserve G for TopSpae, P for Subset of G;P � Cl PThe de�nitional expansion of this sentene has the following form:for x being Any holds x 2 P implies x 2 Cl PThe skeleton of the proof of the sentene P � Cl P may also be the skeleton of the proofof a sentene whih is its de�nitional expansion. This is guaranteed by the joining to theenvironment of the diretive of de�nitional de�nitions TARSKI;.Here is the skeleton of the proof of the sentene P � Cl P:proof ......(Sine at this point the sentene whih may be expanded into a general sentene is thethesis generalization may be the �rst element in the skeleton of the proof.)48



let x be Any;(Now it is the impliation whih is the thesis, and hene the skeleton of the proof maystill onsist of the assumption of the anteedent.)......assume x 2 P;(Now it is the formula x 2 Cl P)......thus x 2 Cl P;......end;The full proof is to be found in the example No.14 in the annex.EXAMPLE 3reserve G for TopSpae, P, Q for Subset of G;P is dense implies for Q holds Q 6= ; & Q is open implies P \ Q 6= ;proof ......(Now it is the impliation whih is the thesis hene the assumption of the anteedent willbe the �rst element of the skeleton of the proof.)assume P is dense;(It is a general sentene whih is the thesis at this point, and this means that a general-ization will be the next element.)......let Q;(Now it is the impliation whih is the thesis, hene we assume its anteedent.)......assume Q 6= ; & Q is open;(it is the formula P \ Q 6= ; whih is the thesis now.)......thus P \ Q 6= ;; (�nal onlusion)......end;The single assumptionassume Q 6= ; & Q is open;may be reorded equivalently as a olletive assumption:assume that M1: Q 6= ; and M2: Q is open;or as two single assumptions:assume a: Q 6= ;;......assume b: Q is open;The skeleton of the proof of the sentene under onsideration may also be as follows:proof ......(Now it is the impliation whih is the thesis hene the assumption of its anteedent willbe the �rst element in the skeleton of the proof.)assume P is dense;(At this point a general sentene is the thesis, and this means that a generalization willbe the next element.)......let Q suh that Z1: Q 6= ; and Z2: Q is open;(The formula P \ Q 6= ;; is the thesis.) 49



......thus P \ Q 6= ;; (�nal onlusion)......end;(See annex, - example No.15.) EXAMPLE 4reserve G for TopSpae;for H being SubSpae of G for A being Subset of Hholds A is Subset of GSkeleton of the proof:proof ......(The general sentene being proved is now the thesis.)let H be SubSpae of G;(The general sentenefor A being Subset of H holds A is Subset of Gis now the thesis.)......let A be Subset of H;(The formula A is Subset of G is the thesis)......thus A is Subset of G;......end;The generalization in the proof above an be reorded more briey, namely:let H being (SubSpae of G), A being Subset of H;This is due to the fat that the sentenesfor x for y holds � and for x, y holds �have one and the same semanti orrelate.The proof of the thesis in this example is shown in the example No.16 in the annex.6. The thesis is an EXISTENTIAL SENTENCE,that is a sentene in the form:ex list{of{quali�ed{variables st formulaLet the formula ex x being T st �(x)be the thesis.The proof of this thesis onsist in indiating an objet of the type T whih satis�esthe ondition �(x).To do so we shall avail ourselves of the onstrution take ... , alled exempli�ation.That onstrution, exept for generalization, assumption, and onlusion, modi�es thethesis of the proof. While generalization results in the utting down of the universalquanti�er in the thesis, exempli�ation uts down the existential quanti�er in the thesis.Exempli�ation with equalization introdues a onstant at the level of the proof, thatonstant being aessible from the moment of being introdued to the end of that levelof reasoning at whih it has been introdued, unless it is overridden by another exem-pli�ation, a generalization, a statement of hoie, a statement of a hange of type, anexistential assumption, or a loal de�nition of a variable.Consider, for instane, the theorem(�) x 2 Int P i� ex Q st Q is open & Q � P & x 2 Q50



The proof of this theorem onsist of justi�ations of two impliations. We shall write theskeleton of the proof of the �rst of them.x 2 Int P implies ex Q st Q is open & Q � P & x 2 Qproof ......(An impliation is the thesis hene we assume its anteedent.)assume x 2 Int P;(Now it is an existential sentene whih is the thesis. Note that sentene is satis�ed forQ equal Int P.)......take Q = Int P;(At this point the formula Q is open & Q � P & x 2 Q is the thesis. By the onstru-tion take ... we have pointed to the objet sought. We have to verify whether it satis�edthe onditions stated after the word st, that is the thesis now under onsideration. Ofourse, the identi�er Q in the exempli�ation, and hene in the further proof, may bereplaed by any other identi�er.)......thus Q is open & Q � P & x 2 Q;......end;The full proof is shown in the example No.10.For the thesis proved above there may also be other variations of the onstrutiontake ... ; .The expression take Q = Int P;may be replaed by take Int P;. In suh a ase the proof will be as shown in the annex{ example No.11.The proof of the other impliation whih is a part of the thesis marked by the (�) isshown in the example No.10 and in the example No.11. In either example the proof isarried out in a di�erent way.Here are two skeletons, given by way of example, of the proof of the senteneex a st �(x)(i) proof......take y = �;......thus �(y);......end;(ii) proof......take �;......thus �(�);......end;(Now � is the orresponding term, and y, any identi�er. Any identi�er may be substitutedfor y.)There are sentenes in the proofs in whih the exempli�ation onsists of severalequalizations of terms, whih in suh a ase must be separated be ommas from oneanother. 51



Let the sentene ex x ex y st �(x,y)be the thesis. The skeleton of the proof might be as follows:proof......take x;......take y;......thus �(x,y);......end;We applied here exempli�ation twie but it ould have been done only one. Then theskeleton of the proof would be:proof......take x,y;......thus �(x,y);......end;The expression take x,y; is also an exempli�ation in the proof of the thesisex x,y st �(x,y)But the sentenesex x ex y st �(x,y) and ex x,y st �(x,y)are ready by the system in the same way.Remark:The adding in the proof of a statement whih does not ontribute anything to theproof and suh whih has some sntati orrelate as not ontradition, i.e. VERUM, isnot an error. For instane, if in the proof of the thesis from the example No.7 in theannex we write an additional onlusion, then the proof will take on the form suh as inthe example No.8. Superuous thus thesis would be added, but that would not ause anerror. In that ase thesis is the formula not ontradition (VERUM). In the proessingof the formulas in that proof into semanti orrelates not ontradition as VERUM isdisregarded. Likewise the addition of assume not ontradition is not an error forthe same reason as above.IV.2.2. INDIRECT PROOFSSo far diret proof have been disussed. But indiret proofs an also be arried outin Mizar. What the skeleton of the proof is like in suh ases?If we are to prove a sentene � indiretly, then we may assume the negation of thatsentene and to arry out the proof until the point when we arrive at ontradition. Theskeleton of the proof for � might be as follows:proof ......assume not �;......thus ontradition; 52



......end;or elseproof ......assume not �;......thus thesis;......end;(In this ase thesis means the formula ontradition.)The formula not � may, if that is onvenient, be replaed by the already negatedsentene �. For Mizar that is indi�erent.The word ontradition denotes the logial onstant falsehood. Self-evidently, notontradition, or VERUM, denotes the logial onstant truth. The word ontraditionis treated by Mizar as a formula. It may our not only at the end of an indiret proof.Its other ourrenes are:{ in Fr�nkel's terms;e.g., fk + 1: not ontraditiongIndiret proof is frequently used when it is an impliation whih is the thesis:� implies �In an indiret proof of this impliation one has to assume the anteedent of the impliationand the negation of its onsequent. The assumption may be either single or olletive asbelow: assume �;assume not �;or assume � & not �;or assume that S1: � and S2: not �;The proof is arried on until the point when we arrive at a ontradition, whih ismanifested by the properly justi�ed statement thus ontradition.EXAMPLE 1We shall write the skeleton of the proof of the senteneP is open & P is nowheredense implies P = ;proof ......(Now the impliation being proved is the thesis. When proving an impliation indiretlywe assume its anteedent and the negation of its onsequent. This assumption will bereorded in the form of a olletive assumption.)assume that Z1: P is open and Z2: P is nowheredense and Z3: P 6= ;;(The formula P 6= ; is the assumption of the indiret proof. Further steps of the proofmust yields a ontradition.)......thus ontradition;......end;The example No.17 in the annex illustrates an indiret proof of a thesis whih is animpliation. 53



EXAMPLE 2We shall write the skeleton of an indiret proof of the sentene:(for G st G is open holds p 2 G implies P \ G 6= ;) implies p 2 Cl Pproof ......assume A0: for G st G is open holds p 2 G implies P \ G 6= ;;(Now it is the formula p 2 Cl P whih is the thesis. Sine the impliation in questionis being proved indiretly we now have to assume the negation of its onsequent.)......assume not p 2 Cl P;......thus ontradition;......end;The full proof is shown in the example No.18.The expression not p 2 Cl P may be replaed by the equivalent expression notthesis, where the formula thesis denotes the formula p 2 Cl P. Then the skeleton ofthe indiret proof will be as follows:proof ......assume A0: for G st G is open holds p 2 G implies P \ G 6= ;;......assume not thesis;......thus ontradition;......end;Here is one more skeleton of the proof of the thesis from the example No.2.proof ......assume A0: not thesis;(The formula thesis denotes here the sentene being proved. Further steps of the proofmust be yield a ontradition.)......thus ontradition;......end;For suh a form of reording the heking by the system of the orretness of theproof takes more time than in the ase of the previous reordings.The example No.19 shows the proof of the thesis from the example No.18, but theskeleton of the proof of that thesis has the same form as that presented above.EXAMPLE 3We shall write the skeleton of the proof of the sentene:A is a omponent of G & B is a omponent of Gimplies A = B or A,B are separatedproof ......(The impliation being proved is the thesis. We shall prove it diretly and hene weassume its anteedent and prove its onsequent.)assume Z1: A is a omponent of G & B is a omponent of G;54



(Now it is the disjuntion A=B or A,B are separated whih is the thesis. We assumethe negation of the �rst onstituent of that disjuntion and prove the truth of the seond.)......assume Z2: A 6= B;(Now it is the sentene A,B are separated whih is the thesis.That sentene is to beproved indiretly and hene we assume its negation.)......assume Z3: not A,B are separated;(Further steps of the proof must yield a ontradition.)......thus ontradition;......end;The proof of this thesis is to be found in the example No.20 in the annex. Otherindiret proofs are shown in the examples Nos.21, 22, 23, 24.In the proof of the suessive Mizar sentene the onstrution onsider ... will beused. The role of that onstrution in the proof onsists in the introdution of onstantsto the level of the proof.The statement of hoie, as the onstrution onsider ... is alled, may take on theform:(1) onsider list{of{quali�ed{variables ;for instane:onsider x, y;onsider A being Subset of G, a being Any;onsider V being set, P, Q;(2) onsider list{of{quali�ed{variables suh that onditions justi�ation ;The onditions form a single labelled sentene or several labelled sentenes linkedtogether by the word and. The justi�ation may be by by or by from that is by shema.The labelling of the sentene(s) ourring in the onditions is due to the fat that afterthe statement of hoie linking is not allowed.It may be so that the ondition in the statement of hoie do not require justi�ation.Then the statement of hoie will have the form:(3) onsider list{of{quali�ed{variables suh that onditions ;The statement of hoie is in suh a form when:� in the justi�ation of the statement of hoie we refer solely to the immediatelypreeding sentene by linking,� the onditions are aepted by CHECKER without justi�ation, whih is to saythat we have to do with tautologies of the propositional alulus or with simple laws ofthe funtional alulus.The example below illustrates the appliation of the statement of hoie.EXAMPLE 4Here is the proof of the senteneP is boundary i� (for Q st Q � P & Q is open holds Q = ;)proofthus P is boundary implies (for Q st Q � P & Q is open holds Q = ;)proof(Now the impliation being proved is the thesis. We assume its anteedent.)assume P is boundary;(Now the general sentene for Q st Q � P & Q is open holds Q = ; is the thesis.)then P: P is dense by TOPS 1:83;55



let Q;(Now the impliation Q � P & Q is open implies Q=;, whih is to be proved indiretly,is the thesis.)assume that P1: Q � P and P2: Q is open and P3: Q 6= ;;(The further steps of the proof must yield a ontradition.)P \ Q 6= ; by TOPS 1:80,P3,P2,P;then Q \ P 6= ; by BOOLE:66;hene ontradition by P1,TOPS 1:20;end;(Now the following impliation is the thesis:for Q st Q � P & Q is open holds Q = ;) implies P is boundary)thus (for Q st Q � P & Q is open holds Q = ;) implies P is boundaryproof(Now the above impliation is the thesis.)assume K: for Q st Q � P & Q is open holds Q = ;;(Now the formula P is boundary, to be proved indiretly, is the thesis.)assume not P is boundary;(The assumption of the indiret proof. Further steps of the proof must yield a ontradi-tion.) then not P is dense by TOPS 1:83;then onsider C being Subset of G suh that Q: C 6= ;and Q1: C is open and Q2: P \ C = ; by TOPS 1:80;C \ P = ; by Q2,BOOLE:66;then C � P by TOPS 1:20;hene ontradition by K,Q,Q1;end;end;(See annex - the example No.21.)We shall analyse two statements whih our immediately after the assumption ofthe indiret proof. The �rst statement is not P is dense;.The theorem TOPS 1:80 formulates the property of a dense set:P is dense i� (for Q st Q 6= ; & Q is open holds P \ Q 6= ;)But the statement not P is dense says that the omplement of the set P is not dense.Then by availing ourselves additionally of the thesis TOPS 1:80 we an infer that:(1) ex Q st Q 6= ; & Q is open & P \ Q = ;;Sine there is an objet whih satis�ers the above onditions, in further analysis we maybe arbitrary, but its type must agree with the type of the identi�er of Q whih ours in(1), whih is to say that it must be the type Subset of G. Hene we may write:onsider C being Subset of G suh that Q: C 6= ;and Q1: C is open and Q2: P \ C = ;;After the statement of hoie the type of the identi�er of C has been �xed as Subset ofG. If that identi�er in the reservation of variables had been reserved for another typethen the statement of hoie has overridden that type. The onstant introdued by thestatement of hoie in aessible from the moment of its introdution to the end of thegiven level of reasoning, that is that level of reasoning at whih the given onstant hasbeen introdued.Remark: The onstant introdued by the statement of hoie may be overridden by ageneralization, another statement of hoie, a statement of a hange of type, an exem-pli�ation, an existential assumption, and a loal de�nition of variable.56



Examples of the appliation of the statement of hoie:(1) ex x st x 2 X \ Y;then onsider x suh that Z: x 2 X \ Y;(2) X meets Y;then onsider x suh that a: x 2 X and b: x 2 Y by BOOLE:15;Here is the theorem BOOLE:15:X meets Y i� ex x st x 2 X & X 2 Y;(3) X 6= ;;then onsider x suh that : x 2 X by BOOLE:1;Here is the theorem BOOLE:1:X = ; i� not ex x st x 2 X;The appliation of the statement of hoie in proofs is illustrated by the examplesNos.11, 15, 21, 22, 23, 25 in the annex. Moreover, the example No.35 shows the applia-tion of that onstrution outside a proof, that is outside the reasoning ontained betweenproof and end;.IV.2.3. ON A NEW MIZAR CONSTRUCTIONLet the thesis be an impliation whose anteedent is an existential sentene. It maybe aordingly be a sentene in the form:(ex x being T st �(x)) implies �The proof of that thesis may be take on the following form:proof assume A: ex x being T st �(x);onsider y being T suh that Z:�(y) by A;(or then onsider y being T suh that Z:�(y);)......(proof of �)end;The identi�er in the statement of hoie may be seleted arbitrarily but so that itstype should agree with the type of the identi�er of x in the assumption, that is with thetype of T.The assumption and the statement of hoie may in that ase be replaed by anexistential assumption: given x being T suh that Z: �(x);If the thesis is an impliation with the anteedent whih is an existential statement,then the assumption of the existene of ertain objets (by the onstrution assume... ) and the statement of hoie justi�ed by that assumption may be replaed by anexistential assumption.The existential assumption may be in the form:(a) given list{of{quali�ed{variables ;(b) given list{of{quali�ed{variables suh that onditions ;The onditions may form a single labelled sentene or several labelled senteneslinked together by the word and.The range of a onstant introdued by an existential assumption is the same as therange of a onstant introdued by the statement of hoie.Remark:Linking is not allowed after an existential assumption.The appliation of the existential assumption will be illustrated by examples.57



EXAMPLE 1reserve G for TopSpae, P,Q for (Subset of G), x for Any;(ex Q st Q is open & Q � P & x 2 Q) implies x 2 Int Pproof assume ex Q st Q is open & Q � P & x 2 Q;then onsider Q suh that Z1: Q is open andZ2: Q � P and Z3: x 2 Q;(The anteedent of the impliation being proved has been assumed and the appropriatestatement of hoie has been made. Now the formula x 2 Int P is the thesis. Theremaining steps of the proof are shown below.)P � Q by TOPS 1:15,Z2;then Z4:Cl(P) � Cl(Q) by TOPS 1:25;Q is losed by Z1,TOPS 1:30;then Cl(Q) = Q by PRE TOPC:52;then Cl(Q) � Q by Z4;then Q � (Cl(P)) by TOPS 1:15;then Q � (Cl(P)) by TOPS 1:10;then Q � Int P by TOPS 1:42;hene thesis by Z3,BOOLE:5;end;(See �le - example No.11.)The �rst two steps of the proof may be replaes by the following existential assump-tion: given Q suh that Z1: Q is open and Z2: Q � P and Z3: x 2 Q;The proof then assumes the form as in the example No.10 in the �le art.lst. Otherases of existential assumptions are given in the examples Nos.25, 26, 27, 28 from the �leart.lst.Remark: The onditions given in the existential assumption annot be reorded in theform of an assumption, that is by the word assume. Hene the following reording isinorret:given Q; assume that Z1: Q is open and Z2: Q � P and Z3: x 2 Q;The exerise in the annex { Z13.lst { shows the onsequenes of suh an inorretassumption.Likewise, the statement of hoie:onsider Q suh that Z1: Q is open and Z2: Q � P and Z3: x 2 Q;annot be reorded thus:onsider Q; assume that Z1: Q is open and Z2: Q � P and Z3: x 2 Q;(See annex - Z12.lst.)IV.3. Other Mizar onstrutionsIV.3.1. ITERATIVE EQUALITYWe shall now disuss the Mizar onstrution alled iterative equality. It �nds appli-ation in proofs of sentenes whih are equality formulas. Those formulas must satisfyertain onditions, namely they annot ontain free variables. The variables ourring insuh formulas must be �xed. They are �xed by generalization, exempli�ation, statementof hoie, statement of a hange of type, or loal de�nition of variable.58



While iterative equality does not introdue any new idea of the proofs.Let us examine the proof of the theorem (P) = P, whih will later be used toillustrate iterative equality.(P) = Pproof (P) = 
G n (P) by TOPS 1:5;then (P) = 
G n (
G n P) by TOPS 1:5;then (P) = 
G \ P by BOOLE:82;hene (P) = P by TOPS 1:3;end;Note the following fats whih are harateristi for the thesis and its proof:1. The sentene proved is an equality formula.2. The formula ouring in every step of the proof is an equality. Moreover the term onthe left side of the equality is the same in eah step ((P)).3. Every step of the reasoning, beginning with the seond one, refers to the preedingone (by linking).These fats suÆe for the proof of the thesis (P) = P to be arried out by aniterative equality, whih in the ase under onsideration has the form:(P) = 
G n (P) by TOPS 1:5.= 
G n (
G n P) by TOPS 1:5.= 
G \ P by BOOLE:82.= P by TOPS 1:3;What does a reording mean? For instane, the inferene.= 
G n (
G n P) by TOPS 1:5is another reording if the expressionthen (P) = 
G n (
G n P) by TOPS 1:5where then denotes referene to the preeding sentene, that is the sentene(P) = 
G n (P)It must be borne in mind that before the symbol .= after the justi�ation of thepreeding step of the reasoning, we do not put the semiolon ; . The semiolon is requiredat the end of the iterative equality, that is after the last expression in the form.= term justi�ationThe iterative equality given above is not the omplete proof of the thesis (P) = Pbeause it laks the onlusion terminating the proof. It suÆes to add:hene (P) = PThe word hene means that the sentene (P) = P has been justi�ed by referene tothe entire reasoning in the form of an iterative equality. Of ourse, the onlusion maybe reorded by means of thus, but then, in order to refer to iterative equality, we haveto pre�x the equality formula whih opens that equality by a label. We might also writethus before the iterative equality. Moreover, the onlusion (P) = P might be replaedby the formula thesis. The proof of the thesis (P) = P may aordingly have the form:proof(After the writing of the word proof the variables G and P have been �xed. Sine thesentene being proved is read by the system as a quanti�ed formula in the form: for G,P holds (P) = P, after the writing of the word proof the system automatially arriesout the generalization let G, P; and thus �xes the variables G and P. The variable G is�xed beause P has the type Subset of G.)(P) = 
G n (P) by TOPS 1:5.= 
G n (
G n P) by TOPS 1:5.= 
G \ P by BOOLE:82.= P by TOPS 1:3; 59



hene thesis;end;(See example No.33 in the �le art.lst.)Here is another version of the proof of the thesis under onsideration:proofA: (P) = 
G n (P) by TOPS 1:5;.= 
G n (
G n P) by TOPS 1:5.= 
G \ P by BOOLE:82.= P by TOPS 1:3;thus thesis by A;end;The above proof an be slightly abbreviated if the last two statements:.= P by TOPS 1:3;thus thesis by A;are replaed by a single statement in the following form:hene (P) = P by TOPS 1:3;or by the statementhene thesis by TOPS 1:3;The proof then takes on the form as in the example No.34 in the �le art.lst.The various steps of the reasoning in our iterative equality had a straightforwardjusti�ation (by by). In an iterative equality there may also be justi�ations by shema,but not by proof. In the simplest ase, when a given step of the reasoning is self-evidentto CHECKER, the justi�ation of that step may be empty.The sentene (P) = P an be proved by iterative equality by �xing the variables Gand P through the statement of hoie. In suh a ase the words proof and end shouldnot be written. We then may have:onsider G, P;(P) = 
G n (P) by TOPS 1:5.= 
G n (
G n P) by TOPS 1:5.= 
G \ P by BOOLE:82.= P by TOPS 1:3;The variables G and P �xed in this way make it possible to use the sentene provedonly for suh variables as �xed here, that is for P and G (see example No.35). Suha way of proving is thus not pratial. If the variables are not �xed, then errors willbe reported as in the example Z11.lst in the annex. The error No.62 states that freevariables are not allowed in the iterative equality, and the error No.140, that there is anunknown variable.Iterative equality an be illustrating as below.If t1, t2, ... ,tn, tn+1 are orresponding terms then the reasoningt1 = t2 & t2 = t3 & ... & tn = tn+1 straightforward-justi�ation hene t1 = tn+1;may be equivalently replaed by another reasoning, namely the iterative equality in theform: t1 = t2 straightforward-justi�ation.= t3 straightforward-justi�ation.....................................= tn straightforward-justi�ation.= tn+1 straightforward-justi�ation ;
60



EXAMPLEThe theoremInt(Int P) = Int Pan be proved as belowproofInt P = (Cl (P)) by TOPS 1:42;then Int(Int P) = (Cl (((Cl (P))))) &(Cl (((Cl (P))))) = (Cl (Cl (P))) &(Cl (Cl (P))) = (Cl (P)) by TOPS 1:10,TOPS 1:42,TOPS 1:26;hene Int(Int P) = Int P by TOPS 1:42;end;(See example No.31 in the �le art.lst.)or by referene to iterative equality:proof Int P = (Cl (P)) by TOPS 1:42;then Int(Int P) = (Cl (((Cl (P))))) by TOPS 1:42.= (Cl (Cl (P))) by TOPS 1:10.= (Cl (P)) by TOPS 1:26;hene thesis by TOPS 1:42;end;The next example in the �le art.lst inludes a proof of the sentene Fr P = Fr(P) with the use of iterative equality.IV.3.2. DIFFUSE STATEMENTIt is sometimes so that in the proof of a ertain thesis it is onvenient to justify (an)auxiliary sentene(s). If that sentene annot be justi�ed straightforwardly (by by) or byshema (by from), then we have to arry out a proof (i.e., a ertain reasoning beginningafter the word proof and onluded by the word end). Then we will get nested proofs.Hene the proof may have lesser larity. But there is a ertain Mizar onstrution whihis appliable in the situation desribed above. We mean the onstrution in the form:now reasoning end;The various steps in the reasoning are formed on the same priniple as the steps ofthe proof. The appliation of this new onstrution in proofs will be illustrated by anexample. Let us onsider the thesisF is losed implies meet F is losedIt is a thesis in the form � implies �, where� is the formula F is losed ,� is the formula meet F is losed .Moreover, let will be the formula F 6= ; .This thesis be proved neither by by nor by shema. Hene a proof must be arriedout. Sine the formula in the form( implies �) & (not  implies �) implies �is a tautology it is onvenient to prove in the proof two auxiliary sentenes in the form implies � and not  implies �In the proof these sentenes are labelled T and K1, respetively.Here is the proof of the sentene:(�) F is losed implies meet F is losedproof assume F is losed;then A: COMPLEMENT(F) is open by TOPS 2:16;61



T: F 6= ; implies meet F is losedproof assume F 6= ;;then union COMPLEMENT(F) is open by TOPS 2:26;hene meet F is losed by TOPS 1:29,A;end;F = ; implies meet F is losedproof assume F = ;;then meet F = ; by SETFAM 1:2;then meet F = ;(G) by PRE TOPC:11;hene meet F is losed by TOPS 1:22;end;hene thesis by T;end;In this proof the formula meet F is losedis denoted by the word thesis.(See example No.37 in �le art.lst.)Remark:The formulas in the form:� and ( implies �) & (not  implies �)do not have one and the same semanti orrelate. Hene the skeleton of the proof of asentene in the form �annot be subsumed under the skeleton of the proof for a onjuntion as in the ase ofthe sentene ( implies � ) & (not  implies �).We shall now prove the same thesis in a similar way (the proof will also onsist injustifying the sentenes  implies � and not  implies �) but the reording of thereasoning will be di�erent.Here is the thesis: F is losed implies meet F is losedproof assume F is losed;then A: COMPLEMENT(F) is open by TOPS 2:16;We shall prove  implies � but that sentene will not be written openly. We shall arryout the reasoning resulting in its justi�ation. In Mizar suh a onstrution begins withthe word now and ends in the expression end; .T1: now(The word now is followed neither by the semiolon nor by the word proof. Sine thesentene being proved is an impliation its anteedent is assumed.)assume F 6= ;;(Below there are further steps of the reasoning leading to the justi�ation of the thesis,whih at this point is the formula �)then union COMPLEMENT(F) is open by TOPS 2:26;hene meet F is losed by TOPS 1:29,A;end;The above reasoning has proved the sentene  implies �.62



In order to be able to refer to it one may, as has been done, plae a label beforenow. After the reasoning now ... end; linking is allowed.The further proof of the thesis may be as follows:now assume F = ;;then meet F = ; by SETFAM 1:2;then meet F = ;(G) by PRE TOPC:11;hene meet F is losed by TOPS 1:22;end;hene meet F is losed by T1;end;(In the justi�ation of the onlusion there ourred the label T1 of the previously provedsentene  implies �.)The above proof is shown in the example No. 38 in the annex.Sine before the word now we do not write the thesis to be proved by that on-strution the onstrution in the formnow reasoning end;has been alled di�use statement.Remark:1. The thesis proved by di�use statement is read by analysing the skeleton of that reason-ing. The priniples of skeletoning in the onstrution now ... are the same as in proofs.The words now and end in a sense replae the words proof and end, respetively.2. The formula thesis in di�use statement denotes the thesis of the immediate externalproof. The use of the formula thesis is allowed throughout di�use statement on theondition that suh reasoning is ontained in a ertain proof (thesis may be used onlywithin a proof).3. If we pre�x now by a label, then the referene to that label means referene to thethesis proved in di�use reasoning opening with the word now preeded by a given label.4. Linking is allowed after di�use statement.5. It is not allowed to write then, thus, hene before now.6. Every reasoning whih begins with now must end in end.EXAMPLEThe sentene in the form � or � implies is to be proved. We shall show what the proof of that sentene with the appliation of adi�use statement might be. Sine the formula(� implies ) & (� implies ) implies (� or � implies )is a tautology it is worth while making use of the auxiliary sentenes� implies  and � implies in the proof. Thus the proof may be as follows:proof ......assume P: � or �;(Now  is the thesis.)......A: now......assume �;...... 63



thus ;......end;......now ......assume �;......thus ;......end;hene  by A,P;......end;Conlusion in the various reasonings may be replaed by thesis. In di�use statementsthesis would mean  as does thesis at the end of the proof.EXAMPLEWhen proving a sentene in the form� i� �it is sometimes onvenient to avail oneself of the fat that the formula(not � implies not �) implies ((not � implies not �) implies (� i� �))is a tautology. In di�use statement one an prove two auxiliary sentenes in the formnot � implies not �not � implies not �As an example we may use the proof of the theorem CONNSP 1:11 whih is:G is onneted i� for A, B being Subset of G st 
G = A [ B & A 6= ;G &B 6= ; G & A is losed & B is losed holds A \ B 6= ;GIn suh a ase� is the formula G is onneted� is the formula for A, B being Subset t of G st 
G = A [ B& A 6= ;G & B 6= ;G & A is losed & B is losedholds A \ B 6= ;Gnot � is the formula not G is onnetednot � is the formula ex A, B being Subset of G st
G = A [ B & A 6= ;G & B 6= ;G &A is losed & B is losed & A \ B = ;GIn the �rst di�use statement we shall prove the sentenenot � implies not �and the seond, the sentene not � implies not �Here is the form of suh a proof:proofT: now given A, B being Subset of G suh thatZ1: 
G = A [ B andZ2: A 6= ;G & B 6= ;G andZ3: A is losed & B is losed & A \ B = ;G;......thus not G is onneted by ... ;64



end;now assume not G is onneted;......thus ex A, B being Subset of G st 
G = A [ B & A 6= ;G &B 6= ;G & A is losed & B is losed & A \ B = ;G by ... ;end;hene thesis by T;end;The omplete proof is given in the example No. 25 in the �le art.lst.Other examples of di�use statements are to be found under Nos. 26, 27, 28, 29 in the�le art.lst.IV.3.3. STATEMENT OF A CHANGE OF TYPEA hange of the type of the objet under onsideration is sometimes neessary inproofs. This is due, amount other things, to the fat that ertain theorems are provedonly for objets of a de�nite type. For instane in artiles pertaining to the topologialspae there are theorems, for instane, on points of that spae.We shall write the proof of the senteneP � Cl PIt will be a proof by de�nitional expansion.reserve G for TopSpae, x for Any, P, Q, B for Subset of G;P � Cl Pproof let x; assume x: x 2 P;(Now the formula x 2 Cl P is the thesis.)Should we prove the sentene(�) for B being Subset of G st B is losed holdsA � B implies p 2 Bwe ould obtain p 2 Cl P from the theorem PRE TOPC:45. But if that theorem is to beapplied the indiator of x, whih has the type Any, must be treated as a point of thetopologial spae G, that is as an objet whose type is Point of G.To do so we shall avail ourselves of the Mizar onstrution in the form:reonsider list{of{hanges{of{type as type of justi�ation ;By using this onstrution in the proof under onsideration we may write:reonsider t = x as Point of G by TOPS 1:1,x;whih means: let us onsider x as a point of the topologial spae G(where t is any identi�er).Remark: In the equalization t = x the identi�er of the objet whose type is being hangedmust be on the right side of the equality. On the left side there may be any identi�er,whih need not be drawn from the list in the reservation of variables.The statemant of a hange of type { as the onstrution reonsider ... is alled{ results in the fat that in the further part of the present level of reasoning (the levelat whih the onstant has been introdued) the type of the identi�er of x, if not givenexpliitly, will be Point of G even though in the reservation the identi�er of x wasreserved for the type Any. Of ourse, the hange of type must be properly justi�ed. Inour ase we have to refer to the theorem TOPS 1:1, whih is:x 2 P implies x is Point of G65



and to the assumption, that is the formula x 2 P.The next step in the present proof onsists in the justi�ation of the sentene marked(�). Then we have only to write the onlusion of the main proof. Here is the ompletionof the main proof:for B being Subset of G st B is losed holds P � B implies t 2 Bproof let Q; assume Q is losed; assume P � Q;hene t 2 Q by x,BOOLE:11;end;hene x 2 Cl P by PRE TOPC:45;end;(See example No. 14 in the �le art.lst.)The statement of a hange of type in the proof under onsideration may be reordedotherwise than in the form of equalization.If we want to hange the type of the identi�er of x, then that fat may be reordedthus: reonsider x as Point of G by TOPS 1:1, x;We have aordingly to hange, in the previous version of the proof, the identi�er of t inall its ourrenes into the identi�er of x. The proof then takes on the form:P � Cl Pprooflet x; assume x: x 2 P;reonsider x as Point of G by TOPS 1:1, x;for B being Subset of G st B is losed holds P � B implies x 2 Bprooflet Q; assume Q is losed; assume P � Q;hene x 2 Q by x,BOOLE:11;end;hene thesis by PRE TOPC:45;end;In the last statement thesis ould not have been replaed by x 2 Cl P beause thatsentenes says nothing about x from the generalization, but refers to x from reonsider(reonsider has overridden the generalization).Example No. 13 also ontains a statement of a hange of type.The onstant introdued by a statement of a hange of type may be overridden bygeneralization, statement of hoie, another statement of a hange of type, exempli�a-tion, existential assumption, and loal de�nition of variable.The list of hanges of type may have the form of several equalizations (or terms),whih in suh a ase must be separated by ommas from one another.
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