
INTRODUCTIONThe present text in
ludes the des
ription of the basi
 
onstru
tions in the systemPC Mizar, but the des
ription is not 
omplete. The text 
onsists of four 
hapters andthe annex 
ontaining a number of examples.Chapter I dis
usses terminologi
al issues and the symbolism used. Chapter II de-s
ribes the fundamental 
onstru
tions in Mizar, namely arti
le and dire
tives. Identi�ers,reserved words and symbols, and numerals are dis
ussed, too. Chapter III is 
on
ernedwith formulas, and Chapter IV, with proofs of theorems.The text is mainly 
on
erned with the synta
ti
s of Mizar. Elements of seman-ti
s, indispensable for the explanation of 
ertain rules of proofs, are dis
ussed in III.7"Semanti
 
orrelates".The text in
ludes a number of examples (mainly from general topology), to be foundboth in the annex and in the main text. This should fa
ilitate one both to learn Mizarand independently to write arti
les in that language.The author is indebted to Dr A.Trybule
 and to G.Ban
erek for valuable suggestionsand 
omments, very helpful in writing of the present text.PC Mizar system is implemented by A.Trybule
 and Cz. Byli�nski. Andrzej Trybule
is the author of the Mizar language.
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I. CONVENTIONSEvery Mizar arti
le is a sequen
e 
onsisting of ASCII symbols (ASCII: a �xed 
odeof signs arranged in a 
ertain order) other than 
ontrol signs, the sign No. 127 and No.255. Fragments of Mizar arti
les presented in this text will, however, in
lude signs notrepresented in the ASCII 
ode (su
h as F, G, H). Those signs are used in order to in
reasethe legibility of the text.The table below lists the symbols not allowed in a Mizar arti
le, whi
h will be usedin the present paper, and their analogous in the standard ASCII.Moreover the text in
ludes ins
riptions of the form:list{...whi
h will be termed lists, as well as other ins
riptions 
onsisting of words linked by thehyphen "{", e.g., segment{of{quali�ed{variables,symbol{of{fun
tor.Hyphenation is intended to indi
ate that the words thus liked together form a 
ertainwhole.Further, 
ertain words will be written in bold type. They will be words reserved forMizar, that is su
h whose meanings are rigorously determined by de�nition in the Mizarlanguage. That typographi
al distin
tion is to draw the Reader's attention to then, andthus more easily to remember at least some of them. Note that the list of all reservedwords and symbols will be found in the present text.Symbol in this book Representation in ASCIIF FG GH H� 
=
 `[ U
 [234℄; [237℄2 [238℄\ [239℄� [243℄6= <>The following symbolism has been adopted:G { topologi
al spa
e,H { subspa
e of a topologi
al spa
e G,F { family of subsets of a topologi
al spa
e G,A, B, G, P, Q { subsets of a topologi
al spa
e G,X, Y, M, N { sets,p, q { points of a topologi
al spa
e G,k, l, n { natural numbers,x { arbitrary obje
ts. 2



II. ARTICLE AND DIRECTIVESA �le with a Mizar text is termed a Mizar arti
le. The name of the �le may 
onsistof not more than eight signs: letters, �gures, unders
orings ( ), and the sign ', and maybe neither a numeral nor a reserved Mizar word. Moreover su
h a �le must have theextension .miz.Here are some examples of names of a �le: W1.miz, '' '.miz, x.miz. In viewof the proof 
larity the use as the name of a �le of the ins
ription '' ' or any otherequally little legible ins
ription is not re
ommended. A Mizar arti
le 
onsist of two parts:environment dire
tives and the sequen
e of se
tions, whi
h must be separated from oneanother by the word begin. The environment dire
tives must be pre
eded by the wordenviron, whi
h opens every Mizar arti
le.Mizar arti
leenvironEnvironment dire
tivesSe
tionbeginText properSe
tionbeginText proper...The text proper may in
lude, among other things, proofs of theorems, de�nitions with
onditions of 
orre
tness, proofs of s
hemata. In order to write a 
orre
t non-empty textproper one needs the environment whi
h for the person who writes that arti
le 
an beorganized by environment dire
tives. They in
lude items of information indispensablefor the 
orre
t reading by Mizar of the text proper, and are the basis for proofs. To putit more rigorously, environment dire
tives refer to a data base and thus indi
ate whi
helements in the existing library are used in a given arti
le.The environment dire
tives in
lude:vo
abulary � ;signature � ;de�nitions 
 ;theorems Æ ;s
hemes " ;where� { the name of a vo
abulary �le (e.g., TOPCON, ANAL),� { the name of a signature �le (e.g., TOPS 1, PRE TOPC, SUBSET 1),
 { the name of a de�nition �le (e.g., TARSKI, BOOLE),Æ { the name of a theorem �le (e.g., CONNSP 1, REAL 1)," { the name of a s
hema �le (e.g., NAT 1).3



II.1. Vo
abulary dire
tiveThe dire
tive vo
abulary � ;is termed vo
abulary dire
tive, and the remaining ones, data base dire
tives. Every Mizararti
le 
onsist of a 
ertain numbers of symbols. Some of then are introdu
ed automat-i
ally (hidden symbols), while the remaining ones are introdu
ed by referen
e to vo
ab-ulary dire
tives. Hen
e vo
abularies are needed. A vo
abulary 
onsist of a �le with theextension .vo
. That �le 
ontains the list of symbols with their quali�ers and indi
atesthe biding strength of the symbols of fun
tors. For instan
e, the �le TOPCON.vo
, whi
hforms the vo
abulary, is as follows: TOPCON.vo
OCl 128OFr 128Oskl 128U
arrierUtopologyGTopStru
tRis openRis 
losedRis open 
losedRare separatedRis 
ontinuousRare joinedRis a 
omponent ofRis a 
over ofMTopSpa
eMPointMSubSpa
eMmapIn its leftmost 
olumn it 
ontains quali�ers, and beginning with the next 
olumn to theright until the spa
e it 
ontains symbols. Quali�ers in a sense 
hara
terize symbols. Forinstan
e the quali�er O indi
ates that the symbol next to it is a symbol of a fun
tor, whilethe quali�er R indi
ates that the symbol next to its is a symbol of a predi
ate. Thus thesymbols Cl, Fr, sklare symbols of fun
tors, while the symbolsis open, is 
losed, is open 
losed, are separated, is 
ontinuous,are joined, is a 
omponent of, is a 
over ofare symbols of predi
ates.The symbols Cl, Fr, skl denote, respe
tively the operations of: 
losure, boundaryof a subset of a topologi
al spa
e, and 
omponent of a point of a topologi
al spa
e.The symbols is open, is 
losed, is open 
losed are used to denote predi
atesde�ned for subsets of a topologi
al spa
e and indi
ating, respe
tively, that is given set isopen, 
losed, open-
losed. The symbol is 
ontinuous is used to denote the property ofbeing a 
ontinuous mapping of topologi
al spa
es. The symbol are separated denotesthe relationship between subsets of a topologi
al spa
e whi
h says that they belong toone and the same 
omponent. The symbol is a 
omponent of denotes two predi
ates:one says that a subset of a topologi
al spa
e is the maximal 
ompa
t set (
omponent) in4



that topologi
al spa
e, and the other says that it is a 
omponent in another subset of atopologi
al spa
e. The symbol is a 
over of denotes the property of being a 
over of atopologi
al spa
e.Other quali�ers o

urring in the �le TOPCON.vo
 are:G { quali�er of the symbol of stru
ture,U { quali�er of the symbol of sele
tor,M { quali�er of the symbol of mode.The symbol TopStru
t is used to denote the stru
ture of a topologi
al spa
e, andthe symbols topology and 
arrier denote, respe
tively, the topology and the 
arrier ofa topologi
al spa
e. The symbols of modes, i.e., the ins
riptions TopSpa
e, SubSpa
e,Point, map, are used to denote, respe
tively, topologi
al spa
e, topologi
al subspa
e,point of a topologi
al spa
e, and a mapping between topologi
al spa
e.Quali�ers of fun
tor bra
kets may also o

ur:K { left fun
tor bra
ket,L { right fun
tor bra
ket.The identi�er of s
hema is not introdu
ed into vo
abulary.Here is the �le ANAL.vo
 whi
h 
ontains the symbols of fun
tor bra
kets used inde�ning the absolute value: ANAL.vo
K j.L .jOsgnThe ins
riptions: < �, � > , <:, :>are other examples of fun
tor bra
kets. These are used to denote, respe
tively, �nitesequen
es and fun
tions whi
h are pairs of fun
tions. There is a pair of fun
tor bra
ketswhose symbols are in the �le HIDDEN.vo
. That �le is joined automati
ally to everyarti
le.Moreover, the vo
abulary �le indi
ates the binding strength or priority. This appliesonly to the symbols of fun
tors. The binding strength of a given fun
tor is indi
ated bythe number next to its symbol.Remark: The number 
hara
terizing the priority of a given fun
tor must be separatedfrom the symbol of that fun
tor by at least one spa
e.There 
an be no spa
e between the quali�er and its 
orresponding vo
abulary symbol.Self-evidently, the symbol of a fun
tor binds more strongly if its number is greater.The priority of a given fun
tor may be 
hara
terized by any natural number in theinterval <0;255>.All symbols of fun
tors given in the vo
abulary Top
on have the priority 128. Somesymbols of fun
tors have no number 
hara
terizing priority, but this is not say that agiven symbol has no priority. That priority is given and amounts to 64. This is thestandard priority.For instan
e, the binding for
e of the symbol of the fun
tor sgn to be found in thevo
abulary Anal presented above is not given.Remark: The binding for
e of the symbols of predi
ates, whi
h always bind more weaklythan do the symbols of fun
tors, is not given.The 
on
ept of binding for
e of the symbols of fun
tors is linked to the sequen
ein whi
h the operations in a given formula are performed. Consider, for instan
e, twoformulas: 5



Cl P
 and 
G \ Q.Sin
e the binding for
e of the symbol 
 is greater (it amounts to 150) than that of thesymbol Cl (128), the ins
ription Cl P
 is interpreted as the 
losure of the 
omplement ofthe set P, that is, in the same way as the ins
ription Cl (P
). It is likewise in the se
ond
ase. The priority of the symbol 
 is 128, and that of them symbol \ is the standard one,i.e., 64. Hen
e the ins
ription 
G \ Q is interpreted in the same was as the ins
ription(
G) \ Q. The a
knowledge of the priority of at least some symbols may be used inarti
les in order to avoid super
uous bra
kets.II.2. Identi�ersIns
ription whi
h in
lude: ASCII 
ontrol signs (i.e., signs whi
h have ordinal num-bers from 0 to 31), spa
e (sign with the number 32), and the signs with the numbers 127and 255, 
annot be vo
abulary symbols.Mizar arti
les in
lude ins
ription termed identi�ers. What sort of an ins
ription onidenti�er is? Now identi�er is any non-empty sequen
e of 
ertain signs. Those signsmay be letters, �gures, the symbol of unders
oring ( ), and apostrophe ('), but notreserved words, not reserved symbols of Mizar nor numerals (see II.5.). The length of anins
ription whi
h is an identi�er should not ex
eed sixteen signs be
ause otherwise su
han ins
ription whi
h is an identi�er may be a vo
abulary symbol, but not 
onversely.Identi�ers are used to denote:a) private fun
tors and predi
ates,b) variables,
) labels.Hen
e we may speak about identi�ers of variables, identi�ers of private fun
tors andpredi
ates (if it is not a private fun
tor or predi
ate then we speak about a symbol), et
.By way of example we shall spe
ify the identi�ers in the �le Z1.lst in
luded in theannex. They are as follows:� identi�ers of variables:T, P,� identi�ers of labels:Z1, Z2.The identi�ers of labels are examples of referen
es. Referen
es make it possible torefer to senten
es whi
h have been earlier assumed or substantiated.lo
al { identi�ers of labelsreferen
es ( numberlibrary { �le symbol : ( def numberExamples of lo
al referen
es have been given above.Library referen
es are exempli�ed by the ins
riptions:TOPS 1:28, BOOLE:1, TARSKI:4, REAL 1:5, SUBSET 1:14, PRE TOPC:34.A library referen
e results in the referen
e to a de�nite theorem to be found in theMizar library. For instan
e, the library referen
e TOPS 1:28 results in the referen
es tothe theorem No.28 re
orded in the �le TOPS 1.abs. On the 
ontrary, lo
al referen
esapply to senten
es in a given arti
le and unlike library referen
es may be freely assignedto senten
es.Senten
es are assigned labels so that one 
an refer to them in a later part of thetext. As between signature dire
tives (see III.1) the phenomenon of overridding mayhold between identi�ers of labels. 6



DISCRIMINANTS OF IDENTIFIERS OF NAME OF FILES:. An identi�er whi
h is a name of a �le 
onsists maximally of eight signs.. An identi�er may be formed of:letters, �gures, the sign of unders
oring ( ) and apostrophe (').. In an identi�er 
apital letters and lower-
ase letters are treated as identi
al. Forinstan
e, the ins
riptions row, Row, and ROW are one and the same name of a �le.The adopted 
onvention is that names of �les are always in 
apital letter.An ins
ription whi
h is an identi�er has a 
lose 
onne
tion with those vo
abulary�les whi
h have been used in the environment. The point is that the symbols in those�les 
annot be identi�ers. Should we disregard that errors would be reported as in theexample Z2.lst in the annex. They resulted from the use of the ins
ription Fr as anidenti�er of a variable. Note that Fr is the symbol of a fun
tor in
luded in the vo
abularyTop
on, and that vo
abulary is joined to the environment. Hen
e, in a

ordan
e withwhat has been said earlier, it was not allowed to use the ins
ription Fr as an identi�erof a variable.Remark: The person who writes has large freedom in 
onstru
ting identi�ers, and thisis why attention is drawn to the fa
t that the ins
riptions whi
h fun
tion as identi�ersshould be as legible as possible be
ause that 
ontributes to both the 
larity of that arti
leand its aestheti
 appearan
e.II.3. Hidden vo
abularyHIDDEN.vo
MAnyMElementMDOMAINMSubsetMSET DOMAINMSUBDOMAINMRealMNatK[:L:℄Obool 128OREAL 255ONAT 255O+ 32O�R<>R2R�R�R<R>The symbols of fun
tors + and � are used to de�ne, respe
tively, the addition andthe multipli
ation of terms, whose type is expanded to the type Element of REAL. The7



symbols 2 and � are used to denote, respe
tively, the relation of membership and therelation of order. The 
orre
t use of the predi
ate symbolized by 2 
onsist in that thetype of its left argument must be expandable to the type Any, and that of the rightargument, to the type set. The predi
ate symbolized by � is de�ned to obje
ts whosetype is expandable to the type Element of REAL. The ins
ription bool is used as thesymbol of the fun
tor whi
h denotes the family of all subsets of a 
ertain set. The symbolsof the fun
tor bra
kets to be found in the Hidden vo
abulary are adopted to denote ofCartesian produ
t of sets. The remaining symbols in that vo
abulary will be dis
ussedin the se
tion dedi
ated to types.II.4. Data base dire
tivesThe signature dire
tive will be dis
ussed �rst. The dire
tivesignature � ;joins automati
ally the �les: �.sgn, �.nfr and �.typ. They 
ontain information aboutthe way in whi
h the symbols introdu
ed in the vo
abularies may be used. For instan
e,the �le �.sgn lists the types of arguments of the obje
ts de�ned and patterns of de�-nitions. The �le �.nfr 
ontains the des
riptions of the formats of the obje
ts de�ned(fun
tors, predi
ates, modes). Formats for s
hemata are not given. A format o�ers in-formation about the number of arguments. One and the same symbol may have severalformats. For instan
e, the symbol ; is used in the arti
le BOOLE in the format of 0{0arguments to denote the empty set (zero left arguments and zero right arguments { seetable in III.1.), while in the arti
le PRE TOPC in the format of 0{1 arguments, to denotethe least element of the family of open sets of a given topologi
al spa
e (zero left argu-ments and one right arguments { see table in II.1.). In both 
ases the priority is the samebe
ause it pertains to the symbol of a fun
tor. The 
ontent �.typ 
ontains the types ofthe result of a fun
tor and the type of the expansion of a mode.For instan
e, the joining to the environment of the dire
tivesignature BOOL;results in the symbol \ (to be found in the vo
abulary Boole { �le BOOLE.vo
) being
orre
tly usable for denoting the two-argument operation of interse
tion, where the leftand right argument are sets. Moreover, the results of the operation \ is a set, too.The 
ontext in whi
h the symbol \ is interpreted here follows from the de�nition ofinterse
tion, given in the arti
le Boole (where X, Y are identi�ers of sets).de�nitionlet X,Y;fun
 X \ Y {> set meansx 2 it i� x 2 X & x 2 Y;end;Let use analyse the part of the de�nition X \ Y {> set. It follows from X \ Y thatthe operation \ is a two-argument one (the sets X and Y being the arguments). Thesymbol set after the symbol {> informs one that the results of the operation \ is a set.The dire
tive signature BOOL;makes a

essible all de�nitions (whi
h are not everridden) to be found in the arti
leBoole. This applies, among other things, to the de�nition of the operation of interse
tiondenoted by the symbol \ (number of arguments, types of arguments, type of result ofthe operation).But the operation denoted by the symbol \ may be also interpreted otherwise. Thearti
le PRE TOPC in
ludes a rede�nition of the symbol \:de�nition8



let G, P, Q;rede�nefun
 P \ Q {> Subset of G;end;where P, Q are variable identi�ers of subsets of the topologi
al spa
e G.If the dire
tive signature PRE TOPC;is joined to the environment, then the symbol \ will be used to denote the two-argumentoperation of interse
tion where both the left and the right argument is a subset of thetopologi
al spa
e G. Moreover, the result of the operation \ is also a subset of thetopologi
al spa
e G.The appli
ation of a signature dire
tive should in that 
ase be in
luded in the envi-ronment?The operations denoted by the symbol 
, ' , \, [, n for subsets of the topologi
alspa
e G have been de�ned in the arti
le PRE TOPC. In the 
ase of the �rst two symbols wehave to do with de�nitions, in the 
ase of the remaining ones, with rede�nitions. Sin
ethe identi�ers of variables whi
h are arguments of the operations denoted by the symbolsindi
ated above are, in the exer
ise, reserved for subsets of the topologi
al spa
e G, thedire
tive signature PRE TOPC;should be joined to the environment. There will be also the information about the modeTopSpa
e. The mode with the symbol Subset is to be found in the vo
abulary HID-DEN, automati
ally joined to every arti
le, and hen
e 
annot o

ur among environmentdire
tives. Moreover, the information about the use of the symbols to be found there areautomati
ally used by the pro
essor of PC Mizar, that is without the indi
ation of the
orresponding signature dire
tivesThe examples Z4.lst and Z5.lst in the annex illustrate errors due to a la
k of theproper signature dire
tive.Remark: The order in whi
h signature dire
tives are spe
i�ed may be importan
e. Su
his the 
ase in the rede�nitions of one and the same symbol. The valid rede�nition isalways that of the last signature spe
i�ed in the environment. If that order is erroneous,then the obje
ts de�ned in a given will be everridden.The example below shows the overridding of the operation of interse
tion de�ned insignature PRE TOPC; . Pla
es where the error No. 103 is reported are indi
ated.environvo
abulary SUB OP;vo
abulary BOOLE;vo
abulary TOPCON;signature PRE TOPC;signature BOOLE;theorems BOOLE;theorems TOPS 1;beginreserve G for TopSpa
e,P,Q for Subset of G;(P \ Q)
 = P
 [ Q
*103proof(P \ Q)
 = 
G n (P \ Q) by TOPS 1:5*103 9



.= (
G n P) [ (
G n Q) by BOOLE:86.= P
 [ (
G n Q) by TOPS 1:5.= P
 [ Q
 by TOPS 1:5;hen
e thesis;end;(Consider the example Z6 in the annex.)Sin
e the last signature dire
tive is the dire
tive signature BOOLE;, the operationdenoted by the symbol \ has been used in the sense de�ned in the arti
le BOOLE (thesubset of a topologi
al spa
e are sets, too). In a

ordan
e with that de�nition the resultsof the operation of interse
tion is a set.Hen
e the interse
tion P \ Q is a set. But the 
losure operation is de�ned only forsubsets of a �xed set. That is why the expression (P \ Q)
 is followed by the indi
ationof an error.The overridding of the dire
tive signature PRE TOPC; 
an be avoided if the orderof the signatures o

urring in the example under 
onsideration is 
hanges (as has beendone in the example Z7.lst).Proofs are sometimes 
arried out by the method of de�nitional expansion. In su
ha 
ase the dire
tive. de�nitions 
 ;should be joined to the environment.Proving by de�nitional expansion will be illustrated by an example. The proof ofthe theorem is given below:For any sets X,Y we have: X \ Y � Y.The proof (not in the Mizar notation) is as follows:Let a be an arbitrary but �xed and su
h that a 2 X \ Y.1) a 2 X \ Y (assumption of the proof);2) a 2 X ^ a 2 Y (1, de�nition of the interse
tion of sets);3) a 2 Y (2, the law of the omission of 
onjun
tion).It follows from the arbitrariness of the 
hoi
e of a and the de�nitional expansionthat X � Y.X � Y , 8a (a 2 X ) a 2 Y) { de�nitional expansion of in
lusion.When proving in Mizar the above theorem by referen
e to de�nitional expansion oneshould join to the environment the dire
tivede�nitions TARSKI;be
ause in the arti
le TARSKI there is the de�nition of in
lusion whi
h is as follows:pred X � Y means x 2 X implies x 2 Y;And here is the rede�nition of the quality of sets, to be found in the arti
le BOOLE:pred X = Y means X � Y & Y � X;In example one in the �le art.lst the theorem has been proved in two ways. In both
ases use has been made of the de�nitional expansion of in
lusion and the de�nitionalexpansion of the equality of sets. That is why the environment dire
tives in
lude twode�nition dire
tives:de�nitions TARSKI; and de�nitions BOOLE;.The de�nition dire
tive de�nitions 
 ;automati
ally joins the �le 
.def, whi
h in
ludes the de�nitienses of the obje
ts de�ned(de�niens { the expression whi
h o

urs in a de�nition of a fun
tor, a predi
ate, a mode,a attribute after the word means). 10



The theorem dire
tive: theorems Æ ;allows one to make use of the theorems in �le Æ.miz. The writing of that dire
tive resultsin the automati
 joining of the �le Æ.the, whi
h in
ludes the 
ontents of the theoremsin a given arti
le.The dire
tive s
hemes " ;allows one, through the automati
 joining of the �le ".s
h, 
ontaining 
ontents of thes
hemata in the �le ".miz, to use the s
hemata in that �le.For instan
e, the indu
tion s
hema is to be found in the arti
le NAT 1. Hen
e, inorder to use it one has to join to the environment the dire
tive s
hemes NAT 1;, thatis, to insert it between the word environ and the word begin.If the text requires several vo
abularies one has to repeat the dire
tivevo
abulary name{of{�le ;with the 
orresponding names of vo
abulary �les. In the 
ase of the remaining dire
tivesone has to pro
eed analogi
ally.Remark: The repetition of a dire
tive with the same name of the �le yields an error.But it is not so if a dire
tive super
uous for a given arti
le is added, as in the exampleZ7.lst, where the dire
tive signature BOOLE; is super
uous.BRIEF DESCRIPTION OF THE ORGANIZATION OF THE MIZAR DATA BASEIn the main mizar dire
tory nMIZAR there are two subdire
tories:nDICT { intended for vo
abulary �les (�les with the extension .vo
),nPREL { intended for library �les formed by the program 
alled LIBRARIAN. Those�les are formed automati
ally and have the extensions :.sgn, .nfr, .typ, .def, .the, .s
h.They form the Data Base.The presen
e of those subdire
tories in the dis
 memory of the 
omputer is ne
essarybe
ause it is from them that the Mizar pro
essor draws information whi
h make it possibleto write Mizar arti
les. The subdire
tory nABSTR is often formed additionally.nABSTR { intended for library �les whi
h are obtained from mizar arti
les after theirspe
ial pro
essing. Files in that subdire
tory are termed abstra
ts and have theextension .abs. The abstra
ts 
ontain in their main part 
ontents of theoremand de�nitions, and s
hemata. They do not 
ontain proofs. The theorem inthe �le #.abs (where # stands for the name of a given arti
le) are numbered.Every theorem in the �le #.abs is pre
eded by a headline in the form::: # : number{of{theoremThe subdire
tory nABSTR plays only an auxiliary role for the user. When perusing the �lesin that subdire
tory one 
an learn what has already been proved in Mizar. Moreover, ifone wants, in the proof of a 
ertain senten
e, to refer to a theorem from a �le in the MainMizar Library, then one 
an read the name of that �le and the number of the theoremand refer to them in the proper pla
e. But it is not ne
essary for the subdire
tory nABSTRto be re
orded in the 
omputer memory. The Mizar pro
essor uses only the informationgiven in the �les from the subdire
tories nDICT and nPREL.
11



II.5. Words reserved for Mizar. Reserved symbols. NumeralsThe words reserved for Mizar are drawn from the English language. They are ins
rip-tions whose meanings are de�ned by the de�nition of the Mizar language. For instan
e,environ is a word reserved for Mizar. It opens every Mizar arti
le. That word mayo

ur in arti
le only on
e and only at the beginning. The use of environ in another
ontext yields an error. Other reserved words also have their pre
isely de�ned meanings.It words adding here there are also symbols reserved for Mizar, whose meanings,too, are �xed in advan
e. They in
lude:= & , ; : ( ) [ ℄ f g ->.= <> (# #)$1 $2 $3 $4 $5 $5 $6 $7 $8The numerals in
lude zero (0) and any �nite sequen
e of �gures not beginning withzero. The Mizar pro
essor makes it possible to use numerals in the interval <0;255>.For instan
e, the ins
riptions 00, 0103 are not numerals.The list of words reserved for Mizar:aggregate and antonymas asso
iativity assumeattr be beginbeing by 
an
eled
ase 
ases 
luster
oheren
e 
ompatibility 
onsider
onsisten
y 
ontradi
tion 
orre
tnessdef de�ne de�nitionde�nitions end environex exa
tly existen
efor from fun
given hen
e herebyholds if i�implies irre
exivity isit let meansmode non notnow of orotherwise over perpred pre�x proofprovided qua re
onsiderrede�ne re
exivity reserves
heme s
hemes sele
torset signature ststru
t su
h symmetrysynonym take thatthe then theoremtheorems thesis thusuniqueness vo
abulary where
12



III. TERMS AND FORMULASThe skill of 
onstru
ting senten
es in Mizar is a ne
essary 
ondition if one is to write
orre
tly a Mizar arti
le. This is why in the present 
hapter we shall dis
uss the basi
elements 
onne
ted with the Mizar senten
e. We mean terms and formulas. Let us beginwith terms. III.1. TermsThe set of terms is the least set whi
h satis�es the following 
onditions:a) variables and 
onstants are terms;b) if t1, ..., tp are terms and F is a symbol of a fun
tor of p arguments, then F(t1,...,tp)is a term.But in the Mizar language the 
on
ept of term is interpreted more broadly. Termsin Mizar are ins
riptions whi
h are listed below under given 
ategories.(1). IDENTIFIERS OF VARIABLES ARE TERMSFor instan
e, they may be su
h ins
riptions as: P, TS, q.(2). NUMERALS ARE TERMSFor instan
e: 2, 178, 77.(3). THE EXPRESSION IN THE FORM:list{of{leftside{arguments symbol{of{fun
tor list{of{rightside argumentsis a term.The fun
tor symbol must be in the vo
abulary. The ins
riptions in the vo
abulary are
alled symbols, and this is why, when speaking about symbols of fun
tors, predi
ates,et
., we shall mean symbols of those fun
tors predi
ates, et
., whi
h are to be found ina 
ertain vo
abulary.The number of arguments in the list of arguments (both leftside and rightside ones)may equal zero. Su
h is the 
ase of the fun
tor ;. Moreover there may be 
ases in whi
hthe list of the leftside arguments equals zero, or that of the rightside arguments equalszero. Examples will be given below.Consider the following symbols of fun
tors whi
h are used in arti
les pertaining totopologi
al spa
es: ;, [, \, `, Cl, Int, Frand other symbols not o

urring here. The table below shows the number of argumentsof those termsFun
tor Term Number of left- Number of right-symbol side arguments side arguments; ; 0 0; ;G 0 1[ P [ Q 1 1\ P \ Q 1 1
 P
 1 0Int Int P 0 1Cl Cl P 0 1Fr Fr Q 0 1FinUnion FinUnion(B,f) 0 2PLANE PLANE(A,B,C) 0 3All All(x,y,z,H) 0 4. o.(a,b) 1 2* D* 1 013



If the list of (both leftside and rightside) arguments 
onsists of at least two arguments,then su
h a list of arguments must be pla
ed in bra
kets ( and ), as has been done inthe 
orresponding terms in the table above.(4). EXPRESSION IN THE FORM:leftside{fun
tor{bra
ket non{zero{list{of{terms rightside{fun
tor{bra
ketare terms. A list{of{terms is a �nite sequen
e of terms separated by 
ommas.Examples:� Cartesian produ
t of sets:[:M1,M2:℄ , [:M1,M2,M3:℄ , [:M1,M2,M3,M4:℄� absolute value of numbers a and a - b:j.a.j, j.a - b.j� �nite sequen
es of the length one and two, respe
tively:< �k� > , < �k,l� >� fun
tion whi
h is a pair of fun
tions f and g:<:f,g:>These are not all fun
tor bra
kets, be
ause the author of an arti
le may introdu
ein the vo
abulary ever new symbols for them.Remark: Fun
tor bra
kets must be used in pairs. In every pair bra
kets of the samekind should o

ur.For instan
e, if in an expression the ins
ription [ is used as a leftside fun
tor bra
ket,then the ins
ription ℄ must be the rightside fun
tor bra
ket in that expression.A pair of fun
tor bra
kets between whi
h there is no term is not a term.Moreover there are bra
kets of two types whi
h may be treated as fun
tor of spe
ialkinds. They are: [, ℄ and f, gThey 
an be used to 
onstru
t terms of the following forms:[ list{of terms ℄, or f list{of{terms g.Examples:� ordered pairs, triples, and quadruples[x,y℄, [x,y,z℄, [x,y,z,v℄� singleton fxg, pair fx,yg and further �nite sets up to those of eight elements:fx1,x2,x3g,fx1,x2,x3,x4g,fx1,x2,x3,x4,x5g,fx1,x2,x3,x4,x5,x6g,fx1,x2,x3,x4,x5,x6,x7g,fx1,x2,x3,x4,x5,x6,x7,x8g.(5). AN INSCRIPTION IN THE FORMf term : formula gis a term. Su
h terms are 
alled Fr�nkel's operators. As an example we may quote thefollowing expression:fx : x � 8g,where x is an identi�er of a variable, reserved for the type Real.Formulas will be dis
ussed later (see the next se
tion).The types of the free variables o

urring in the term now under 
onsideration mustexpand to the type expanding to the type of the form Element of dDOMAINe. Theins
ription dDOMAINe denotes any obje
t of the type expanding to the type DOMAIN.14



In the 
ase of a Fr�nkel operator the types of the variables whi
h o

ur in it maybe given by writing out their type after the term. In su
h a 
ase the Fr�nkel operatorhas the form:f term where identi�ers{of{variables is type : formula gIf in a Fr�nkel operator there o

ur variables of more than one type, then the expressionbetween where and : may be repeated the 
orresponding number of times separated by
olon. The types given in su
h a formula refer to that formula only. For instan
e, if inthe 
onstru
tion reservation-of-variables the identi�er x were reserved for the type Realwhile in a Fr�nkel operator its type were 
hanged into Nat, then in the further part ofthe arti
le, in the formulas 
ontaining the identi�er x but su
h in whi
h its type wouldnot be indi
ated, it would have the type assigned to it in the reservation of variables,that is Real.As an example illustrating the Fr�nkel operator we may use Theorem 64 from theabstra
t TREES 1:p 2 T implies dT,p,T1
 = ft1 where t1 is Element ofT: not p is a proper prefix of t1g[fp^s where s is Element of T1: s=sgThe identi�er p has the type Finsequen
e, while the identi�ers T and T1 have thetype Tree.The symbols f g, [ ℄ are homonymous, whi
h is to say that their meaning variesa

ording to the 
ontext in whi
h they are used. For instan
e, the bra
kets f, g under (4)above were used to denote sets of n-tuples where n � 8, and under (5) the same bra
ketsare used to denote a Fr�nkel operator. The symbols [, ℄ are used to denote orderedpairs (triples, quadruples) as under (4) and as bra
kets in private predi
ates, e.g., P[x℄.The word set is homonymous, too. On the one hand, it is a type in Mizar (seeII.4.), on the other, it o

urs in the 
onstru
tions set ... = ... and set of ..., in whi
hit plays an entirely di�erent role.(6). AN EXPRESSION IN THE FORMidenti�er{of{fun
tor ( list{of{terms )is a term. Terms of this kinds are to be found, among other things, in de�nitions of lo
alfun
tors.Here are two de�nitions of lo
al fun
tors, in whi
h the identi�ers x, y, z have thetype Element of RATIONAL. The terms under 
onsideration are:MULT(set,set) and UZUP(set). fun
 MULT (set,set) =fx�y: x 2 $1 & y 2 $2 & 0 � x & 0 � yg [ fz: z <0g. fun
 UZUP (set) = f-x: not x 2 $1g(7). PARAMETERS OF A LOCAL DEFINITIONthat is the symbols:$1, $2, $3, $4, $5, $6, $7, $8are terms.Parameters of a lo
al de�nition may be used in lo
al de�nitions only.(8). it IS A TERMit may be used only in the de�nienses of fun
tors, where it stands for the value ofthe fun
tor, and in the de�nienses of modes, where it stands for that element of the modewhi
h is given as an example.The de�niens of a fun
tor is an expression whi
h in the de�nition of that fun
torfollows the word means. It is the same, mutatis mutandis, in the 
ase of the de�niens ofa mode. 15



The term it o

urs, for instan
e, in the de�nition of the fun
tor whi
h has thesymbol Int, as given below.de�nitionlet P, G;fun
 Int P {> Subset of G means it = (Cl (P
))
;end; (9). AN EXPRESSION IN THE FORMthe symbol{of{sele
tor of termis a term.The term in su
h a form is 
alled sele
tor term.The type of the term whi
h follows of must expand to a stru
ture in the de�nitionof whi
h there o

urs the symbol of sele
tor used in the expressionthe symbol{of{sele
tor of termIn the stru
tures of topologi
al spa
e, introdu
ed in the arti
le PRE TOPC, there o

urthe following symbols of sele
tors: 
arriertopologyExamples of terms: the topology of G, the 
arrier of G(10). AN EXPRESSION IN THE FORMthe symbol{of{sele
toris a term.Terms of this kind may o

ur only in patterns of stru
tures, and that only if thesymbol of sele
tor has been introdu
ed earlier just in that pattern. As an example wemay take the term the 
arriero

urring in the pattern of the stru
ture of topologi
al spa
e TopStru
t, presented below.� 
arrier {> DOMAIN, topology {> Subset Family of the 
arrier �(11). AN INSCRIPTION IN THE FORMsymbol{of{stru
ture � list{of{terms �is a term.Terms in that form are 
alled aggregates of stru
tures. Sin
e the symbols �, �have no representation of their own in the standard ASCII the symbols (#, #) have beenintrodu
ed and may be used alternately. Instead of � and � one may use, respe
tively,(# and #), but not � and #) or (# and �.As an example one 
an give a de�nite stru
ture (but not a pattern of a stru
ture)su
h as that below:TopStru
t � REAL, RealTop �In the above stru
ture it is REAL whi
h is the 
arrier. The 
onstant REAL expands tothe type DOMAIN, whi
h is ne
essary in view of the de�nition of the stru
ture TopStru
t.RealTop (topology) has the type Subset Family of REAL, whi
h is required by the def-inition of the stru
ture TopStru
t.(12). AN INSCRIPTION IN THE FORMterm qua typeis a term.It is a 
alled a quali�ed term.For instan
e, P qua Subset of the 
arrier of G.The identi�er P in the reservation is reserved for the type Subset of G, but in the termabove its type has been as it were expanded to the type Subset of the 
arrier of G.16



Remark: The word qua only expands a type, it 
annot narrow it down.(13). A TERMwhi
h is in the bra
kets ( and ) is also a term.Here are some examples with terms in bra
kets:Cl (P [ Q), Fr (P [ Q), (P n Q)
,(k + l), (n + l).Other examples will be given, among other things, when formulas are dis
ussed.III.2. TypesAn identi�er of a variable must have a type assigned to it.In a Mizar arti
le it is not allowed to use identi�ers of variables whose types areunknown. The type of a given identi�er may be �xed lo
ally, that is given in the pla
ewhere it o

urs, or �xed globally by reservation (see below). Some modes are hidden inthe Mizar language. The remaining ones must be identi�ed. In order to 
onstru
t a typewe must de�ne the appropriate mode. The symbol of a mode must be in
luded in thevo
abulary. Below we present types whi
h use symbols of modes from the vo
abularyHIDDEN (whi
h is automati
ally joined to every Mizar arti
le). Here they are:Any, set, Element of X, DOMAIN,Subset of D, SUBDOMAIN of D,Real, Nat.(where X has the type set).The use of these types does not require from the author of a Mizar arti
le thein
lusion in the environment of any vo
abulary or signature be
ause the signature andthe vo
abulary required are joined automati
ally.Remark: When one writes the types the important point is that their symbols be writtenpre
isely in the form in whi
h they are to be found in the vo
abulary. For instan
e, ifone wants to reserve the identi�er K for the type DOMAIN, then the reservation should bein the form: reserve K for DOMAIN;and not, for instan
e: reserve K for domain;Two examples more:One should write:Element of REAL and not Element of real,and likewiseElement of NAT and not Element of nat.The type Any is the widest type in Mizar, any other is expanded to it. The type setin its extension is equal to the type Any. The type DOMAIN ranges over non-empty sets,that is so-
alled domains; the type SUBDOMAIN of D, over subdomains, that is non-emptysubsets; Real, over real numbers; Nat, over natural numbers.Now it will be said in general terms what is a type in Mizar.(1). AN EXPRESSION IN THE FORM:symbol{of{mode of list{of{termsis a type.Examples:Subset of G , Subset of the 
arrier of G , Point of G ,17



Subset-Family of G , Relation of X , Relation of X,YIf the list of terms is a zero list, then only the symbol of mode will be a type. Forinstan
e:Any, Real, TopSpa
e, FinSequen
e, Ordinal, Set-Family,Relation, Fun
tion.(2). A SYMBOL OF A STRUCTURE, e.g.:TopStru
t, LattStr, In
Stru
t,is a type. (3). A TYPE IN BRACKETS IS A TYPE, TOO.In the following examples the types in question are in bra
kets.reserve P for (Subset of G), P for (Point of G), x for Any;reserve J for (Subset Family of G), r for Real;reserve J for (Subset Family of G), P for Subset of G;let H be (SubSpa
e of G), P,Q be (Subset of G), x,y be Any;The omission of the bra
kets in the examples given above does not result in an error.But, for instan
e, the ins
ription:reserve R for Relation of X, x for Any;is in
orre
t. The error 
onsists in the fa
t that the ins
ription Relation of X is not inbra
kets. One might pose the question why the type Relation of X must be in bra
kets.Now the mode Relation of list-of-termsis de�ned for the lists whi
h 
ontain zero terms (Relation), for lists whi
h 
ontain oneterm Relation of X and for lists whi
h 
ontain two terms Relation of X,Y . Hereare the 
orresponding de�nitions:de�nitionmode Relation {> set means x 2 it implies ex y, z st x = [y,z℄;end;(x,y,z have the type Any)de�nitionlet X,Y;mode Relation of X,Y {> Relation means it � [:X,Y:℄;end;(X,Y have the type set)de�nitionlet X;mode Relation of X is Relation of X,X;end;If the ins
ription Relation of list-of-terms is not bra
kets, then thelist{of{terms 
onsists of the maximal number of terms, that is two. Hen
e the ins
ription:reserve R for Relation of X, x for Any;is interpreted in the same way as the ins
ription:reserve (R for Relation of X, x) for Any;but the latter expression is ill{formed be
ause its synta
ti
 stru
ture is in
orre
t: thelast for is not pre
eded by the list of terms.On the other hand, the modes:Subset of list-of-termsSubSpa
e of list-of-termsSubset Family of list-of-terms18



are de�ned only for lists whi
h in
lude one and only one term, whi
h is shown by theirde�nitions:de�nitionlet G;mode Subset of G is set of Point of G ;end;de�nitionlet G;mode SubSpa
e of G {> TopSpa
e means
(it) 
= 
(G) &for P being Subset of it holds P 2 the topology of it i�ex Q being Subset of G st Q 2 the topology of G & P = Q \ 
(it);end;de�nitionlet G;mode Subset Family of G is Subset Family of the 
arrier of G ;end;Hen
e in the 
ase of these mode bra
kets are super
uous.(4). AN EXPRESSION IN THE FORM:set of typeis a type.Types of those kind are often used in de�nitions of modes, e.g.,:de�nitionlet G;mode Subset of G is set of Point of G ;end;Types in Mizar have the stru
ture of trees. X expands to the type set, but neitherto DOMAIN nor to SUBDOMAIN of dDOMAINe,D expands to DOMAIN,D1 expands to DOMAIN,S expands to SUBDOMAIN of D.Real is adopted as an abbreviation for the type Element of REAL (Real is DOMAIN),while Nat is adopted as an abbreviation for the type Element of NAT (NAT is SUBDOMAINof Real).Sin
e the type Element of S expands to the type Element of D, the type Natexpands to the type Real.III.3. Reservation of variablesIt has been said earlier that in a Mizar arti
le it is not allowed to use identi�ers ofvariables for whi
h their type is not given. The type of a given identi�er 
an, for instan
e,be given in the pla
e of its o

urren
e, as in the examples:- for A being Subset of G holds A � Cl A;- let x be Any, A be set;- re
onsider x as Real; 19



The words being and be may be used alternately, whi
h is to say that is indi�erentfrom the point of view of Mizar. But in order to be in agreement with the grammar ofEnglish 
ertain 
onventions pertaining to the use of those words have been adopted. Forinstan
e, in the Mizar 
onstru
tion let ... be is used, while being is used in quanti�edformulas.In order to avoid indi
ating the type of a given identi�er whenever a variable withsu
h an identi�er is introdu
ed it is possible to �x that type globally by means of theMizar 
onstru
tion 
alled the reservation of variables. The reservation of variables hasthe following form: reserve list{of{identi�ers for type ;The examples given below show the appli
ation of the said 
onstru
tion:i. If the identi�er G is to be a variable ranging over topologi
al spa
es, then the identi�erG is to be reserved for the type TopSpa
e. Su
h a reservation has the form:reserve G for TopSpa
e;If a su
h a reservation is not made and the identi�er G is used in the indi
atedmeaning, then the type of that identi�er must be given whenever a variable with su
han identi�er is introdu
ed.ii. If we want the identi�ers P, Q range over subsets of a topologi
al spa
e G, then thereservation should be as follows:reserve P, Q for Subset of G;If we want to reserve identi�ers of variables whi
h have various types, then theexpression: list{of{identi�ers for typein the reservation of variables should be repeated the 
orresponding number of times andthe expression in question must be separated from one another by 
ommas.This will be illustrated by the following reservations:reserve P, Q for Subset of G, x for Any, p for Point of G;The reservation of the identi�ers P, Q, x, p for the 
orresponding types may also be asfollows:reserve P, Q for Subset of G;reserve x for Any;reserve p for Point of G;whi
h is to say that for the various quanti�ers one may apply separately the 
onstru
tionreservation of variables. That, however, is not the best solution in view of the unne
essaryexpansion of the text.Other reservations given by way of example:� reservation of the identi�er X for a variable standing for a set:reserve X for set;� reservation of the identi�er x for a variable standing for a real number:reserve x for Real;� reservation of the identi�ers Z and Y for variables standing for subsets of the setX, where the identi�er X has been earlier reserved or �xed for the type set:reserve Z, Y for Subset of X;� reservation of the identi�er x for an element of the set of real numbers:reserve x for Element of Real;Other examples of the 
onstru
tion now under 
onsideration will be given in the
hapter dedi
ated to proofs of theorems.It must be borne in mind that the reservation of a given identi�er for a de�nite typeis made prior to the �rst o

urren
e of that identi�er. Should we made the reservationlater, that is after several o

urren
es of that identi�er, where a variable having thatidenti�er is introdu
ed, the type of that identi�er should be given.20



The reservation of variables must be made in the text proper. Often the reservationis made at the beginning of the text proper, that is immediately after the word begin.For one and the same identi�er the 
onstru
tion reservation of variables may beapplied several times, a

ording to the need of the author of the arti
le. If, for instan
e,we �rst make the reservation: reserve x for Any;and in the later part of the Mizar arti
le we 
hange the type of the identi�er x into Realin a

ordan
e with the reservation:reserve x for Real;then in all o

urren
e of the identi�er x between these reservations where the type of theidenti�er x is not given, it will have the type assigned to it in the �rst reservation, thatis Any, and in all the o

urren
es of the identi�er x after the se
ond reservation, whereits type is not given, the identi�er x will have the type Real.We now pro
eed to dis
uss Mizar formulas.In Mizar there is the following 
lassi�
ation of formulas:� atomi
 formulas,� formulas formed of atomi
 formulas by sentential 
onne
tives,� quanti�ed formulas. III.4. Atomi
 formulasThere are several kinds of atomi
 formulas.(1). A PREDICATIVE FORMULA,that is an expression in the form:list{of{terms symbol{of{predi
ate list{of{termsis an atomi
 formula.Here are some symbols of predi
ates used in arti
les pertaining to topologi
al spa
e:is open, is 
losed, is open 
losed, is dense, is boundary, is nowheredense,�, are separated.The number of arguments (both left-side and right-side ones) in the 
ase of ea
h ofthose predi
ates is shown in the following table:symbol of atomi
 number of left number of rightpredi
ate formula side arguments side arguments.is open P is open 1 0is 
losed Q is 
losed 1 0is open 
losed Q is open 
losed 1 0is dense A is dense 1 0is boundary B is boundary 1 0is nowheredense P is nowheredense 1 0� P � Q 1 1are separated A,B are separated 2 0j= D,f j= H 2 1The identi�er D denotes a family of sets, f denotes the valuation of variables byelements of that family, H denotes any formula of the language of the ZF set theory. Thelast formula in the table indi
ates that in the family D the formula H is satis�ed by thevaluation f. 21



Examples of atomi
 formulas o

urred in the table above. Here are other examples:Cl P n Cl Q � Cl (P n Q)Int P is openskl p is 
onne
tedB is a 
omponent of GF is a 
over of Gp,q are joinedp 2 skl pIn parti
ular, be
ause the sign = is the symbol of the predi
ate, the expression inthe form: term = term
alled an equality formula is an atomi
 formula.Examples of equality formulas:Fr(Fr(Fr P )) = Fr(Fr P)Cl(Int P) = Cl(Int(Cl(Int P)))P
 = 
G n PP
 = (P qua Subset of the 
arrier of G)
P n Q = P \ Q
Cl (Cl P) = Cl PLikewise, an expression in the form:term <> termwhere the sign <> is the symbol of predi
ate, is an atomi
 formula.Examples: P \ Cl Q <> ;, Int (Cl Q) \ Int (Cl P) <> ;.(2). An expression in the form:identi�er{of{predi
ate [ list{of{terms ℄is an atomi
 formula.Terms of this kind o

ur only in the 
ase of private predi
ates.The identi�er of su
ha predi
ate is not listed in any vo
abulary.(3). An expression in the form:term is typis an atomi
 formula.A formula in su
h a form is 
alled qualifying formula.Examples of qualifying formulas:x is Point of Gx is setHere is a theorem NAT 1:1 :x is Nat implies x + 1 is Natwhere the identi�er x has the type Real.The ante
edent and the 
onsequent of the above impli
ation are atomi
 formulas of thekind under 
onsideration.III.5. Formulas formed of atomi
 formulas by propositional 
onne
tivesIn Mizar the following symbols are used to denote sentential 
onne
tives:not , & , or , implies , i� , 
ontradi
tionwhi
h denote respe
tively:negation, 
onjun
tion, disjun
tion, impli
ation, equivalen
e, 
ontradi
tion.
ontradi
tion is a sentential 
onne
tive of zero arguments.22



Remark: 
ontradi
tion is treated in Mizar as a formula in the same way as thesis is.Now not has the greatest binding for
e, followed in that respe
t by &, next by or,next by implies and i� in the same degree. But the binding for
e of implies and i� isgreater than that of quanti�ers.Sin
e in Mizar the binding for
e of implies and i� is the same their simultaneouso

urren
e in a formula requires the use of the bra
kets ( and ) in order to indi
ate thearguments of the 
onne
tives implies and i� .Let �1, �2, �3 be atomi
 formulas.The formula �1 implies �2 i� �3is ill-formed in view of the fa
t that it is not known whi
h arguments the 
onne
tivesimplies and i� have. Moreover, the bra
kets ( and ) perform in Mizar a role similarto that in arithmeti
, whi
h is to say that they indi
ate the order of the performan
e ofoperations.Examples of formulas formed by sentential 
onne
tives:P is 
losed & Q is 
losed implies Cl(P \ Q) = Cl P \ Cl Q ,P is open i� Fr P = Cl P n P ,p 2 P
 i� not p 2 P ,P \ ;G = ; & ;G \ P = ;,(A is 
losed & B is 
losed) or (A is open & B is open)implies A n B, B n A are separated ,x 2 P implies x is Point of G,A is 
onne
ted & A � B [ C & B,C are separatedimplies A � B or A � C .III.6. Quanti�ed formulasBefore we pro
eed to dis
uss quanti�ed formulas referen
e will be made to quali�edvariables.In Mizar arti
les there are often ins
riptions whi
h are 
alled list of quali�ed vari-ables. Here are some examples of su
h lists:x ,A,K,n ,P,Q being Subset of G ,G being TopSpa
e, H being SubSpa
e of G ,F being Subset-Family of G, p being Point of G, x, y .Generally speaking, a list of quali�ed variables 
onsists of expressions in one of thethree forms spe
i�ed below:��� variables{quali�ed{impli
itlyThis name denotes a list of identi�ers of variables, that is a �nite sequen
e of identi�ersof variables, separated from one another by 
ommas. Examples:
 x, y, p A, BIn su
h 
ases, as 
an be seen, the types of the identi�ers are not identi
ated. This meansthat they are drawn from the list of identi�ers whi
h o

urs in the reservation of variables.��� variables{quali�ed{expli
itlyAt �rst we explain what asegment{of{quali�ed{variablesis. It is an ins
ription in the form 23



list{of{identi�ers{of{variable being (or be ) quali�
ationQuali�
ation is the type of the identi�ers of variables o

urring in a segment ofquali�ed variables.Of 
ourse, the type indi
ated in su
h an expression is the same for all the quanti�erswhi
h o

ur in it.Examples of segments of quali�ed variables:a being Anya,b,
,d be Anym,n be Point of GP, Q being Subset of Gvariables{quali�ed{expli
itly are a �nite sequen
e of segments of quali�ed variables sep-arated from one another by 
ommas. In the simplest 
ase it is only one segment.Examples of variables quali�ed expli
itly:x1, y1 be Any(it is a single segment of quali�ed variables)x being Real, X being set(in this 
ase there are two segments of quali�ed variables)G being TopSpa
e, H being SubSpa
e of G, p being Point of G(in this 
ase there are three segments of quali�ed variables).��� variables{quali�ed expli
itly , variables{quali�ed{impli
itlyExamples: P, Q being (Subset of G), x, p||||||||||||| ||{j jvariables quali�ed variables quali�edexpli
itly (one segment impli
itlyof quali�ed variables)P being (Subset of G), p being (Point of G), x, y, z||||||||||||||||||||||| |||{j jvariables quali�ed variablesexpli
itly (two segments quali�edof quali�ed variables) impli
itlyObviously, the identi�ers of those variables for whi
h types are not given in theexamples above must be drawn from the list of quanti�ers to be found in the reservationof variables.Remark: A 
hange of order (variables quali�ed impli
itly pre
eding those quali�ed ex-pli
itly) is impossible be
ause all variables would be
ome variables quali�ed expli
itly.In order to explain the above warning we shall 
onsider, by way of example, thefollowing formula:(�) for A being (Subset of G), x st x 2 A holds x is Point of GIn that formula the variable A is quali�ed expli
itly while the variable x is quali�edimpli
itly. The type of the identi�ed x must be given in the reservation. In this 
ase it24



should be the type Any. Should we 
hange the order of the o

urren
e of the variablesA and x in the formula under 
onsideration, whi
h is to say, should we �rst give thevariable quali�ed impli
itly and next the variable quali�ed expli
itly, we would obtainthe formula:for x, A being Subset of G st x 2 A holds x is Point of GBut in that formula the variables x and A have be
ome variables quali�ed expli
itly; inthe pro
ess the type of the identi�er of x has been 
hanged into Subset of G whereasit should be Any.In some 
ase the ex
hange of variables may be 
arried out. This will be illustratedby the example of the formula marked (�) above. In its 
ase the formulafor A being (Subset of G), x st x 2 A holds x is Point of Gmay be repla
ed by a formula whi
h has the same meaning in Mizar. Here is that formula:for A being Subset of G for x st x 2 A holds x is Point of GNow we 
an pass to quanti�ed formulas.A quanti�ed formula (also 
alled a universal senten
e) is a formula in whi
h thequanti�er o

urs openly and is the main senten
e-forming fun
tor.In Mizar the following symbolism was adopted for quanti�ers:for ... holds ... { for the universal quanti�er,for ... st ... holds { for the puri�ed universal quanti�er(i.e., universal quanti�er with a limited s
ope),ex ... st ... { for the existential quanti�er.In view of the various forms of the list of quali�ed variables, a universal senten
e,this is a formula in whi
h a universal quanti�er o

urs, may the following forms:(A). for identi�ers{of{variables holds formulaExamples of quanti�ed formulas:for P holds P � Cl P(For every subset P of a topologi
al spa
e G P � Cl P holdsor elseEvery subset of a topologi
al spa
e G is in
luded in its 
losure).for P, Q holds Cl (P [ Q) = Cl P [ Cl Q(For every two subsets P, Q of a topologi
al spa
e G Cl(P [ Q) = Cl P [ Cl Q holds).It 
an be seen that in ea
h 
ase above the types of the identi�ers of the variables arenot given openly. When using su
h formulas in a Mizar arti
le one should bear it in mindthat one should previously reserve the identi�ers of those variables for the reservation ofvariables.But one may also abstain from making earlier the reservation of the variables whi
ho

ur in a quanti�ed formula. In su
h a 
ase the types of the identi�ers of the variablesmust be given when the formula is being written. In su
h a 
ase the form of a quanti�edformula is as follows:(B). for segment{of{quali�ed{variables holds formulaA quanti�ed formula has su
h a form, among other things, if the identi�ers of thevariables for whi
h no reservation has been made have one and the same type. Otherwisethe expression standing between for and holds must be repeated the 
orrespondingnumber of times and separated by 
ommas.Let us 
onsider one 
ase more. Now it may be so that the identi�ers of the variableso

urring in a quanti�ed formula have being earlier reserved for the 
orresponding typesbut when writing the formula we want to apply the same quali�ers of variables to other25



types. Then su
h a formula will have the form of the expression shown under (B) above.Let that be illustrated by an example.Let the following reservation be given:reserve A being SubSpa
e of GIn this formula we want to use the identi�er A whi
h denotes a subset of a topologi
alspa
e G. Hen
e the new type o the identi�er of A must be given in the formula as below:for A being Subset of G holds A is 
losed i� Cl A = AExamples illustrating the stru
ture of quanti�ed formulas:1) for P being Subset of G holds P � Cl P(For every subset P of a topologi
al spa
e G P � Cl P holds),2) for P, Q being Subset of G holds Cl (P [ Q) = Cl P [ Cl Q(For any subsets P, Q of a topologi
al spa
e G Cl(P [ Q) = Cl P [ Cl Q)3) for A being (Subset of G), x being Any st x 2 A holds x is Point of G(For any subset A of a topologi
al spa
e Gand for any obje
ts x whi
h is an element ofthe subset A there holds: x is a point of the topologi
al spa
e G).The theorem given in example 3) may also be re
orded thus:for A being (Subset of G) for x being Any st x 2 A holds x is point of GEXAMPLES:� for A being (Subset of G), p being Point of G holds p 2 Cl A i�for C being Subset of G st C is 
losed holds (A � C implies p 2 C)� for H being (SubSpa
e of G), P, Q being (Subset of G), P1, Q1being Subset of H st P = P1 & Q = Q1 & P [ Q � 
G holds P, Qare separated implies P1, Q1 are separated� for H being (SubSpa
e of G), P being (Subset of G), Q being Subsetof H st P 6= ;G & P = Q holds A is 
onne
ted i� B is 
onne
tedFurther, a quanti�ed formula may have the form:(C).for variables{quali�ed{expli
itly , variables{quali�ed{impli
itly holds formulaThere may also be quanti�ed formulas with a puri�ed quanti�er. Su
h formulas arein the form: for list{of{quali�ed{variables st formula holds formulaThe stru
ture of the formulas with puri�ed quanti�ers (quanti�ers with a limiteds
ope) will be illustrated by examples but before their presentation we shall spe
ifyseveral modes and predi
ates whi
h are introdu
ed in arti
les pertaining to topologi
alspa
es.They are the modes: SubSpa
e of G ,Subset-Family of Gand predi
ates: P, Q are separated ,G is 
onne
ted ,p, q are joined26



The above formats of modes have been adopted for denoting, respe
tively, a subspa
e ofa topologi
al spa
e G and the family of the subsets of a topologi
al spa
e. The predi
atespresented above have been dis
ussed earlier.We 
an now pass to the examples.(i) for P, Q st P � Q holds Cl P � Cl Q(For any subsets P, Q of a topologi
al spa
e G su
h that P � Q there holds P � Q)(ii) P is boundary i� (for Q st Q � P & Q is open holds Q = ;)(P is a boundary set if and only if for any open set Q in
luded in P there holdsQ = ;)Had the reservation for the identi�ers P and Q not been made the above formulawould be as follows:for P being Subset of G holds P is boundary i�(for Q being Subset of Gst Q � P & Q is open holds Q = ;)(iii) for H being (SubSpa
e of G), P1, Q1 being (Subset of G), P, Q beingSubset of H st P = P1 & Q = Q1 holds P, Q are separated implies P1,Q1 are separated(For any subspa
e H of a topologi
al spa
e G and for subsets P1, Q1 of the topologi
alspa
e G and subsets P, Q of the subspa
e H, su
h that P = P1 & Q = Q1 there holds: ifP, Q are separated, then P1, Q1 are separated, too.)(iv) for H being (SubSpa
e of G), A being (Subset of G), B being Subsetof H st A 6= ;G & A = B holds A is 
onne
ted i� B is 
onne
ted(For any subspa
e H of a topologi
al spa
e G and a subset A of the topologi
al spa
e Gand for a subset B of the subspa
e H there holds: if A 6= ;G and A = B, then A is
onne
ted if and only if B is 
onne
ted.)A formula whi
h 
ontains the existential quanti�er may have one of the three formslisted below:� ex variables{quali�ed{impli
itly st formula� ex variables{quali�ed{expli
itly st formula� ex variables{quali�ed{impli
itly , variables{quali�ed{impli
itly st formulaThe examples given below 
ontain formulas with the existential quanti�er:x 2 Int P i� ex Q st Q is open & Q � P & x 2 Q ,(ex x being Point of G st for y being Point of G holds x, y are joined)i� (for x, y being Point of G holds x, y are joined) .Other examples of formulas with the existential quanti�er will be found later in thetext.We shall now give four topologi
al theorems re
orded in English �rst and nextre
orded in the Mizar notation. 27



1) P is boundary set if and only if it is 
ontained in this own boundary.2) For any subsets P, Q of a topologi
al spa
e G su
h that P � Qthere holds Cl P � Cl Q.3) Any subset A of a topologi
al spa
e G is 
losed if and only if Cl A = A.4) A point p is in the boundary of a set P if and only if for any open set Q su
h that p2 Q there holds: the interse
tion of P and Q is non-empty and the interse
tion of the
omplement of P and Q is non-empty.Here are the above theorems re
orded in the Mizar notation:1) P is boundary i� P � Fr P2) for P, Q being Subset of G st P � Q holds Cl P � Cl Q3) for A being Subset of G holds A is 
losed i� Cl A = A4) p 2 Fr P i�(for Q st Q is open & p 2 Q holds P \ Q 6= ; & P
 \ Q 6= ;)The examples given so far in most 
ases pertained to formulas with a single quanti�er,whether universal or existential. But in a formula more than one quanti�er may o

ur,whi
h 
an be seen in the examples given below.for A being (Subset of G), p being Point of G holds p 2 Cl A i� for Gbeing Subset of G st G is open holds p 2 G implies A \ G 6= ;G(A point p of a topologi
al spa
e G is in the 
losure of a subset A of the topologi
al spa
eG if and only if for any open subset G of the topologi
al spa
e G whi
h 
ontains the pointp the interse
tion of G and A is non-empty),P is open i� (for x holds x 2 P i� ex Q st Q is open & Q � P & x 2 Q)(P is an open set if and only if for any x, x 2 P if and only if there is an open set Qsu
h that Q � P and x 2 Q),P is 
losed implies (P is boundary i� for Q st Q 6= ; & Q is open ex Gst G � Q & G 6= ; & G is open & P \ G = ;)(If a set P is 
losed, then P is boundary set if and only if for any Q su
h that Q 6= ; andQ is open there is a set G su
h that G � C and G 6= ; and G is open and P \ G = ;),for J being Subset-Family of G st J 6= ; & for A being Subset of G stA 2 J holds A is 
losed holds meet J is 
losed(The interse
tion of any J whi
h is a non-empty family of 
losed subsets of a topologi
alspa
e G is a 
losed set),for J being Subset-Family of G st (for A being Subset of G stA 2 J holds A is 
onne
ted) & (ex A being Subset of G st A 6= ;(G)& A 2 J & (for B being Subset of G st B 2 J & B 6= A holds not A, Bare separated)) holds union J is 
onne
ted(Let J be any family of 
onne
ted subsets of a topologi
al spa
e G one of whi
h is non--empty and not separated from any other element of that family. Then the union ofelements of that family is a 
onne
ted set).meet and union are symbols of fun
tors of one arguments ea
h (the re
ording ofthe last formula shows that the right-side argument is the only one) whi
h denote, re-spe
tively, the interse
tion and the union of the family of the subsets of a topologi
alspa
e.The examples given so far have been drawn from the arti
les PRE TOPC, TOPS 1 andCONNSP 1, whi
h self{evidently pertain to problems 
onne
ted with topologi
al spa
es.28



Let us revert on
e more to general senten
es with a puri�ed quanti�er. Su
h asenten
e 
an be re
orded, of 
ourse, in a di�erent manner without an 
hange in itsmeaning. We mean the elimination of the limited range of the quanti�er in a generalsenten
e and the repla
ement of the 
ondition by impli
ation.Let �1, �2 be any formulas. A general senten
e (a senten
e in whi
h a universalquanti�er o

urs): for list{of{quali�ed{variables st �1 holds �2is equivalent to the senten
e:for list{of{quali�ed{variables holds �1 implies �2Now the formula �1 implies �2is not bra
keted be
ause the binding for
e of implies (like that of i�) is greater thanthat of quanti�ers. EXAMPLES:The formula for P, Q st P � Q holds Cl P � Cl Qhas for Mizar the same meaning as the formulafor P, Q holds P � Q implies Cl P � Cl Qbe
ause both formulas have one and the same semanti
 
orrelate (see III.7).Likewise formula:P is boundary i� (for Q st Q � P & Q is open holds Q = ;)has for Mizar the same meaning as the formulaP is boundary i� (for Q holds Q � P & Q is open implies Q = ;).The theorems in whi
h the universal quanti�er o

urs openly 
an be re
orded asnon-quanti�ed formulas. For instan
e, the theorem:for P being Subset of G holds Int P = P n Fr P
an be re
orded thus: Int P = P n Fr Pbe
ause both senten
es have the same meaning for Mizar (see semanti
 
orrelates).Likewise the senten
es:for G, P holds Int P = (Cl (P
))
 ,for P holds Int P = (Cl (P
))
 ,Int P = (Cl (P
))
will all be read in the same way by the system (if G and P have not been �xed earlier).The formula: Int P = (Cl (P
))
will be read by the system as the formula:for G, P holds Int P = (Cl (P
))
The various forms in whi
h formulas are re
orded have signi�
an
e only for theauthor of a given arti
le. Some of them may be more legible, but the pro
essor of PCMizar transforms the formulas it reads and brings them to a 
ertain �xed for (see III.7).Here are other examples illustrating the di�erent forms of re
ordings of Mizar for-mulas:1) for P, Q st P � Q holds Cl P � Cl Q
an be re
orded thus:P � Q implies Cl P � Cl Q2) for P, Q st P is dense & Q is dense & Q is open holds P \ Q is dense(if P, Q have not been �xed earlier)
an be re
orded thus: 29



P is dense & Q is dense & Q is open implies P \ Q is denseThe ante
edent of the impli
ation is not bra
keted be
ause 
onjun
tion has a greaterbinding for
e than impli
ation has.3) for P st P is open holds Cl(Int(Cl P)) = Cl P
an be re
orded thus:P is open implies Cl(Int(Cl P)) = Cl PIn all the examples re
orded in the new version the quanti�er is understood.The formulas given in the above examples, if not re
orded with the use of thequanti�er, will be pro
essed by the system into quanti�ed ones (see III.7). The identi�ersof variables will follow the word for in the formula P � Q implies Cl P � Cl Q theidenti�er of P will 
ome �rst, followed by the identi�er of Q (if the spa
e G has not been�xed earlier, then the identi�er of G will additionally pro
essed in to su
h a quanti�edformula in whi
h the word for is �rst followed by the identi�er of P (or the identi�ers ofG and P), and next by the identi�er of Q as under (1) above. But sometimes it is so thatthe required sequen
e of the identi�ers di�ers from that arranged automati
ally. In su
ha 
ase a given formula should be written in the desired quanti�ed quanti�ed version.The word holds before the word ex or before the word for may be omitted. Hen
ethe formula: for ...... holds ex ......may be re
orded as below, by repla
ing the expression holds ex by the word ex :for ...... ex ......Examples:The formulas:1) for A being Subset of G st A 6= ;G holds ex x being Pointof G st x 2 A2) P is 
losed implies (P is boundary i� for Q st Q 6= ; & Q is openholds ex G st G � Q & G 6= ; & G is open & P \ G = ;)may be re
orded, in a

ordan
e with what has been said, in the following manner:1) for A being Subset of G st A 6= ;G ex x being Point of G st x 2 A2) P is 
losed implies (P is boundary i� for Q st Q 6= ; & Q is openex G st G � Q & G 6= ; & G is open & P \ G = ;)Likewise a formula in the form:for ...... holds for ......may be re
orded: for ...... for ......where the expression holds for has been repla
ed by for .For instan
e, the formula:for H being SubSpa
e of G holds for A being Subset of Hholds A is Subset of Gmay be repla
ed by the formula:for H being SubSpa
e of G for A being Subset of Hholds A is Subset of GThe examples given so far show that theorems may be re
orded in several ways.The 
hoi
e of the form of the re
ording depends on the author of the arti
le. It is30



re
ommended to use su
h a re
ording of the 
ontent of a given theorem whi
h would bethe most legible and pra
ti
al. For instan
e, the use in a general senten
e of a puri�edquanti�er (trough the use of the word st) sometimes in
reases its legibility. The sameapplies to the 
ase in whi
h we indi
ate the types of identi�ers of variables when writinga formula. The reservation of variables is made at the beginning of a given arti
le orlater in the text. If the arti
le is long, then when reading a theorem (
ontained in it) inwhi
h the types of the variables are not indi
ated we have to look for the reservations inthe text, and that means an unne
essary loss of time.III.7. Semanti
 
orrelatesThe PC Mizar pro
essor transforms the formulas (terms, types) it reads into 
ertainstandard forms. The form of a formula obtained by su
h a transformation is 
alledthe semanti
 
orrelate (semanti
 form) of that formula. To make the transformationof formulas (terms, types) possible a 
ertain relation of equivalen
e has been de�nedon formulas. It states that two formulas between whi
h that relation holds will betransformed in the same way. The 
lasses of abstra
tion of that relation of equivalen
eare 
alled semanti
 
orrelates. If two formulas are in one and the same 
lass of abstra
tionthen this means that they have the same semanti
 
orrelate. From among the formulaswhi
h form a given 
lass of abstra
tion one 
an 
hoose formula whi
h is the standardrepresentation of that 
lass of abstra
tion. Su
h a formula is formed by the signs ofnegation (not), 
onjun
tion (&), not 
ontradi
tion, i.e., VERUM, and base senten
es,i.e., atomi
 formulas and general senten
es.Moreover 
onju
tion and negation satisfy the 
onditions:1. Conjun
tion is asso
iative, whi
h is to say that for any formulas �1, �2, �3 theformulas (�1 & �2) & �3 and �1 & (�2 & �3)are in the same 
lass abstra
tion, that is they have one and the same semanti
 
orrelate.2. Negation is an involution, so that for any formula � the formulasnot not � and �have one and the same semanti
 
orrelate.3. If a free variable, that is su
h whi
h is not openly bound by a quanti�er, o

urs in agiven formula, then the universal quanti�er is automati
ally pre�xed to that formula.For instan
e, if we write the formula �(x), in whi
h x is a free variable (i.e., notbound by a quanti�er), then that formula will be read by the system as the formula forx holds �(x). Hen
e the formulas�(x) and for x holds �(x)have one and the same semanti
 
orrelate.The formula 
ontradi
tion has not VERUM as its semanti
 form.The semanti
 
orrelates of predi
ative formulas ex
ept for the formulas in the formterm = termis the same original (initial) form.The semanti
 
orrelates of the predi
ative formula in the formterm <> termis the formula not term = termThe formula in the form term <> termis the antonym of the formula in the formterm = term31



Moreover, for the formula x � y (where x, y have the type Element of REAL)there are two antonyms: x > y and y < xwhi
h are synonyms, and the synonym: y � x.The knowledge of semanti
 
orrelates 
an be used in the 
onstru
tion of skeletonsof proofs, be
ause the form of the semanti
 
orrelate of a given formula determines theskeleton of the proof of that formula.If P, Q, A, B, C, G are not 
onstants but earlier reserved identi�ers of variables, thenthe formulasa) P � Cl P and for P holds P � Cl Pb) Int Q is open and for Q holds Int Q is open
) 
(G) n A = B [ C & B,C are separated & A is 
losed implies A [ Bis 
losed & A [ C is 
losedand for G, A, B, C holds 
(G) n A = B [ C & B,C are separated &A is 
losed implies A [ B is 
losed & A [ C is 
losedhave the same semanti
 
orrelates 
orrespondingly in the examples a), b), and 
).In the formulas � and � have one and the same semanti
 
orrelate, then � may berepla
ed by � and 
onversely. This is advantageous, be
ause if we want to prove � it issometimes more 
onvenient to prove �.Here are several pairs of formulas:� & not 
ontradi
tion and �� implies 
ontradi
tion and not �not 
ontradi
tion implies � and �for x for y holds � and for x, y holds �ex x st ex y st � and ex x, y st �for x st � holds � and for x holds � implies �� & � implies 
 and � implies (� implies 
)not not � and �� or � and not � implies �not ex x st � and for x holds not �� i� � and (� implies �) & (� implies �)Formulas in ea
h pair have the same meaning for Mizar. They are thus formulaswhi
h have the same semanti
 
orrelate.Remark:The senten
es � & � and � & �have di�erent semanti
 forms. The same applies to the senten
es� or � and � or � .In the above examples the formulas �, �, 
 should, in order to se
ure the 
orre
t 
on-stru
tion of senten
es and the subsumption of those senten
es under the given senten
es
hemata, be bra
keted whenever ne
essary. Should, for instan
e, 
 be an impli
ation orequivalen
e, then the formulas in whi
h it would o

ur should be written thus:� & � implies 
 and � implies (� implies 
) .The same applies to � and �. 32



IV. PROVING SENTENCES IN MIZARIV.1. Justi�
ationsBefore pro
eeding of that theorem in the Mizar notation and then pro
eed to justifyit. There are several possibilities of justifying theorems, but at this point we shall be
on
erned with only one them, namely straightforward justi�
ation is a justi�
ationin whi
h one gives the referen
e (list of labels indi
ating the senten
es whi
h are thepremisses of the theorem being justi�ed). Straightforward justi�
ation 
an be 
lassedinto:a) simple justi�
ation,b) justi�
ation by s
hema.Dire
t justi�
ation has been following form:(�) senten
e{justi�ed by list{of{referen
es ;The list of referen
es is a �nite sequen
es of referen
es separated from one another by
ommas.Referen
es have been dis
ussed earlier. Note only that they are 
lassed into libraryreferen
es (whi
h to theorems to be found in arti
les) and lo
al referen
es (whi
h throughlabels enable one to use senten
es justi�ed earlier and to be found in a given arti
le).We shall give below several senten
es justi�ed dire
tly:(1) M [ ; = M by BOOLE:60;BOOLE:60 is a library referen
e. It denotes the theorem No.60 to be found in the �leBOOLE.abs.(2) k + l = l + k by NAT 1:3;(3) k � 0 & 0 � 1 implies k � 1 by NAT 1:13;(see example No.2 in the �le art.lst).Remark:The justi�
ation by by should in
lude labels of senten
es whi
h have o

urred earlier(in an earlier part of the text or in an earlier arti
le) and are a

essible in the pla
e ofreferen
e (whi
h is to say that they are labels whi
h o

urred at an earlier 
losed level ofreasoning (1) or point to the 
urrent level of reasoning (2)). Hen
e the justi�
ations inthe following example would be in
orre
t:EXAMPLEfor M, N being set, x being Any st x 2 M holds x 2 M [ Nproof let M,N be set, x be Any;assume A: x 2 M;hen
e thesis by BOOLE:8;end;for x being Any, M being set holds x 2 M by A;* (1)B: now 33



let x be Any, M be set;x 2 M implies x = x by B;* (2)end;(see example No. 3 in art.lst).In the 
ase of some theorems it is more 
onvenient, before one pro
eeds to provethem, to prove, earlier (a) auxiliary lemma(s). Then proof of the theorem proper willo�er no problems be
ause it will be a straightforward justi�
ations.For instan
e, if one wants to prove a theorem whi
h is an equivalen
e, then one 
anearlier prove the ne
essary impli
ations. Su
h a 
ase is presented in example No. 30 inthe annex.Sometimes it is 
onvenient to justify an auxiliary lemma (or lemmas) in the pro
essof proving a given senten
e. It is also worth mentioning su
h straightforward justi�
ationin whi
h the referen
e list is a zero list. In su
h a 
ase (�) has the form:justi�ed{senten
e ;That spe
ial kind of justi�
ation pertains only to those senten
es whi
h are tautologiesof the propositional 
al
ulus or simple laws of the fun
tional 
al
ulus.That part of the system whi
h veri�es justi�
ations is 
alled CHECKER. Tautologiesare self-evident for CHECKER and require no justi�
ation.Straightforward justi�
ation with a zero referen
e will be illustrated by examples.Int P = P implies not (Int P 6= P & Cl P = P);P = Q implies (P is open i� Q is open);for k, l holds k = l or k 6= l;(see example No. 36 in the �le art.lst).Justi�
ation by s
hema in the following form:justi�ed{senten
e from symbol{of{s
hema ( referen
e{list ) ;is another straightforward justi�
ation.The number of referen
es in a referen
e list may be zero, as in any expression in theform list{... .If the referen
e list is a zero list, then justi�
ation by s
hema has the following form:justi�ed{senten
e from symbol{of{s
hema ;Example four in the �le art.lst illustrates the proof of a theorem in whi
h thes
hema of indu
tion is used.In the examples given above we had to do with straightforward justi�
ation only. Butin most 
ases a theorem requires a proof, and straightforward justi�
ations { espe
iallya dire
t one { �nd appli
ation in the reasoning used in the proof (is a 
ertain step in theproof).If the truth of a theorem 
annot be justi�ed dire
tly or by referen
e to a s
hema,then a proof must be 
arried out.After re
ording the 
ontent of the theorem we write:proof ...end;where the dots will, of 
ourse, be repla
ed by a 
ertain reasoning.Every reasoning is a sequen
e of su

essive transitions must be justi�ed (straightfor-ward justi�
ations or by proof). Ex
eptions in that respe
t are those re
ordings whi
hform the skeleton of the proof (assumption, generalization, exempli�
ation), but thesewill be dis
ussed in the next se
tion. 34



A justi�ed step in a proof is 
alled a statement. The steps whi
h 
ombine to fromthe proof depend on the thesis of the theorem, the way of proving (e.g. dire
t or indire
tproof) and, obviously, the imagination of the person who writes the arti
le.Let us try to prove (without restoring to the Mizar notation) the following topologi
alproof:For any subset A, B of a topologi
al spa
e G the following holds:Cl (A \ B) � Cl A \ Cl BProof .Let us 
onsider any two subsets A, B of topologi
al spa
e G.It is know from the properties of sets that A \ B � A and A \ B � B. By availingourselves of the following property of the 
losure operation:If M � N then Cl M � Cl N where M, N are subsets of a topologi
al spa
ewe may write:Cl (A \ B) � Cl A and Cl (A \ B) � Cl BHen
e Cl (A \ B) � Cl A \ Cl Bquod erat demonstrandum.Let us now try to re
ord that proof in the Mizar notation. The Mizar arti
le whi
hwould 
arry the proof of the theorem under 
onsideration would have, as is know, to
onsist of the following elements:environdire
tives of environmentbegin
ontent of theoremproof reasoningend;The theorem in question, when re
orded in Mizar notation, has the following form:for A, B being Subset of G holds Cl (A \ B) � Cl A \ Cl BIn a

ordan
e with what has been said in the 
hapter 
on
erned with formulas the abovere
ording of the 
ontent of the theorem is only one of several possible versions.We shall now pro
eed to 
onstru
t the next proper, that is the text whi
h follows theword begin. The remaining part of the arti
le will be dis
ussed later. Su
h a sequen
e ofwriting the proof is of a 
ertain importan
e, espe
ially for a person who starts learningMizar. Now after the writing of the text proper one 
an see 
learly whi
h dire
tives ofthe environment must be inserted between the words environ and begin. But, on theother hand, it must be borne in mind that if the environment is defe
tively 
onstru
tedduring a 
onsiderable time taken by the pro
ess of proving, than that will make the proofmore diÆ
ult be
ause in the Mizar pro
edure, that is the veri�
ation of the 
orre
tnessof the proof in progress, errors related to the defe
tive 
onstru
tion of the environmentwill be reported.The 
onstru
tion reservation of variables is used only for the identi�er of G, whi
hindi
ates a 
ertain topologi
al spa
e. The types of the remaining identi�ers will be givenwhenever ne
essary.The next proper then assumes the form:reserve G for TopSpa
e;for A, B being Subset of G holds Cl (A \ B) � Cl A \ Cl Bproof reasoningend; 35



At this point the 
arrying out the reasoning remains.In the previous proof we 
onsidered any two subsets of a topologi
al spa
e G. Nowwe shall pro
eed analogi
ally.After the word proof we have to write:let A, B be Subset of G;This expression 
an be translated thus:Let A, B be any subsets of a topologi
al spa
e G.In the expression let A, B be Subset of G; the types of the variables A, B had to bespe
i�ed be
ause they had not been reserved in the reservation of variables.(The quali�
ation given in a formula has its s
ope only until the and of that formula.)We 
ontinue to imitate the previous proof and write:A \ B � A & A \ B � B;This is a 
ertain step in the reasoning. It has been said earlier that every step of thereasoning. It has been said earlier that every step of the reasoning must be justi�edbe
ause otherwise the CHECKER will report error No. 4: This referen
e is nota

epted by Che
ker.In the 
ase under 
onsideration dire
t justi�
ation will suÆ
e; this is to say we meana justi�
ation whi
h does not require indi
ation of the appropriate referen
es.Note on
e more that the �les in whi
h the 
ontents of the theorems are in the sub-dire
tory nABSTR (nABSTR is a subdire
tory of nMIZAR) and have the extension *.abs.When inspe
ting the �le BOOLE.abs we 
ome a
ross Theorem No.37 (i.e., BOOLE:37),whi
h states that for any sets X,Y we have:X \ Y � X & X \ Y � Ywhen referen
e is made to this theorem the �rst step of the reasoning is justi�ed. Weobtain the statement:Z1: A \ B � A & A \ B � B by BOOLE:37;The next justi�ed step of the reasoning we obtained by the appli
ation of TheoremNo.49, to be found in the �le PRE TOPC.abs. Its 
ontent is:for A, B being Subset of G st A � B holds Cl A � Cl BThis theorem is to be applied to this formulaA \ B � A & A \ B � BThat is why it was ne
essary to provide it with a label, whi
h in our 
ase 
onsists ofthe ins
ription Z1. Note that the identi�er of a label must be followed by a 
olon :. Byreferring to a given label we refer to the senten
e whi
h bears that label.The se
ond step in the reasoning will be as follows:Z2: Cl (A \ B) � Cl A & Cl (A \ B) � Cl B by Z1, PRE TOPC:49;As 
an be seen, this senten
e has been provided with a label be
ause it will have to beused as a premiss in the further part of the proof.As 
an be seen, the theorem PRE TOPC:49 has been applied twi
e, but in the justi-�
ation it has been given only on
e.Remark: If in one and the same step of the proof a referen
e is indi
ated several times,then it suÆ
es to give it only on
e after the word by.After availing ourselves of the theorem BOOLE:39, whi
h says:Z � X & Z � Y implies Z � X \ Y(where X, Y, Z are any sets)we 
an write down the 
on
lusion:thus Cl (A \ B) � Cl A \ Cl B by Z2, BOOLE:39;This is the last step in the reasoning of the proof.36



The word thus pre
edes the senten
e whi
h is the thesis of the proof or its part. Inour 
ase it is the thesis of the proof.Ultimately, the next proper is as follows:reserve G for TopSpa
e;for A, B being Subset of G holds Cl (A \ B) � Cl A \ Cl Bprooflet A, B be Subset of G;Z1: A \ B � A & A \ B � B by BOOLE:37;Z2: Cl (A \ B) � Cl A & Cl (A \ B) � Cl B by Z1, PRE TOPC:49;thus Cl (A \ B) � Cl A \ Cl B by Z2, BOOLE:39;end;It now remains to insert the appropriate dire
tives of the environment between theword environ and begin. Let us begin with the vo
abularies, that is, with the dire
tivevo
abulary ... ;.The text proper above there the following symbols o

ur:\ , Cl symbols of fun
tors,� symbol of predi
ate,TopSpa
e, Subset symbols of modes.The symbol \ is to be found in the vo
abulary BOOLE. The symbols Cl and TopSpa
eare introdu
ed in the vo
abulary TOPCON, whereas the symbol of the mode Subset andof the predi
ate � are in the vo
abulary HIDDEN. The vo
abulary dire
tives whi
h mustbe in
luded in our arti
le are:vo
abulary BOOLE;vo
abulary TOPCON;The dire
tive signature �; allows on to use vo
abulary symbols in a

ordan
ewith the format de�ned in the arti
le �.miz, format - the number of left-side and right-side arguments and also the types of the result and the arguments of the fun
tor or anexpansion of a mode.In our 
ase the symbol \ is used as that of the interse
tion of sets. That inter-se
tion may be treated as an interse
tion of subsets of a topologi
al spa
e whi
h yieldsalso a subset of that spa
e, or else { without any modi�
ation in the reasoning { as anordinary interse
tion of sets. Hen
e its use requires the joining of the dire
tive:signature SUBSET 1;(rede�nition for subsets)or the dire
tive signature PRE TOPC;(rede�nition for subsets of a topologi
al spa
e)or the dire
tive signature BOOLE;(de�nition of interse
tion of sets).The de�nition of the predi
ate of in
lusion, for whi
h we use the symbol \ , is tobe found in the arti
le TARSKI. If it is to be used in our 
ase one of the dire
tives ofenvironment must be signature TARSKI;In the arti
le PRE TOPC the de�nition of the 
losure of a set, symbolized Cl, andthe de�nition of the mode TopSpa
e, are introdu
ed, hen
e it is ne
essary to join thedire
tive signature PRE TOPC;Sin
e in the proof we availed ourselves of theorems to be found in the arti
les BOOLE37



and PRE TOPC, two more dire
tives must be added to the earlier given dire
tives of envi-ronment, namely:theorems BOOLE;theorems PRE TOPC;The Mizar arti
le 
ontaining the proof of the theorem under 
onsideration is to befound in the annex, example 5 in the �le art.lst.Remark: In Mizar it is allowed to overridden labels. Hen
e the marking of severalsenten
es from one and the same level of reasoning is not an error.If, at a given level of reasoning, in whi
h there are no other levels of reasoning,several senten
es are marked by the same label, then the referen
e to that label meansreferen
e to the last senten
e marked by it.By a level of reasoning we mean:(a) the reasoning 
ontained between the 
orrespondingly paired words proof and end;,(b) the reasoning 
ontained between the 
orrespondingly paired words now and end;,(
) the reasoning 
ontained between the 
orrespondingly paired s
hemes and ;.Referen
e to labels from an earlier 
losed level of reasoning is not allowed.EXAMPLETwo levels of reasoning will be shown below. The ins
riptions �, �, 
, Æ denote
ertain formulas. At the shown levels of reasoning the label A: o

urs only in the indi
atedpositions. Level of reasoning. . . .A: �;. . . .Level of reasoning. . . .A: �;. . . .
 by A;. . . .. . . .Æ by A;. . . .In the justi�
ation of the senten
e 
 the referen
e to the label means referen
e tothe last senten
e marked by it, that is to the senten
e �. But in the justi�
ation of thesenten
e Æ the referen
e to the label A: means referen
e to the senten
e �. At the pla
eit is impossible to refer to the se
ond senten
e marked by the label A:, that is to thesenten
e �, be
ause that senten
e is at the previously 
losed level of reasoning.In the proofs of theorems are long it is 
onvenient to use the 
orresponding re
ordingof the reasoning used in the proof, that is su
h whi
h shortens that reasoning and makesit 
learer and more legible. That 
an be a
hieved by the elimination of the labelling ofsenten
es through the use in the proof of the words: then, hen
e, and thesis.The pre�xing of the senten
e � by the word then indi
ates that in the justi�
ationof � we avail ourselves of the senten
e � whi
h dire
tly pre
edes �. In su
h a 
ase � neednot be marked by a label.This way of justi�
ation is 
alled linking.38



We shall use linking in the proof 
arried out earlier. Instead of the senten
e labelledZ1: and Z2: we shall have:A \ B � A & A \ B � B by BOOLE:37;then Cl (A \ B) � Cl A & Cl (A \ B) � Cl B by PRE TOPC:49;It must be emphasized that linking requires that the expression � be a statementjusti�ed straightforwardly, and �-senten
e. That imposes 
ertain limitation upon theappli
ation of linking. For instan
e, linking 
annot be applied dire
tly after proof notafter a 
olle
tive assumption, be
ause it is not know whi
h of the partial assumptionsis meant. Not 
an it be applied after the statement of 
hoi
e, after the statement of a
hange of type, after exempli�
ation. Linking 
an be applied dire
tly after a senten
e, astatement justi�ed dire
tly a statement of 
hoi
e, and a di�use statement.If the pre
eding senten
e is one of the premisses of the 
on
lusion, then linking maybe indi
ated by the repla
ement of thus by hen
e. The senten
e pre
eding the 
on
lusionmay be unlabelled. Figuratively speaking, the re
ording:A:�;thus � by A, other{referen
es;may be repla
ed by the re
ording:�;hen
e � by other{referen
es;When the possible linkings are 
onsidered the proof of the theorem dis
ussed earlierwill assume the form:proof let A, B be Subset of G;A \ B � A & A \ B � B by BOOLE:37;then Cl (A \ B) � Cl A & Cl (A \ B) � Cl B by PRE TOPC:49;hen
e Cl (A \ B) � Cl A \ Cl B by BOOLE:39;end;(see example No. 6 from art.lst)The 
on
lusion (that is the thesis of the proof or its part), whi
h in this 
ase in theexpression Cl (A \ B) � Cl A � Cl Bmay be repla
ed by the word thesis, whi
h means that whi
h is left to be demonstrated.The word thesis is treated by Mizar as a formula. The formula thesis may be usedsolely within the proof, that is between the words proof and end; .EXAMPLES of the use thesis� in the termination of the proof:... hen
e thesis; end; or ... thus thesis; end;The example Nos. 7, 10, 28, 29 from the �le art.lst illustrate the appli
ation ofthe formula thesis at the end of the proof.In the example No. 7 in the �rst inner proof, that is in the proof of the thesisP[
T=
T, thesis denotes the formula P[
T=
T, whereas in the se
ond inner proofthesis denotes the formula P[
T=P.In the example No.10 the formula thesis o

urs twi
e. In the �rst 
ase it denotesthe formula W is open & W � P & � 2 W, whereas in the se
ond 
ase, at the end ofthe proof, it denotes the formula x 2 Int P.In the example No.28 thesis denotes the senten
ed being proved in that examples,that is the senten
eT is 
onne
ted i� for A being Subset of T st A is open 
losedholds A = ;T or A = 
Twhereas thesis in the example No.29 denotes the formula P is dense.39



� at the beginning of an indire
t proof:proof assume not thesis; ... ; thus 
ontradi
tion; end;Su
h a use of thesis found appli
ation in the examples Nos. 19, 22, 23.In the example No.19 thesis denotes the senten
e being proved, that is the formula:for G st G is open holds p 2 G implies P \ G 6= ; .In the example No.22 it denotes the formula P 6= Q, and in the example No.23, theformula A 6= ;T.� in a proof by 
ases:proof A: now assume �; ... ; hen
e thesis; end;now assume not �; ... ; hen
e thesis; end;hen
e thesis by A;end; IV.2. Skeletons of proofsEvery proof, that is the reasoning 
ontained between proof and end 
onsists ofelements whi
h from its skeleton. The skeleton of a proof 
onsist of:assumption,generalization,
on
lusion,exempli�
ation.It is to be noted that the skeleton of a proof is not determined unambiguously. Itsstru
ture depends on the form of the thesis to be proved and on the te
hnique of proving(for instan
e, the dire
t or the indire
t proof). The skeleton of the proof of a given thesisis based on the stru
ture of the semanti
 
orrelate of that thesis. That part of the systemwhi
h veri�es the 
orre
tness of the stru
ture of the semanti
 
orrelate of that thesis.That part of the system whi
h veri�es the 
orre
tness of the stru
ture of the skeleton is
alled REASONER.When pre
eding to prove a senten
e it is advisable to write at �rst the 
orre
tskeleton of the proof of that senten
e (that is to say, disregarding the justi�
ations ofsenten
e). If the skeleton of the proof is written 
orre
tly, then only the errors markedby number 4 will be reported (by CHECKER).IV.2.1. DIRECT PROOFSWe shall now show the likely skeletons of proofs when the thesis is a 
onjun
tion,disjun
tion, impli
ation, equivalen
e, a general senten
e, and an existential senten
e.1. CONJUNCTION, that is an expression in the form �1 & �2,where �1 and �2 are any formulas, is a thesis.If this senten
e is to be proved dire
tly, then the skeleton of the proof may 
onsistof the expression listed below and 
ontained between the words proof and end :proof ........thus �1;........thus �2;........end; 40



The dots indi
ate that they are to be repla
ed by the remaining steps of the proof.Self-evidently, the senten
es �1 and �2 must be justi�ed by a straightforward justi-�
ation or by proof.Every expression whi
h is a 
omponent of the skeleton of the proof of a given senten
emodi�es the thesis of the proof. In the example given above until the o

urren
e of theexpression thus �1 the formula �1 & �2was the thesis of the proof. But the expression thus �1 modi�ed the thesis of the proof,whi
h after that expression be
ame the formula �2.The sequen
e of the justi�
ation of �1 and �2 is essential;it must be su
h as presented above. If we 
hange the order into:thus �2;thus �1;then we obtain the skeleton of a proof of the senten
e �2 & �1. But the semanti
 
orrelatesof the senten
e �1 & �2 and �2 & �1are di�erent. Hen
e for Mizar these are two di�erent senten
es.The example Z8.lst shows the form of the �le when only the skeleton of the proofof the senten
e being justi�ed is written down.If in the proof in that example we 
hange the order of the expressions whi
h for theskeleton of the proof, then additionally the error marked by No.51 { Invalid 
on
lusion{ will be reported. Su
h a situation is illustrated by the example Z9.lst.The full proof is shown in the example No. 7 from the �le art.lst.In the proof of the thesis in that example there are two inner proofs. In ea
h ofthem the �nal 
on
lusion of ea
h proof is marked by the word thesis. In the �rst innerproof it denotes the formula P[
T = 
T, and in the se
ond, the formula P\
T = T.If the thesis is a 
onjun
tion of more than two 
onstituents, then the truth of ea
h
onstituent is to be justi�ed.For instan
e, for the thesis �1 & �2 & �3the skeleton of the proof might be as follows:proof ........thus �1;........thus �2;........thus �3;........end;Remark:The skeleton of the proof for the thesis �1 & �2 & �3 is also the skeleton of theproof for the thesis �1 & (�2 & �3) and for the thesis (�1 & �2) & �3), whi
h is tosay that all the three formulas have one and the same semanti
 
orrelate.2. IMPLICATION is a thesis.There are two methods of proving impli
ations, the dire
t and the indire
t.If the impli
ation �1 implies �241



is to be proved dire
tly, then one has to assume the ante
edent of the impli
ation andprove the 
onsequent. Hen
e the skeleton of the proof of the above senten
e will be asfollows:proof ........assume �1;........thus �2; (
on
lusion)end;Sin
e the assumption in part of the skeleton of the proof it modi�es the thesis.Before the assumption the thesis was the formula�1 implies �2but by assuming the ante
edent of the impli
ation we modify the thesis after the as-sumption the thesis be
ome the formula �2.EXAMPLEThe skeleton of the proof of the senten
e
G = A [ B & A is 
losed & B is 
losed & A \ B = ;Gimplies A, B are separatedmay be su
h:proof ......assume 
G = A [ B & A is 
losed & B is 
losed & A \ B = ;G;......thus A, B are separated;end;(see annex { �le Z10.lst)Remark:The steps whi
h 
onstitute the skeleton of the proof (ex
ept for the 
on
lusion) donot require justi�
ation. The remaining steps of the proof other that tautologies must bejusti�ed. This is explained by the example Z10.lst from the annex, in whi
h the error
onne
ted with the justi�
ation of the assumption is not reported.The expressionassume 
G = A [ B & A is 
losed & B is 
losed & A \ B = ;G;is a single assumption, whi
h is one of the forms of the assumption.A single assumption may take on one of the two forms presented below:assume senten
e ;Su
h an assumption is used when we refer to it by linking. But sometimes it is notpossible to refer to the senten
e in the assumption by linking. In su
h a 
ase thatsenten
e must be marked by a label and the identi�er of that label is to be written inthe pla
e of referen
e. The assumption will take on the formassume identi�er{of{label : senten
e ;If the senten
e whi
h is to be taken as the assumption is in the form of a 
onjun
tion,then the assumption may be re
orded in the form of a 
olle
tive assumption by repla
ingthe sign & by the word and and by labelling every 
onstituent of the 
onjun
tion. Thesingle assumption:assume 
G = A [ B & A is 
losed & B is 
losed & A \ B = ;G;may a

ordingly be written in the form of a 
olle
tive assumption thus:assume that M1: 
G = A [ B and M2: A is 
losed and42



M3: B is 
losed and M4: A \ B = ;G;A 
olle
tive assumption takes on the form:assume that sequen
e{of{labelled{senten
es ;A sequen
e of labelled senten
es is a single labelled senten
e or several labelled senten
eslinked together by the 
onne
tive and.The splitting of a single assumption into a 
olle
tive one makes it possible to referseparately to every partial assumption.The assumption from the example given above may also have the following form:assume x: 
G = A [ B & A is 
losed & B is 
losed;assume xx: A \ B = ;G;Sin
e the semanti
 
orrelates of the senten
es in the form:� & � & 
 and (� & �) & 
 and � & (� & 
)are the same hen
e the following assumption is 
orre
t, too:assume y: (
G = A [ B & A is 
losed) & B is 
losed;assume yy: A \ B = ;G;the same applies to the following one:assume z: 
G = A [ B & (A is 
losed & B is 
losed);assume zz: A \ B = ;G;The last two forms of the assumption are least legible, and this is why it is better to usere
ordings in whi
h super
uous bra
kets are avoided. But the last two possible formshave been given above in order to show the various re
ordings.The formulas in the form(�) �1 & �2 implies �3 and �1 implies (�2 implies �3)have one and the same semanti
 
orrelate.�1, �2, �3 are any formulas. If they are impli
ation or equivalen
es, then in theformulas under (�) bra
kets should o

ur in the appropriate pla
es. The same applies tothe formulas whi
h will be dis
ussed below.The semanti
 
orrelate of the formula�1 & �2 implies �3has the following form: not ((d�1e & d�2e) & dnot �3e)(where ins
ription d�1e denotes the semanti
 
orrelates of the formula �1; the sameapplies, by analogy, to the remaining 
ases).It will now be shown how the semanti
 
orrelate of the formula �1 implies (�2implies �3) is formed. That formula may equivalently be re
orded thus:not (�1 & not (�2 implies �3))That formula may be re
orded equivalently by making use of the semanti
 form of im-pli
ation: not (�1 & not not (d�2e & dnot �3e))Next we avail ourselves of the fa
t that negation is an involution:not (�1 & (d�2e & dnot �3e))Sin
e 
onjun
tion is asso
iative the semanti
 
orrelate of the above formula may bere
orded thus: not ((d�1e & d�2e) & dnot �3e)The form thus obtained is also a semanti
 form of the formula:(�1 & �2) implies �3The senten
e being proved has its ante
edent in the form of the following formula:�1 & �2 & �3 & �4where�1 stands for 
G = A [ B�2 stands for A is 
losed 43



�3 stands for B is 
losed�4 stands for A \ B = ;GThe 
onsequent of the impli
ation, that is the formulaA, B are separatedwill be denoted by 
.The system, when reading the formula, will add bra
kets in the appropriate pla
esand transform it into the formula:((�1 & �2) & �3) & �4Now let the formula ((�1 & �2) & �3) be denoted by �. On substituting � in thepre
eding formula we obtain � & �4It follows from earlier analyses that the semanti
 form of the formulas:� & �4 implies 
 and � implies (�4 implies 
)is the same.Hen
e the skeleton of the proof of the thesis� & �4 implies 
is the same as the skeleton of the proof of the thesis� implies (�4 implies 
)Sin
e the senten
e
G = A [ B & A is 
losed & B is 
losed & A \ B = ;Gimplies A, B are separatedis pro
essed by the system in the same way as the senten
e
G = A [ B & A is 
losed & B is 
losedimplies (A \ B = ;G implies A, B are separated)the skeleton of the proof of the thesis
G = A [ B & A is 
losed & B is 
losed & A \ B = ;Gimplies A, B are separatedmay have the form:proof ......assume q: 
G = A [ B & A is 
losed & B is 
losed;(now the thesis is: A\B = ;G implies A, B are separated)......assume p: A \ B = ;G;(now the thesis is: A, B are separated)......thus A, B are separated;......end;The proof of the thesis dis
ussed in this example is presented by the example No.9in the �le art.lst.Remark: The skeleton of the proof of the senten
e � & � implies 
 may be as below:proof .....assume �;.....assume �;.....thus 
;.....end; 44



On the 
ontrary, it 
annot be the skeleton of the proof of the senten
e� & � implies 
be
ause in that 
ase a di�erent order of assumptions is required.3. When proving the EQUIVALENCE� i� �one has to prove two impli
ations:� implies � and � implies �Sin
e the senten
es� i� � and (� implies �) & (� implies �)have one and the same semanti
 
orrelate the skeleton of the proof for equivalen
e issubsumed under the skeleton of the proof of a thesis whi
h is a 
onjun
tion.Here is the skeleton of the proof of equivalen
e:� i� �proof ......thus � implies �;(now the thesis is: � implies �)......thus � implies �;......end;Sin
e for Mizar the 
ommutativity of 
onjun
tion is not self-evident the order inwhi
h the impli
ations are indi
ated must be as above.The example No.10 in the �le art.lst shows a proof of equivalen
e. The skeletonof that proof is in the same form as above.The skeleton of the proof of the equivalen
e � i� � may be su
h as below:proof ......thus � implies �;(now the thesis is: � implies �)......assume �;(now the thesis is: �)......thus �;......end;In the example No.11 in the annex there is the proof of the thesis from the exampleNo.10. That proof is 
arried out in a di�erent way than in the example No.10, whi
h isto say that the skeleton of the proof is di�erent. It is in the form as above.A justi�
ation of an equivalen
e is also to be found in the example No.30 in the�le art.lst, where the equivalen
e is justi�ed straightforwardly (by by). The list ofreferen
es 
onsists of labels of two 
orresponding impli
ations proved earlier.4. When proving a THESIS whi
h is a DISJUNCTION it is worth whilebearing in mind one more pair of senten
es whi
h are pro
essed by the system in thesame way. We mean the senten
e� or � and not � implies �45



These senten
es have the proof of a disjun
tion it is 
onvenient to assume the negationof the �rst 
onstituent of the disjun
tion (�) and to prove the se
ond 
onstituent.Should we do it 
onversely by assuming the negation of the se
ond 
onstituent (�)and by proving the �rst (�), we would prove the thesis� or �But the senten
es � or � and � or �have di�erent semanti
 
orrelates.If the thesis is a disjun
tion of three 
onstituents, then in its proof one has toassume the negation of the �rst two 
onstituents and to prove the third. This is done inthe example below. EXAMPLEk < n or k = n or n < kproof assume A: not k < n & k <> n;(The negation of the �rst two 
onstituents of the disjun
tion is assumed and it is nowthe formula n < k whi
h is the thesis)then not k � n by NAT 1:30;then n � k by NAT 1:14;hen
e n < k by REAL 1:57, A;end;See the example No.12 in the �le art.lst.5. The thesis is in the form of a GENERAL SENTENCE.In su
h a 
ase the 
onstru
tion of the skeleton of the proof must begin with ageneralization. Generalization is used, for instan
e, in the proofs of general senten
esand in the proofs of senten
es whi
h 
an be presented as general ones. Other o

urren
esof generalization are:{ di�use statement,{ de�nition.General speaking, generalization is intended to �x 
ertain obje
ts. It a

ordinglyintrodu
es 
onstants at the level of proof.Generalization is in the form:let variables{quali�ed{impli
itly ;In view of the diversi�ed forms of the list of quali�ed variables generalization maytake on the form of one of the expressions presented below:(a) let identi�ers{of{variables ;Examples: let x;, let A, B;In the generalization of this kind the types of variables whi
h o

ur in it are notindi
ated, whi
h 
an be seen in the examples above. This means that the identi�ers ofthose variables have the respe
tive types given in the reservation of variables.(b) let variables{quali�ed{expli
itly ;Generalization in this form di�ers from the pre
eding one in that the types of thevariables o

urring in it are indi
ated.Examples: let x, y be Any;let P, Q be (Subset of G), p be Point of G;let a, b be Subset of the 
arrier of Y;let a be Subset--Family of the 
arrier of Y;46



(where Y is a 
ertain topologi
al stru
ture).Instead of be one may alternately use being, but let the 
onvention be that be isused in the 
onstru
tion let ... .(
) let variables{quali�ed{expli
itly , variables{quali�ed{impli
itly ;Generalization in this form is, generally speaking, a 
ombination of the two pre
edingones. Examples:let A be (Subset of G), x;let P1, P2 be (Subset of G), p, q be (Point of G), x,y,z ;It is known that the senten
e in the form:(�) for lists{of{quali�ed{variables holds �1 implies �2is pro
essed by the system in the same way as the senten
e:(��) for lists{of{quali�ed{variables st �1 holds �2If the thesis of senten
e being proved has the same form as under (�) or (��), thenthe generalization may be re
orded as follows:let lists{of{quali�ed{variables su
h that 
onditions ;The 
ondition in su
h a generalization must be re
orded as one labelled senten
e orseveral labelled senten
es linked together by the word and . For the formulas marked(�) and (��) the 
onditions may be re
orded, for instant, thus:W1: �1; or W1: �1 and W2: not �2;The use of generalization in the proof will be visible in the dis
ussion of the skeletonof the proof of a general senten
e, to be dis
ussed now. For the time being let it be saidonly that generalization is a 
ut down in the thesis of the universal quanti�er. The proofof a general senten
e will be dis
ussed by referen
e to examples.In ea
h of the examples to be presented below the 
orresponding reservation ofvariables and the 
ontent of the senten
e whi
h requires a proof will be dire
t, whi
h isimportant for the 
onstru
tion of the skeleton of the proof. In the 
ase of indire
t proofsskeletons look di�erently, but that 
ase will be dis
ussed later.Here are the examples announ
ed:EXAMPLE 1reserve G for TopSpa
e, x for Any, P for Subset of G;for x holds x 2 Fr P implies x 2 (Cl (P
) \ P) [ (Cl P n P)proof ......(Sin
e at this point the thesis is a general statement the 
onstru
tion of the skeleton ofthe proof begins with a generalization)let x;(the type of the identi�er of x is given in the reservation of variables hen
e it need notbe given again. The generalization results in the 
utting down of the universal quanti�erin the initial thesis, whereby the thesis has be
ome modi�ed. Now the thesis has the formof an impli
ation. When proving an impli
ation dire
tly we assume its ante
edent andprove its 
onsequent. Moreover the generalization has introdu
ed the 
onstant x at thelevel of the proof). ......assume x 2 Fr P;(Now the formula x 2 (Cl (P
) \ P) [ (Cl P n P) is the thesis.)......thus x 2 (Cl (P
) \ P) [ (Cl P n P); (�nal 
on
lusion)end; 47



In the generalization, and hen
e in the proof as a whole, an identi�er other than x
ould have been used be
ause generalization is to apply to the types of the identi�ers ofthe variables o

urring in the quanti�er formula after the word for. The point is thatthe types of identi�ers in the generalization should agree with the types of the identi�ersfollowing for in the quanti�ed formula.For instan
e, if we have a quanti�ed formula in the form:for x being T holds �(x)(where T is a type)then the generalization may be as follows:let y be T;If in the reservation the identi�er y has been reserved for a type other than T or if it hasnot been at all taken into 
onsideration in that 
onstru
tion, then in the generalizationthe appropriate type must be indi
ated. In both 
ases the type of the variable introdu
edby a generalization is valid until the end of a given level of reasoning, that is that levelat whi
h a given variable was introdu
ed. But if the identi�er y has been reserved forthe type T, then the generalization may be as follows: let y;.Remark:The variable introdu
ed by a generalization may be overridden by another general-ization, a statement of 
hoi
e, a statement of a 
hange of type, an exempli�
ation, anexistential assumption and lo
al de�nition of variable.The expression assume x 2 Fr P; is a single assumption whi
h is one of the formsof assumption.The senten
e being proved has for Mizar the same meaning as the senten
e:for x st x 2 Fr P holds x 2 (Cl (P
) \ P) [ (Cl P n P)Hen
e in a

ordan
e with the information about the stru
ture of generalization in the
ase of a thesis whi
h is a formula with a puri�ed quanti�er the skeleton of the proofmay be abbreviated as follows:let x; ) let x su
h that A: x 2 Fr P;assume x 2 Fr P;The proof of the senten
e dis
ussed in the �rst example is shown in the annex, �leart.lst, under No.13.Now 
omes another example illustrating the 
onstru
tion of the skeleton of a proof.EXAMPLE 2reserve G for TopSpa
e, P for Subset of G;P � Cl PThe de�nitional expansion of this senten
e has the following form:for x being Any holds x 2 P implies x 2 Cl PThe skeleton of the proof of the senten
e P � Cl P may also be the skeleton of the proofof a senten
e whi
h is its de�nitional expansion. This is guaranteed by the joining to theenvironment of the dire
tive of de�nitional de�nitions TARSKI;.Here is the skeleton of the proof of the senten
e P � Cl P:proof ......(Sin
e at this point the senten
e whi
h may be expanded into a general senten
e is thethesis generalization may be the �rst element in the skeleton of the proof.)48



let x be Any;(Now it is the impli
ation whi
h is the thesis, and hen
e the skeleton of the proof maystill 
onsist of the assumption of the ante
edent.)......assume x 2 P;(Now it is the formula x 2 Cl P)......thus x 2 Cl P;......end;The full proof is to be found in the example No.14 in the annex.EXAMPLE 3reserve G for TopSpa
e, P, Q for Subset of G;P is dense implies for Q holds Q 6= ; & Q is open implies P \ Q 6= ;proof ......(Now it is the impli
ation whi
h is the thesis hen
e the assumption of the ante
edent willbe the �rst element of the skeleton of the proof.)assume P is dense;(It is a general senten
e whi
h is the thesis at this point, and this means that a general-ization will be the next element.)......let Q;(Now it is the impli
ation whi
h is the thesis, hen
e we assume its ante
edent.)......assume Q 6= ; & Q is open;(it is the formula P \ Q 6= ; whi
h is the thesis now.)......thus P \ Q 6= ;; (�nal 
on
lusion)......end;The single assumptionassume Q 6= ; & Q is open;may be re
orded equivalently as a 
olle
tive assumption:assume that M1: Q 6= ; and M2: Q is open;or as two single assumptions:assume a: Q 6= ;;......assume b: Q is open;The skeleton of the proof of the senten
e under 
onsideration may also be as follows:proof ......(Now it is the impli
ation whi
h is the thesis hen
e the assumption of its ante
edent willbe the �rst element in the skeleton of the proof.)assume P is dense;(At this point a general senten
e is the thesis, and this means that a generalization willbe the next element.)......let Q su
h that Z1: Q 6= ; and Z2: Q is open;(The formula P \ Q 6= ;; is the thesis.) 49



......thus P \ Q 6= ;; (�nal 
on
lusion)......end;(See annex, - example No.15.) EXAMPLE 4reserve G for TopSpa
e;for H being SubSpa
e of G for A being Subset of Hholds A is Subset of GSkeleton of the proof:proof ......(The general senten
e being proved is now the thesis.)let H be SubSpa
e of G;(The general senten
efor A being Subset of H holds A is Subset of Gis now the thesis.)......let A be Subset of H;(The formula A is Subset of G is the thesis)......thus A is Subset of G;......end;The generalization in the proof above 
an be re
orded more brie
y, namely:let H being (SubSpa
e of G), A being Subset of H;This is due to the fa
t that the senten
esfor x for y holds � and for x, y holds �have one and the same semanti
 
orrelate.The proof of the thesis in this example is shown in the example No.16 in the annex.6. The thesis is an EXISTENTIAL SENTENCE,that is a senten
e in the form:ex list{of{quali�ed{variables st formulaLet the formula ex x being T st �(x)be the thesis.The proof of this thesis 
onsist in indi
ating an obje
t of the type T whi
h satis�esthe 
ondition �(x).To do so we shall avail ourselves of the 
onstru
tion take ... , 
alled exempli�
ation.That 
onstru
tion, ex
ept for generalization, assumption, and 
on
lusion, modi�es thethesis of the proof. While generalization results in the 
utting down of the universalquanti�er in the thesis, exempli�
ation 
uts down the existential quanti�er in the thesis.Exempli�
ation with equalization introdu
es a 
onstant at the level of the proof, that
onstant being a

essible from the moment of being introdu
ed to the end of that levelof reasoning at whi
h it has been introdu
ed, unless it is overridden by another exem-pli�
ation, a generalization, a statement of 
hoi
e, a statement of a 
hange of type, anexistential assumption, or a lo
al de�nition of a variable.Consider, for instan
e, the theorem(�) x 2 Int P i� ex Q st Q is open & Q � P & x 2 Q50



The proof of this theorem 
onsist of justi�
ations of two impli
ations. We shall write theskeleton of the proof of the �rst of them.x 2 Int P implies ex Q st Q is open & Q � P & x 2 Qproof ......(An impli
ation is the thesis hen
e we assume its ante
edent.)assume x 2 Int P;(Now it is an existential senten
e whi
h is the thesis. Note that senten
e is satis�ed forQ equal Int P.)......take Q = Int P;(At this point the formula Q is open & Q � P & x 2 Q is the thesis. By the 
onstru
-tion take ... we have pointed to the obje
t sought. We have to verify whether it satis�edthe 
onditions stated after the word st, that is the thesis now under 
onsideration. Of
ourse, the identi�er Q in the exempli�
ation, and hen
e in the further proof, may berepla
ed by any other identi�er.)......thus Q is open & Q � P & x 2 Q;......end;The full proof is shown in the example No.10.For the thesis proved above there may also be other variations of the 
onstru
tiontake ... ; .The expression take Q = Int P;may be repla
ed by take Int P;. In su
h a 
ase the proof will be as shown in the annex{ example No.11.The proof of the other impli
ation whi
h is a part of the thesis marked by the (�) isshown in the example No.10 and in the example No.11. In either example the proof is
arried out in a di�erent way.Here are two skeletons, given by way of example, of the proof of the senten
eex a st �(x)(i) proof......take y = �;......thus �(y);......end;(ii) proof......take �;......thus �(�);......end;(Now � is the 
orresponding term, and y, any identi�er. Any identi�er may be substitutedfor y.)There are senten
es in the proofs in whi
h the exempli�
ation 
onsists of severalequalizations of terms, whi
h in su
h a 
ase must be separated be 
ommas from oneanother. 51



Let the senten
e ex x ex y st �(x,y)be the thesis. The skeleton of the proof might be as follows:proof......take x;......take y;......thus �(x,y);......end;We applied here exempli�
ation twi
e but it 
ould have been done only on
e. Then theskeleton of the proof would be:proof......take x,y;......thus �(x,y);......end;The expression take x,y; is also an exempli�
ation in the proof of the thesisex x,y st �(x,y)But the senten
esex x ex y st �(x,y) and ex x,y st �(x,y)are ready by the system in the same way.Remark:The adding in the proof of a statement whi
h does not 
ontribute anything to theproof and su
h whi
h has some snta
ti
 
orrelate as not 
ontradi
tion, i.e. VERUM, isnot an error. For instan
e, if in the proof of the thesis from the example No.7 in theannex we write an additional 
on
lusion, then the proof will take on the form su
h as inthe example No.8. Super
uous thus thesis would be added, but that would not 
ause anerror. In that 
ase thesis is the formula not 
ontradi
tion (VERUM). In the pro
essingof the formulas in that proof into semanti
 
orrelates not 
ontradi
tion as VERUM isdisregarded. Likewise the addition of assume not 
ontradi
tion is not an error forthe same reason as above.IV.2.2. INDIRECT PROOFSSo far dire
t proof have been dis
ussed. But indire
t proofs 
an also be 
arried outin Mizar. What the skeleton of the proof is like in su
h 
ases?If we are to prove a senten
e � indire
tly, then we may assume the negation of thatsenten
e and to 
arry out the proof until the point when we arrive at 
ontradi
tion. Theskeleton of the proof for � might be as follows:proof ......assume not �;......thus 
ontradi
tion; 52



......end;or elseproof ......assume not �;......thus thesis;......end;(In this 
ase thesis means the formula 
ontradi
tion.)The formula not � may, if that is 
onvenient, be repla
ed by the already negatedsenten
e �. For Mizar that is indi�erent.The word 
ontradi
tion denotes the logi
al 
onstant falsehood. Self-evidently, not
ontradi
tion, or VERUM, denotes the logi
al 
onstant truth. The word 
ontradi
tionis treated by Mizar as a formula. It may o

ur not only at the end of an indire
t proof.Its other o

urren
es are:{ in Fr�nkel's terms;e.g., fk + 1: not 
ontradi
tiongIndire
t proof is frequently used when it is an impli
ation whi
h is the thesis:� implies �In an indire
t proof of this impli
ation one has to assume the ante
edent of the impli
ationand the negation of its 
onsequent. The assumption may be either single or 
olle
tive asbelow: assume �;assume not �;or assume � & not �;or assume that S1: � and S2: not �;The proof is 
arried on until the point when we arrive at a 
ontradi
tion, whi
h ismanifested by the properly justi�ed statement thus 
ontradi
tion.EXAMPLE 1We shall write the skeleton of the proof of the senten
eP is open & P is nowheredense implies P = ;proof ......(Now the impli
ation being proved is the thesis. When proving an impli
ation indire
tlywe assume its ante
edent and the negation of its 
onsequent. This assumption will bere
orded in the form of a 
olle
tive assumption.)assume that Z1: P is open and Z2: P is nowheredense and Z3: P 6= ;;(The formula P 6= ; is the assumption of the indire
t proof. Further steps of the proofmust yields a 
ontradi
tion.)......thus 
ontradi
tion;......end;The example No.17 in the annex illustrates an indire
t proof of a thesis whi
h is animpli
ation. 53



EXAMPLE 2We shall write the skeleton of an indire
t proof of the senten
e:(for G st G is open holds p 2 G implies P \ G 6= ;) implies p 2 Cl Pproof ......assume A0: for G st G is open holds p 2 G implies P \ G 6= ;;(Now it is the formula p 2 Cl P whi
h is the thesis. Sin
e the impli
ation in questionis being proved indire
tly we now have to assume the negation of its 
onsequent.)......assume not p 2 Cl P;......thus 
ontradi
tion;......end;The full proof is shown in the example No.18.The expression not p 2 Cl P may be repla
ed by the equivalent expression notthesis, where the formula thesis denotes the formula p 2 Cl P. Then the skeleton ofthe indire
t proof will be as follows:proof ......assume A0: for G st G is open holds p 2 G implies P \ G 6= ;;......assume not thesis;......thus 
ontradi
tion;......end;Here is one more skeleton of the proof of the thesis from the example No.2.proof ......assume A0: not thesis;(The formula thesis denotes here the senten
e being proved. Further steps of the proofmust be yield a 
ontradi
tion.)......thus 
ontradi
tion;......end;For su
h a form of re
ording the 
he
king by the system of the 
orre
tness of theproof takes more time than in the 
ase of the previous re
ordings.The example No.19 shows the proof of the thesis from the example No.18, but theskeleton of the proof of that thesis has the same form as that presented above.EXAMPLE 3We shall write the skeleton of the proof of the senten
e:A is a 
omponent of G & B is a 
omponent of Gimplies A = B or A,B are separatedproof ......(The impli
ation being proved is the thesis. We shall prove it dire
tly and hen
e weassume its ante
edent and prove its 
onsequent.)assume Z1: A is a 
omponent of G & B is a 
omponent of G;54



(Now it is the disjun
tion A=B or A,B are separated whi
h is the thesis. We assumethe negation of the �rst 
onstituent of that disjun
tion and prove the truth of the se
ond.)......assume Z2: A 6= B;(Now it is the senten
e A,B are separated whi
h is the thesis.That senten
e is to beproved indire
tly and hen
e we assume its negation.)......assume Z3: not A,B are separated;(Further steps of the proof must yield a 
ontradi
tion.)......thus 
ontradi
tion;......end;The proof of this thesis is to be found in the example No.20 in the annex. Otherindire
t proofs are shown in the examples Nos.21, 22, 23, 24.In the proof of the su

essive Mizar senten
e the 
onstru
tion 
onsider ... will beused. The role of that 
onstru
tion in the proof 
onsists in the introdu
tion of 
onstantsto the level of the proof.The statement of 
hoi
e, as the 
onstru
tion 
onsider ... is 
alled, may take on theform:(1) 
onsider list{of{quali�ed{variables ;for instan
e:
onsider x, y;
onsider A being Subset of G, a being Any;
onsider V being set, P, Q;(2) 
onsider list{of{quali�ed{variables su
h that 
onditions justi�
ation ;The 
onditions form a single labelled senten
e or several labelled senten
es linkedtogether by the word and. The justi�
ation may be by by or by from that is by s
hema.The labelling of the senten
e(s) o

urring in the 
onditions is due to the fa
t that afterthe statement of 
hoi
e linking is not allowed.It may be so that the 
ondition in the statement of 
hoi
e do not require justi�
ation.Then the statement of 
hoi
e will have the form:(3) 
onsider list{of{quali�ed{variables su
h that 
onditions ;The statement of 
hoi
e is in su
h a form when:� in the justi�
ation of the statement of 
hoi
e we refer solely to the immediatelypre
eding senten
e by linking,� the 
onditions are a

epted by CHECKER without justi�
ation, whi
h is to saythat we have to do with tautologies of the propositional 
al
ulus or with simple laws ofthe fun
tional 
al
ulus.The example below illustrates the appli
ation of the statement of 
hoi
e.EXAMPLE 4Here is the proof of the senten
eP is boundary i� (for Q st Q � P & Q is open holds Q = ;)proofthus P is boundary implies (for Q st Q � P & Q is open holds Q = ;)proof(Now the impli
ation being proved is the thesis. We assume its ante
edent.)assume P is boundary;(Now the general senten
e for Q st Q � P & Q is open holds Q = ; is the thesis.)then P: P
 is dense by TOPS 1:83;55



let Q;(Now the impli
ation Q � P & Q is open implies Q=;, whi
h is to be proved indire
tly,is the thesis.)assume that P1: Q � P and P2: Q is open and P3: Q 6= ;;(The further steps of the proof must yield a 
ontradi
tion.)P
 \ Q 6= ; by TOPS 1:80,P3,P2,P;then Q \ P
 6= ; by BOOLE:66;hen
e 
ontradi
tion by P1,TOPS 1:20;end;(Now the following impli
ation is the thesis:for Q st Q � P & Q is open holds Q = ;) implies P is boundary)thus (for Q st Q � P & Q is open holds Q = ;) implies P is boundaryproof(Now the above impli
ation is the thesis.)assume K: for Q st Q � P & Q is open holds Q = ;;(Now the formula P is boundary, to be proved indire
tly, is the thesis.)assume not P is boundary;(The assumption of the indire
t proof. Further steps of the proof must yield a 
ontradi
-tion.) then not P
 is dense by TOPS 1:83;then 
onsider C being Subset of G su
h that Q: C 6= ;and Q1: C is open and Q2: P
 \ C = ; by TOPS 1:80;C \ P
 = ; by Q2,BOOLE:66;then C � P by TOPS 1:20;hen
e 
ontradi
tion by K,Q,Q1;end;end;(See annex - the example No.21.)We shall analyse two statements whi
h o

ur immediately after the assumption ofthe indire
t proof. The �rst statement is not P
 is dense;.The theorem TOPS 1:80 formulates the property of a dense set:P is dense i� (for Q st Q 6= ; & Q is open holds P \ Q 6= ;)But the statement not P
 is dense says that the 
omplement of the set P is not dense.Then by availing ourselves additionally of the thesis TOPS 1:80 we 
an infer that:(1) ex Q st Q 6= ; & Q is open & P
 \ Q = ;;Sin
e there is an obje
t whi
h satis�ers the above 
onditions, in further analysis we maybe arbitrary, but its type must agree with the type of the identi�er of Q whi
h o

urs in(1), whi
h is to say that it must be the type Subset of G. Hen
e we may write:
onsider C being Subset of G su
h that Q: C 6= ;and Q1: C is open and Q2: P
 \ C = ;;After the statement of 
hoi
e the type of the identi�er of C has been �xed as Subset ofG. If that identi�er in the reservation of variables had been reserved for another typethen the statement of 
hoi
e has overridden that type. The 
onstant introdu
ed by thestatement of 
hoi
e in a

essible from the moment of its introdu
tion to the end of thegiven level of reasoning, that is that level of reasoning at whi
h the given 
onstant hasbeen introdu
ed.Remark: The 
onstant introdu
ed by the statement of 
hoi
e may be overridden by ageneralization, another statement of 
hoi
e, a statement of a 
hange of type, an exem-pli�
ation, an existential assumption, and a lo
al de�nition of variable.56



Examples of the appli
ation of the statement of 
hoi
e:(1) ex x st x 2 X \ Y;then 
onsider x su
h that Z: x 2 X \ Y;(2) X meets Y;then 
onsider x su
h that a: x 2 X and b: x 2 Y by BOOLE:15;Here is the theorem BOOLE:15:X meets Y i� ex x st x 2 X & X 2 Y;(3) X 6= ;;then 
onsider x su
h that 
: x 2 X by BOOLE:1;Here is the theorem BOOLE:1:X = ; i� not ex x st x 2 X;The appli
ation of the statement of 
hoi
e in proofs is illustrated by the examplesNos.11, 15, 21, 22, 23, 25 in the annex. Moreover, the example No.35 shows the appli
a-tion of that 
onstru
tion outside a proof, that is outside the reasoning 
ontained betweenproof and end;.IV.2.3. ON A NEW MIZAR CONSTRUCTIONLet the thesis be an impli
ation whose ante
edent is an existential senten
e. It maybe a

ordingly be a senten
e in the form:(ex x being T st �(x)) implies �The proof of that thesis may be take on the following form:proof assume A: ex x being T st �(x);
onsider y being T su
h that Z:�(y) by A;(or then 
onsider y being T su
h that Z:�(y);)......(proof of �)end;The identi�er in the statement of 
hoi
e may be sele
ted arbitrarily but so that itstype should agree with the type of the identi�er of x in the assumption, that is with thetype of T.The assumption and the statement of 
hoi
e may in that 
ase be repla
ed by anexistential assumption: given x being T su
h that Z: �(x);If the thesis is an impli
ation with the ante
edent whi
h is an existential statement,then the assumption of the existen
e of 
ertain obje
ts (by the 
onstru
tion assume... ) and the statement of 
hoi
e justi�ed by that assumption may be repla
ed by anexistential assumption.The existential assumption may be in the form:(a) given list{of{quali�ed{variables ;(b) given list{of{quali�ed{variables su
h that 
onditions ;The 
onditions may form a single labelled senten
e or several labelled senten
eslinked together by the word and.The range of a 
onstant introdu
ed by an existential assumption is the same as therange of a 
onstant introdu
ed by the statement of 
hoi
e.Remark:Linking is not allowed after an existential assumption.The appli
ation of the existential assumption will be illustrated by examples.57



EXAMPLE 1reserve G for TopSpa
e, P,Q for (Subset of G), x for Any;(ex Q st Q is open & Q � P & x 2 Q) implies x 2 Int Pproof assume ex Q st Q is open & Q � P & x 2 Q;then 
onsider Q su
h that Z1: Q is open andZ2: Q � P and Z3: x 2 Q;(The ante
edent of the impli
ation being proved has been assumed and the appropriatestatement of 
hoi
e has been made. Now the formula x 2 Int P is the thesis. Theremaining steps of the proof are shown below.)P
 � Q
 by TOPS 1:15,Z2;then Z4:Cl(P
) � Cl(Q
) by TOPS 1:25;Q
 is 
losed by Z1,TOPS 1:30;then Cl(Q
) = Q
 by PRE TOPC:52;then Cl(Q
) � Q
 by Z4;then Q

 � (Cl(P
))
 by TOPS 1:15;then Q � (Cl(P
))
 by TOPS 1:10;then Q � Int P by TOPS 1:42;hen
e thesis by Z3,BOOLE:5;end;(See �le - example No.11.)The �rst two steps of the proof may be repla
es by the following existential assump-tion: given Q su
h that Z1: Q is open and Z2: Q � P and Z3: x 2 Q;The proof then assumes the form as in the example No.10 in the �le art.lst. Other
ases of existential assumptions are given in the examples Nos.25, 26, 27, 28 from the �leart.lst.Remark: The 
onditions given in the existential assumption 
annot be re
orded in theform of an assumption, that is by the word assume. Hen
e the following re
ording isin
orre
t:given Q; assume that Z1: Q is open and Z2: Q � P and Z3: x 2 Q;The exer
ise in the annex { Z13.lst { shows the 
onsequen
es of su
h an in
orre
tassumption.Likewise, the statement of 
hoi
e:
onsider Q su
h that Z1: Q is open and Z2: Q � P and Z3: x 2 Q;
annot be re
orded thus:
onsider Q; assume that Z1: Q is open and Z2: Q � P and Z3: x 2 Q;(See annex - Z12.lst.)IV.3. Other Mizar 
onstru
tionsIV.3.1. ITERATIVE EQUALITYWe shall now dis
uss the Mizar 
onstru
tion 
alled iterative equality. It �nds appli-
ation in proofs of senten
es whi
h are equality formulas. Those formulas must satisfy
ertain 
onditions, namely they 
annot 
ontain free variables. The variables o

urring insu
h formulas must be �xed. They are �xed by generalization, exempli�
ation, statementof 
hoi
e, statement of a 
hange of type, or lo
al de�nition of variable.58



While iterative equality does not introdu
e any new idea of the proofs.Let us examine the proof of the theorem (P
)
 = P, whi
h will later be used toillustrate iterative equality.(P
)
 = Pproof (P
)
 = 
G n (P
) by TOPS 1:5;then (P
)
 = 
G n (
G n P) by TOPS 1:5;then (P
)
 = 
G \ P by BOOLE:82;hen
e (P
)
 = P by TOPS 1:3;end;Note the following fa
ts whi
h are 
hara
teristi
 for the thesis and its proof:1. The senten
e proved is an equality formula.2. The formula o

uring in every step of the proof is an equality. Moreover the term onthe left side of the equality is the same in ea
h step ((P
)
).3. Every step of the reasoning, beginning with the se
ond one, refers to the pre
edingone (by linking).These fa
ts suÆ
e for the proof of the thesis (P
)
 = P to be 
arried out by aniterative equality, whi
h in the 
ase under 
onsideration has the form:(P
)
 = 
G n (P
) by TOPS 1:5.= 
G n (
G n P) by TOPS 1:5.= 
G \ P by BOOLE:82.= P by TOPS 1:3;What does a re
ording mean? For instan
e, the inferen
e.= 
G n (
G n P) by TOPS 1:5is another re
ording if the expressionthen (P
)
 = 
G n (
G n P) by TOPS 1:5where then denotes referen
e to the pre
eding senten
e, that is the senten
e(P
)
 = 
G n (P
)It must be borne in mind that before the symbol .= after the justi�
ation of thepre
eding step of the reasoning, we do not put the semi
olon ; . The semi
olon is requiredat the end of the iterative equality, that is after the last expression in the form.= term justi�
ationThe iterative equality given above is not the 
omplete proof of the thesis (P
)
 = Pbe
ause it la
ks the 
on
lusion terminating the proof. It suÆ
es to add:hen
e (P
)
 = PThe word hen
e means that the senten
e (P
)
 = P has been justi�ed by referen
e tothe entire reasoning in the form of an iterative equality. Of 
ourse, the 
on
lusion maybe re
orded by means of thus, but then, in order to refer to iterative equality, we haveto pre�x the equality formula whi
h opens that equality by a label. We might also writethus before the iterative equality. Moreover, the 
on
lusion (P
)
 = P might be repla
edby the formula thesis. The proof of the thesis (P
)
 = P may a

ordingly have the form:proof(After the writing of the word proof the variables G and P have been �xed. Sin
e thesenten
e being proved is read by the system as a quanti�ed formula in the form: for G,P holds (P
)
 = P, after the writing of the word proof the system automati
ally 
arriesout the generalization let G, P; and thus �xes the variables G and P. The variable G is�xed be
ause P has the type Subset of G.)(P
)
 = 
G n (P
) by TOPS 1:5.= 
G n (
G n P) by TOPS 1:5.= 
G \ P by BOOLE:82.= P by TOPS 1:3; 59



hen
e thesis;end;(See example No.33 in the �le art.lst.)Here is another version of the proof of the thesis under 
onsideration:proofA: (P
)
 = 
G n (P
) by TOPS 1:5;.= 
G n (
G n P) by TOPS 1:5.= 
G \ P by BOOLE:82.= P by TOPS 1:3;thus thesis by A;end;The above proof 
an be slightly abbreviated if the last two statements:.= P by TOPS 1:3;thus thesis by A;are repla
ed by a single statement in the following form:hen
e (P
)
 = P by TOPS 1:3;or by the statementhen
e thesis by TOPS 1:3;The proof then takes on the form as in the example No.34 in the �le art.lst.The various steps of the reasoning in our iterative equality had a straightforwardjusti�
ation (by by). In an iterative equality there may also be justi�
ations by s
hema,but not by proof. In the simplest 
ase, when a given step of the reasoning is self-evidentto CHECKER, the justi�
ation of that step may be empty.The senten
e (P
)
 = P 
an be proved by iterative equality by �xing the variables Gand P through the statement of 
hoi
e. In su
h a 
ase the words proof and end shouldnot be written. We then may have:
onsider G, P;(P
)
 = 
G n (P
) by TOPS 1:5.= 
G n (
G n P) by TOPS 1:5.= 
G \ P by BOOLE:82.= P by TOPS 1:3;The variables G and P �xed in this way make it possible to use the senten
e provedonly for su
h variables as �xed here, that is for P and G (see example No.35). Su
ha way of proving is thus not pra
ti
al. If the variables are not �xed, then errors willbe reported as in the example Z11.lst in the annex. The error No.62 states that freevariables are not allowed in the iterative equality, and the error No.140, that there is anunknown variable.Iterative equality 
an be illustrating as below.If t1, t2, ... ,tn, tn+1 are 
orresponding terms then the reasoningt1 = t2 & t2 = t3 & ... & tn = tn+1 straightforward-justi�
ation hen
e t1 = tn+1;may be equivalently repla
ed by another reasoning, namely the iterative equality in theform: t1 = t2 straightforward-justi�
ation.= t3 straightforward-justi�
ation.....................................= tn straightforward-justi�
ation.= tn+1 straightforward-justi�
ation ;
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EXAMPLEThe theoremInt(Int P) = Int P
an be proved as belowproofInt P = (Cl (P
))
 by TOPS 1:42;then Int(Int P) = (Cl (((Cl (P
))
)
))
 &(Cl (((Cl (P
))
)
))
 = (Cl (Cl (P
)))
 &(Cl (Cl (P
)))
 = (Cl (P
))
 by TOPS 1:10,TOPS 1:42,TOPS 1:26;hen
e Int(Int P) = Int P by TOPS 1:42;end;(See example No.31 in the �le art.lst.)or by referen
e to iterative equality:proof Int P = (Cl (P
))
 by TOPS 1:42;then Int(Int P) = (Cl (((Cl (P
))
)
))
 by TOPS 1:42.= (Cl (Cl (P
)))
 by TOPS 1:10.= (Cl (P
))
 by TOPS 1:26;hen
e thesis by TOPS 1:42;end;The next example in the �le art.lst in
ludes a proof of the senten
e Fr P = Fr(P
) with the use of iterative equality.IV.3.2. DIFFUSE STATEMENTIt is sometimes so that in the proof of a 
ertain thesis it is 
onvenient to justify (an)auxiliary senten
e(s). If that senten
e 
annot be justi�ed straightforwardly (by by) or bys
hema (by from), then we have to 
arry out a proof (i.e., a 
ertain reasoning beginningafter the word proof and 
on
luded by the word end). Then we will get nested proofs.Hen
e the proof may have lesser 
larity. But there is a 
ertain Mizar 
onstru
tion whi
his appli
able in the situation des
ribed above. We mean the 
onstru
tion in the form:now reasoning end;The various steps in the reasoning are formed on the same prin
iple as the steps ofthe proof. The appli
ation of this new 
onstru
tion in proofs will be illustrated by anexample. Let us 
onsider the thesisF is 
losed implies meet F is 
losedIt is a thesis in the form � implies �, where� is the formula F is 
losed ,� is the formula meet F is 
losed .Moreover, let
 will be the formula F 6= ; .This thesis be proved neither by by nor by s
hema. Hen
e a proof must be 
arriedout. Sin
e the formula in the form(
 implies �) & (not 
 implies �) implies �is a tautology it is 
onvenient to prove in the proof two auxiliary senten
es in the form
 implies � and not 
 implies �In the proof these senten
es are labelled T and K1, respe
tively.Here is the proof of the senten
e:(�) F is 
losed implies meet F is 
losedproof assume F is 
losed;then A: COMPLEMENT(F) is open by TOPS 2:16;61



T: F 6= ; implies meet F is 
losedproof assume F 6= ;;then union COMPLEMENT(F) is open by TOPS 2:26;hen
e meet F is 
losed by TOPS 1:29,A;end;F = ; implies meet F is 
losedproof assume F = ;;then meet F = ; by SETFAM 1:2;then meet F = ;(G) by PRE TOPC:11;hen
e meet F is 
losed by TOPS 1:22;end;hen
e thesis by T;end;In this proof the formula meet F is 
losedis denoted by the word thesis.(See example No.37 in �le art.lst.)Remark:The formulas in the form:� and (
 implies �) & (not 
 implies �)do not have one and the same semanti
 
orrelate. Hen
e the skeleton of the proof of asenten
e in the form �
annot be subsumed under the skeleton of the proof for a 
onjun
tion as in the 
ase ofthe senten
e (
 implies � ) & (not 
 implies �).We shall now prove the same thesis in a similar way (the proof will also 
onsist injustifying the senten
es 
 implies � and not 
 implies �) but the re
ording of thereasoning will be di�erent.Here is the thesis: F is 
losed implies meet F is 
losedproof assume F is 
losed;then A: COMPLEMENT(F) is open by TOPS 2:16;We shall prove 
 implies � but that senten
e will not be written openly. We shall 
arryout the reasoning resulting in its justi�
ation. In Mizar su
h a 
onstru
tion begins withthe word now and ends in the expression end; .T1: now(The word now is followed neither by the semi
olon nor by the word proof. Sin
e thesenten
e being proved is an impli
ation its ante
edent is assumed.)assume F 6= ;;(Below there are further steps of the reasoning leading to the justi�
ation of the thesis,whi
h at this point is the formula �)then union COMPLEMENT(F) is open by TOPS 2:26;hen
e meet F is 
losed by TOPS 1:29,A;end;The above reasoning has proved the senten
e 
 implies �.62



In order to be able to refer to it one may, as has been done, pla
e a label beforenow. After the reasoning now ... end; linking is allowed.The further proof of the thesis may be as follows:now assume F = ;;then meet F = ; by SETFAM 1:2;then meet F = ;(G) by PRE TOPC:11;hen
e meet F is 
losed by TOPS 1:22;end;hen
e meet F is 
losed by T1;end;(In the justi�
ation of the 
on
lusion there o

urred the label T1 of the previously provedsenten
e 
 implies �.)The above proof is shown in the example No. 38 in the annex.Sin
e before the word now we do not write the thesis to be proved by that 
on-stru
tion the 
onstru
tion in the formnow reasoning end;has been 
alled di�use statement.Remark:1. The thesis proved by di�use statement is read by analysing the skeleton of that reason-ing. The prin
iples of skeletoning in the 
onstru
tion now ... are the same as in proofs.The words now and end in a sense repla
e the words proof and end, respe
tively.2. The formula thesis in di�use statement denotes the thesis of the immediate externalproof. The use of the formula thesis is allowed throughout di�use statement on the
ondition that su
h reasoning is 
ontained in a 
ertain proof (thesis may be used onlywithin a proof).3. If we pre�x now by a label, then the referen
e to that label means referen
e to thethesis proved in di�use reasoning opening with the word now pre
eded by a given label.4. Linking is allowed after di�use statement.5. It is not allowed to write then, thus, hen
e before now.6. Every reasoning whi
h begins with now must end in end.EXAMPLEThe senten
e in the form � or � implies 
is to be proved. We shall show what the proof of that senten
e with the appli
ation of adi�use statement might be. Sin
e the formula(� implies 
) & (� implies 
) implies (� or � implies 
)is a tautology it is worth while making use of the auxiliary senten
es� implies 
 and � implies 
in the proof. Thus the proof may be as follows:proof ......assume P: � or �;(Now 
 is the thesis.)......A: now......assume �;...... 63



thus 
;......end;......now ......assume �;......thus 
;......end;hen
e 
 by A,P;......end;Con
lusion in the various reasonings may be repla
ed by thesis. In di�use statementsthesis would mean 
 as does thesis at the end of the proof.EXAMPLEWhen proving a senten
e in the form� i� �it is sometimes 
onvenient to avail oneself of the fa
t that the formula(not � implies not �) implies ((not � implies not �) implies (� i� �))is a tautology. In di�use statement one 
an prove two auxiliary senten
es in the formnot � implies not �not � implies not �As an example we may use the proof of the theorem CONNSP 1:11 whi
h is:G is 
onne
ted i� for A, B being Subset of G st 
G = A [ B & A 6= ;G &B 6= ; G & A is 
losed & B is 
losed holds A \ B 6= ;GIn su
h a 
ase� is the formula G is 
onne
ted� is the formula for A, B being Subset t of G st 
G = A [ B& A 6= ;G & B 6= ;G & A is 
losed & B is 
losedholds A \ B 6= ;Gnot � is the formula not G is 
onne
tednot � is the formula ex A, B being Subset of G st
G = A [ B & A 6= ;G & B 6= ;G &A is 
losed & B is 
losed & A \ B = ;GIn the �rst di�use statement we shall prove the senten
enot � implies not �and the se
ond, the senten
e not � implies not �Here is the form of su
h a proof:proofT: now given A, B being Subset of G su
h thatZ1: 
G = A [ B andZ2: A 6= ;G & B 6= ;G andZ3: A is 
losed & B is 
losed & A \ B = ;G;......thus not G is 
onne
ted by ... ;64



end;now assume not G is 
onne
ted;......thus ex A, B being Subset of G st 
G = A [ B & A 6= ;G &B 6= ;G & A is 
losed & B is 
losed & A \ B = ;G by ... ;end;hen
e thesis by T;end;The 
omplete proof is given in the example No. 25 in the �le art.lst.Other examples of di�use statements are to be found under Nos. 26, 27, 28, 29 in the�le art.lst.IV.3.3. STATEMENT OF A CHANGE OF TYPEA 
hange of the type of the obje
t under 
onsideration is sometimes ne
essary inproofs. This is due, amount other things, to the fa
t that 
ertain theorems are provedonly for obje
ts of a de�nite type. For instan
e in arti
les pertaining to the topologi
alspa
e there are theorems, for instan
e, on points of that spa
e.We shall write the proof of the senten
eP � Cl PIt will be a proof by de�nitional expansion.reserve G for TopSpa
e, x for Any, P, Q, B for Subset of G;P � Cl Pproof let x; assume x: x 2 P;(Now the formula x 2 Cl P is the thesis.)Should we prove the senten
e(�) for B being Subset of G st B is 
losed holdsA � B implies p 2 Bwe 
ould obtain p 2 Cl P from the theorem PRE TOPC:45. But if that theorem is to beapplied the indi
ator of x, whi
h has the type Any, must be treated as a point of thetopologi
al spa
e G, that is as an obje
t whose type is Point of G.To do so we shall avail ourselves of the Mizar 
onstru
tion in the form:re
onsider list{of{
hanges{of{type as type of justi�
ation ;By using this 
onstru
tion in the proof under 
onsideration we may write:re
onsider t = x as Point of G by TOPS 1:1,x;whi
h means: let us 
onsider x as a point of the topologi
al spa
e G(where t is any identi�er).Remark: In the equalization t = x the identi�er of the obje
t whose type is being 
hangedmust be on the right side of the equality. On the left side there may be any identi�er,whi
h need not be drawn from the list in the reservation of variables.The statemant of a 
hange of type { as the 
onstru
tion re
onsider ... is 
alled{ results in the fa
t that in the further part of the present level of reasoning (the levelat whi
h the 
onstant has been introdu
ed) the type of the identi�er of x, if not givenexpli
itly, will be Point of G even though in the reservation the identi�er of x wasreserved for the type Any. Of 
ourse, the 
hange of type must be properly justi�ed. Inour 
ase we have to refer to the theorem TOPS 1:1, whi
h is:x 2 P implies x is Point of G65



and to the assumption, that is the formula x 2 P.The next step in the present proof 
onsists in the justi�
ation of the senten
e marked(�). Then we have only to write the 
on
lusion of the main proof. Here is the 
ompletionof the main proof:for B being Subset of G st B is 
losed holds P � B implies t 2 Bproof let Q; assume Q is 
losed; assume P � Q;hen
e t 2 Q by x,BOOLE:11;end;hen
e x 2 Cl P by PRE TOPC:45;end;(See example No. 14 in the �le art.lst.)The statement of a 
hange of type in the proof under 
onsideration may be re
ordedotherwise than in the form of equalization.If we want to 
hange the type of the identi�er of x, then that fa
t may be re
ordedthus: re
onsider x as Point of G by TOPS 1:1, x;We have a

ordingly to 
hange, in the previous version of the proof, the identi�er of t inall its o

urren
es into the identi�er of x. The proof then takes on the form:P � Cl Pprooflet x; assume x: x 2 P;re
onsider x as Point of G by TOPS 1:1, x;for B being Subset of G st B is 
losed holds P � B implies x 2 Bprooflet Q; assume Q is 
losed; assume P � Q;hen
e x 2 Q by x,BOOLE:11;end;hen
e thesis by PRE TOPC:45;end;In the last statement thesis 
ould not have been repla
ed by x 2 Cl P be
ause thatsenten
es says nothing about x from the generalization, but refers to x from re
onsider(re
onsider has overridden the generalization).Example No. 13 also 
ontains a statement of a 
hange of type.The 
onstant introdu
ed by a statement of a 
hange of type may be overridden bygeneralization, statement of 
hoi
e, another statement of a 
hange of type, exempli�
a-tion, existential assumption, and lo
al de�nition of variable.The list of 
hanges of type may have the form of several equalizations (or terms),whi
h in su
h a 
ase must be separated by 
ommas from one another.
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