:: Input and Output of Instructions
:: by Artur Korni{\l}owicz
::
:: Received May 8, 2001
:: Copyright (c) 2001-2018 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies XBOOLE_0, AMI_1, FSM_1, CAT_1, FUNCT_1, RELAT_1, STRUCT_0,
SUBSET_1, FUNCT_4, FUNCOP_1, GOBOARD5, FRECHET, AMISTD_1, ZFMISC_1,
NUMBERS, CARD_1, GLIB_000, AMISTD_2, NET_1, TARSKI, AMISTD_4, QUANTAL1,
GOBRD13, MEMSTR_0, COMPOS_1, ARYTM_3;
notations TARSKI, XBOOLE_0, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, ZFMISC_1,
XTUPLE_0, MCART_1, ORDINAL1, NUMBERS, FUNCOP_1, FUNCT_4, XCMPLX_0, NAT_1,
STRUCT_0, MEMSTR_0, COMPOS_0, COMPOS_1, EXTPRO_1, FUNCT_7, MEASURE6,
AMISTD_1, AMISTD_2;
constructors ZFMISC_1, AMISTD_2, NAT_1, PRE_POLY, EXTPRO_1, AMISTD_1,
DOMAIN_1, FUNCT_7, FUNCT_4, MEMSTR_0, RELSET_1, MEASURE6, PBOOLE,
XTUPLE_0;
registrations FUNCOP_1, STRUCT_0, AMISTD_1, AMISTD_2, ORDINAL1, EXTPRO_1,
ORDINAL6, FUNCT_4, MEMSTR_0, MEASURE6, NAT_1, XCMPLX_0;
requirements SUBSET, BOOLE, NUMERALS;
begin :: Preliminaries
reserve N for with_zero set;
definition
let N be with_zero set,
A be IC-Ins-separated non
empty with_non-empty_values AMI-Struct over N, s be State of A,
o be Object of A,
a be Element of Values o;
redefine func s+*(o,a) -> State of A;
end;
theorem :: AMISTD_4:1
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
s being State
of A, o being Object of A, w being Element of Values o st I is sequential &
o <> IC A holds IC Exec(I,s) = IC Exec(I,s+*(o,w));
theorem :: AMISTD_4:2
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
s being State
of A, o being Object of A, w being Element of Values o st I is sequential &
o <> IC A holds IC Exec(I,s+*(o,w)) = IC (Exec(I,s) +* (o,w));
begin :: Input and Output of Instructions
definition
let A be COM-Struct;
attr A is with_non_trivial_Instructions means
:: AMISTD_4:def 1
the InstructionsF of A is non trivial;
end;
definition
let N be with_zero set, A be non empty with_non-empty_values
AMI-Struct over N;
attr A is with_non_trivial_ObjectKinds means
:: AMISTD_4:def 2
for o being Object of A
holds Values o is non trivial;
end;
registration
let N be with_zero set;
cluster STC N -> with_non_trivial_ObjectKinds;
end;
registration
let N be with_zero set;
cluster with_explicit_jumps
IC-relocable with_non_trivial_ObjectKinds with_non_trivial_Instructions
for standard halting
IC-Ins-separated non empty with_non-empty_values AMI-Struct over N;
end;
registration
let N be with_zero set;
cluster STC N -> with_non_trivial_Instructions;
end;
registration
let N be with_zero set;
cluster with_non_trivial_ObjectKinds with_non_trivial_Instructions
IC-Ins-separated for non empty with_non-empty_values AMI-Struct over N;
end;
registration
let N be with_zero set,
A be with_non_trivial_ObjectKinds non
empty with_non-empty_values AMI-Struct over N, o be Object of A;
cluster Values o -> non trivial;
end;
registration
let N be with_zero set,
A be with_non_trivial_Instructions
with_non-empty_values AMI-Struct over N;
cluster the InstructionsF of A -> non trivial;
end;
registration
let N be with_zero set,
A be IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N;
cluster Values IC A -> non trivial;
end;
definition
let N be with_zero set, A be non empty
with_non-empty_values AMI-Struct over N, I be Instruction of A;
func Output I -> Subset of A means
:: AMISTD_4:def 3
for o being Object of A holds o in
it iff ex s being State of A st s.o <> Exec(I,s).o;
end;
definition
let N be with_zero set,
A be IC-Ins-separated non
empty with_non-empty_values AMI-Struct over N, I be Instruction of A;
func Out_\_Inp I -> Subset of A means
:: AMISTD_4:def 4
for o being Object of A holds o
in it iff for s being State of A, a being Element of Values o holds Exec(I,
s) = Exec(I,s+*(o,a));
func Out_U_Inp I -> Subset of A means
:: AMISTD_4:def 5
for o being Object of A holds o
in it iff ex s being State of A, a being Element of Values o st Exec(I,s+*(
o,a)) <> Exec(I,s) +* (o,a);
end;
definition
let N be with_zero set,
A be IC-Ins-separated non
empty with_non-empty_values AMI-Struct over N, I be Instruction of A;
func Input I -> Subset of A equals
:: AMISTD_4:def 6
Out_U_Inp I \ Out_\_Inp I;
end;
theorem :: AMISTD_4:3
for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction
of A holds Out_\_Inp I c= Output I;
theorem :: AMISTD_4:4
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N,
I being Instruction of A holds Output I c= Out_U_Inp I;
theorem :: AMISTD_4:5
for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction of A
holds
Out_\_Inp I = Output I \ Input I;
theorem :: AMISTD_4:6
for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction of A
holds
Out_U_Inp I = Output I \/ Input I;
theorem :: AMISTD_4:7
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
o being Object of A st
Values o is trivial holds not o in Out_U_Inp I;
theorem :: AMISTD_4:8
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N , I being Instruction of A,
o being Object of A st
Values o is trivial holds not o in Input I;
theorem :: AMISTD_4:9
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N , I being Instruction of A,
o being Object of A st
Values o is trivial holds not o in Output I;
theorem :: AMISTD_4:10
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A
holds I is halting iff Output I
is empty;
theorem :: AMISTD_4:11
for A being with_non_trivial_ObjectKinds IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction
of A st I is halting holds Out_\_Inp I is empty;
theorem :: AMISTD_4:12
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A
st I is halting holds Out_U_Inp
I is empty;
theorem :: AMISTD_4:13
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A
st I is halting holds Input I
is empty;
registration
let N be with_zero set,
A be halting IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N,
I be halting Instruction of A;
cluster Input I -> empty;
cluster Output I -> empty;
cluster Out_U_Inp I -> empty;
end;
registration
let N be with_zero set;
cluster halting with_non_trivial_ObjectKinds IC-Ins-separated for non
empty with_non-empty_values AMI-Struct over N;
end;
registration
let N be with_zero set,
A be halting
with_non_trivial_ObjectKinds IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I be halting Instruction of A;
cluster Out_\_Inp I -> empty;
end;
registration
let N;
cluster with_non_trivial_Instructions
IC-Ins-separated
for non empty with_non-empty_values AMI-Struct over N;
end;
theorem :: AMISTD_4:14
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
sequential holds not IC A in Out_\_Inp I;
theorem :: AMISTD_4:15
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st
ex s being State of A st
Exec(I,s).IC A <> IC s holds IC A in Output I;
registration
let N;
cluster standard for IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N;
end;
theorem :: AMISTD_4:16
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
sequential holds IC A in Output I;
theorem :: AMISTD_4:17
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st
ex s being State of A st
Exec(I,s).IC A <> IC s holds IC A in Out_U_Inp I;
theorem :: AMISTD_4:18
for A being standard IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A st I is
sequential holds IC A in Out_U_Inp I;
theorem :: AMISTD_4:19
for A being IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N, I being Instruction of A,
o being Object
of A st I is jump-only holds o in Output I implies o = IC A;