:: Riemann Integral of Functions $\mathbbbR$ into $\mathbbbR^n$
:: by Keiichi Miyajima and Yasunari Shidama
::
:: Received May 5, 2009
:: Copyright (c) 2009-2019 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, INTEGRA1, SUBSET_1, FUNCT_1, FINSEQ_1, NAT_1, RELAT_1,
MEASURE7, XBOOLE_0, XXREAL_2, XXREAL_0, SEQ_4, CARD_1, REAL_1, ARYTM_3,
ARYTM_1, CARD_3, FINSEQ_2, INTEGRA2, SEQ_1, SEQ_2, ORDINAL2, COMPLEX1,
XXREAL_1, FUNCT_3, REAL_NS1, STRUCT_0, PARTFUN1, VALUED_1, TARSKI,
PRE_TOPC, INTEGRA5, REALSET1, INTEGR15, VALUED_2, MEASURE5, FUNCT_7;
notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0, XCMPLX_0,
COMPLEX1, XXREAL_2, NAT_1, FUNCT_1, FUNCT_2, STRUCT_0, REAL_1, RCOMP_1,
VALUED_1, RELSET_1, PARTFUN1, SEQ_1, COMSEQ_2, SEQ_2, SEQ_4, FINSEQ_1,
FINSEQ_2, FINSEQOP, VALUED_2, RVSUM_1, PRE_TOPC, XXREAL_0, EUCLID,
PDIFF_1, MEASURE5, INTEGRA1, INTEGRA2, INTEGRA3, INTEGRA5, NORMSP_0,
NORMSP_1, REAL_NS1;
constructors REAL_1, FINSEQOP, MONOID_0, SEQ_4, PSCOMP_1, NAT_D, VFUNCT_1,
PDIFF_1, BINOP_2, INTEGRA2, INTEGRA5, RELSET_1, SEQ_2, INTEGRA3,
VALUED_2, COMSEQ_2;
registrations NUMBERS, XREAL_0, SEQ_2, INTEGRA1, FUNCT_2, NAT_1, MEMBERED,
XXREAL_0, ORDINAL1, VALUED_0, VALUED_1, REAL_NS1, RELSET_1, EUCLID,
VALUED_2, CARD_1, MEASURE5, FINSEQ_1, FINSEQ_2, RELAT_1;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin :: Preliminaries
reserve Z for set;
definition
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL;
let D be Division of A;
mode middle_volume of f,D -> FinSequence of REAL means
:: INTEGR15:def 1
len it = len D
& for i be Nat st i in dom D holds ex r be Element of REAL st r in rng (f|
divset(D,i)) & it.i=r*vol divset(D,i);
end;
definition
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL;
let D be Division of A;
let F be middle_volume of f,D;
func middle_sum(f,F) -> Real equals
:: INTEGR15:def 2
Sum(F);
end;
theorem :: INTEGR15:1
for A be non empty closed_interval Subset of REAL, f be Function of A,REAL,
D be Division of A, F be middle_volume of f,D st f|A is bounded_below holds
lower_sum (f,D) <= middle_sum(f,F);
theorem :: INTEGR15:2
for A be non empty closed_interval Subset of REAL, f be Function of A,REAL,
D be Division of A, F be middle_volume of f,D st f|A is bounded_above holds
middle_sum(f,F) <= upper_sum (f,D);
theorem :: INTEGR15:3
for A be non empty closed_interval Subset of REAL, f be Function of A,REAL,
D be Division of A, e be Real st f|A is bounded_below & 0 < e holds ex F be
middle_volume of f,D st middle_sum(f,F) <= lower_sum (f,D) + e;
theorem :: INTEGR15:4
for A be non empty closed_interval Subset of REAL, f be Function of A,REAL,
D be Division of A, e be Real st f|A is bounded_above & 0 < e holds ex F be
middle_volume of f,D st upper_sum (f,D) - e <= middle_sum(f,F);
definition
let A be non empty closed_interval Subset of REAL,
f be Function of A,REAL, T be
DivSequence of A;
mode middle_volume_Sequence of f,T -> sequence of (REAL)* means
:: INTEGR15:def 3
for k be Element of NAT holds it.k is middle_volume of f,T.k;
end;
definition
let A be non empty closed_interval Subset of REAL,
f be Function of A,REAL, T be
DivSequence of A, S be middle_volume_Sequence of f,T, k be Element of NAT;
redefine func S.k -> middle_volume of f,T.k;
end;
definition
let A be non empty closed_interval Subset of REAL,
f be Function of A,REAL, T be
DivSequence of A, S be middle_volume_Sequence of f,T;
func middle_sum(f,S) -> Real_Sequence means
:: INTEGR15:def 4
for i be Element of NAT holds it.i = middle_sum(f,S.i);
end;
theorem :: INTEGR15:5
for A be non empty closed_interval Subset of REAL, f being Function of A,
REAL, T being DivSequence of A, S be middle_volume_Sequence of f,T, i be
Element of NAT st f|A is bounded_below holds (lower_sum(f,T)).i <= (middle_sum(
f,S)).i;
theorem :: INTEGR15:6
for A be non empty closed_interval Subset of REAL, f being Function of A,
REAL, T being DivSequence of A, S be middle_volume_Sequence of f,T, i be
Element of NAT st f|A is bounded_above holds (middle_sum(f,S)).i <= (upper_sum(
f,T)).i;
theorem :: INTEGR15:7
for A be non empty closed_interval Subset of REAL, f being Function of A,
REAL, T being DivSequence of A, e be Element of REAL st 0 < e & f|A is
bounded_below holds ex S be middle_volume_Sequence of f,T st for i be Element
of NAT holds (middle_sum(f,S)).i <= (lower_sum(f,T)).i + e;
theorem :: INTEGR15:8
for A be non empty closed_interval Subset of REAL, f being Function of A,
REAL, T being DivSequence of A, e be Element of REAL st 0 < e & f|A is
bounded_above holds ex S be middle_volume_Sequence of f,T st for i be Element
of NAT holds (upper_sum(f,T)).i - e <= (middle_sum(f,S)).i;
theorem :: INTEGR15:9
for A be non empty closed_interval Subset of REAL, f being Function of A,
REAL, T being DivSequence of A, S be middle_volume_Sequence of f,T st f is
bounded & f is integrable & delta(T) is convergent & lim delta(T)=0 holds
middle_sum(f,S) is convergent & lim (middle_sum(f,S))=integral(f);
theorem :: INTEGR15:10
for A be non empty closed_interval Subset of REAL, f being Function of A,
REAL st f is bounded holds f is integrable iff ex I be Real st for T being
DivSequence of A, S be middle_volume_Sequence of f,T st delta(T) is convergent
& lim delta(T)=0 holds middle_sum(f,S) is convergent & lim (middle_sum(f,S))=I;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL n;
let D be Division of A;
mode middle_volume of f,D -> FinSequence of (REAL n) means
:: INTEGR15:def 5
len it =
len D & for i be Nat st i in dom D holds ex r be Element of (REAL n) st r in
rng (f|divset(D,i)) & it.i=vol divset(D,i)*r;
end;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL n;
let D be Division of A;
let F be middle_volume of f,D;
func middle_sum(f,F) -> Element of (REAL n) means
:: INTEGR15:def 6
for i be Element of
NAT st i in Seg n holds ex Fi be FinSequence of REAL st Fi=proj(i,n)*F & it.i =
Sum(Fi);
end;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL n;
let T be DivSequence of A;
mode middle_volume_Sequence of f,T -> sequence of (REAL n)* means
:: INTEGR15:def 7
for k be Element of NAT holds it.k is middle_volume of f,T.k;
end;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL n;
let T be DivSequence of A;
let S be middle_volume_Sequence of f,T;
let k be Element of NAT;
redefine func S.k -> middle_volume of f,T.k;
end;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL n;
let T be DivSequence of A;
let S be middle_volume_Sequence of f,T;
func middle_sum(f,S) -> sequence of (REAL-NS n) means
:: INTEGR15:def 8
for i be Element of NAT holds it.i = middle_sum(f,S.i);
end;
definition
let n be Nat;
let Z be set;
let f,g be PartFunc of Z,REAL n;
func f+g -> PartFunc of Z, REAL n equals
:: INTEGR15:def 9
f <++> g;
func f-g -> PartFunc of Z, REAL n equals
:: INTEGR15:def 10
f <--> g;
end;
definition
let n be Nat;
let r be Real;
let Z be set;
let f be PartFunc of Z,REAL n;
func r(#)f -> PartFunc of Z, REAL n equals
:: INTEGR15:def 11
f [#] r;
end;
begin :: Definition of Riemann Integral on Functions REAL to REAL n
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL n;
attr f is bounded means
:: INTEGR15:def 12
for i be Element of NAT st i in Seg n holds (proj(i,n)*f) is bounded;
end;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL n;
attr f is integrable means
:: INTEGR15:def 13
for i be Element of NAT st i in Seg n holds (proj(i,n)*f) is integrable;
end;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be Function of A,REAL n;
func integral(f) -> Element of REAL n means
:: INTEGR15:def 14
dom it = Seg n & for i
be Element of NAT st i in Seg n holds it.i = integral((proj(i,n)*f));
end;
theorem :: INTEGR15:11
for n be Element of NAT, A be non empty closed_interval Subset of REAL, f
being Function of A,REAL n, T being DivSequence of A, S be
middle_volume_Sequence of f,T st f is bounded & f is integrable & delta(T) is
convergent & lim delta(T)=0 holds middle_sum(f,S) is convergent & lim (
middle_sum(f,S))=integral(f);
theorem :: INTEGR15:12
for n be Element of NAT, A be non empty closed_interval Subset of REAL,
f being
Function of A,REAL n st f is bounded holds f is integrable iff ex I be Element
of REAL n st for T being DivSequence of A, S be middle_volume_Sequence of f,T
st delta(T) is convergent & lim delta(T)=0 holds middle_sum(f,S) is convergent
& lim (middle_sum(f,S))=I;
definition
let n be Element of NAT;
let f be PartFunc of REAL,REAL n;
attr f is bounded means
:: INTEGR15:def 15
for i be Element of NAT st i in Seg n holds (proj(i,n)*f) is bounded;
end;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be PartFunc of REAL,REAL n;
pred f is_integrable_on A means
:: INTEGR15:def 16
for i be Element of NAT st i in Seg n holds (proj(i,n)*f) is_integrable_on A;
end;
definition
let n be Element of NAT;
let A be non empty closed_interval Subset of REAL;
let f be PartFunc of REAL,REAL n;
func integral(f,A) -> Element of REAL n means
:: INTEGR15:def 17
dom it = Seg n & for i
be Element of NAT st i in Seg n holds it.i = integral( (proj(i,n)*f), A);
end;
theorem :: INTEGR15:13
for n be Element of NAT, A be non empty closed_interval Subset of REAL, f be
PartFunc of REAL,REAL n, g be Function of A,REAL n st f|A = g holds f
is_integrable_on A iff g is integrable;
theorem :: INTEGR15:14
for n be Element of NAT, A be non empty closed_interval Subset of REAL, f be
PartFunc of REAL,REAL n, g be Function of A,REAL n st f|A = g holds
integral(f,A) = integral(g);
definition
let a,b be Real;
let n be Element of NAT;
let f be PartFunc of REAL, REAL n;
func integral(f,a,b) -> Element of REAL n means
:: INTEGR15:def 18
dom it = Seg n & for
i be Element of NAT st i in Seg n holds it.i = integral( (proj(i,n)*f) ,a,b);
end;
begin :: Linearity of the Integration Operator
theorem :: INTEGR15:15
for n, i be Element of NAT, f1,f2 be PartFunc of Z, REAL n holds
proj(i,n)*(f1+f2) = proj(i,n)*f1 + proj(i,n)*f2 &
proj(i,n)*(f1-f2) = proj(i,n)*f1 - proj(i,n)*f2;
theorem :: INTEGR15:16
for n,i be Element of NAT, r be Real, f be PartFunc of Z, REAL n
holds proj(i,n)*(r(#)f) = r(#)(proj(i,n)*f);
theorem :: INTEGR15:17
for n be Element of NAT for A be non empty closed_interval Subset of REAL
for f1
,f2 be PartFunc of REAL, REAL n st f1 is_integrable_on A & f2 is_integrable_on
A & A c= dom f1 & A c= dom f2 & (f1|A) is bounded & (f2|A) is bounded holds f1+
f2 is_integrable_on A & f1-f2 is_integrable_on A & integral(f1+f2,A)=integral(
f1,A)+integral(f2,A) & integral(f1-f2,A)=integral(f1,A)-integral(f2,A);
theorem :: INTEGR15:18
for n be Element of NAT for r be Real
for A be non empty closed_interval Subset
of REAL for f be PartFunc of REAL, REAL n st A c= dom f & f is_integrable_on A
& f|A is bounded holds r(#)f is_integrable_on A & integral( (r(#)f) ,A) = r*
integral(f,A);
theorem :: INTEGR15:19
for n be Element of NAT for f being PartFunc of REAL,REAL n, A being
non empty closed_interval Subset of REAL, a,b be Real st A=[.a,b.]
holds integral(f,A) = integral(f,a,b);
theorem :: INTEGR15:20
for n be Element of NAT for f being PartFunc of REAL,REAL n, A being
non empty closed_interval Subset of REAL, a,b be Real st A=[.b,a.]
holds -integral(f,A) = integral(f,a,b);
theorem :: INTEGR15:21
for n being Nat, Z,x being set, f,g being PartFunc of Z,REAL n
st x in dom (f+g) holds (f+g)/.x = (f/.x) + (g/.x);
theorem :: INTEGR15:22
for n being Nat, Z,x being set, f,g being PartFunc of Z,REAL n
st x in dom (f-g) holds (f-g)/.x = (f/.x) - (g/.x);
theorem :: INTEGR15:23
for n being Nat, Z,x being set, f being PartFunc of Z,REAL n
for r being Real
st x in dom (r(#)f) holds (r(#)f)/.x = r* (f/.x);